filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_0_11552
# Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Helpers to manipulate a tensor graph in python. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy from tensorflow.core.framework import attr_value_pb2 from tensorflow.core.framework import graph_pb2 from tensorflow.python.framework import device as pydev from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_util from tensorflow.python.platform import tf_logging as logging _VARIABLE_OPS = { "Assign", "AssignAdd", "AssignSub", "Queue", "ScatterAdd", "ScatterSub", "ScatterUpdate", "TruncatedNormal", "Variable", } def _is_variable_op(op): """Returns true if 'op' refers to a Variable node.""" return op in _VARIABLE_OPS def set_cpu0(device_string): """Creates a new device string based on `device_string' but using /CPU:0. If the device is already on /CPU:0, this is a no-op. Args: device_string: A device string. Returns: A device string. """ parsed_device = pydev.DeviceSpec.from_string(device_string) parsed_device.device_type = "CPU" parsed_device.device_index = 0 return parsed_device.to_string() def must_run_on_cpu(node, pin_variables_on_cpu=False): """Returns True if the given node_def must run on CPU, otherwise False. Args: node: The node to be assigned to a device. Could be either an ops.Operation or NodeDef. pin_variables_on_cpu: If True, this function will return False if node_def represents a variable-related op. Returns: True if the given node must run on CPU, otherwise False. """ if isinstance(node, ops.Operation): node_def = node.node_def else: assert isinstance(node, graph_pb2.NodeDef) node_def = node # If the op is a variable-related op, should we pin it on CPU? if pin_variables_on_cpu and _is_variable_op(node_def.op): return True # Constant operations producing a string or int32 must run on CPU. if node_def.op == "Const": # Get the value of the 'dtype' attr dtype = node_def.attr["dtype"].type if dtype == dtypes.string or dtype == dtypes.int32: return True if node_def.op == "DynamicStitch": dtype = node_def.attr["T"].type if dtype == dtypes.int32: # DynamicStitch on GPU only works for int32 values. return True if node_def.op in ["Cast"]: dtype = node_def.attr["SrcT"].type if dtype == dtypes.int32: # Cast on GPU does not works for int32 values. return True return False ################################################################################ # # device functions for use in with g.device(...) # ################################################################################ def _node_name(n): if n.startswith("^"): return n[1:] else: return n.split(":")[0] def extract_sub_graph(graph_def, dest_nodes): """Extract the subgraph that can reach any of the nodes in 'dest_nodes'. Args: graph_def: A graph_pb2.GraphDef proto. dest_nodes: A list of strings specifying the destination node names. Returns: The GraphDef of the sub-graph. Raises: TypeError: If 'graph_def' is not a graph_pb2.GraphDef proto. """ if not isinstance(graph_def, graph_pb2.GraphDef): raise TypeError("graph_def must be a graph_pb2.GraphDef proto.") edges = {} # Keyed by the dest node name. name_to_node_map = {} # Keyed by node name. # Keeps track of node sequences. It is important to still output the # operations in the original order. node_seq = {} # Keyed by node name. seq = 0 for node in graph_def.node: n = _node_name(node.name) name_to_node_map[n] = node edges[n] = [_node_name(x) for x in node.input] node_seq[n] = seq seq += 1 for d in dest_nodes: assert d in name_to_node_map, "%s is not in graph" % d nodes_to_keep = set() # Breadth first search to find all the nodes that we should keep. next_to_visit = dest_nodes[:] while next_to_visit: n = next_to_visit[0] del next_to_visit[0] if n in nodes_to_keep: # Already visited this node. continue nodes_to_keep.add(n) next_to_visit += edges[n] nodes_to_keep_list = sorted(list(nodes_to_keep), key=lambda n: node_seq[n]) # Now construct the output GraphDef out = graph_pb2.GraphDef() for n in nodes_to_keep_list: out.node.extend([copy.deepcopy(name_to_node_map[n])]) return out def tensor_shape_from_node_def_name(graph, input_name): """Convenience function to get a shape from a NodeDef's input string.""" # To get a tensor, the name must be in the form <input>:<port>, for example # 'Mul:0'. The GraphDef input strings don't always have the port specified # though, so if there isn't a colon we need to add a default ':0' to the end. if ":" not in input_name: canonical_name = input_name + ":0" else: canonical_name = input_name tensor = graph.get_tensor_by_name(canonical_name) shape = tensor.get_shape() return shape def convert_variables_to_constants(sess, input_graph_def, output_node_names): """Replaces all the variables in a graph with constants of the same values. If you have a trained graph containing Variable ops, it can be convenient to convert them all to Const ops holding the same values. This makes it possible to describe the network fully with a single GraphDef file, and allows the removal of a lot of ops related to loading and saving the variables. Args: sess: Active TensorFlow session containing the variables. input_graph_def: GraphDef object holding the network. output_node_names: List of name strings for the result nodes of the graph. Returns: GraphDef containing a simplified version of the original. """ found_variables = {} variable_names = [] variable_dict_names = [] for node in input_graph_def.node: if node.op == "Assign": variable_name = node.input[0] variable_dict_names.append(variable_name) variable_names.append(variable_name + ":0") if variable_names: returned_variables = sess.run(variable_names) else: returned_variables = [] found_variables = dict(zip(variable_dict_names, returned_variables)) logging.info("Frozen %d variables." % len(returned_variables)) # This graph only includes the nodes needed to evaluate the output nodes, and # removes unneeded nodes like those involved in saving and assignment. inference_graph = extract_sub_graph(input_graph_def, output_node_names) output_graph_def = graph_pb2.GraphDef() how_many_converted = 0 for input_node in inference_graph.node: output_node = graph_pb2.NodeDef() if input_node.name in found_variables: output_node.op = "Const" output_node.name = input_node.name dtype = input_node.attr["dtype"] data = found_variables[input_node.name] output_node.attr["dtype"].CopyFrom(dtype) output_node.attr["value"].CopyFrom(attr_value_pb2.AttrValue( tensor=tensor_util.make_tensor_proto(data, dtype=dtype.type, shape=data.shape))) how_many_converted += 1 else: output_node.CopyFrom(input_node) output_graph_def.node.extend([output_node]) print("Converted %d variables to const ops." % how_many_converted) return output_graph_def
the-stack_0_11553
# Copyright (c) 2016, Mark Peek <[email protected]> # All rights reserved. # # See LICENSE file for full license. from . import AWSHelperFn, AWSObject, AWSProperty, Tags from .validators import boolean, integer, positive_integer class SourceAuth(AWSProperty): props = { 'Resource': (basestring, False), 'Type': (basestring, True), } def validate(self): valid_types = [ 'OAUTH' ] auth_types = self.properties.get('Type') if auth_types not in valid_types: raise ValueError('SourceAuth Type: must be one of %s' % ','.join(valid_types)) class Artifacts(AWSProperty): props = { 'EncryptionDisabled': (boolean, False), 'Location': (basestring, False), 'Name': (basestring, False), 'NamespaceType': (basestring, False), 'OverrideArtifactName': (boolean, False), 'Packaging': (basestring, False), 'Path': (basestring, False), 'Type': (basestring, True), } def validate(self): valid_types = [ 'CODEPIPELINE', 'NO_ARTIFACTS', 'S3', ] artifact_type = self.properties.get('Type') if artifact_type not in valid_types: raise ValueError('Artifacts Type: must be one of %s' % ','.join(valid_types)) if artifact_type == 'S3': for required_property in ['Name', 'Location']: if not self.properties.get(required_property): raise ValueError( 'Artifacts Type S3: requires %s to be set' % required_property ) class EnvironmentVariable(AWSProperty): props = { 'Name': (basestring, True), 'Type': (basestring, False), 'Value': (basestring, True), } def validate(self): if 'Type' in self.properties: valid_types = [ 'PARAMETER_STORE', 'PLAINTEXT', ] env_type = self.properties.get('Type') if env_type not in valid_types: raise ValueError( 'EnvironmentVariable Type: must be one of %s' % ','.join(valid_types)) class Environment(AWSProperty): props = { 'ComputeType': (basestring, True), 'EnvironmentVariables': ((list, [EnvironmentVariable]), False), 'Image': (basestring, True), 'PrivilegedMode': (boolean, False), 'Type': (basestring, True), } def validate(self): valid_types = [ 'LINUX_CONTAINER', 'WINDOWS_CONTAINER', ] env_type = self.properties.get('Type') if env_type not in valid_types: raise ValueError('Environment Type: must be one of %s' % ','.join(valid_types)) class ProjectCache(AWSProperty): props = { 'Location': (basestring, False), 'Type': (basestring, True), } def validate(self): valid_types = [ 'NO_CACHE', 'S3', ] cache_type = self.properties.get('Type') if cache_type not in valid_types: raise ValueError('ProjectCache Type: must be one of %s' % ','.join(valid_types)) class Source(AWSProperty): props = { 'Auth': (SourceAuth, False), 'BuildSpec': (basestring, False), 'GitCloneDepth': (positive_integer, False), 'InsecureSsl': (boolean, False), 'Location': (basestring, False), 'ReportBuildStatus': (boolean, False), 'Type': (basestring, True), } def validate(self): valid_types = [ 'BITBUCKET', 'CODECOMMIT', 'CODEPIPELINE', 'GITHUB', 'GITHUB_ENTERPRISE', 'NO_SOURCE', 'S3', ] location_agnostic_types = [ 'CODEPIPELINE', 'NO_SOURCE', ] source_type = self.properties.get('Type') # Don't do additional checks if source_type can't # be determined (for example, being a Ref). if isinstance(source_type, AWSHelperFn): return if source_type not in valid_types: raise ValueError('Source Type: must be one of %s' % ','.join(valid_types)) location = self.properties.get('Location') if source_type not in location_agnostic_types and not location: raise ValueError( 'Source Location: must be defined when type is %s' % source_type ) auth = self.properties.get('Auth') if auth is not None and source_type is not 'GITHUB': raise ValueError("SourceAuth: must only be defined when using " "'GITHUB' Source Type.") class VpcConfig(AWSProperty): props = { 'SecurityGroupIds': ([basestring], True), 'Subnets': ([basestring], True), 'VpcId': (basestring, True), } class ProjectTriggers(AWSProperty): props = { 'Webhook': (boolean, False), } def validate_status(status): """ Validate status :param status: The Status of CloudWatchLogs or S3Logs :return: The provided value if valid """ valid_statuses = [ 'ENABLED', 'DISABLED' ] if status not in valid_statuses: raise ValueError('Status: must be one of %s' % ','.join(valid_statuses)) return status class CloudWatchLogs(AWSProperty): props = { "Status": (validate_status, True), "GroupName": (basestring, False), "StreamName": (basestring, False) } class S3Logs(AWSProperty): props = { "Status": (validate_status, True), "Location": (basestring, False) } class LogsConfig(AWSProperty): props = { 'CloudWatchLogs': (CloudWatchLogs, False), 'S3Logs': (S3Logs, False) } class Project(AWSObject): resource_type = "AWS::CodeBuild::Project" props = { 'Artifacts': (Artifacts, True), 'BadgeEnabled': (boolean, False), 'Cache': (ProjectCache, False), 'Description': (basestring, False), 'EncryptionKey': (basestring, False), 'Environment': (Environment, True), "LogsConfig": (LogsConfig, False), 'Name': (basestring, True), 'SecondaryArtifacts': ([Artifacts], False), 'SecondarySources': ([Source], False), 'ServiceRole': (basestring, True), 'Source': (Source, True), 'Tags': (Tags, False), 'TimeoutInMinutes': (integer, False), 'Triggers': (ProjectTriggers, False), 'VpcConfig': (VpcConfig, False), }
the-stack_0_11554
import sys sys.path.append('.') from util.game import Game from util.func import Case from util.card import Card, CardList, CardSuit from util.player import Player from typing import List, Optional, Tuple import random class LevelUp(Game): ### Constants PLAYERNUM: int = 4 CARDPOOL: List[Card] = [Card(i) for i in range(54)] * 2 BASESCORE: int = 80 LEVELSCORE: int = 40 def __init__(self): self.players: List[Optional[Player]] = [None] * LevelUp.PLAYERNUM self.discard_buffer: Optional[CardList] = None self.curPlayerIndex: Optional[int] = None self.rankLevel: Tuple[int, int] = (1, 1) self.dealerIndex: Optional[int] = None self.rankMain: int = 1 # E.g. (Spade, 0, 1) means the main suit is spade (suited with a single spade by 0-th player) self.suitMain: Optional[Tuple(CardSuit, int, int)] = None self.score: int = 0 self.state: str = 'END' for i in range(len(self.players)): self.players[i] = Player() def inform(self, information): case = Case(self.state) if case('END'): case = Case(information) if case('START'): self.state = 'DISPATCH' return (True, self._dispatch(), { 'suit': self.suitMain, 'rank': self.rankMain, 'level': self.rankLevel } ) if case('DISPATCH'): case = Case(information) if case('FINISH'): self.state = 'DISCARD' if self.dealerIndex is None: self.dealerIndex = self.suitMain[1] self.curPlayerIndex = self.dealerIndex self.players[self.curPlayerIndex].cardInHand += self.discard_buffer self.discard_buffer = CardList() for player in self.players: player.cardFront = CardList() return (True, None, None) return (False, None, None) def _dispatch(self) -> List[int]: newCardPool: List[Card] = random.sample(LevelUp.CARDPOOL, len(LevelUp.CARDPOOL)) dispatch = [newCardPool[0:25], newCardPool[25:50], newCardPool[50:75], newCardPool[75:100], newCardPool[100:]] for id, player in enumerate(self.players): player.cardInHand = CardList(dispatch[id]) self.discard_buffer = CardList(dispatch[-1]) return [[card.ID for card in cards] for cards in dispatch] def isSuitable(self, cards: List[int], playerID: int, suit: Optional[CardSuit] = None): #suit: 0 NT, 1 Spade, 2 Heart, 3 Club, 4 Diamond if suit is None: return [self.isSuitable(cards, playerID, s) for s in [ CardSuit.Joker, CardSuit.Spade, CardSuit.Heart, CardSuit.Club, CardSuit.Diamond ]] cardnum = -1 case = Case(suit) if case(CardSuit.Spade): cardnum = 39 + self.rankMain elif case(CardSuit.Heart): cardnum = 26 + self.rankMain elif case(CardSuit.Club): cardnum = 13 + self.rankMain elif case(CardSuit.Diamond): cardnum = self.rankMain if self.suitMain is None: if suit == CardSuit.Joker: return cards.count(52) == 2 or cards.count(53) == 2 else: return cardnum in cards elif self.suitMain[1] == playerID: if self.suitMain[2] == 2: return False if suit != self.suitMain[0]: return False return cards.count(cardnum) == 2 else: if suit == CardSuit.Joker: if self.suitMain[0] == CardSuit.Joker: return cards.count(53) == 2 else: return cards.count(53) == 2 or cards.count(52) == 2 if self.suitMain[2] == 2: return False return cards.count(cardnum) == 2 def suitRequest(self, playerID: int, suit: CardSuit): cards = self.players[playerID].cardInHand.tolist() if not self.isSuitable(cards, playerID, suit): return False for player in self.players: player.cardFront = CardList() cardnum = -1 case = Case(suit) if case(CardSuit.Spade): cardnum = 39 + self.rankMain elif case(CardSuit.Heart): cardnum = 26 + self.rankMain elif case(CardSuit.Club): cardnum = 13 + self.rankMain elif case(CardSuit.Diamond): cardnum = self.rankMain if suit == CardSuit.Joker: if cards.count(52) == 2: self.suitMain = (CardSuit.Joker, playerID, 2) self.players[playerID].cardFront += CardList([Card(52), Card(52)]) else: self.suitMain = (CardSuit.Joker, playerID, 2) self.players[playerID].cardFront += CardList([Card(53), Card(53)]) else: if self.suitMain is None: self.suitMain = (suit, playerID, 1) self.players[playerID].cardFront += Card(cardnum) else: self.suitMain = (suit, playerID, 2) self.players[playerID].cardFront += CardList([Card(cardnum), Card(cardnum)]) front = [player.cardFront.tolist() for player in self.players] return [front, self.suitMain]
the-stack_0_11555
# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries # SPDX-License-Identifier: MIT """ Read data from the magnetometer and print it out, ASAP! """ import board import adafruit_lsm303dlh_mag i2c = board.I2C() # uses board.SCL and board.SDA sensor = adafruit_lsm303dlh_mag.LSM303DLH_Mag(i2c) while True: mag_x, mag_y, mag_z = sensor.magnetic print("{0:10.3f} {1:10.3f} {2:10.3f}".format(mag_x, mag_y, mag_z))
the-stack_0_11556
''' File: pathtracker.py Path tracking simulation with Stanley steering control and PID speed control. author: Atsushi Sakai (@Atsushi_twi) Ref: - [Stanley: The robot that won the DARPA grand challenge](http://isl.ecst.csuchico.edu/DOCS/darpa2005/DARPA%202005%20Stanley.pdf) - [Autonomous Automobile Path Tracking](https://www.ri.cmu.edu/pub_files/2009/2/Automatic_Steering_Methods_for_Autonomous_Automobile_Path_Tracking.pdf) ''' import numpy as np import math class StanleyController(object): MIN_THROTTLE = 0.0 MAX_THROTTLE = 1.0 def __init__(self, cfg): self.cfg = cfg self.k = 0.5 # control gain self.Kp = cfg.KP # speed proportional gain self.Kd = cfg.KD # speed diferential gain self.Kta = 0.5 # accel to throttle ratio self.maxaccel = cfg.MAX_ACCEL self.L = 30 # [m] Wheel base of vehicle self.x = 0. self.y = 0. self.camx = 105. self.camy = 400. self.yaw = -math.pi # Current yaw (birdseye frame) self.v = 0. self.throttle = 0. # current throttle setting self.img_count = 0 def constant_speed_control(self,v_target,v_current,throttle): """ Proportional control for the speed. :param target v: (float) :param current v: (float) :param previous v: (float) :return target change in accel: (float) """ v_correction = self.Kp * (v_target - v_current) current_accel = v_current - self.v accel_delta = v_correction - current_accel if accel_delta > self.maxaccel: accel_delta = self.maxaccel if accel_delta < -self.maxaccel: accel_delta = -self.maxaccel throttle = throttle + (accel_delta * self.Kta) if throttle < self.MIN_THROTTLE: throttle = self.MIN_THROTTLE if throttle > self.MAX_THROTTLE: throttle = self.MAX_THROTTLE return throttle def stanley_control(self, cx, cy, cyaw, v, last_target_idx): """ Stanley steering control. :param state: (State object) :param cx: ([float]) :param cy: ([float]) :param cyaw: ([float]) :param last_target_idx: (int) :return: (float, int) """ current_target_idx, error_front_axle = self.calc_target_index(cx, cy) if last_target_idx >= current_target_idx: current_target_idx = last_target_idx # theta_e corrects the heading error theta_e = cyaw[current_target_idx] - self.yaw #self.normalize_angle(cyaw[current_target_idx] - self.yaw) # theta_d corrects the cross track error # theta_d = np.arctan2(self.k * error_front_axle, v) # Steering control delta = theta_e # + theta_d return delta, current_target_idx def normalize_angle(self,angle): """ Normalize an angle to [-pi, pi]. :param angle: (float) :return: (float) Angle in radian in [-pi, pi] """ while angle > np.pi: angle -= 2.0 * np.pi while angle < -np.pi: angle += 2.0 * np.pi return angle def calc_target_index(self, cx, cy): """ Compute index in the trajectory list of the target. :param state: (State object) :param cx: [float] :param cy: [float] :return: (int, float) """ # Calc front axle position fx = self.camx + self.L * np.cos(self.yaw) fy = self.camy + self.L * np.sin(self.yaw) # Search nearest point index dx = [fx - icx for icx in cx] dy = [fy - icy for icy in cy] d = np.hypot(dx, dy) target_idx = np.argmin(d) # Project RMS error onto front axle vector front_axle_vec = [-np.cos(self.yaw + np.pi / 2), -np.sin(self.yaw + np.pi / 2)] error_front_axle = np.dot([dx[target_idx], dy[target_idx]], front_axle_vec) return target_idx, error_front_axle def run(self,img_count,x,y,yaw,velturn,velfwd,rax,ray,ryaw,speedprofile,runstate): if img_count > self.img_count: self.x = x self.y = y self.camx = 105 self.camy = 400 self.img_count = img_count else: dx = (x - self.x) * 100 dy = (y - self.y) * 100 self.camy = self.camy - (np.cos(yaw)*dy - np.sin(yaw)*dx) # rotate velocity by yaw angle to the camera frame self.camx = self.camx + (np.sin(yaw)*dy + np.cos(yaw)*dx) self.x = x self.y = y print(f'reuse situation {self.camx},{self.camy}') v = np.abs(np.hypot(velfwd, velturn)) self.yaw = -np.pi/2 #np.arctan2(velfwd, velturn) - (np.pi / 2.) if runstate == 'running': target_idx, _ = self.calc_target_index(rax, ray) target_speed = speedprofile[target_idx] delta, target_idx = self.stanley_control(rax, ray, ryaw, v, target_idx) # yaw_correction = delta - (np.arctan2(velfwd, velturn) + np.pi) else: # if the car is not in a running state keep it stopped target_speed = 0.0 delta = 0.0 # yaw_correction = 0.0 steering_angle = self.yaw + delta + np.pi throttle = self.constant_speed_control(target_speed, v, self.throttle) print(delta,steering_angle, v, target_speed, throttle, runstate) self.throttle = throttle # for next time around self.v = v return self.camx,self.camy,delta,steering_angle,throttle
the-stack_0_11557
import os import json from tabulate import tabulate from hyperopt import Trials, STATUS_OK, tpe from hyperas import optim from hyperas.distributions import choice, uniform from keras.layers import Dense, Dropout, Input, LSTM from keras.constraints import maxnorm from keras.callbacks import EarlyStopping, ModelCheckpoint from stochnet.classes.TimeSeriesDataset import TimeSeriesDataset from stochnet.classes.NeuralNetworks import StochNeuralNetwork from stochnet.classes.TopLayers import MultivariateNormalCholeskyOutputLayer, MixtureOutputLayer def data(): ''' Data providing function: This function is separated from model() so that hyperopt won't reload data for each evaluation run. ''' current = os.getcwd() working_path = os.path.dirname(current) basename = os.path.abspath(working_path) dataset_address = os.path.join(basename, 'dataset/SIR_dataset_upgraded_2.npy') test_dataset_address = os.path.join(basename, 'dataset/SIR_dataset_upgraded_3.npy') data_labels = {'Timestamps': 0, 'Susceptible': 1, 'Infected': 2, 'Removed': 3} dataset = TimeSeriesDataset(dataset_address, labels=data_labels) test_dataset = TimeSeriesDataset(test_dataset_address, labels=data_labels) nb_past_timesteps = 5 dataset.format_dataset_for_ML(nb_past_timesteps=nb_past_timesteps, must_be_rescaled=True, percentage_of_test_data=0) test_dataset.format_dataset_for_ML(nb_past_timesteps=nb_past_timesteps, must_be_rescaled=True, percentage_of_test_data=0) X_train = dataset.X_train X_test = test_dataset.X_train Y_train = dataset.y_train Y_test = test_dataset.y_train return X_train, Y_train, X_test, Y_test def model(X_train, Y_train, X_test, Y_test): """ Model providing function: Create Keras model with double curly brackets dropped-in as needed. Return value has to be a valid python dictionary with two customary keys: - loss: Specify a numeric evaluation metric to be minimized - status: Just use STATUS_OK and see hyperopt documentation if not feasible The last one is optional, though recommended, namely: - model: specify the model just created so that we can later use it again. """ input_tensor = Input(shape=(5, 3)) hidden1 = LSTM({{choice([64, 128, 256, 512, 1024])}}, kernel_constraint=maxnorm({{uniform(1, 3)}}), recurrent_constraint=maxnorm({{uniform(1, 3)}}))(input_tensor) dropout1 = Dropout({{uniform(0.2, 0.7)}})(hidden1) NN_body = Dense({{choice([64, 128, 256, 512, 1024])}}, kernel_constraint=maxnorm({{uniform(1, 3)}}))(dropout1) dropout2 = Dropout({{uniform(0.2, 0.7)}})(NN_body) NN_body = Dense({{choice([64, 128, 256, 512, 1024])}}, kernel_constraint=maxnorm({{uniform(1, 3)}}))(dropout2) number_of_components = 2 components = [] for j in range(number_of_components): components.append(MultivariateNormalCholeskyOutputLayer(3)) TopModel_obj = MixtureOutputLayer(components) NN = StochNeuralNetwork(input_tensor, NN_body, TopModel_obj) callbacks = [] callbacks.append(EarlyStopping(monitor='val_loss', patience=3, verbose=1, mode='min')) result = NN.fit(X_train, Y_train, batch_size={{choice([512, 1024, 2048, 3072, 4096])}}, epochs={{choice([10, 15, 20, 40])}}, verbose=2, callbacks=callbacks, validation_data=(X_test, Y_test)) parameters = space val_loss = min(result.history['val_loss']) parameters["val_loss"] = val_loss print('Validation loss: {0}'.format(val_loss)) if 'results' not in globals(): global results results = [] results.append(parameters) print(tabulate(results, headers="keys", tablefmt="fancy_grid", floatfmt=".8f")) with open('/home/lpalmier/workspace/output/SIR/SIR_model_tuning_MNC_01.json', 'w') as f: f.write(json.dumps(results)) return {'loss': val_loss, 'status': STATUS_OK, 'model': NN.model} if __name__ == '__main__': best_run, best_model = optim.minimize(model=model, data=data, algo=tpe.suggest, max_evals=20, trials=Trials()) X_train, Y_train, X_test, Y_test = data() print("Evalutation of best performing model:") print(best_model.evaluate(X_test, Y_test))
the-stack_0_11559
"""Support for deCONZ binary sensors.""" from pydeconz.sensor import Presence, Vibration from homeassistant.components.binary_sensor import BinarySensorDevice from homeassistant.const import ATTR_TEMPERATURE from homeassistant.core import callback from homeassistant.helpers.dispatcher import async_dispatcher_connect from .const import ATTR_DARK, ATTR_ON, NEW_SENSOR from .deconz_device import DeconzDevice from .gateway import get_gateway_from_config_entry, DeconzEntityHandler ATTR_ORIENTATION = "orientation" ATTR_TILTANGLE = "tiltangle" ATTR_VIBRATIONSTRENGTH = "vibrationstrength" async def async_setup_platform(hass, config, async_add_entities, discovery_info=None): """Old way of setting up deCONZ platforms.""" async def async_setup_entry(hass, config_entry, async_add_entities): """Set up the deCONZ binary sensor.""" gateway = get_gateway_from_config_entry(hass, config_entry) entity_handler = DeconzEntityHandler(gateway) @callback def async_add_sensor(sensors, new=True): """Add binary sensor from deCONZ.""" entities = [] for sensor in sensors: if new and sensor.BINARY: new_sensor = DeconzBinarySensor(sensor, gateway) entity_handler.add_entity(new_sensor) entities.append(new_sensor) async_add_entities(entities, True) gateway.listeners.append( async_dispatcher_connect( hass, gateway.async_signal_new_device(NEW_SENSOR), async_add_sensor ) ) async_add_sensor(gateway.api.sensors.values()) class DeconzBinarySensor(DeconzDevice, BinarySensorDevice): """Representation of a deCONZ binary sensor.""" @callback def async_update_callback(self, force_update=False): """Update the sensor's state.""" changed = set(self._device.changed_keys) keys = {"on", "reachable", "state"} if force_update or any(key in changed for key in keys): self.async_schedule_update_ha_state() @property def is_on(self): """Return true if sensor is on.""" return self._device.is_tripped @property def device_class(self): """Return the class of the sensor.""" return self._device.SENSOR_CLASS @property def icon(self): """Return the icon to use in the frontend.""" return self._device.SENSOR_ICON @property def device_state_attributes(self): """Return the state attributes of the sensor.""" attr = {} if self._device.on is not None: attr[ATTR_ON] = self._device.on if self._device.secondary_temperature is not None: attr[ATTR_TEMPERATURE] = self._device.secondary_temperature if self._device.type in Presence.ZHATYPE and self._device.dark is not None: attr[ATTR_DARK] = self._device.dark elif self._device.type in Vibration.ZHATYPE: attr[ATTR_ORIENTATION] = self._device.orientation attr[ATTR_TILTANGLE] = self._device.tiltangle attr[ATTR_VIBRATIONSTRENGTH] = self._device.vibrationstrength return attr
the-stack_0_11560
#!/usr/bin/env python """settings.py Udacity conference server-side Python App Engine app user settings $Id$ created/forked from conference.py by wesc on 2014 may 24 """ # Replace the following lines with client IDs obtained from the APIs # Console or Cloud Console. WEB_CLIENT_ID = '1009053430959-tdqqi86iai9gdqlods5m7mpoo1it0b0q.apps.googleusercontent.com' ANDROID_CLIENT_ID = 'replace with Android client ID' IOS_CLIENT_ID = 'replace with iOS client ID' ANDROID_AUDIENCE = WEB_CLIENT_ID
the-stack_0_11561
import subprocess import logging import sys from contextlib import contextmanager @contextmanager def maybe_open1(out): if isinstance(out, str): with open(out, "ab") as f: yield f else: yield out @contextmanager def maybe_open2(stdout, stderr): with maybe_open1(stdout) as fout: if isinstance(stderr, str): if stderr == stdout: yield fout, fout else: with open(stderr, "ab") as ferr: yield fout, ferr else: yield fout, stderr class Make: def __init__(self, root_dir, args=[], stdout=None, stderr=None, verbose=False): self._root_dir = root_dir self._args = ["make"] + args if not verbose: self._args += ["-s", "--no-print-directory"] self._proc_stdout = stdout self._proc_stderr = stderr def check_call(self, args): args = self._args + args logging.debug(f"Execute {args} in {self._root_dir}, stdout={self._proc_stdout}, stderr={self._proc_stderr}") with maybe_open2(self._proc_stdout, self._proc_stderr) as (stdout, stderr): subprocess.check_call(args, cwd=self._root_dir, stdout=stdout, stderr=stderr ) def check_output(self, args): args = self._args + args logging.debug(f"Execute {args} in {self._root_dir} ...") with maybe_open1(self._proc_stderr) as stderr: output = subprocess.check_output(args, cwd=self._root_dir, stderr=stderr ) logging.debug(f"Output of {args} command: {output}") return output def get_output_lines(self, args): out = self.check_output(args) return [l.strip() for l in out.decode("utf-8").split("\n")]
the-stack_0_11562
import numpy as np def calc_jacobian(frames: list, transformations: dict, jsize: int) -> np.array: """ Args: frames (list): frames to compute jacobian transformations (dict): transformations from forward kinematics thetas (int): size of joint space Returns: Jacobian (np.array(6, jsize)): return Jacobian """ target_position = list(transformations.values())[-1].pos J = np.zeros((6, jsize)) n = 0 for frame in frames: if frame.joint.dtype == "revolute": n += 1 w = np.dot(transformations[frame.link.name].h_mat[:3, :3], frame.joint.axis) v = np.cross(w, target_position - transformations[frame.link.name].pos) J[:, n - 1] = np.hstack((v, w)) elif frame.joint.dtype == "prismatic": n += 1 w = np.zeros(3) v = np.dot(transformations[frame.link.name].h_mat[:3, :3], frame.joint.axis) J[:, n - 1] = np.hstack((v, w)) return J
the-stack_0_11564
""" Copyright (c) 2018-2022 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from copy import deepcopy from PIL import Image import cv2 import numpy as np from ..adapters import Adapter from ..representation import ImageProcessingPrediction, SuperResolutionPrediction, ContainerPrediction from ..config import ConfigValidator, BoolField, StringField, DictField, NormalizationArgsField from ..preprocessor import Normalize class ImageProcessingAdapter(Adapter): __provider__ = 'image_processing' prediction_types = (ImageProcessingPrediction, ) @classmethod def parameters(cls): parameters = super().parameters() parameters.update({ 'reverse_channels': BoolField( optional=True, default=False, description="Allow switching output image channels e.g. RGB to BGR" ), 'mean': NormalizationArgsField( optional=True, default=0, description='The value which should be added to prediction pixels for scaling to range [0, 255]' '(usually it is the same mean value which subtracted in preprocessing step))', precomputed_args=Normalize.PRECOMPUTED_MEANS ), 'std': NormalizationArgsField( optional=True, default=255, description='The value on which prediction pixels should be multiplied for scaling to range ' '[0, 255] (usually it is the same scale (std) used in preprocessing step))', precomputed_args=Normalize.PRECOMPUTED_STDS, allow_zeros=False ), 'target_out': StringField(optional=True, description='Target super resolution model output'), "cast_to_uint8": BoolField( optional=True, default=True, description="Cast prediction values to integer within [0, 255] range" ) }) return parameters @classmethod def validate_config(cls, config, fetch_only=False, **kwargs): return super().validate_config( config, fetch_only=fetch_only, on_extra_argument=ConfigValidator.IGNORE_ON_EXTRA_ARGUMENT ) def configure(self): self.reverse_channels = self.get_value_from_config('reverse_channels') self.mean = self.get_value_from_config('mean') self.std = self.get_value_from_config('std') self.target_out = self.get_value_from_config('target_out') self.cast_to_uint8 = self.get_value_from_config('cast_to_uint8') self.output_verified = False def select_output_blob(self, outputs): self.output_verified = True if not self.target_out: super().select_output_blob(outputs) self.target_out = self.output_blob return self.target_out = self.check_output_name(self.target_out, outputs) return def process(self, raw, identifiers, frame_meta): result = [] raw_outputs = self._extract_predictions(raw, frame_meta) if not self.output_verified: self.select_output_blob(raw_outputs) for identifier, out_img in zip(identifiers, raw_outputs[self.target_out]): out_img = self._basic_postprocess(out_img) result.append(ImageProcessingPrediction(identifier, out_img)) return result def _basic_postprocess(self, img): img = img.transpose((1, 2, 0)) if img.shape[-1] > 4 else img img *= self.std img += self.mean if self.cast_to_uint8: img = np.clip(img, 0., 255.) img = img.astype(np.uint8) if self.reverse_channels: img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = Image.fromarray(img, 'RGB') if Image is not None else img img = np.array(img).astype(np.uint8) return img class SuperResolutionAdapter(ImageProcessingAdapter): __provider__ = 'super_resolution' prediction_types = (SuperResolutionPrediction, ) def process(self, raw, identifiers=None, frame_meta=None): result = [] raw_outputs = self._extract_predictions(raw, frame_meta) if not self.output_verified: self.select_output_blob(raw_outputs) for identifier, img_sr in zip(identifiers, raw_outputs[self.target_out]): img_sr = self._basic_postprocess(img_sr) result.append(SuperResolutionPrediction(identifier, img_sr)) return result class MultiSuperResolutionAdapter(Adapter): __provider__ = 'multi_super_resolution' prediction_types = (SuperResolutionPrediction, ) @property def additional_output_mapping(self): return getattr(self, '_additional_output_mapping', None) @additional_output_mapping.setter def additional_output_mapping(self, value): self._additional_output_mapping = value if hasattr(self, '_per_target_adapters'): for adapter in self._per_target_adapters.values(): adapter.additional_output_mapping = value @classmethod def parameters(cls): parameters = super().parameters() parameters.update({ 'reverse_channels': BoolField( optional=True, default=False, description="Allow switching output image channels e.g. RGB to BGR" ), 'mean': NormalizationArgsField( optional=True, default=0, description='The value which should be added to prediction pixels for scaling to range [0, 255]' '(usually it is the same mean value which subtracted in preprocessing step))', precomputed_args=Normalize.PRECOMPUTED_MEANS ), 'std': NormalizationArgsField( optional=True, default=255, description='The value on which prediction pixels should be multiplied for scaling to range ' '[0, 255] (usually it is the same scale (std) used in preprocessing step))', precomputed_args=Normalize.PRECOMPUTED_STDS, allow_zeros=False ), "cast_to_uint8": BoolField( optional=True, default=True, description="Cast prediction values to integer within [0, 255] range" ), 'target_mapping': DictField(allow_empty=False, key_type=str, value_type=str) }) return parameters @classmethod def validate_config(cls, config, fetch_only=False, **kwargs): return super().validate_config( config, fetch_only=fetch_only, on_extra_argument=ConfigValidator.IGNORE_ON_EXTRA_ARGUMENT ) def configure(self): self.target_mapping = self.get_value_from_config('target_mapping') common_adapter_config = deepcopy(self.launcher_config) self._per_target_adapters = {} for key, output_name in self.target_mapping.items(): adapter_config = deepcopy(common_adapter_config) adapter_config['target_out'] = output_name self._per_target_adapters[key] = SuperResolutionAdapter( adapter_config, additional_output_mapping=self.additional_output_mapping ) def process(self, raw, identifiers=None, frame_meta=None): predictions = [{}] * len(identifiers) for key, adapter in self._per_target_adapters.items(): result = adapter.process(raw, identifiers, frame_meta) for batch_id, output_res in enumerate(result): predictions[batch_id][key] = output_res results = [ContainerPrediction(prediction_mapping) for prediction_mapping in predictions] return results class SuperResolutionYUV(Adapter): __provider__ = 'super_resolution_yuv' @classmethod def parameters(cls): parameters = super().parameters() parameters.update({ 'y_output': StringField(), 'u_output': StringField(), 'v_output': StringField(), 'target_color': StringField(optional=True, choices=['bgr', 'rgb'], default='bgr') }) return parameters def configure(self): self.y_output = self.get_value_from_config('y_output') self.u_output = self.get_value_from_config('u_output') self.v_output = self.get_value_from_config('v_output') self.color = cv2.COLOR_YUV2BGR if self.get_value_from_config('target_color') == 'bgr' else cv2.COLOR_YUV2RGB def get_image(self, y, u, v): is_hwc = u.shape[-1] == 1 if not is_hwc: y = np.transpose(y, (1, 2, 0)) u = np.transpose(u, (1, 2, 0)) v = np.transpose(v, (1, 2, 0)) h, w, __ = u.shape u = u.reshape(h, w, 1) v = v.reshape(h, w, 1) u = cv2.resize(u, None, fx=2, fy=2) v = cv2.resize(v, None, fx=2, fy=2) y = y.reshape(2 * h, 2 * w, 1) u = u.reshape(2 * h, 2 * w, 1) v = v.reshape(2 * h, 2 * w, 1) yuv = np.concatenate([y, u, v], axis=2) image = cv2.cvtColor(yuv, self.color) return image def process(self, raw, identifiers=None, frame_meta=None): outs = self._extract_predictions(raw, frame_meta) results = [] for identifier, yres, ures, vres in zip( identifiers, outs[self.y_output], outs[self.u_output], outs[self.v_output] ): sr_img = self.get_image(yres, ures, vres) results.append(SuperResolutionPrediction(identifier, sr_img)) return results class TrimapAdapter(ImageProcessingAdapter): __provider__ = 'trimap' prediction_types = (ImageProcessingPrediction, ) def process(self, raw, identifiers, frame_meta): result = [] raw_outputs = self._extract_predictions(raw, frame_meta) if not self.output_verified: self.select_output_blob(raw_outputs) for identifier, out_img, out_meta in zip(identifiers, raw_outputs[self.target_out], frame_meta): tmap = np.expand_dims(out_meta['tmap'], axis=0) C, _, W = out_img.shape if C > 1 and W == 1: out_img = np.transpose(out_img, [2, 0, 1]) out_img[tmap == 2] = 1 out_img[tmap == 0] = 0 out_img = self._basic_postprocess(out_img) result.append(ImageProcessingPrediction(identifier, out_img)) return result
the-stack_0_11566
from DataUploader.PgsqlDataUploader import PgsqlDataUploader def clean(): input_file = 'csvfiles.json' uploader = PgsqlDataUploader(input_file) uploader.run_script("sql/AdventureWorks_postgres_drop.sql") uploader.clean_up() def prepare(): input_file = 'csvfiles.json' uploader = PgsqlDataUploader(input_file) uploader.run_script("sql/AdventureWorks_postgres_create_NoRels.sql") uploader.clean_up() def upload(): input_file = 'csvfiles.json' uploader = PgsqlDataUploader(input_file) uploader.upload_from_csv() uploader.clean_up() def execute(i): switcher = {0: clean, 1: prepare, 2: upload} func = switcher.get(i, lambda: 'Invalid') return func() if __name__ == '__main__': """ Little application to make some basic operations on Postgres Databases - Clean, Drop, Upload data from scripts - Data in CSV format - Make use of psycopg2 Author: Andres Osorio Date: 27/06/2021 Company: Phystech SAS Client: DS4A Course """ execute(2) print("All done")
the-stack_0_11567
import sys from rlpyt.utils.launching.affinity import affinity_from_code from rlpyt.samplers.parallel.gpu.sampler import GpuSampler from rlpyt.samplers.parallel.gpu.collectors import GpuWaitResetCollector from rlpyt.envs.atari.atari_env import AtariEnv, AtariTrajInfo from rlpyt.algos.pg.a2c import A2C from rlpyt.agents.pg.atari import AtariLstmAgent from rlpyt.runners.minibatch_rl import MinibatchRl from rlpyt.utils.logging.context import logger_context from rlpyt.utils.launching.variant import load_variant, update_config from rlpyt.experiments.configs.atari.pg.atari_lstm_a2c import configs def build_and_train(slot_affinity_code, log_dir, run_ID, config_key): affinity = affinity_from_code(slot_affinity_code) config = configs[config_key] variant = load_variant(log_dir) config = update_config(config, variant) sampler = GpuSampler( EnvCls=AtariEnv, env_kwargs=config["env"], CollectorCls=GpuWaitResetCollector, TrajInfoCls=AtariTrajInfo, **config["sampler"] ) algo = A2C(optim_kwargs=config["optim"], **config["algo"]) agent = AtariLstmAgent(model_kwargs=config["model"], **config["agent"]) runner = MinibatchRl( algo=algo, agent=agent, sampler=sampler, affinity=affinity, **config["runner"] ) name = config["env"]["game"] with logger_context(log_dir, run_ID, name, config): runner.train() if __name__ == "__main__": build_and_train(*sys.argv[1:])
the-stack_0_11569
#!/usr/bin/env python """ model.py Self defined model definition. Usage: """ from __future__ import absolute_import from __future__ import print_function import sys import numpy as np import torch import torch.nn as torch_nn import torchaudio import torch.nn.functional as torch_nn_func import sandbox.block_nn as nii_nn import sandbox.util_frontend as nii_front_end import core_scripts.other_tools.debug as nii_debug import core_scripts.data_io.seq_info as nii_seq_tk import core_modules.p2sgrad as nii_p2sgrad import config as prj_conf __author__ = "Xin Wang" __email__ = "[email protected]" __copyright__ = "Copyright 2020, Xin Wang" ############## ## util ############## def protocol_parse(protocol_filepath): """ Parse protocol of ASVspoof2019 and get bonafide/spoof for each trial input: ----- protocol_filepath: string, path to the protocol file for convenience, I put train/dev/eval trials into a single protocol file output: ------- data_buffer: dic, data_bufer[filename] -> 1 (bonafide), 0 (spoof) """ data_buffer = {} temp_buffer = np.loadtxt(protocol_filepath, dtype='str') for row in temp_buffer: if row[-1] == 'bonafide': data_buffer[row[1]] = 1 else: data_buffer[row[1]] = 0 return data_buffer ############## ## FOR MODEL ############## class Model(torch_nn.Module): """ Model definition """ def __init__(self, in_dim, out_dim, args, mean_std=None): super(Model, self).__init__() ##### required part, no need to change ##### # mean std of input and output in_m, in_s, out_m, out_s = self.prepare_mean_std(in_dim,out_dim,\ args, mean_std) self.input_mean = torch_nn.Parameter(in_m, requires_grad=False) self.input_std = torch_nn.Parameter(in_s, requires_grad=False) self.output_mean = torch_nn.Parameter(out_m, requires_grad=False) self.output_std = torch_nn.Parameter(out_s, requires_grad=False) # a flag for debugging (by default False) self.model_debug = False self.validation = False ##### #### # on input waveform and output target #### # Load protocol and prepare the target data for network training protocol_file = prj_conf.optional_argument[0] self.protocol_parser = protocol_parse(protocol_file) # Working sampling rate # torchaudio may be used to change sampling rate self.m_target_sr = 16000 #### # optional configs (not used) #### # re-sampling (optional) self.m_resampler = torchaudio.transforms.Resample( prj_conf.wav_samp_rate, self.m_target_sr) # vad (optional) self.m_vad = torchaudio.transforms.Vad(sample_rate = self.m_target_sr) # flag for balanced class (temporary use) self.v_flag = 1 #### # front-end configuration # multiple front-end configurations may be used # by default, use a single front-end #### # frame shift (number of waveform points) self.frame_hops = [160] # frame length self.frame_lens = [320] # FFT length self.fft_n = [512] # LFCC dim (base component) self.lfcc_dim = [20] self.lfcc_with_delta = True # window type self.win = torch.hann_window # floor in log-spectrum-amplitude calculating (not used) self.amp_floor = 0.00001 # number of frames to be kept for each trial # no truncation self.v_truncate_lens = [None for x in self.frame_hops] # number of sub-models (by default, a single model) self.v_submodels = len(self.frame_lens) # dimension of embedding vectors self.v_emd_dim = 64 # output classes self.v_out_class = 2 #### # create network #### # 1st part of the classifier self.m_transform = [] # pooling layer self.m_pooling = [] # 2nd part of the classifier self.m_output_act = [] # front-end self.m_frontend = [] # final part on training self.m_angle = [] # it can handle models with multiple front-end configuration # by default, only a single front-end for idx, (trunc_len, fft_n, lfcc_dim) in enumerate(zip( self.v_truncate_lens, self.fft_n, self.lfcc_dim)): fft_n_bins = fft_n // 2 + 1 if self.lfcc_with_delta: lfcc_dim = lfcc_dim * 3 self.m_transform.append( torch_nn.Sequential( torch_nn.Conv2d(1, 64, [5, 5], 1, padding=[2, 2]), nii_nn.MaxFeatureMap2D(), torch.nn.MaxPool2d([2, 2], [2, 2]), torch_nn.Conv2d(32, 64, [1, 1], 1, padding=[0, 0]), nii_nn.MaxFeatureMap2D(), torch_nn.BatchNorm2d(32, affine=False), torch_nn.Conv2d(32, 96, [3, 3], 1, padding=[1, 1]), nii_nn.MaxFeatureMap2D(), torch.nn.MaxPool2d([2, 2], [2, 2]), torch_nn.BatchNorm2d(48, affine=False), torch_nn.Conv2d(48, 96, [1, 1], 1, padding=[0, 0]), nii_nn.MaxFeatureMap2D(), torch_nn.BatchNorm2d(48, affine=False), torch_nn.Conv2d(48, 128, [3, 3], 1, padding=[1, 1]), nii_nn.MaxFeatureMap2D(), torch.nn.MaxPool2d([2, 2], [2, 2]), torch_nn.Conv2d(64, 128, [1, 1], 1, padding=[0, 0]), nii_nn.MaxFeatureMap2D(), torch_nn.BatchNorm2d(64, affine=False), torch_nn.Conv2d(64, 64, [3, 3], 1, padding=[1, 1]), nii_nn.MaxFeatureMap2D(), torch_nn.BatchNorm2d(32, affine=False), torch_nn.Conv2d(32, 64, [1, 1], 1, padding=[0, 0]), nii_nn.MaxFeatureMap2D(), torch_nn.BatchNorm2d(32, affine=False), torch_nn.Conv2d(32, 64, [3, 3], 1, padding=[1, 1]), nii_nn.MaxFeatureMap2D(), torch_nn.MaxPool2d([2, 2], [2, 2]), torch_nn.Dropout(0.7) ) ) self.m_pooling.append( nii_nn.SelfWeightedPooling((lfcc_dim // 16) * 32) ) self.m_output_act.append( torch_nn.Linear((lfcc_dim // 16) * 32 * 2, self.v_emd_dim) ) self.m_angle.append( nii_p2sgrad.P2SActivationLayer(self.v_emd_dim, self.v_out_class) ) self.m_frontend.append( nii_front_end.LFCC(self.frame_lens[idx], self.frame_hops[idx], self.fft_n[idx], self.m_target_sr, self.lfcc_dim[idx], with_energy=True) ) self.m_frontend = torch_nn.ModuleList(self.m_frontend) self.m_transform = torch_nn.ModuleList(self.m_transform) self.m_output_act = torch_nn.ModuleList(self.m_output_act) self.m_pooling = torch_nn.ModuleList(self.m_pooling) self.m_angle = torch_nn.ModuleList(self.m_angle) # done return def prepare_mean_std(self, in_dim, out_dim, args, data_mean_std=None): """ prepare mean and std for data processing This is required for the Pytorch project, but not relevant to this code """ if data_mean_std is not None: in_m = torch.from_numpy(data_mean_std[0]) in_s = torch.from_numpy(data_mean_std[1]) out_m = torch.from_numpy(data_mean_std[2]) out_s = torch.from_numpy(data_mean_std[3]) if in_m.shape[0] != in_dim or in_s.shape[0] != in_dim: print("Input dim: {:d}".format(in_dim)) print("Mean dim: {:d}".format(in_m.shape[0])) print("Std dim: {:d}".format(in_s.shape[0])) print("Input dimension incompatible") sys.exit(1) if out_m.shape[0] != out_dim or out_s.shape[0] != out_dim: print("Output dim: {:d}".format(out_dim)) print("Mean dim: {:d}".format(out_m.shape[0])) print("Std dim: {:d}".format(out_s.shape[0])) print("Output dimension incompatible") sys.exit(1) else: in_m = torch.zeros([in_dim]) in_s = torch.ones([in_dim]) out_m = torch.zeros([out_dim]) out_s = torch.ones([out_dim]) return in_m, in_s, out_m, out_s def normalize_input(self, x): """ normalizing the input data This is required for the Pytorch project, but not relevant to this code """ return (x - self.input_mean) / self.input_std def normalize_target(self, y): """ normalizing the target data This is required for the Pytorch project, but not relevant to this code """ return (y - self.output_mean) / self.output_std def denormalize_output(self, y): """ denormalizing the generated output from network This is required for the Pytorch project, but not relevant to this code """ return y * self.output_std + self.output_mean def _front_end(self, wav, idx, trunc_len, datalength): """ simple fixed front-end to extract features input: ------ wav: waveform idx: idx of the trial in mini-batch trunc_len: number of frames to be kept after truncation datalength: list of data length in mini-batch output: ------- x_sp_amp: front-end featues, (batch, frame_num, frame_feat_dim) """ with torch.no_grad(): x_sp_amp = self.m_frontend[idx](wav.squeeze(-1)) # return return x_sp_amp def _compute_embedding(self, x, datalength): """ definition of forward method Assume x (batchsize, length, dim) Output x (batchsize * number_filter, output_dim) """ # resample if necessary #x = self.m_resampler(x.squeeze(-1)).unsqueeze(-1) # number of sub models batch_size = x.shape[0] # buffer to store output scores from sub-models output_emb = torch.zeros([batch_size * self.v_submodels, self.v_emd_dim], device=x.device, dtype=x.dtype) # compute scores for each sub-models for idx, (fs, fl, fn, trunc_len, m_trans, m_pool, m_output) in \ enumerate( zip(self.frame_hops, self.frame_lens, self.fft_n, self.v_truncate_lens, self.m_transform, self.m_pooling, self.m_output_act)): # extract front-end feature x_sp_amp = self._front_end(x, idx, trunc_len, datalength) # compute scores # 1. unsqueeze to (batch, 1, frame_length, fft_bin) # 2. compute hidden features hidden_features = m_trans(x_sp_amp.unsqueeze(1)) # 3. (batch, channel, frame//N, feat_dim//N) -> # (batch, frame//N, channel * feat_dim//N) # where N is caused by conv with stride hidden_features = hidden_features.permute(0, 2, 1, 3).contiguous() frame_num = hidden_features.shape[1] hidden_features = hidden_features.view(batch_size, frame_num, -1) # 4. pooling hidden_features = m_pool(hidden_features) # 5. pass through the output layer tmp_score = m_output(hidden_features) output_emb[idx * batch_size : (idx+1) * batch_size] = tmp_score return output_emb def _compute_score(self, x, inference=False): """ """ # number of sub models batch_size = x.shape[0] # compute score through p2sgrad layer out_score = torch.zeros( [batch_size * self.v_submodels, self.v_out_class], device=x.device, dtype=x.dtype) # compute scores for each sub-models for idx, m_score in enumerate(self.m_angle): tmp_score = m_score(x[idx * batch_size : (idx+1) * batch_size]) out_score[idx * batch_size : (idx+1) * batch_size] = tmp_score if inference: # output_score [:, 1] corresponds to the positive class return out_score[:, 1] else: return out_score def _get_target(self, filenames): try: return [self.protocol_parser[x] for x in filenames] except KeyError: print("Cannot find target data for %s" % (str(filenames))) sys.exit(1) def forward(self, x, fileinfo): filenames = [nii_seq_tk.parse_filename(y) for y in fileinfo] datalength = [nii_seq_tk.parse_length(y) for y in fileinfo] if self.training: feature_vec = self._compute_embedding(x, datalength) scores = self._compute_score(feature_vec) # target target = self._get_target(filenames) target_vec = torch.tensor(target, device=x.device, dtype=scores.dtype) target_vec = target_vec.repeat(self.v_submodels) return [scores, target_vec, True] else: feature_vec = self._compute_embedding(x, datalength) scores = self._compute_score(feature_vec, True) target = self._get_target(filenames) print("Output, %s, %d, %f" % (filenames[0], target[0], scores.mean())) # don't write output score as a single file return None class Loss(): """ Wrapper to define loss function """ def __init__(self, args): """ """ self.m_loss = nii_p2sgrad.P2SGradLoss() def compute(self, outputs, target): """ """ loss = self.m_loss(outputs[0], outputs[1]) return loss if __name__ == "__main__": print("Definition of model")
the-stack_0_11571
from django.conf.urls import url from . import views urlpatterns = [ url(r"^$", views.PostListView.as_view(), name="post_list"), url(r'^about/$', views.AboutView.as_view(), name='about'), url(r"^post/(?P<pk>\d+)$", views.PostDetailView.as_view(), name="post_detail"), url(r"^post/new/$", views.CreatePostView.as_view(), name="post_new"), url(r"^post/(?P<pk>\d+)/edit/$", views.PostUpdateView.as_view(), name="post_edit"), url(r"^post/(?P<pk>\d+)/publish/$", views.post_publish, name="post_publish"), url(r'^post/(?P<pk>\d+)/remove/$', views.PostDeleteView.as_view(), name='post_remove'), url(r'^drafts/$', views.DraftListView.as_view(), name='post_draft_list'), url(r'^post/(?P<pk>\d+)/comment/$', views.add_comment_to_post, name='add_comment_to_post'), url(r'^comment/(?P<pk>\d+)/approve/$', views.comment_approve, name='comment_approve'), url(r'^comment/(?P<pk>\d+)/remove/$', views.comment_remove, name='comment_remove'), ]
the-stack_0_11572
from django.db import migrations def create_site(apps, schema_editor): Site = apps.get_model("sites", "Site") custom_domain = "sana-khan-34437.botics.co" site_params = { "name": "Sana Khan", } if custom_domain: site_params["domain"] = custom_domain Site.objects.update_or_create(defaults=site_params, id=1) class Migration(migrations.Migration): dependencies = [ ("sites", "0002_alter_domain_unique"), ] operations = [ migrations.RunPython(create_site), ]
the-stack_0_11573
# Import Flask from flask import Flask, jsonify # Dependencies and Setup import numpy as np import datetime as dt # Python SQL Toolkit and Object Relational Mapper import sqlalchemy from sqlalchemy.ext.automap import automap_base from sqlalchemy.orm import Session from sqlalchemy import create_engine, func from sqlalchemy.pool import StaticPool import dateutil.parser as dparser # Database Setup by creating engine to the db path engine = create_engine("sqlite:///Resources/hawaii.sqlite", echo=False) # Reflect hawaii database into Base Base = automap_base() # Reflect all the tables in hawaii db Base.prepare(engine, reflect=True) # Create instances each Table Measurement = Base.classes.measurement Station = Base.classes.station # Setting-up Flask # Initialize Flask app app = Flask(__name__) # set-up all the routes @app.route("/api/v1.0/precipitation") def percipation(): # Create our session (thread) from Python to the DB session = Session(engine) date = session.query(Measurement.date).order_by(Measurement.date.desc())[0][0] latest_date = dt.datetime.strptime(date, "%Y-%m-%d").date() latest_12 = latest_date - dt.timedelta(days=365) percipitation_data = session.query(Measurement.date, Measurement.prcp).order_by(Measurement.date.desc()).filter(Measurement.date >= latest_12 ).all() session.close() return dict(percipitation_data) @app.route("/api/v1.0/stations") def stations(): # Create our session (thread) from Python to the DB session = Session(engine) stations = session.query(Station.id, Station.station).distinct().all() session.close() results = [] for row in stations: station = {} station["id"] = row[0] station["station"] = row[1] results.append(station) return jsonify(results) @app.route("/api/v1.0/tobs") def tobs(): # Create our session (thread) from Python to the DB session = Session(engine) active_stations = session.query(Measurement.id, Station.id, Measurement.station).\ filter(Station.station == Measurement.station).\ group_by(Measurement.station).\ order_by(Measurement.id.desc()).all() most_active_station = active_stations[0][1] recent_date = session.query(Measurement.date).filter(Station.station == Measurement.station).filter(Station.id == most_active_station).order_by(Measurement.date.desc())[0][0] recent_date = dt.datetime.strptime(recent_date, "%Y-%m-%d").date() recent_year = recent_date - dt.timedelta(days=365) recent_year_temp = session.query(Measurement.date, Measurement.tobs).filter(Measurement.date >= recent_year).order_by(Measurement.date.desc()).all() session.close() return dict(recent_year_temp) @app.route("/api/v1.0/<start_date>") def start_date(start_date): session = Session(engine) result = session.query(Measurement.date, func.min(Measurement.tobs), func.max(Measurement.tobs), func.avg(Measurement.tobs)).filter(Measurement.tobs).filter(Measurement.date >= start_date).first() session.close() aggre = {} aggre["Date"]= result[0] aggre["Min"] = result[1] aggre["Max"] = result[2] aggre["Average"] = result[3] return aggre @app.route("/api/v1.0/<start_date>/<end_date>") def range_date(start_date, end_date): session = Session(engine) start_date = dt.datetime.strptime(start_date, "%Y-%m-%d").date() start_date = dt.datetime.strptime(end_date, "%Y-%m-%d").date() result = session.query(Measurement.date, func.min(Measurement.tobs), func.max(Measurement.tobs), func.avg(Measurement.tobs)).\ filter(Measurement.date >= start_date).filter(Measurement.date <= start_date)[0] session.close() aggre = {} aggre["Date"]= result[0] aggre["Min"] = result[1] aggre["Max"] = result[2] aggre["Average"] = result[3] return aggre @app.route("/api/v1.0/questions") def questions(): return """<html> <center> <img src="/static/silly.png", alt="There you go!!!", width="700",height="680" /> </center> </html>""" # set-up Home routes @app.route("/") def welcomepage(): return """<html> <h1>Welcome to Hawaii Climate Analysis!!!</h1> <aside> By Shilpa...</aside> <a href = "http://climate.geography.hawaii.edu/interactivemap.html" target = "_blank" ><img src="/static/hawaii_climate.png",width="718" height="135", alt="Hawaii Climate Analysis"/></a> <section><h2><b>Analysis</b><img src="/static/Hawaii_surfing2.png",width="300",height="115", style="float:right", alt="Surf's up!!!"></h2> <p><i>Below are the analysis performed on the Hawaii Climate data: </i></p> <article> <dt><li><b>Percipitation Data</b></li></dt> <dd><a href="/api/v1.0/precipitation" target = "_blank">Percipitation(last 12-months)</a></dd> <dd> <mark>Reurns 'Date' & 'Percipitation' for last 12-month period</mark></dd> </article> <dl><dt><li><b>Stations Data</b></li></dt> <dd><a href="/api/v1.0/stations" target = "_blank">Most active Stations</a></dd> <dd><mark>Returns List of Station 'id's' & 'station names' in Hawaii </mark></dd> </dl> <dl><dt><li><b>Temperature of Bias(Tobs)</b></li></dt> <dd><a href="/api/v1.0/tobs" target = "_blank">Temperature of Bias for last 12-months</a></dd> <dd><mark>Returns 'Date' & 'Temperature' of most active station in the last 12 month period </mark></dd> </dl> <dl><dt><li><b>MIN, MAX & AVERAGE Temperatures</b></li></dt> <dd><a href="/api/v1.0/2016-8-23" target = "_blank">Temperature Aggregations starting 2016-8-23</a></dd> <dd><a href="/api/v1.0/2017-6-23/2017-8-15" target = "_blank">Temperature Aggregations from 2016-8-23 to 2017-1-15</a></dd> <dd><mark>Returns 'Min', 'Max' & 'Average' for the given date or range of dates</mark></dd> </dl> </section> <section><h2><b>Question & Concerns</b></h2> <dl> <dd><h3><a href="/api/v1.0/questions" target = "_blank">Have Questions?? Contact-us here</a></h3></dd> </dl> </section> </html>""" if __name__ == '__main__': app.run(debug=True)
the-stack_0_11575
import math def get_odd(n): while True: if n%2: return n n//=2 def solve(): n=int(input()) c='Ashishgup' o='FastestFinger' while True: if n<=1: print(o) break if (n%2) or n==2: print(c) break if not n&n-1: print(o) break n//=get_odd(n) c,o=o,c if __name__ == '__main__': t=int(input()) for _ in range(t): solve()
the-stack_0_11576
# -*- coding=utf-8 -*- import os from setuptools import setup, find_packages DIR_PATH = os.path.dirname(os.path.abspath(__file__)) LONGDOC = ''' jionlp ================================================================================ 面向公司算法和使用部门提供算法api接口 安装方法: 代码使用 Python 3 - 半自动安装: $ git clone http://git.bbdops.com/BBD-AI-Lab/BBD-Tools-Documentation.git $ cd BBD-Tools-Documentation $ pip install . - 通过 import bbd_tools as bbd 来引用 ''' __name__ = 'jionlp' __author__ = "cuiguoer" __copyright__ = "Copyright 2020, dongrixinyu" __credits__ = [] __license__ = "Apache License 2.0" __maintainer__ = "dongrixinyu" __email__ = "[email protected]" __url__ = 'https://github.com/dongrixinyu/jionlp' __description__ = 'Simple, Keras-powered multilingual NLP framework,' \ ' allows you to build your models in 5 minutes for named entity recognition (NER),' \ ' part-of-speech tagging (PoS) and text classification tasks. ' \ 'Includes BERT, GPT-2 and word2vec embedding.' with open(os.path.join(DIR_PATH, 'requirements.txt'), 'r', encoding='utf-8') as f: requirements = f.readlines() setup(name=__name__, version='0.1.0', url=__url__, author=__author__, author_email=__email__, description=__description__, long_description=LONGDOC, license=__license__, py_modules=[], packages=find_packages(), include_package_data=True, install_requires=requirements, entry_points={ 'console_scripts': [ # 'scheduler_start = algorithm_platform.scheduler.server: start', ] }, test_suite='nose.collector', tests_require=['nose'])
the-stack_0_11577
""" This file offers the methods to automatically retrieve the graph Rhizobium leguminosarum viciae 3841. The graph is automatically retrieved from the STRING repository. References --------------------- Please cite the following if you use the data: ```bib @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } ``` """ from typing import Dict from ..automatic_graph_retrieval import AutomaticallyRetrievedGraph from ...ensmallen import Graph # pylint: disable=import-error def RhizobiumLeguminosarumViciae3841( directed: bool = False, preprocess: bool = True, load_nodes: bool = True, verbose: int = 2, cache: bool = True, cache_path: str = "graphs/string", version: str = "links.v11.5", **additional_graph_kwargs: Dict ) -> Graph: """Return new instance of the Rhizobium leguminosarum viciae 3841 graph. The graph is automatically retrieved from the STRING repository. Parameters ------------------- directed: bool = False Wether to load the graph as directed or undirected. By default false. preprocess: bool = True Whether to preprocess the graph to be loaded in optimal time and memory. load_nodes: bool = True, Whether to load the nodes vocabulary or treat the nodes simply as a numeric range. verbose: int = 2, Wether to show loading bars during the retrieval and building of the graph. cache: bool = True Whether to use cache, i.e. download files only once and preprocess them only once. cache_path: str = "graphs" Where to store the downloaded graphs. version: str = "links.v11.5" The version of the graph to retrieve. The available versions are: - homology.v11.5 - physical.links.v11.5 - links.v11.5 additional_graph_kwargs: Dict Additional graph kwargs. Returns ----------------------- Instace of Rhizobium leguminosarum viciae 3841 graph. References --------------------- Please cite the following if you use the data: ```bib @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } ``` """ return AutomaticallyRetrievedGraph( graph_name="RhizobiumLeguminosarumViciae3841", repository="string", version=version, directed=directed, preprocess=preprocess, load_nodes=load_nodes, verbose=verbose, cache=cache, cache_path=cache_path, additional_graph_kwargs=additional_graph_kwargs )()
the-stack_0_11578
# -*- coding: utf-8 -*- __author__ = 'ooo' __date__ = '2019/1/15 12:17' import math, torch import torch.nn as nn import torch.nn.functional as F class ViewLayer(nn.Module): def __init__(self, dim=-1): super(ViewLayer, self).__init__() self.dim = dim def forward(self, x): # print('view-layer -> ', x.size()) x = x.view(x.size(0), self.dim) return x class AdaAvgPool(nn.Module): def __init__(self, size=0): self.size = size super(AdaAvgPool, self).__init__() def forward(self, x): # print('avg-layer -> ', x.size()) if self.size == -1: return x if self.size == 0: h, w = x.size(2), x.size(3) assert h == w elif self.size >= 1: h, w = self.size, self.size else: raise NotImplementedError('check the avg kernel size !') return F.avg_pool2d(x, kernel_size=(h, w)) class Activate(nn.Module): def __init__(self, method='relu'): super(Activate, self).__init__() if method == 'relu': self.method = nn.ReLU(inplace=True) elif method == 'sigmoid': self.method = nn.Sigmoid() elif method == 'leaky_relu': self.method = nn.LeakyReLU(negative_slope=0.02) else: raise NotImplementedError('--->%s' % method) def forward(self, x): return self.method(x) class SweetBlock(nn.Module): def __init__(self, depth, inter=1, downexp=2, downsize=False): super(SweetBlock, self).__init__() self.downsize = downsize self.bn1 = nn.BatchNorm2d(depth) self.conv1 = nn.Conv2d(depth, depth * inter, 3, stride=2, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(depth * inter) self.deconv2 = nn.ConvTranspose2d(depth * inter, depth, 3, stride=2, padding=1, output_padding=1, bias=False) self.relu = nn.ReLU(inplace=True) if downsize: self.down1 = nn.Sequential( nn.BatchNorm2d(depth), nn.ReLU(inplace=True), nn.Conv2d(depth, depth * downexp, 3, stride=1, padding=1, bias=False), nn.AvgPool2d(2) ) self.down2 = nn.Sequential( nn.BatchNorm2d(depth), nn.ReLU(inplace=True), nn.Conv2d(depth, depth * downexp, 3, stride=1, padding=1, bias=False), nn.AvgPool2d(2), # nn.AvgPool2d(kernel_size=3, stride=2, padding=1) ) def forward(self, x): if isinstance(x, (list, tuple)): assert len(x) == 3, 'len of x is: %s ...' % len(x) x1, x2, pred = x # (big, small, pred) else: x1, x2, pred = x, None, None res1 = self.conv1(self.relu(self.bn1(x1))) res2 = self.deconv2(self.relu(self.bn2(res1))) res1 = res1 + x2 res2 = res2 + x1 if self.downsize: res2 = self.down2(res2) res1 = self.down1(res1) # utils.print_size([res2, res1]) return res2, res1, pred class TransBlock(nn.Module): def __init__(self, indepth, outdepth): super(TransBlock, self).__init__() self.bn1 = nn.BatchNorm2d(indepth) self.conv1 = nn.Conv2d(indepth, outdepth, 3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(indepth) self.conv2 = nn.Conv2d(indepth, outdepth, 3, stride=1, padding=1, bias=False) def forward(self, x): if isinstance(x, (list, tuple)): x1, x2, pred = x else: x1, x2, pred = x, None, None x1 = self.conv1(F.relu(self.bn1(x1))) x1 = F.avg_pool2d(x1, 2) x2 = self.conv2(F.relu(self.bn2(x2))) x2 = F.avg_pool2d(x2, 2) return x1, x2 class SumaryBlock(nn.Module): def __init__(self, depth, classify=1, avgpool=True, active='relu', nclass=1000): super(SumaryBlock, self).__init__() self.classify = classify if self.classify >= 1: self.classifier1 = nn.Sequential( nn.BatchNorm2d(depth), Activate(active), AdaAvgPool(), ViewLayer(), nn.Linear(depth, nclass) ) if self.classify >= 2: self.classifier2 = nn.Sequential( nn.BatchNorm2d(depth), Activate(active), AdaAvgPool(), ViewLayer(), nn.Linear(depth, nclass) ) def forward(self, x): if isinstance(x, (list, tuple)): x1, x2, pred = x else: x1, x2, pred = x, None, None if self.classify == 1: x1 = self.classifier1(x1) pred.extend([x1]) elif self.classify == 2: x1 = self.classifier1(x1) x2 = self.classifier2(x2) pred.extend([x2, x1]) else: raise NotImplementedError return pred class RockBlock(nn.Module): def __init__(self, outdepth, branch=2, dataset='cifar'): super(RockBlock, self).__init__() self.branch = branch if dataset == 'cifar': self.branch1 = nn.Sequential( nn.Conv2d(3, outdepth, kernel_size=3, stride=1, padding=1, bias=False), # nn.BatchNorm2d(depth), # nn.ReLU(inplace=True), ) if branch >= 2: self.branch2 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) elif dataset == 'imagenet': self.branch1 = nn.Sequential( nn.Conv2d(3, outdepth, kernel_size=7, stride=2, padding=3, bias=False), nn.BatchNorm2d(outdepth), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1), ) self.branch2 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) def forward(self, x): pred = [] if self.branch == 1: x = self.branch1(x) return x, None, pred elif self.branch == 2: x = self.branch1(x) x2 = self.branch2(x) return x, x2, pred else: raise ValueError('check branch must be in [1, 2, 3]!') class SweetNet(nn.Module): def __init__(self, branch=2, depth=64, layers=(2, 3, 3, 3), expand=(1, 2, 4, 8), downexp=2, downlast=False, inter=(1, 1, 1, 1), classify=1, active='relu', nclass=1000): super(SweetNet, self).__init__() self.layers = layers self.layer0 = RockBlock(depth, branch, dataset='imagenet') self.layer1 = self._make_sweet_layer(SweetBlock, layers[0], depth * expand[0], inter[0], downexp, down=True) self.layer2 = self._make_sweet_layer(SweetBlock, layers[1], depth * expand[1], inter[1], downexp, down=True) self.layer3 = self._make_sweet_layer(SweetBlock, layers[2], depth * expand[2], inter[2], downexp, down=True) self.layer4 = self._make_sweet_layer(SweetBlock, layers[3], depth * expand[3], inter[3], downexp, down=downlast) if downlast: indepth = depth * expand[3] * downexp else: indepth = depth * expand[3] self.classifier = SumaryBlock(indepth, classify, avgpool=True, active=active, nclass=nclass) def _make_sweet_layer(self, block, nums, depth, inter=1, downexp=2, down=True): layers = [] for i in range(nums - 1): layers.append(block(depth, inter, downexp, downsize=False)) layers.append(block(depth, inter, downexp, downsize=down)) return nn.Sequential(*layers) def _make_trans_layer(self, block, indepth, outdepth): return block(indepth, outdepth) def forward(self, x): x = self.layer0(x) # utils.print_size(x) x = self.layer1(x) # utils.print_size(x) x = self.layer2(x) # utils.print_size(x) x = self.layer3(x) # utils.print_size(x) x = self.layer4(x) # utils.print_size(x) x = self.classifier(x) return x class CifarSweetNet(nn.Module): def __init__(self, branch=2, depth=16, layers=(2, 3, 3), expand=(1, 2, 4), downexp=2, downlast=False, inter=(1, 1, 1), classify=1, active='relu', nclass=10): super(CifarSweetNet, self).__init__() self.layers = layers self.layer0 = RockBlock(depth, branch, dataset='cifar') self.layer1 = self._make_sweet_layer(SweetBlock, layers[0], depth * expand[0], inter[0], downexp, down=True) self.layer2 = self._make_sweet_layer(SweetBlock, layers[1], depth * expand[1], inter[1], downexp, down=True) self.layer3 = self._make_sweet_layer(SweetBlock, layers[2], depth * expand[2], inter[2], downexp, down=downlast) if downlast: indepth = depth * expand[2] * downexp else: indepth = depth * expand[2] self.classifier = SumaryBlock(indepth, classify, avgpool=True, active=active, nclass=nclass) def _make_sweet_layer(self, block, nums, depth, inter=1, downexp=2, down=True): layers = [] for i in range(nums - 1): layers.append(block(depth, inter, downexp, downsize=False)) layers.append(block(depth, inter, downexp, downsize=down)) return nn.Sequential(*layers) def _make_trans_layer(self, block, indepth, outdepth): return block(indepth, outdepth) def forward(self, x): x = self.layer0(x) # utils.print_size(x) x = self.layer1(x) # utils.print_size(x) x = self.layer2(x) # utils.print_size(x) x = self.layer3(x) # utils.print_size(x) x = self.classifier(x) return x if __name__ == '__main__': import xtils torch.manual_seed(9528) criterion = nn.CrossEntropyLoss() # model = SweetNet(branch=2, depth=64, layers=(2, 5, 3, 2), expand=(1, 2, 4, 8), downexp=2, downlast=True, # inter=(1, 1, 1, 1), classify=2, active='relu', nclass=1000) # print('\n', model, '\n') # x = torch.randn(4, 3, 256, 256) # # utils.tensorboard_add_model(model, x) # utils.calculate_params_scale(model, format='million') # utils.calculate_layers_num(model, layers=('conv2d', 'deconv2d', 'linear')) # y = model(x) # print(sum(model.layers), len(y), ':', [(yy.shape, yy.max(1)) for yy in y if yy is not None]) arch_kwargs = {} model = CifarSweetNet(branch=2, depth=16, layers=(2, 2, 2), expand=(1, 2, 4), downexp=2, downlast=False, inter=(1, 1, 1), classify=1, active='relu', nclass=10) print('\n', model, '\n') x = torch.randn(4, 3, 32, 32) # utils.tensorboard_add_model(model, x) xtils.calculate_params_scale(model, format='million') xtils.calculate_layers_num(model, layers=('conv2d', 'deconv2d', 'linear')) y = model(x) # loss = [criterion(o, torch.randint(0, 10, o.size()).long()) for o in y] # optimizer = torch.optim.Adam(params=model.parameters(), lr=0.1) # optimizer.zero_grad() # sum(loss).backward() # optimizer.step() print(sum(model.layers), len(y), ':', [(yy.shape, yy.max(1)) for yy in y if yy is not None])
the-stack_0_11579
import time import sqlalchemy_1_3 as tsa from sqlalchemy_1_3 import create_engine from sqlalchemy_1_3 import event from sqlalchemy_1_3 import exc from sqlalchemy_1_3 import Integer from sqlalchemy_1_3 import MetaData from sqlalchemy_1_3 import pool from sqlalchemy_1_3 import select from sqlalchemy_1_3 import String from sqlalchemy_1_3 import testing from sqlalchemy_1_3 import util from sqlalchemy_1_3.engine import url from sqlalchemy_1_3.testing import assert_raises from sqlalchemy_1_3.testing import assert_raises_message from sqlalchemy_1_3.testing import assert_raises_message_context_ok from sqlalchemy_1_3.testing import engines from sqlalchemy_1_3.testing import eq_ from sqlalchemy_1_3.testing import expect_warnings from sqlalchemy_1_3.testing import fixtures from sqlalchemy_1_3.testing import is_false from sqlalchemy_1_3.testing import is_true from sqlalchemy_1_3.testing import mock from sqlalchemy_1_3.testing import ne_ from sqlalchemy_1_3.testing.engines import testing_engine from sqlalchemy_1_3.testing.mock import call from sqlalchemy_1_3.testing.mock import Mock from sqlalchemy_1_3.testing.mock import patch from sqlalchemy_1_3.testing.schema import Column from sqlalchemy_1_3.testing.schema import Table from sqlalchemy_1_3.testing.util import gc_collect class MockError(Exception): pass class MockDisconnect(MockError): pass class MockExitIsh(BaseException): pass def mock_connection(): def mock_cursor(): def execute(*args, **kwargs): if conn.explode == "execute": raise MockDisconnect("Lost the DB connection on execute") elif conn.explode == "interrupt": conn.explode = "explode_no_disconnect" raise MockExitIsh("Keyboard / greenlet / etc interruption") elif conn.explode == "interrupt_dont_break": conn.explode = None raise MockExitIsh("Keyboard / greenlet / etc interruption") elif conn.explode in ( "execute_no_disconnect", "explode_no_disconnect", ): raise MockError( "something broke on execute but we didn't lose the " "connection" ) elif conn.explode in ( "rollback", "rollback_no_disconnect", "explode_no_disconnect", ): raise MockError( "something broke on execute but we didn't lose the " "connection" ) elif args and "SELECT" in args[0]: cursor.description = [("foo", None, None, None, None, None)] else: return def close(): cursor.fetchall = cursor.fetchone = Mock( side_effect=MockError("cursor closed") ) cursor = Mock( execute=Mock(side_effect=execute), close=Mock(side_effect=close) ) return cursor def cursor(): while True: yield mock_cursor() def rollback(): if conn.explode == "rollback": raise MockDisconnect("Lost the DB connection on rollback") if conn.explode == "rollback_no_disconnect": raise MockError( "something broke on rollback but we didn't lose the " "connection" ) else: return conn = Mock( rollback=Mock(side_effect=rollback), cursor=Mock(side_effect=cursor()) ) return conn def MockDBAPI(): connections = [] stopped = [False] def connect(): while True: if stopped[0]: raise MockDisconnect("database is stopped") conn = mock_connection() connections.append(conn) yield conn def shutdown(explode="execute", stop=False): stopped[0] = stop for c in connections: c.explode = explode def restart(): stopped[0] = False connections[:] = [] def dispose(): stopped[0] = False for c in connections: c.explode = None connections[:] = [] return Mock( connect=Mock(side_effect=connect()), shutdown=Mock(side_effect=shutdown), dispose=Mock(side_effect=dispose), restart=Mock(side_effect=restart), paramstyle="named", connections=connections, Error=MockError, ) class PrePingMockTest(fixtures.TestBase): def setup(self): self.dbapi = MockDBAPI() def _pool_fixture(self, pre_ping): dialect = url.make_url( "postgresql://foo:bar@localhost/test" ).get_dialect()() dialect.dbapi = self.dbapi _pool = pool.QueuePool( creator=lambda: self.dbapi.connect("foo.db"), pre_ping=pre_ping, dialect=dialect, ) dialect.is_disconnect = lambda e, conn, cursor: isinstance( e, MockDisconnect ) return _pool def teardown(self): self.dbapi.dispose() def test_connect_across_restart(self): pool = self._pool_fixture(pre_ping=True) conn = pool.connect() stale_connection = conn.connection conn.close() self.dbapi.shutdown("execute") self.dbapi.restart() conn = pool.connect() cursor = conn.cursor() cursor.execute("hi") stale_cursor = stale_connection.cursor() assert_raises(MockDisconnect, stale_cursor.execute, "hi") def test_raise_db_is_stopped(self): pool = self._pool_fixture(pre_ping=True) conn = pool.connect() conn.close() self.dbapi.shutdown("execute", stop=True) assert_raises_message_context_ok( MockDisconnect, "database is stopped", pool.connect ) def test_waits_til_exec_wo_ping_db_is_stopped(self): pool = self._pool_fixture(pre_ping=False) conn = pool.connect() conn.close() self.dbapi.shutdown("execute", stop=True) conn = pool.connect() cursor = conn.cursor() assert_raises_message( MockDisconnect, "Lost the DB connection on execute", cursor.execute, "foo", ) def test_waits_til_exec_wo_ping_db_is_restarted(self): pool = self._pool_fixture(pre_ping=False) conn = pool.connect() conn.close() self.dbapi.shutdown("execute", stop=True) self.dbapi.restart() conn = pool.connect() cursor = conn.cursor() assert_raises_message( MockDisconnect, "Lost the DB connection on execute", cursor.execute, "foo", ) @testing.requires.predictable_gc def test_pre_ping_weakref_finalizer(self): pool = self._pool_fixture(pre_ping=True) conn = pool.connect() old_dbapi_conn = conn.connection conn.close() eq_(old_dbapi_conn.mock_calls, [call.cursor(), call.rollback()]) self.dbapi.shutdown("execute", stop=True) self.dbapi.restart() conn = pool.connect() dbapi_conn = conn.connection del conn gc_collect() # new connection was reset on return appropriately eq_(dbapi_conn.mock_calls, [call.cursor(), call.rollback()]) # old connection was just closed - did not get an # erroneous reset on return eq_( old_dbapi_conn.mock_calls, [call.cursor(), call.rollback(), call.cursor(), call.close()], ) class MockReconnectTest(fixtures.TestBase): def setup(self): self.dbapi = MockDBAPI() self.db = testing_engine( "postgresql://foo:bar@localhost/test", options=dict(module=self.dbapi, _initialize=False), ) self.mock_connect = call( host="localhost", password="bar", user="foo", database="test" ) # monkeypatch disconnect checker self.db.dialect.is_disconnect = lambda e, conn, cursor: isinstance( e, MockDisconnect ) def teardown(self): self.dbapi.dispose() def test_reconnect(self): """test that an 'is_disconnect' condition will invalidate the connection, and additionally dispose the previous connection pool and recreate.""" # make a connection conn = self.db.connect() # connection works conn.execute(select([1])) # create a second connection within the pool, which we'll ensure # also goes away conn2 = self.db.connect() conn2.close() # two connections opened total now assert len(self.dbapi.connections) == 2 # set it to fail self.dbapi.shutdown() assert_raises(tsa.exc.DBAPIError, conn.execute, select([1])) # assert was invalidated assert not conn.closed assert conn.invalidated # close shouldn't break conn.close() # ensure one connection closed... eq_( [c.close.mock_calls for c in self.dbapi.connections], [[call()], []], ) conn = self.db.connect() eq_( [c.close.mock_calls for c in self.dbapi.connections], [[call()], [call()], []], ) conn.execute(select([1])) conn.close() eq_( [c.close.mock_calls for c in self.dbapi.connections], [[call()], [call()], []], ) def test_invalidate_trans(self): conn = self.db.connect() trans = conn.begin() self.dbapi.shutdown() assert_raises(tsa.exc.DBAPIError, conn.execute, select([1])) eq_([c.close.mock_calls for c in self.dbapi.connections], [[call()]]) assert not conn.closed assert conn.invalidated assert trans.is_active assert_raises_message( tsa.exc.StatementError, "Can't reconnect until invalid transaction is rolled back", conn.execute, select([1]), ) assert trans.is_active assert_raises_message( tsa.exc.InvalidRequestError, "Can't reconnect until invalid transaction is rolled back", trans.commit, ) assert trans.is_active trans.rollback() assert not trans.is_active conn.execute(select([1])) assert not conn.invalidated eq_( [c.close.mock_calls for c in self.dbapi.connections], [[call()], []], ) def test_invalidate_dont_call_finalizer(self): conn = self.db.connect() finalizer = mock.Mock() conn.connection._connection_record.finalize_callback.append(finalizer) conn.invalidate() assert conn.invalidated eq_(finalizer.call_count, 0) def test_conn_reusable(self): conn = self.db.connect() conn.execute(select([1])) eq_(self.dbapi.connect.mock_calls, [self.mock_connect]) self.dbapi.shutdown() assert_raises(tsa.exc.DBAPIError, conn.execute, select([1])) assert not conn.closed assert conn.invalidated eq_([c.close.mock_calls for c in self.dbapi.connections], [[call()]]) # test reconnects conn.execute(select([1])) assert not conn.invalidated eq_( [c.close.mock_calls for c in self.dbapi.connections], [[call()], []], ) def test_invalidated_close(self): conn = self.db.connect() self.dbapi.shutdown() assert_raises(tsa.exc.DBAPIError, conn.execute, select([1])) conn.close() assert conn.closed assert conn.invalidated assert_raises_message( tsa.exc.StatementError, "This Connection is closed", conn.execute, select([1]), ) def test_noreconnect_execute_plus_closewresult(self): conn = self.db.connect(close_with_result=True) self.dbapi.shutdown("execute_no_disconnect") # raises error assert_raises_message( tsa.exc.DBAPIError, "something broke on execute but we didn't lose the connection", conn.execute, select([1]), ) assert conn.closed assert not conn.invalidated def test_noreconnect_rollback_plus_closewresult(self): conn = self.db.connect(close_with_result=True) self.dbapi.shutdown("rollback_no_disconnect") # raises error with expect_warnings( "An exception has occurred during handling .*" "something broke on execute but we didn't lose the connection", py2konly=True, ): assert_raises_message( tsa.exc.DBAPIError, "something broke on rollback but we didn't " "lose the connection", conn.execute, select([1]), ) assert conn.closed assert not conn.invalidated assert_raises_message( tsa.exc.StatementError, "This Connection is closed", conn.execute, select([1]), ) def test_reconnect_on_reentrant(self): conn = self.db.connect() conn.execute(select([1])) assert len(self.dbapi.connections) == 1 self.dbapi.shutdown("rollback") # raises error with expect_warnings( "An exception has occurred during handling .*" "something broke on execute but we didn't lose the connection", py2konly=True, ): assert_raises_message( tsa.exc.DBAPIError, "Lost the DB connection on rollback", conn.execute, select([1]), ) assert not conn.closed assert conn.invalidated def test_reconnect_on_reentrant_plus_closewresult(self): conn = self.db.connect(close_with_result=True) self.dbapi.shutdown("rollback") # raises error with expect_warnings( "An exception has occurred during handling .*" "something broke on execute but we didn't lose the connection", py2konly=True, ): assert_raises_message( tsa.exc.DBAPIError, "Lost the DB connection on rollback", conn.execute, select([1]), ) assert conn.closed assert conn.invalidated assert_raises_message( tsa.exc.StatementError, "This Connection is closed", conn.execute, select([1]), ) def test_check_disconnect_no_cursor(self): conn = self.db.connect() result = conn.execute(select([1])) result.cursor.close() conn.close() assert_raises_message( tsa.exc.DBAPIError, "cursor closed", list, result ) def test_dialect_initialize_once(self): from sqlalchemy_1_3.engine.url import URL from sqlalchemy_1_3.engine.default import DefaultDialect dbapi = self.dbapi class MyURL(URL): def _get_entrypoint(self): return Dialect def get_dialect(self): return Dialect class Dialect(DefaultDialect): initialize = Mock() engine = create_engine(MyURL("foo://"), module=dbapi) engine.connect() # note that the dispose() call replaces the old pool with a new one; # this is to test that even though a single pool is using # dispatch.exec_once(), by replacing the pool with a new one, the event # would normally fire again onless once=True is set on the original # listen as well. engine.dispose() engine.connect() eq_(Dialect.initialize.call_count, 1) def test_dialect_initialize_retry_if_exception(self): from sqlalchemy_1_3.engine.url import URL from sqlalchemy_1_3.engine.default import DefaultDialect dbapi = self.dbapi class MyURL(URL): def _get_entrypoint(self): return Dialect def get_dialect(self): return Dialect class Dialect(DefaultDialect): initialize = Mock() # note that the first_connect hook is only invoked when the pool # makes a new DBAPI connection, and not when it checks out an existing # connection. So there is a dependency here that if the initializer # raises an exception, the pool-level connection attempt is also # failed, meaning no DBAPI connection is pooled. If the first_connect # exception raise did not prevent the connection from being pooled, # there could be the case where the pool could return that connection # on a subsequent attempt without initialization having proceeded. Dialect.initialize.side_effect = TypeError engine = create_engine(MyURL("foo://"), module=dbapi) assert_raises(TypeError, engine.connect) eq_(Dialect.initialize.call_count, 1) is_true(engine.pool._pool.empty()) assert_raises(TypeError, engine.connect) eq_(Dialect.initialize.call_count, 2) is_true(engine.pool._pool.empty()) engine.dispose() assert_raises(TypeError, engine.connect) eq_(Dialect.initialize.call_count, 3) is_true(engine.pool._pool.empty()) Dialect.initialize.side_effect = None conn = engine.connect() eq_(Dialect.initialize.call_count, 4) conn.close() is_false(engine.pool._pool.empty()) conn = engine.connect() eq_(Dialect.initialize.call_count, 4) conn.close() is_false(engine.pool._pool.empty()) engine.dispose() conn = engine.connect() eq_(Dialect.initialize.call_count, 4) conn.close() is_false(engine.pool._pool.empty()) def test_invalidate_conn_w_contextmanager_interrupt(self): # test [ticket:3803] pool = self.db.pool conn = self.db.connect() self.dbapi.shutdown("interrupt") def go(): with conn.begin(): conn.execute(select([1])) assert_raises(MockExitIsh, go) assert conn.invalidated eq_(pool._invalidate_time, 0) # pool not invalidated conn.execute(select([1])) assert not conn.invalidated def test_invalidate_conn_interrupt_nodisconnect_workaround(self): # test [ticket:3803] workaround for no disconnect on keyboard interrupt @event.listens_for(self.db, "handle_error") def cancel_disconnect(ctx): ctx.is_disconnect = False pool = self.db.pool conn = self.db.connect() self.dbapi.shutdown("interrupt_dont_break") def go(): with conn.begin(): conn.execute(select([1])) assert_raises(MockExitIsh, go) assert not conn.invalidated eq_(pool._invalidate_time, 0) # pool not invalidated conn.execute(select([1])) assert not conn.invalidated def test_invalidate_conn_w_contextmanager_disconnect(self): # test [ticket:3803] change maintains old behavior pool = self.db.pool conn = self.db.connect() self.dbapi.shutdown("execute") def go(): with conn.begin(): conn.execute(select([1])) assert_raises(exc.DBAPIError, go) # wraps a MockDisconnect assert conn.invalidated ne_(pool._invalidate_time, 0) # pool is invalidated conn.execute(select([1])) assert not conn.invalidated class CursorErrTest(fixtures.TestBase): # this isn't really a "reconnect" test, it's more of # a generic "recovery". maybe this test suite should have been # named "test_error_recovery". def _fixture(self, explode_on_exec, initialize): class DBAPIError(Exception): pass def MockDBAPI(): def cursor(): while True: if explode_on_exec: yield Mock( description=[], close=Mock(side_effect=DBAPIError("explode")), execute=Mock(side_effect=DBAPIError("explode")), ) else: yield Mock( description=[], close=Mock(side_effect=Exception("explode")), ) def connect(): while True: yield Mock( spec=["cursor", "commit", "rollback", "close"], cursor=Mock(side_effect=cursor()), ) return Mock( Error=DBAPIError, paramstyle="qmark", connect=Mock(side_effect=connect()), ) dbapi = MockDBAPI() from sqlalchemy_1_3.engine import default url = Mock( get_dialect=lambda: default.DefaultDialect, _get_entrypoint=lambda: default.DefaultDialect, _instantiate_plugins=lambda kwargs: (), translate_connect_args=lambda: {}, query={}, ) eng = testing_engine( url, options=dict(module=dbapi, _initialize=initialize) ) eng.pool.logger = Mock() return eng def test_cursor_explode(self): db = self._fixture(False, False) conn = db.connect() result = conn.execute("select foo") result.close() conn.close() eq_( db.pool.logger.error.mock_calls, [call("Error closing cursor", exc_info=True)], ) def test_cursor_shutdown_in_initialize(self): db = self._fixture(True, True) assert_raises_message_context_ok( exc.SAWarning, "Exception attempting to detect", db.connect ) eq_( db.pool.logger.error.mock_calls, [call("Error closing cursor", exc_info=True)], ) def _assert_invalidated(fn, *args): try: fn(*args) assert False except tsa.exc.DBAPIError as e: if not e.connection_invalidated: raise class RealReconnectTest(fixtures.TestBase): __backend__ = True __requires__ = "graceful_disconnects", "ad_hoc_engines" def setup(self): self.engine = engines.reconnecting_engine() def teardown(self): self.engine.dispose() def test_reconnect(self): conn = self.engine.connect() eq_(conn.execute(select([1])).scalar(), 1) assert not conn.closed self.engine.test_shutdown() _assert_invalidated(conn.execute, select([1])) assert not conn.closed assert conn.invalidated assert conn.invalidated eq_(conn.execute(select([1])).scalar(), 1) assert not conn.invalidated # one more time self.engine.test_shutdown() _assert_invalidated(conn.execute, select([1])) assert conn.invalidated eq_(conn.execute(select([1])).scalar(), 1) assert not conn.invalidated conn.close() def test_multiple_invalidate(self): c1 = self.engine.connect() c2 = self.engine.connect() eq_(c1.execute(select([1])).scalar(), 1) self.engine.test_shutdown() _assert_invalidated(c1.execute, select([1])) p2 = self.engine.pool _assert_invalidated(c2.execute, select([1])) # pool isn't replaced assert self.engine.pool is p2 def test_branched_invalidate_branch_to_parent(self): c1 = self.engine.connect() with patch.object(self.engine.pool, "logger") as logger: c1_branch = c1.connect() eq_(c1_branch.execute(select([1])).scalar(), 1) self.engine.test_shutdown() _assert_invalidated(c1_branch.execute, select([1])) assert c1.invalidated assert c1_branch.invalidated c1_branch._revalidate_connection() assert not c1.invalidated assert not c1_branch.invalidated assert "Invalidate connection" in logger.mock_calls[0][1][0] def test_branched_invalidate_parent_to_branch(self): c1 = self.engine.connect() c1_branch = c1.connect() eq_(c1_branch.execute(select([1])).scalar(), 1) self.engine.test_shutdown() _assert_invalidated(c1.execute, select([1])) assert c1.invalidated assert c1_branch.invalidated c1._revalidate_connection() assert not c1.invalidated assert not c1_branch.invalidated def test_branch_invalidate_state(self): c1 = self.engine.connect() c1_branch = c1.connect() eq_(c1_branch.execute(select([1])).scalar(), 1) self.engine.test_shutdown() _assert_invalidated(c1_branch.execute, select([1])) assert not c1_branch.closed assert not c1_branch._connection_is_valid def test_ensure_is_disconnect_gets_connection(self): def is_disconnect(e, conn, cursor): # connection is still present assert conn.connection is not None # the error usually occurs on connection.cursor(), # though MySQLdb we get a non-working cursor. # assert cursor is None self.engine.dialect.is_disconnect = is_disconnect conn = self.engine.connect() self.engine.test_shutdown() with expect_warnings( "An exception has occurred during handling .*", py2konly=True ): assert_raises(tsa.exc.DBAPIError, conn.execute, select([1])) def test_rollback_on_invalid_plain(self): conn = self.engine.connect() trans = conn.begin() conn.invalidate() trans.rollback() @testing.requires.two_phase_transactions def test_rollback_on_invalid_twophase(self): conn = self.engine.connect() trans = conn.begin_twophase() conn.invalidate() trans.rollback() @testing.requires.savepoints def test_rollback_on_invalid_savepoint(self): conn = self.engine.connect() conn.begin() trans2 = conn.begin_nested() conn.invalidate() trans2.rollback() def test_invalidate_twice(self): conn = self.engine.connect() conn.invalidate() conn.invalidate() @testing.skip_if( [lambda: util.py3k, "oracle+cx_oracle"], "Crashes on py3k+cx_oracle" ) def test_explode_in_initializer(self): engine = engines.testing_engine() def broken_initialize(connection): connection.execute("select fake_stuff from _fake_table") engine.dialect.initialize = broken_initialize # raises a DBAPIError, not an AttributeError assert_raises(exc.DBAPIError, engine.connect) @testing.skip_if( [lambda: util.py3k, "oracle+cx_oracle"], "Crashes on py3k+cx_oracle" ) def test_explode_in_initializer_disconnect(self): engine = engines.testing_engine() def broken_initialize(connection): connection.execute("select fake_stuff from _fake_table") engine.dialect.initialize = broken_initialize def is_disconnect(e, conn, cursor): return True engine.dialect.is_disconnect = is_disconnect # invalidate() also doesn't screw up assert_raises(exc.DBAPIError, engine.connect) def test_null_pool(self): engine = engines.reconnecting_engine( options=dict(poolclass=pool.NullPool) ) conn = engine.connect() eq_(conn.execute(select([1])).scalar(), 1) assert not conn.closed engine.test_shutdown() _assert_invalidated(conn.execute, select([1])) assert not conn.closed assert conn.invalidated eq_(conn.execute(select([1])).scalar(), 1) assert not conn.invalidated def test_close(self): conn = self.engine.connect() eq_(conn.execute(select([1])).scalar(), 1) assert not conn.closed self.engine.test_shutdown() _assert_invalidated(conn.execute, select([1])) conn.close() conn = self.engine.connect() eq_(conn.execute(select([1])).scalar(), 1) def test_with_transaction(self): conn = self.engine.connect() trans = conn.begin() eq_(conn.execute(select([1])).scalar(), 1) assert not conn.closed self.engine.test_shutdown() _assert_invalidated(conn.execute, select([1])) assert not conn.closed assert conn.invalidated assert trans.is_active assert_raises_message( tsa.exc.StatementError, "Can't reconnect until invalid transaction is rolled back", conn.execute, select([1]), ) assert trans.is_active assert_raises_message( tsa.exc.InvalidRequestError, "Can't reconnect until invalid transaction is rolled back", trans.commit, ) assert trans.is_active trans.rollback() assert not trans.is_active assert conn.invalidated eq_(conn.execute(select([1])).scalar(), 1) assert not conn.invalidated class RecycleTest(fixtures.TestBase): __backend__ = True def test_basic(self): engine = engines.reconnecting_engine() conn = engine.connect() eq_(conn.execute(select([1])).scalar(), 1) conn.close() # set the pool recycle down to 1. # we aren't doing this inline with the # engine create since cx_oracle takes way # too long to create the 1st connection and don't # want to build a huge delay into this test. engine.pool._recycle = 1 # kill the DB connection engine.test_shutdown() # wait until past the recycle period time.sleep(2) # can connect, no exception conn = engine.connect() eq_(conn.execute(select([1])).scalar(), 1) conn.close() class PrePingRealTest(fixtures.TestBase): __backend__ = True def test_pre_ping_db_is_restarted(self): engine = engines.reconnecting_engine(options={"pool_pre_ping": True}) conn = engine.connect() eq_(conn.execute(select([1])).scalar(), 1) stale_connection = conn.connection.connection conn.close() engine.test_shutdown() engine.test_restart() conn = engine.connect() eq_(conn.execute(select([1])).scalar(), 1) conn.close() def exercise_stale_connection(): curs = stale_connection.cursor() curs.execute("select 1") assert_raises(engine.dialect.dbapi.Error, exercise_stale_connection) def test_pre_ping_db_stays_shutdown(self): engine = engines.reconnecting_engine(options={"pool_pre_ping": True}) conn = engine.connect() eq_(conn.execute(select([1])).scalar(), 1) conn.close() engine.test_shutdown(stop=True) assert_raises(exc.DBAPIError, engine.connect) class InvalidateDuringResultTest(fixtures.TestBase): __backend__ = True def setup(self): self.engine = engines.reconnecting_engine() self.meta = MetaData(self.engine) table = Table( "sometable", self.meta, Column("id", Integer, primary_key=True), Column("name", String(50)), ) self.meta.create_all() table.insert().execute( [{"id": i, "name": "row %d" % i} for i in range(1, 100)] ) def teardown(self): self.meta.drop_all() self.engine.dispose() @testing.crashes( "oracle", "cx_oracle 6 doesn't allow a close like this due to open cursors", ) @testing.fails_if( ["+mysqlconnector", "+mysqldb", "+cymysql", "+pymysql", "+pg8000"], "Buffers the result set and doesn't check for connection close", ) def test_invalidate_on_results(self): conn = self.engine.connect() result = conn.execute("select * from sometable") for x in range(20): result.fetchone() self.engine.test_shutdown() _assert_invalidated(result.fetchone) assert conn.invalidated
the-stack_0_11580
# pylint: disable=C,R,W from datetime import datetime, timedelta import inspect import logging import os import re import time import traceback from urllib import parse from flask import ( flash, g, Markup, redirect, render_template, request, Response, url_for, ) from flask_appbuilder import expose, SimpleFormView from flask_appbuilder.actions import action from flask_appbuilder.models.sqla.interface import SQLAInterface from flask_appbuilder.security.decorators import has_access, has_access_api from flask_appbuilder.security.views import AuthDBView from flask_login import login_user from flask_babel import gettext as __ from flask_babel import lazy_gettext as _ import pandas as pd import simplejson as json import sqlalchemy as sqla from sqlalchemy import and_, create_engine, MetaData, or_, update from sqlalchemy.engine.url import make_url from sqlalchemy.exc import IntegrityError from unidecode import unidecode from werkzeug.routing import BaseConverter from werkzeug.utils import secure_filename from superset import ( app, appbuilder, cache, dashboard_import_export_util, db, results_backend, security_manager, sql_lab, utils, viz, csrf) from superset.connectors.connector_registry import ConnectorRegistry from superset.connectors.sqla.models import AnnotationDatasource, SqlaTable from superset.exceptions import SupersetException from superset.forms import CsvToDatabaseForm from superset.jinja_context import get_template_processor from superset.legacy import cast_form_data, update_time_range import superset.models.core as models from superset.models.sql_lab import Query from superset.models.user_attributes import UserAttribute from superset.sql_parse import SupersetQuery from superset.utils import ( merge_extra_filters, merge_request_params, QueryStatus, ) from .base import ( api, BaseSupersetView, check_ownership, CsvResponse, DeleteMixin, generate_download_headers, get_error_msg, json_error_response, SupersetFilter, SupersetModelView, YamlExportMixin, ) from .utils import bootstrap_user_data config = app.config stats_logger = config.get('STATS_LOGGER') log_this = models.Log.log_this DAR = models.DatasourceAccessRequest ALL_DATASOURCE_ACCESS_ERR = __( 'This endpoint requires the `all_datasource_access` permission') DATASOURCE_MISSING_ERR = __('The datasource seems to have been deleted') ACCESS_REQUEST_MISSING_ERR = __( 'The access requests seem to have been deleted') USER_MISSING_ERR = __('The user seems to have been deleted') FORM_DATA_KEY_BLACKLIST = [] if not config.get('ENABLE_JAVASCRIPT_CONTROLS'): FORM_DATA_KEY_BLACKLIST = [ 'js_tooltip', 'js_onclick_href', 'js_data_mutator', ] def get_database_access_error_msg(database_name): return __('This view requires the database %(name)s or ' '`all_datasource_access` permission', name=database_name) def json_success(json_msg, status=200): return Response(json_msg, status=status, mimetype='application/json') def is_owner(obj, user): """ Check if user is owner of the slice """ return obj and user in obj.owners def check_dbp_user(user, is_shared): if app.config['ENABLE_CUSTOM_ROLE_RESOURCE_SHOW'] and not is_shared and user: for role in user.roles: if role.name.lower().find(app.config['CUSTOM_ROLE_NAME_KEYWORD'].lower()) >= 0: return True return False class SliceFilter(SupersetFilter): def apply(self, query, func): # noqa if security_manager.all_datasource_access(): return query perms = self.get_view_menus('datasource_access') # TODO(bogdan): add `schema_access` support here #if len(perms) > 0 : if check_dbp_user(g.user, app.config['ENABLE_CHART_SHARE_IN_CUSTOM_ROLE']): slice_ids = self.get_current_user_slice_ids() return query.filter(self.model.perm.in_(perms)).filter(self.model.id.in_(slice_ids)) else: return query.filter(self.model.perm.in_(perms)) #else: # return query.filter(self.model.id.in_(slice_ids)) class DashboardFilter(SupersetFilter): """List dashboards for which users have access to at least one slice or are owners""" def apply(self, query, func): # noqa if security_manager.all_datasource_access(): return query Slice = models.Slice # noqa Dash = models.Dashboard # noqa User = security_manager.user_model # TODO(bogdan): add `schema_access` support here datasource_perms = self.get_view_menus('datasource_access') slice_ids_qry = None if check_dbp_user(g.user, app.config['ENABLE_DASHBOARD_SHARE_IN_CUSTOM_ROLE']): slice_ids = self.get_current_user_slice_ids() slice_ids_qry = ( db.session .query(Slice.id) .filter(Slice.perm.in_(datasource_perms)).filter(Slice.id.in_(slice_ids)) ) else: slice_ids_qry = ( db.session .query(Slice.id) .filter(Slice.perm.in_(datasource_perms)) ) owner_ids_qry = ( db.session .query(Dash.id) .join(Dash.owners) .filter(User.id == User.get_user_id()) ) query = query.filter( or_(Dash.id.in_( db.session.query(Dash.id) .distinct() .join(Dash.slices) .filter(Slice.id.in_(slice_ids_qry)), ), Dash.id.in_(owner_ids_qry)), ) return query class DatabaseView(SupersetModelView, DeleteMixin, YamlExportMixin): # noqa datamodel = SQLAInterface(models.Database) list_title = _('List Databases') show_title = _('Show Database') add_title = _('Add Database') edit_title = _('Edit Database') list_columns = [ 'database_name', 'backend', 'allow_run_sync', 'allow_run_async', 'allow_dml', 'allow_csv_upload', 'creator', 'modified'] order_columns = [ 'database_name', 'allow_run_sync', 'allow_run_async', 'allow_dml', 'modified', 'allow_csv_upload', ] add_columns = [ 'database_name', 'sqlalchemy_uri', 'cache_timeout', 'expose_in_sqllab', 'allow_run_sync', 'allow_run_async', 'allow_csv_upload', 'allow_ctas', 'allow_dml', 'force_ctas_schema', 'impersonate_user', 'allow_multi_schema_metadata_fetch', 'extra', ] search_exclude_columns = ( 'password', 'tables', 'created_by', 'changed_by', 'queries', 'saved_queries') edit_columns = add_columns show_columns = [ 'tables', 'cache_timeout', 'extra', 'database_name', 'sqlalchemy_uri', 'perm', 'created_by', 'created_on', 'changed_by', 'changed_on', ] add_template = 'superset/models/database/add.html' edit_template = 'superset/models/database/edit.html' base_order = ('changed_on', 'desc') description_columns = { 'sqlalchemy_uri': utils.markdown( 'Refer to the ' '[SqlAlchemy docs]' '(http://docs.sqlalchemy.org/en/rel_1_0/core/engines.html#' 'database-urls) ' 'for more information on how to structure your URI.', True), 'expose_in_sqllab': _('Expose this DB in SQL Lab'), 'allow_run_sync': _( 'Allow users to run synchronous queries, this is the default ' 'and should work well for queries that can be executed ' 'within a web request scope (<~1 minute)'), 'allow_run_async': _( 'Allow users to run queries, against an async backend. ' 'This assumes that you have a Celery worker setup as well ' 'as a results backend.'), 'allow_ctas': _('Allow CREATE TABLE AS option in SQL Lab'), 'allow_dml': _( 'Allow users to run non-SELECT statements ' '(UPDATE, DELETE, CREATE, ...) ' 'in SQL Lab'), 'force_ctas_schema': _( 'When allowing CREATE TABLE AS option in SQL Lab, ' 'this option forces the table to be created in this schema'), 'extra': utils.markdown( 'JSON string containing extra configuration elements.<br/>' '1. The ``engine_params`` object gets unpacked into the ' '[sqlalchemy.create_engine]' '(http://docs.sqlalchemy.org/en/latest/core/engines.html#' 'sqlalchemy.create_engine) call, while the ``metadata_params`` ' 'gets unpacked into the [sqlalchemy.MetaData]' '(http://docs.sqlalchemy.org/en/rel_1_0/core/metadata.html' '#sqlalchemy.schema.MetaData) call.<br/>' '2. The ``metadata_cache_timeout`` is a cache timeout setting ' 'in seconds for metadata fetch of this database. Specify it as ' '**"metadata_cache_timeout": {"schema_cache_timeout": 600}**. ' 'If unset, cache will not be enabled for the functionality. ' 'A timeout of 0 indicates that the cache never expires.<br/>' '3. The ``schemas_allowed_for_csv_upload`` is a comma separated list ' 'of schemas that CSVs are allowed to upload to. ' 'Specify it as **"schemas_allowed": ["public", "csv_upload"]**. ' 'If database flavor does not support schema or any schema is allowed ' 'to be accessed, just leave the list empty', True), 'impersonate_user': _( 'If Presto, all the queries in SQL Lab are going to be executed as the ' 'currently logged on user who must have permission to run them.<br/>' 'If Hive and hive.server2.enable.doAs is enabled, will run the queries as ' 'service account, but impersonate the currently logged on user ' 'via hive.server2.proxy.user property.'), 'allow_multi_schema_metadata_fetch': _( 'Allow SQL Lab to fetch a list of all tables and all views across ' 'all database schemas. For large data warehouse with thousands of ' 'tables, this can be expensive and put strain on the system.'), 'cache_timeout': _( 'Duration (in seconds) of the caching timeout for charts of this database. ' 'A timeout of 0 indicates that the cache never expires. ' 'Note this defaults to the global timeout if undefined.'), 'allow_csv_upload': _( 'If selected, please set the schemas allowed for csv upload in Extra.'), } label_columns = { 'expose_in_sqllab': _('Expose in SQL Lab'), 'allow_ctas': _('Allow CREATE TABLE AS'), 'allow_dml': _('Allow DML'), 'force_ctas_schema': _('CTAS Schema'), 'database_name': _('Database'), 'creator': _('Creator'), 'changed_on_': _('Last Changed'), 'sqlalchemy_uri': _('SQLAlchemy URI'), 'cache_timeout': _('Chart Cache Timeout'), 'extra': _('Extra'), 'allow_run_sync': _('Allow Run Sync'), 'allow_run_async': _('Allow Run Async'), 'impersonate_user': _('Impersonate the logged on user'), 'allow_csv_upload': _('Allow Csv Upload'), 'modified': _('Modified'), 'allow_multi_schema_metadata_fetch': _('Allow Multi Schema Metadata Fetch'), 'backend': _('Backend'), } def pre_add(self, db): self.check_extra(db) db.set_sqlalchemy_uri(db.sqlalchemy_uri) security_manager.merge_perm('database_access', db.perm) # adding a new database we always want to force refresh schema list for schema in db.all_schema_names(force_refresh=True): security_manager.merge_perm( 'schema_access', security_manager.get_schema_perm(db, schema)) def pre_update(self, db): self.pre_add(db) def pre_delete(self, obj): if obj.tables: raise SupersetException(Markup( 'Cannot delete a database that has tables attached. ' "Here's the list of associated tables: " + ', '.join('{}'.format(o) for o in obj.tables))) def _delete(self, pk): DeleteMixin._delete(self, pk) def check_extra(self, db): # this will check whether json.loads(extra) can succeed try: extra = db.get_extra() except Exception as e: raise Exception('Extra field cannot be decoded by JSON. {}'.format(str(e))) # this will check whether 'metadata_params' is configured correctly metadata_signature = inspect.signature(MetaData) for key in extra.get('metadata_params', {}): if key not in metadata_signature.parameters: raise Exception('The metadata_params in Extra field ' 'is not configured correctly. The key ' '{} is invalid.'.format(key)) appbuilder.add_link( 'Import Dashboards', label=__('Import Dashboards'), href='/superset/import_dashboards', icon='fa-cloud-upload', category='Manage', category_label=__('Manage'), category_icon='fa-wrench') appbuilder.add_view( DatabaseView, 'Databases', label=__('Databases'), icon='fa-database', category='Sources', category_label=__('Sources'), category_icon='fa-database') class DatabaseAsync(DatabaseView): list_columns = [ 'id', 'database_name', 'expose_in_sqllab', 'allow_ctas', 'force_ctas_schema', 'allow_run_async', 'allow_run_sync', 'allow_dml', 'allow_multi_schema_metadata_fetch', 'allow_csv_upload', 'allows_subquery', ] appbuilder.add_view_no_menu(DatabaseAsync) class CsvToDatabaseView(SimpleFormView): form = CsvToDatabaseForm form_template = 'superset/form_view/csv_to_database_view/edit.html' form_title = _('CSV to Database configuration') add_columns = ['database', 'schema', 'table_name'] def form_get(self, form): form.sep.data = ',' form.header.data = 0 form.mangle_dupe_cols.data = True form.skipinitialspace.data = False form.skip_blank_lines.data = True form.infer_datetime_format.data = True form.decimal.data = '.' form.if_exists.data = 'fail' def form_post(self, form): database = form.con.data schema_name = form.schema.data or '' if not self.is_schema_allowed(database, schema_name): message = _('Database "{0}" Schema "{1}" is not allowed for csv uploads. ' 'Please contact Superset Admin'.format(database.database_name, schema_name)) flash(message, 'danger') return redirect('/csvtodatabaseview/form') csv_file = form.csv_file.data form.csv_file.data.filename = secure_filename(form.csv_file.data.filename) csv_filename = form.csv_file.data.filename path = os.path.join(config['UPLOAD_FOLDER'], csv_filename) try: utils.ensure_path_exists(config['UPLOAD_FOLDER']) csv_file.save(path) if csv_filename.lower().endswith("csv"): table = SqlaTable(table_name=form.name.data) table.database = form.data.get('con') table.database_id = table.database.id table.database.db_engine_spec.create_table_from_csv(form, table) elif csv_filename.lower().endswith("xls") or csv_filename.lower().endswith("xlsx"): table = SqlaTable(table_name=form.name.data) table.database = form.data.get('con') table.database_id = table.database.id table.database.db_engine_spec.create_table_from_excel(form, path) except Exception as e: try: os.remove(path) except OSError: pass message = 'Table name {} already exists. Please pick another'.format( form.name.data) if isinstance(e, IntegrityError) else e flash( message, 'danger') return redirect('/csvtodatabaseview/form') os.remove(path) # Go back to welcome page / splash screen db_name = table.database.database_name message = _('CSV file "{0}" uploaded to table "{1}" in ' 'database "{2}"'.format(csv_filename, form.name.data, db_name)) flash(message, 'info') return redirect('/tablemodelview/list/') def is_schema_allowed(self, database, schema): if not database.allow_csv_upload: return False schemas = database.get_schema_access_for_csv_upload() if schemas: return schema in schemas return (security_manager.database_access(database) or security_manager.all_datasource_access()) appbuilder.add_view_no_menu(CsvToDatabaseView) class DatabaseTablesAsync(DatabaseView): list_columns = ['id', 'all_table_names', 'all_schema_names'] appbuilder.add_view_no_menu(DatabaseTablesAsync) if config.get('ENABLE_ACCESS_REQUEST'): class AccessRequestsModelView(SupersetModelView, DeleteMixin): datamodel = SQLAInterface(DAR) list_columns = [ 'username', 'user_roles', 'datasource_link', 'roles_with_datasource', 'created_on'] order_columns = ['created_on'] base_order = ('changed_on', 'desc') label_columns = { 'username': _('User'), 'user_roles': _('User Roles'), 'database': _('Database URL'), 'datasource_link': _('Datasource'), 'roles_with_datasource': _('Roles to grant'), 'created_on': _('Created On'), } appbuilder.add_view( AccessRequestsModelView, 'Access requests', label=__('Access requests'), category='Security', category_label=__('Security'), icon='fa-table') class SliceModelView(SupersetModelView, DeleteMixin): # noqa route_base = '/chart' datamodel = SQLAInterface(models.Slice) list_title = _('List Charts') show_title = _('Show Chart') add_title = _('Add Chart') edit_title = _('Edit Chart') can_add = False label_columns = { 'datasource_link': _('Datasource'), } search_columns = ( 'slice_name', 'description', 'viz_type', 'datasource_name', 'owners', ) list_columns = [ 'slice_link', 'viz_type', 'datasource_link', 'creator', 'modified'] order_columns = ['viz_type', 'datasource_link', 'modified'] edit_columns = [ 'slice_name', 'description', 'viz_type', 'owners', 'dashboards', 'params', 'cache_timeout'] base_order = ('changed_on', 'desc') description_columns = { 'description': Markup( 'The content here can be displayed as widget headers in the ' 'dashboard view. Supports ' '<a href="https://daringfireball.net/projects/markdown/"">' 'markdown</a>'), 'params': _( 'These parameters are generated dynamically when clicking ' 'the save or overwrite button in the explore view. This JSON ' 'object is exposed here for reference and for power users who may ' 'want to alter specific parameters.', ), 'cache_timeout': _( 'Duration (in seconds) of the caching timeout for this chart. ' 'Note this defaults to the datasource/table timeout if undefined.'), } base_filters = [['id', SliceFilter, lambda: []]] label_columns = { 'cache_timeout': _('Cache Timeout'), 'creator': _('Creator'), 'dashboards': _('Dashboards'), 'datasource_link': _('Datasource'), 'description': _('Description'), 'modified': _('Last Modified'), 'owners': _('Owners'), 'params': _('Parameters'), 'slice_link': _('Chart'), 'slice_name': _('Name'), 'table': _('Table'), 'viz_type': _('Visualization Type'), } def pre_add(self, obj): utils.validate_json(obj.params) def pre_update(self, obj): utils.validate_json(obj.params) check_ownership(obj) def pre_delete(self, obj): check_ownership(obj) @expose('/add', methods=['GET', 'POST']) @has_access def add(self): datasources = ConnectorRegistry.get_all_datasources(db.session) datasources = [ {'value': str(d.id) + '__' + d.type, 'label': repr(d)} for d in datasources ] return self.render_template( 'superset/add_slice.html', bootstrap_data=json.dumps({ 'datasources': sorted(datasources, key=lambda d: d['label']), }), ) appbuilder.add_view( SliceModelView, 'Charts', label=__('Charts'), icon='fa-bar-chart', category='', category_icon='') class SliceAsync(SliceModelView): # noqa route_base = '/sliceasync' list_columns = [ 'id', 'slice_link', 'viz_type', 'slice_name', 'creator', 'modified', 'icons'] label_columns = { 'icons': ' ', 'slice_link': _('Chart'), } appbuilder.add_view_no_menu(SliceAsync) class SliceAddView(SliceModelView): # noqa route_base = '/sliceaddview' list_columns = [ 'id', 'slice_name', 'slice_url', 'edit_url', 'viz_type', 'params', 'description', 'description_markeddown', 'datasource_id', 'datasource_type', 'datasource_name_text', 'datasource_link', 'owners', 'modified', 'changed_on'] appbuilder.add_view_no_menu(SliceAddView) class DashboardModelView(SupersetModelView, DeleteMixin): # noqa route_base = '/dashboard' datamodel = SQLAInterface(models.Dashboard) list_title = _('List Dashboards') show_title = _('Show Dashboard') add_title = _('Add Dashboard') edit_title = _('Edit Dashboard') list_columns = ['dashboard_link', 'creator', 'modified'] order_columns = ['modified'] edit_columns = [ 'dashboard_title', 'slug', 'owners', 'position_json', 'css', 'json_metadata'] show_columns = edit_columns + ['table_names', 'slices'] search_columns = ('dashboard_title', 'slug', 'owners') add_columns = edit_columns base_order = ('changed_on', 'desc') description_columns = { 'position_json': _( 'This json object describes the positioning of the widgets in ' 'the dashboard. It is dynamically generated when adjusting ' 'the widgets size and positions by using drag & drop in ' 'the dashboard view'), 'css': _( 'The css for individual dashboards can be altered here, or ' 'in the dashboard view where changes are immediately ' 'visible'), 'slug': _('To get a readable URL for your dashboard'), 'json_metadata': _( 'This JSON object is generated dynamically when clicking ' 'the save or overwrite button in the dashboard view. It ' 'is exposed here for reference and for power users who may ' 'want to alter specific parameters.'), 'owners': _('Owners is a list of users who can alter the dashboard.'), } base_filters = [['slice', DashboardFilter, lambda: []]] label_columns = { 'dashboard_link': _('Dashboard'), 'dashboard_title': _('Title'), 'slug': _('Slug'), 'slices': _('Charts'), 'owners': _('Owners'), 'creator': _('Creator'), 'modified': _('Modified'), 'position_json': _('Position JSON'), 'css': _('CSS'), 'json_metadata': _('JSON Metadata'), 'table_names': _('Underlying Tables'), } def pre_add(self, obj): obj.slug = obj.slug.strip() or None if obj.slug: obj.slug = obj.slug.replace(' ', '-') obj.slug = re.sub(r'[^\w\-]+', '', obj.slug) if g.user not in obj.owners: obj.owners.append(g.user) utils.validate_json(obj.json_metadata) utils.validate_json(obj.position_json) owners = [o for o in obj.owners] for slc in obj.slices: slc.owners = list(set(owners) | set(slc.owners)) def pre_update(self, obj): check_ownership(obj) self.pre_add(obj) def pre_delete(self, obj): check_ownership(obj) @action('mulexport', __('Export'), __('Export dashboards?'), 'fa-database') def mulexport(self, items): if not isinstance(items, list): items = [items] ids = ''.join('&id={}'.format(d.id) for d in items) return redirect( '/dashboard/export_dashboards_form?{}'.format(ids[1:])) @expose('/export_dashboards_form') def download_dashboards(self): if request.args.get('action') == 'go': ids = request.args.getlist('id') return Response( models.Dashboard.export_dashboards(ids), headers=generate_download_headers('json'), mimetype='application/text') return self.render_template( 'superset/export_dashboards.html', dashboards_url='/dashboard/list', ) appbuilder.add_view( DashboardModelView, 'Dashboards', label=__('Dashboards'), icon='fa-dashboard', category='', category_icon='') class DashboardModelViewAsync(DashboardModelView): # noqa route_base = '/dashboardasync' list_columns = [ 'id', 'dashboard_link', 'creator', 'modified', 'dashboard_title', 'changed_on', 'url', 'changed_by_name', ] label_columns = { 'dashboard_link': _('Dashboard'), 'dashboard_title': _('Title'), 'creator': _('Creator'), 'modified': _('Modified'), } appbuilder.add_view_no_menu(DashboardModelViewAsync) class DashboardAddView(DashboardModelView): # noqa route_base = '/dashboardaddview' list_columns = [ 'id', 'dashboard_link', 'creator', 'modified', 'dashboard_title', 'changed_on', 'url', 'changed_by_name', ] show_columns = list(set(DashboardModelView.edit_columns + list_columns)) appbuilder.add_view_no_menu(DashboardAddView) class LogModelView(SupersetModelView): datamodel = SQLAInterface(models.Log) list_title = _('List Log') show_title = _('Show Log') add_title = _('Add Log') edit_title = _('Edit Log') list_columns = ('user', 'action', 'local_dttm') edit_columns = ('user', 'action', 'dttm', 'json') base_order = ('dttm', 'desc') label_columns = { 'user': _('User'), 'action': _('Action'), 'local_dttm': _('Time'), 'json': _('JSON'), } appbuilder.add_view( LogModelView, 'Action Log', label=__('Action Log'), category='Security', category_label=__('Security'), icon='fa-list-ol') @app.route('/health') def health(): return 'OK' @app.route('/healthcheck') def healthcheck(): return 'OK' @app.route('/ping') def ping(): return 'OK' @csrf.exempt @app.route('/add_user_from_dbp', methods=['POST']) def add_user_from_dbp(): raw_user_info = request.data user_info = json.loads(raw_user_info, encoding='utf-8') try: username = user_info.get('username', None) first_name = user_info.get('first_name', None) last_name = user_info.get('last_name', None) email = user_info.get('email', None) password = user_info.get('password', None) user_role = user_info.get('role', config.get('CUSTOM_ROLE_NAME_KEYWORD')) if not username and not email: return json_error_response( 'username and email are missing.') user = security_manager.find_user(username, email) if user: return json_error_response( 'User with name(%s) or email(%s) exist.' % (username, email)) role = security_manager.find_role(user_role) if not role: return json_error_response( 'Role with name(%s) not exist.' % (user_role,)) user = security_manager.add_user(username=username, first_name=first_name, last_name=last_name, email=email, role=role, password=password) resp = json_success(json.dumps( {'user_id': user.id}, default=utils.json_int_dttm_ser, ignore_nan=True), status=200) return resp except Exception: return json_error_response( 'Error in call add_user_from_dbp.' 'The error message returned was:\n{}').format(traceback.format_exc()) class KV(BaseSupersetView): """Used for storing and retrieving key value pairs""" @log_this @expose('/store/', methods=['POST']) def store(self): try: value = request.form.get('data') obj = models.KeyValue(value=value) db.session.add(obj) db.session.commit() except Exception as e: return json_error_response(e) return Response( json.dumps({'id': obj.id}), status=200) @log_this @expose('/<key_id>/', methods=['GET']) def get_value(self, key_id): kv = None try: kv = db.session.query(models.KeyValue).filter_by(id=key_id).one() except Exception as e: return json_error_response(e) return Response(kv.value, status=200) appbuilder.add_view_no_menu(KV) class R(BaseSupersetView): """used for short urls""" @log_this @expose('/<url_id>') def index(self, url_id): url = db.session.query(models.Url).filter_by(id=url_id).first() if url: return redirect('/' + url.url) else: flash('URL to nowhere...', 'danger') return redirect('/') @log_this @expose('/shortner/', methods=['POST', 'GET']) def shortner(self): url = request.form.get('data') obj = models.Url(url=url) db.session.add(obj) db.session.commit() return Response( '{scheme}://{request.headers[Host]}/r/{obj.id}'.format( scheme=request.scheme, request=request, obj=obj), mimetype='text/plain') @expose('/msg/') def msg(self): """Redirects to specified url while flash a message""" flash(Markup(request.args.get('msg')), 'info') return redirect(request.args.get('url')) appbuilder.add_view_no_menu(R) class Superset(BaseSupersetView): """The base views for Superset!""" @has_access_api @expose('/datasources/') def datasources(self): datasources = ConnectorRegistry.get_all_datasources(db.session) datasources = [o.short_data for o in datasources] datasources = sorted(datasources, key=lambda o: o['name']) return self.json_response(datasources) @has_access_api @expose('/override_role_permissions/', methods=['POST']) def override_role_permissions(self): """Updates the role with the give datasource permissions. Permissions not in the request will be revoked. This endpoint should be available to admins only. Expects JSON in the format: { 'role_name': '{role_name}', 'database': [{ 'datasource_type': '{table|druid}', 'name': '{database_name}', 'schema': [{ 'name': '{schema_name}', 'datasources': ['{datasource name}, {datasource name}'] }] }] } """ data = request.get_json(force=True) role_name = data['role_name'] databases = data['database'] db_ds_names = set() for dbs in databases: for schema in dbs['schema']: for ds_name in schema['datasources']: fullname = utils.get_datasource_full_name( dbs['name'], ds_name, schema=schema['name']) db_ds_names.add(fullname) existing_datasources = ConnectorRegistry.get_all_datasources(db.session) datasources = [ d for d in existing_datasources if d.full_name in db_ds_names] role = security_manager.find_role(role_name) # remove all permissions role.permissions = [] # grant permissions to the list of datasources granted_perms = [] for datasource in datasources: view_menu_perm = security_manager.find_permission_view_menu( view_menu_name=datasource.perm, permission_name='datasource_access') # prevent creating empty permissions if view_menu_perm and view_menu_perm.view_menu: role.permissions.append(view_menu_perm) granted_perms.append(view_menu_perm.view_menu.name) db.session.commit() return self.json_response({ 'granted': granted_perms, 'requested': list(db_ds_names), }, status=201) @log_this @has_access @expose('/request_access/') def request_access(self): datasources = set() dashboard_id = request.args.get('dashboard_id') if dashboard_id: dash = ( db.session.query(models.Dashboard) .filter_by(id=int(dashboard_id)) .one() ) datasources |= dash.datasources datasource_id = request.args.get('datasource_id') datasource_type = request.args.get('datasource_type') if datasource_id: ds_class = ConnectorRegistry.sources.get(datasource_type) datasource = ( db.session.query(ds_class) .filter_by(id=int(datasource_id)) .one() ) datasources.add(datasource) has_access = all( ( datasource and security_manager.datasource_access(datasource) for datasource in datasources )) if has_access: return redirect('/superset/dashboard/{}'.format(dashboard_id)) if request.args.get('action') == 'go': for datasource in datasources: access_request = DAR( datasource_id=datasource.id, datasource_type=datasource.type) db.session.add(access_request) db.session.commit() flash(__('Access was requested'), 'info') return redirect('/') return self.render_template( 'superset/request_access.html', datasources=datasources, datasource_names=', '.join([o.name for o in datasources]), ) @log_this @has_access @expose('/approve') def approve(self): def clean_fulfilled_requests(session): for r in session.query(DAR).all(): datasource = ConnectorRegistry.get_datasource( r.datasource_type, r.datasource_id, session) user = security_manager.get_user_by_id(r.created_by_fk) if not datasource or \ security_manager.datasource_access(datasource, user): # datasource does not exist anymore session.delete(r) session.commit() datasource_type = request.args.get('datasource_type') datasource_id = request.args.get('datasource_id') created_by_username = request.args.get('created_by') role_to_grant = request.args.get('role_to_grant') role_to_extend = request.args.get('role_to_extend') session = db.session datasource = ConnectorRegistry.get_datasource( datasource_type, datasource_id, session) if not datasource: flash(DATASOURCE_MISSING_ERR, 'alert') return json_error_response(DATASOURCE_MISSING_ERR) requested_by = security_manager.find_user(username=created_by_username) if not requested_by: flash(USER_MISSING_ERR, 'alert') return json_error_response(USER_MISSING_ERR) requests = ( session.query(DAR) .filter( DAR.datasource_id == datasource_id, DAR.datasource_type == datasource_type, DAR.created_by_fk == requested_by.id) .all() ) if not requests: flash(ACCESS_REQUEST_MISSING_ERR, 'alert') return json_error_response(ACCESS_REQUEST_MISSING_ERR) # check if you can approve if security_manager.all_datasource_access() or g.user.id == datasource.owner_id: # can by done by admin only if role_to_grant: role = security_manager.find_role(role_to_grant) requested_by.roles.append(role) msg = __( '%(user)s was granted the role %(role)s that gives access ' 'to the %(datasource)s', user=requested_by.username, role=role_to_grant, datasource=datasource.full_name) utils.notify_user_about_perm_udate( g.user, requested_by, role, datasource, 'email/role_granted.txt', app.config) flash(msg, 'info') if role_to_extend: perm_view = security_manager.find_permission_view_menu( 'email/datasource_access', datasource.perm) role = security_manager.find_role(role_to_extend) security_manager.add_permission_role(role, perm_view) msg = __('Role %(r)s was extended to provide the access to ' 'the datasource %(ds)s', r=role_to_extend, ds=datasource.full_name) utils.notify_user_about_perm_udate( g.user, requested_by, role, datasource, 'email/role_extended.txt', app.config) flash(msg, 'info') clean_fulfilled_requests(session) else: flash(__('You have no permission to approve this request'), 'danger') return redirect('/accessrequestsmodelview/list/') for r in requests: session.delete(r) session.commit() return redirect('/accessrequestsmodelview/list/') def get_form_data(self, slice_id=None, use_slice_data=False): form_data = {} post_data = request.form.get('form_data') request_args_data = request.args.get('form_data') # Supporting POST if post_data: form_data.update(json.loads(post_data)) # request params can overwrite post body if request_args_data: form_data.update(json.loads(request_args_data)) url_id = request.args.get('r') if url_id: saved_url = db.session.query(models.Url).filter_by(id=url_id).first() if saved_url: url_str = parse.unquote_plus( saved_url.url.split('?')[1][10:], encoding='utf-8', errors=None) url_form_data = json.loads(url_str) # allow form_date in request override saved url url_form_data.update(form_data) form_data = url_form_data if request.args.get('viz_type'): # Converting old URLs form_data = cast_form_data(form_data) form_data = { k: v for k, v in form_data.items() if k not in FORM_DATA_KEY_BLACKLIST } # When a slice_id is present, load from DB and override # the form_data from the DB with the other form_data provided slice_id = form_data.get('slice_id') or slice_id slc = None # Check if form data only contains slice_id contains_only_slc_id = not any(key != 'slice_id' for key in form_data) # Include the slice_form_data if request from explore or slice calls # or if form_data only contains slice_id if slice_id and (use_slice_data or contains_only_slc_id): slc = db.session.query(models.Slice).filter_by(id=slice_id).first() slice_form_data = slc.form_data.copy() # allow form_data in request override slice from_data slice_form_data.update(form_data) form_data = slice_form_data update_time_range(form_data) return form_data, slc def get_viz( self, slice_id=None, form_data=None, datasource_type=None, datasource_id=None, force=False, ): if slice_id: slc = ( db.session.query(models.Slice) .filter_by(id=slice_id) .one() ) return slc.get_viz() else: viz_type = form_data.get('viz_type', 'table') datasource = ConnectorRegistry.get_datasource( datasource_type, datasource_id, db.session) viz_obj = viz.viz_types[viz_type]( datasource, form_data=form_data, force=force, ) return viz_obj @has_access @expose('/slice/<slice_id>/') def slice(self, slice_id): form_data, slc = self.get_form_data(slice_id, use_slice_data=True) endpoint = '/superset/explore/?form_data={}'.format( parse.quote(json.dumps(form_data)), ) if request.args.get('standalone') == 'true': endpoint += '&standalone=true' return redirect(endpoint) def get_query_string_response(self, viz_obj): query = None try: query_obj = viz_obj.query_obj() if query_obj: query = viz_obj.datasource.get_query_str(query_obj) except Exception as e: logging.exception(e) return json_error_response(e) if query_obj and query_obj['prequeries']: query_obj['prequeries'].append(query) query = ';\n\n'.join(query_obj['prequeries']) if query: query += ';' else: query = 'No query.' return self.json_response({ 'query': query, 'language': viz_obj.datasource.query_language, }) def get_raw_results(self, viz_obj): return self.json_response({ 'data': viz_obj.get_df().to_dict('records'), }) def get_samples(self, viz_obj): return self.json_response({ 'data': viz_obj.get_samples(), }) def generate_json( self, datasource_type, datasource_id, form_data, csv=False, query=False, force=False, results=False, samples=False, ): try: viz_obj = self.get_viz( datasource_type=datasource_type, datasource_id=datasource_id, form_data=form_data, force=force, ) except Exception as e: logging.exception(e) return json_error_response( utils.error_msg_from_exception(e), stacktrace=traceback.format_exc()) if not security_manager.datasource_access(viz_obj.datasource, g.user): return json_error_response( security_manager.get_datasource_access_error_msg(viz_obj.datasource), status=404, link=security_manager.get_datasource_access_link(viz_obj.datasource)) if csv: return CsvResponse( viz_obj.get_csv(), status=200, headers=generate_download_headers('csv'), mimetype='application/csv') if query: return self.get_query_string_response(viz_obj) if results: return self.get_raw_results(viz_obj) if samples: return self.get_samples(viz_obj) try: payload = viz_obj.get_payload() except SupersetException as se: logging.exception(se) return json_error_response(utils.error_msg_from_exception(se), status=se.status) except Exception as e: logging.exception(e) return json_error_response(utils.error_msg_from_exception(e)) status = 200 if ( payload.get('status') == QueryStatus.FAILED or payload.get('error') is not None ): status = 400 return json_success(viz_obj.json_dumps(payload), status=status) @log_this @has_access_api @expose('/slice_json/<slice_id>') def slice_json(self, slice_id): try: form_data, slc = self.get_form_data(slice_id, use_slice_data=True) datasource_type = slc.datasource.type datasource_id = slc.datasource.id except Exception as e: return json_error_response( utils.error_msg_from_exception(e), stacktrace=traceback.format_exc()) return self.generate_json(datasource_type=datasource_type, datasource_id=datasource_id, form_data=form_data) @log_this @has_access_api @expose('/annotation_json/<layer_id>') def annotation_json(self, layer_id): form_data = self.get_form_data()[0] form_data['layer_id'] = layer_id form_data['filters'] = [{'col': 'layer_id', 'op': '==', 'val': layer_id}] datasource = AnnotationDatasource() viz_obj = viz.viz_types['table']( datasource, form_data=form_data, force=False, ) try: payload = viz_obj.get_payload() except Exception as e: logging.exception(e) return json_error_response(utils.error_msg_from_exception(e)) status = 200 if payload.get('status') == QueryStatus.FAILED: status = 400 return json_success(viz_obj.json_dumps(payload), status=status) @log_this @has_access_api @expose('/explore_json/<datasource_type>/<datasource_id>/', methods=['GET', 'POST']) @expose('/explore_json/', methods=['GET', 'POST']) def explore_json(self, datasource_type=None, datasource_id=None): """Serves all request that GET or POST form_data This endpoint evolved to be the entry point of many different requests that GETs or POSTs a form_data. `self.generate_json` receives this input and returns different payloads based on the request args in the first block TODO: break into one endpoint for each return shape""" csv = request.args.get('csv') == 'true' query = request.args.get('query') == 'true' results = request.args.get('results') == 'true' samples = request.args.get('samples') == 'true' force = request.args.get('force') == 'true' try: form_data = self.get_form_data()[0] datasource_id, datasource_type = self.datasource_info( datasource_id, datasource_type, form_data) except Exception as e: logging.exception(e) return json_error_response( utils.error_msg_from_exception(e), stacktrace=traceback.format_exc()) return self.generate_json( datasource_type=datasource_type, datasource_id=datasource_id, form_data=form_data, csv=csv, query=query, results=results, force=force, samples=samples, ) @log_this @has_access @expose('/import_dashboards', methods=['GET', 'POST']) def import_dashboards(self): """Overrides the dashboards using json instances from the file.""" f = request.files.get('file') if request.method == 'POST' and f: dashboard_import_export_util.import_dashboards(db.session, f.stream) return redirect('/dashboard/list/') return self.render_template('superset/import_dashboards.html') @log_this @has_access @expose('/explorev2/<datasource_type>/<datasource_id>/') def explorev2(self, datasource_type, datasource_id): """Deprecated endpoint, here for backward compatibility of urls""" return redirect(url_for( 'Superset.explore', datasource_type=datasource_type, datasource_id=datasource_id, **request.args)) @staticmethod def datasource_info(datasource_id, datasource_type, form_data): """Compatibility layer for handling of datasource info datasource_id & datasource_type used to be passed in the URL directory, now they should come as part of the form_data, This function allows supporting both without duplicating code""" datasource = form_data.get('datasource', '') if '__' in datasource: datasource_id, datasource_type = datasource.split('__') # The case where the datasource has been deleted datasource_id = None if datasource_id == 'None' else datasource_id if not datasource_id: raise Exception( 'The datasource associated with this chart no longer exists') datasource_id = int(datasource_id) return datasource_id, datasource_type @log_this @has_access @expose('/explore/<datasource_type>/<datasource_id>/', methods=['GET', 'POST']) @expose('/explore/', methods=['GET', 'POST']) def explore(self, datasource_type=None, datasource_id=None): user_id = g.user.get_id() if g.user else None form_data, slc = self.get_form_data(use_slice_data=True) datasource_id, datasource_type = self.datasource_info( datasource_id, datasource_type, form_data) error_redirect = '/chart/list/' datasource = ConnectorRegistry.get_datasource( datasource_type, datasource_id, db.session) if not datasource: flash(DATASOURCE_MISSING_ERR, 'danger') return redirect(error_redirect) if config.get('ENABLE_ACCESS_REQUEST') and ( not security_manager.datasource_access(datasource) ): flash( __(security_manager.get_datasource_access_error_msg(datasource)), 'danger') return redirect( 'superset/request_access/?' 'datasource_type={datasource_type}&' 'datasource_id={datasource_id}&' ''.format(**locals())) viz_type = form_data.get('viz_type') if not viz_type and datasource.default_endpoint: return redirect(datasource.default_endpoint) # slc perms slice_add_perm = security_manager.can_access('can_add', 'SliceModelView') slice_overwrite_perm = is_owner(slc, g.user) slice_download_perm = security_manager.can_access( 'can_download', 'SliceModelView') form_data['datasource'] = str(datasource_id) + '__' + datasource_type # On explore, merge legacy and extra filters into the form data utils.convert_legacy_filters_into_adhoc(form_data) merge_extra_filters(form_data) # merge request url params if request.method == 'GET': merge_request_params(form_data, request.args) # handle save or overwrite action = request.args.get('action') if action == 'overwrite' and not slice_overwrite_perm: return json_error_response( _('You don\'t have the rights to ') + _('alter this ') + _('chart'), status=400) if action == 'saveas' and not slice_add_perm: return json_error_response( _('You don\'t have the rights to ') + _('create a ') + _('chart'), status=400) if action in ('saveas', 'overwrite'): return self.save_or_overwrite_slice( request.args, slc, slice_add_perm, slice_overwrite_perm, slice_download_perm, datasource_id, datasource_type, datasource.name) standalone = request.args.get('standalone') == 'true' bootstrap_data = { 'can_add': slice_add_perm, 'can_download': slice_download_perm, 'can_overwrite': slice_overwrite_perm, 'datasource': datasource.data, 'form_data': form_data, 'datasource_id': datasource_id, 'datasource_type': datasource_type, 'slice': slc.data if slc else None, 'standalone': standalone, 'user_id': user_id, 'user_name': g.user.username, 'forced_height': request.args.get('height'), 'common': self.common_bootsrap_payload(), } table_name = datasource.table_name \ if datasource_type == 'table' \ else datasource.datasource_name if slc: title = slc.slice_name else: title = _('Explore - %(table)s', table=table_name) return self.render_template( 'superset/basic.html', bootstrap_data=json.dumps(bootstrap_data), entry='explore', title=title, standalone_mode=standalone) @api @has_access_api @expose('/filter/<datasource_type>/<datasource_id>/<column>/') def filter(self, datasource_type, datasource_id, column): """ Endpoint to retrieve values for specified column. :param datasource_type: Type of datasource e.g. table :param datasource_id: Datasource id :param column: Column name to retrieve values for :return: """ # TODO: Cache endpoint by user, datasource and column datasource = ConnectorRegistry.get_datasource( datasource_type, datasource_id, db.session) if not datasource: return json_error_response(DATASOURCE_MISSING_ERR) if not security_manager.datasource_access(datasource): return json_error_response( security_manager.get_datasource_access_error_msg(datasource)) payload = json.dumps( datasource.values_for_column( column, config.get('FILTER_SELECT_ROW_LIMIT', 10000), ), default=utils.json_int_dttm_ser) return json_success(payload) def save_or_overwrite_slice( self, args, slc, slice_add_perm, slice_overwrite_perm, slice_download_perm, datasource_id, datasource_type, datasource_name): """Save or overwrite a slice""" slice_name = args.get('slice_name') action = args.get('action') form_data, _ = self.get_form_data() if action in ('saveas'): if 'slice_id' in form_data: form_data.pop('slice_id') # don't save old slice_id slc = models.Slice(owners=[g.user] if g.user else []) slc.params = json.dumps(form_data) slc.datasource_name = datasource_name slc.viz_type = form_data['viz_type'] slc.datasource_type = datasource_type slc.datasource_id = datasource_id slc.slice_name = slice_name if action in ('saveas') and slice_add_perm: self.save_slice(slc) elif action == 'overwrite' and slice_overwrite_perm: self.overwrite_slice(slc) # Adding slice to a dashboard if requested dash = None if request.args.get('add_to_dash') == 'existing': dash = ( db.session.query(models.Dashboard) .filter_by(id=int(request.args.get('save_to_dashboard_id'))) .one() ) # check edit dashboard permissions dash_overwrite_perm = check_ownership(dash, raise_if_false=False) if not dash_overwrite_perm: return json_error_response( _('You don\'t have the rights to ') + _('alter this ') + _('dashboard'), status=400) flash( 'Slice [{}] was added to dashboard [{}]'.format( slc.slice_name, dash.dashboard_title), 'info') elif request.args.get('add_to_dash') == 'new': # check create dashboard permissions dash_add_perm = security_manager.can_access('can_add', 'DashboardModelView') if not dash_add_perm: return json_error_response( _('You don\'t have the rights to ') + _('create a ') + _('dashboard'), status=400) dash = models.Dashboard( dashboard_title=request.args.get('new_dashboard_name'), owners=[g.user] if g.user else []) flash( 'Dashboard [{}] just got created and slice [{}] was added ' 'to it'.format( dash.dashboard_title, slc.slice_name), 'info') if dash and slc not in dash.slices: dash.slices.append(slc) db.session.commit() response = { 'can_add': slice_add_perm, 'can_download': slice_download_perm, 'can_overwrite': is_owner(slc, g.user), 'form_data': slc.form_data, 'slice': slc.data, } if request.args.get('goto_dash') == 'true': response.update({'dashboard': dash.url}) return json_success(json.dumps(response)) def save_slice(self, slc): session = db.session() msg = _('Chart [{}] has been saved').format(slc.slice_name) session.add(slc) session.commit() flash(msg, 'info') def overwrite_slice(self, slc): session = db.session() session.merge(slc) session.commit() msg = _('Chart [{}] has been overwritten').format(slc.slice_name) flash(msg, 'info') @api @has_access_api @expose('/checkbox/<model_view>/<id_>/<attr>/<value>', methods=['GET']) def checkbox(self, model_view, id_, attr, value): """endpoint for checking/unchecking any boolean in a sqla model""" modelview_to_model = { '{}ColumnInlineView'.format(name.capitalize()): source.column_class for name, source in ConnectorRegistry.sources.items() } model = modelview_to_model[model_view] col = db.session.query(model).filter_by(id=id_).first() checked = value == 'true' if col: setattr(col, attr, checked) if checked: metrics = col.get_metrics().values() col.datasource.add_missing_metrics(metrics) db.session.commit() return json_success('OK') @api @has_access_api @expose('/schemas/<db_id>/') @expose('/schemas/<db_id>/<force_refresh>/') def schemas(self, db_id, force_refresh='true'): db_id = int(db_id) force_refresh = force_refresh.lower() == 'true' database = ( db.session .query(models.Database) .filter_by(id=db_id) .one() ) schemas = database.all_schema_names(force_refresh=force_refresh) schemas = security_manager.schemas_accessible_by_user(database, schemas) return Response( json.dumps({'schemas': schemas}), mimetype='application/json') @api @has_access_api @expose('/tables/<db_id>/<schema>/<substr>/') def tables(self, db_id, schema, substr): """Endpoint to fetch the list of tables for given database""" db_id = int(db_id) schema = utils.js_string_to_python(schema) substr = utils.js_string_to_python(substr) database = db.session.query(models.Database).filter_by(id=db_id).one() table_names = security_manager.accessible_by_user( database, database.all_table_names(schema), schema) view_names = security_manager.accessible_by_user( database, database.all_view_names(schema), schema) if substr: table_names = [tn for tn in table_names if substr in tn] view_names = [vn for vn in view_names if substr in vn] max_items = config.get('MAX_TABLE_NAMES') or len(table_names) total_items = len(table_names) + len(view_names) max_tables = len(table_names) max_views = len(view_names) if total_items and substr: max_tables = max_items * len(table_names) // total_items max_views = max_items * len(view_names) // total_items table_options = [{'value': tn, 'label': tn} for tn in table_names[:max_tables]] table_options.extend([{'value': vn, 'label': '[view] {}'.format(vn)} for vn in view_names[:max_views]]) payload = { 'tableLength': len(table_names) + len(view_names), 'options': table_options, } return json_success(json.dumps(payload)) @api @has_access_api @expose('/copy_dash/<dashboard_id>/', methods=['GET', 'POST']) def copy_dash(self, dashboard_id): """Copy dashboard""" session = db.session() data = json.loads(request.form.get('data')) dash = models.Dashboard() original_dash = ( session .query(models.Dashboard) .filter_by(id=dashboard_id).first()) dash.owners = [g.user] if g.user else [] dash.dashboard_title = data['dashboard_title'] if data['duplicate_slices']: # Duplicating slices as well, mapping old ids to new ones old_to_new_sliceids = {} for slc in original_dash.slices: new_slice = slc.clone() new_slice.owners = [g.user] if g.user else [] session.add(new_slice) session.flush() new_slice.dashboards.append(dash) old_to_new_sliceids['{}'.format(slc.id)] = \ '{}'.format(new_slice.id) # update chartId of layout entities # in v2_dash positions json data, chartId should be integer, # while in older version slice_id is string type for value in data['positions'].values(): if ( isinstance(value, dict) and value.get('meta') and value.get('meta').get('chartId') ): old_id = '{}'.format(value.get('meta').get('chartId')) new_id = int(old_to_new_sliceids[old_id]) value['meta']['chartId'] = new_id else: dash.slices = original_dash.slices dash.params = original_dash.params self._set_dash_metadata(dash, data) session.add(dash) session.commit() dash_json = json.dumps(dash.data) session.close() return json_success(dash_json) @api @has_access_api @expose('/save_dash/<dashboard_id>/', methods=['GET', 'POST']) def save_dash(self, dashboard_id): """Save a dashboard's metadata""" session = db.session() dash = (session .query(models.Dashboard) .filter_by(id=dashboard_id).first()) check_ownership(dash, raise_if_false=True) data = json.loads(request.form.get('data')) self._set_dash_metadata(dash, data) session.merge(dash) session.commit() session.close() return 'SUCCESS' @staticmethod def _set_dash_metadata(dashboard, data): positions = data['positions'] # find slices in the position data slice_ids = [] slice_id_to_name = {} for value in positions.values(): if ( isinstance(value, dict) and value.get('meta') and value.get('meta').get('chartId') ): slice_id = value.get('meta').get('chartId') slice_ids.append(slice_id) slice_id_to_name[slice_id] = value.get('meta').get('sliceName') session = db.session() Slice = models.Slice # noqa current_slices = session.query(Slice).filter( Slice.id.in_(slice_ids)).all() dashboard.slices = current_slices # update slice names. this assumes user has permissions to update the slice for slc in dashboard.slices: new_name = slice_id_to_name[slc.id] if slc.slice_name != new_name: slc.slice_name = new_name session.merge(slc) session.flush() # remove leading and trailing white spaces in the dumped json dashboard.position_json = json.dumps( positions, indent=None, separators=(',', ':'), sort_keys=True) md = dashboard.params_dict dashboard.css = data.get('css') dashboard.dashboard_title = data['dashboard_title'] if 'filter_immune_slices' not in md: md['filter_immune_slices'] = [] if 'timed_refresh_immune_slices' not in md: md['timed_refresh_immune_slices'] = [] if 'filter_immune_slice_fields' not in md: md['filter_immune_slice_fields'] = {} md['expanded_slices'] = data['expanded_slices'] default_filters_data = json.loads(data.get('default_filters', '{}')) applicable_filters = \ {key: v for key, v in default_filters_data.items() if int(key) in slice_ids} md['default_filters'] = json.dumps(applicable_filters) dashboard.json_metadata = json.dumps(md) @api @has_access_api @expose('/add_slices/<dashboard_id>/', methods=['POST']) def add_slices(self, dashboard_id): """Add and save slices to a dashboard""" data = json.loads(request.form.get('data')) session = db.session() Slice = models.Slice # noqa dash = ( session.query(models.Dashboard).filter_by(id=dashboard_id).first()) check_ownership(dash, raise_if_false=True) new_slices = session.query(Slice).filter( Slice.id.in_(data['slice_ids'])) dash.slices += new_slices session.merge(dash) session.commit() session.close() return 'SLICES ADDED' @api @has_access_api @expose('/testconn', methods=['POST', 'GET']) def testconn(self): """Tests a sqla connection""" try: username = g.user.username if g.user is not None else None uri = request.json.get('uri') db_name = request.json.get('name') impersonate_user = request.json.get('impersonate_user') database = None if db_name: database = ( db.session .query(models.Database) .filter_by(database_name=db_name) .first() ) if database and uri == database.safe_sqlalchemy_uri(): # the password-masked uri was passed # use the URI associated with this database uri = database.sqlalchemy_uri_decrypted configuration = {} if database and uri: url = make_url(uri) db_engine = models.Database.get_db_engine_spec_for_backend( url.get_backend_name()) db_engine.patch() masked_url = database.get_password_masked_url_from_uri(uri) logging.info('Superset.testconn(). Masked URL: {0}'.format(masked_url)) configuration.update( db_engine.get_configuration_for_impersonation(uri, impersonate_user, username), ) engine_params = ( request.json .get('extras', {}) .get('engine_params', {})) connect_args = engine_params.get('connect_args') if configuration: connect_args['configuration'] = configuration engine = create_engine(uri, **engine_params) engine.connect() return json_success(json.dumps(engine.table_names(), indent=4)) except Exception as e: logging.exception(e) return json_error_response(( 'Connection failed!\n\n' 'The error message returned was:\n{}').format(e)) @api @has_access_api @expose('/recent_activity/<user_id>/', methods=['GET']) def recent_activity(self, user_id): """Recent activity (actions) for a given user""" M = models # noqa if request.args.get('limit'): limit = int(request.args.get('limit')) else: limit = 1000 qry = ( db.session.query(M.Log, M.Dashboard, M.Slice) .outerjoin( M.Dashboard, M.Dashboard.id == M.Log.dashboard_id, ) .outerjoin( M.Slice, M.Slice.id == M.Log.slice_id, ) .filter( sqla.and_( ~M.Log.action.in_(('queries', 'shortner', 'sql_json')), M.Log.user_id == user_id, ), ) .order_by(M.Log.dttm.desc()) .limit(limit) ) payload = [] for log in qry.all(): item_url = None item_title = None if log.Dashboard: item_url = log.Dashboard.url item_title = log.Dashboard.dashboard_title elif log.Slice: item_url = log.Slice.slice_url item_title = log.Slice.slice_name payload.append({ 'action': log.Log.action, 'item_url': item_url, 'item_title': item_title, 'time': log.Log.dttm, }) return json_success( json.dumps(payload, default=utils.json_int_dttm_ser)) @api @has_access_api @expose('/csrf_token/', methods=['GET']) def csrf_token(self): return Response( self.render_template('superset/csrf_token.json'), mimetype='text/json', ) @api @has_access_api @expose('/fave_dashboards_by_username/<username>/', methods=['GET']) def fave_dashboards_by_username(self, username): """This lets us use a user's username to pull favourite dashboards""" user = security_manager.find_user(username=username) return self.fave_dashboards(user.get_id()) @api @has_access_api @expose('/fave_dashboards/<user_id>/', methods=['GET']) def fave_dashboards(self, user_id): qry = ( db.session.query( models.Dashboard, models.FavStar.dttm, ) .join( models.FavStar, sqla.and_( models.FavStar.user_id == int(user_id), models.FavStar.class_name == 'Dashboard', models.Dashboard.id == models.FavStar.obj_id, ), ) .order_by( models.FavStar.dttm.desc(), ) ) payload = [] for o in qry.all(): d = { 'id': o.Dashboard.id, 'dashboard': o.Dashboard.dashboard_link(), 'title': o.Dashboard.dashboard_title, 'url': o.Dashboard.url, 'dttm': o.dttm, } if o.Dashboard.created_by: user = o.Dashboard.created_by d['creator'] = str(user) d['creator_url'] = '/superset/profile/{}/'.format( user.username) payload.append(d) return json_success( json.dumps(payload, default=utils.json_int_dttm_ser)) @api @has_access_api @expose('/created_dashboards/<user_id>/', methods=['GET']) def created_dashboards(self, user_id): Dash = models.Dashboard # noqa qry = ( db.session.query( Dash, ) .filter( sqla.or_( Dash.created_by_fk == user_id, Dash.changed_by_fk == user_id, ), ) .order_by( Dash.changed_on.desc(), ) ) payload = [{ 'id': o.id, 'dashboard': o.dashboard_link(), 'title': o.dashboard_title, 'url': o.url, 'dttm': o.changed_on, } for o in qry.all()] return json_success( json.dumps(payload, default=utils.json_int_dttm_ser)) @api @has_access_api @expose('/user_slices', methods=['GET']) @expose('/user_slices/<user_id>/', methods=['GET']) def user_slices(self, user_id=None): """List of slices a user created, or faved""" if not user_id: user_id = g.user.id Slice = models.Slice # noqa FavStar = models.FavStar # noqa qry = ( db.session.query(Slice, FavStar.dttm).join( models.FavStar, sqla.and_( models.FavStar.user_id == int(user_id), models.FavStar.class_name == 'slice', models.Slice.id == models.FavStar.obj_id, ), isouter=True).filter( sqla.or_( Slice.created_by_fk == user_id, Slice.changed_by_fk == user_id, FavStar.user_id == user_id, ), ) .order_by(Slice.slice_name.asc()) ) payload = [{ 'id': o.Slice.id, 'title': o.Slice.slice_name, 'url': o.Slice.slice_url, 'data': o.Slice.form_data, 'dttm': o.dttm if o.dttm else o.Slice.changed_on, 'viz_type': o.Slice.viz_type, } for o in qry.all()] return json_success( json.dumps(payload, default=utils.json_int_dttm_ser)) @api @has_access_api @expose('/created_slices', methods=['GET']) @expose('/created_slices/<user_id>/', methods=['GET']) def created_slices(self, user_id=None): """List of slices created by this user""" if not user_id: user_id = g.user.id Slice = models.Slice # noqa qry = ( db.session.query(Slice) .filter( sqla.or_( Slice.created_by_fk == user_id, Slice.changed_by_fk == user_id, ), ) .order_by(Slice.changed_on.desc()) ) payload = [{ 'id': o.id, 'title': o.slice_name, 'url': o.slice_url, 'dttm': o.changed_on, 'viz_type': o.viz_type, } for o in qry.all()] return json_success( json.dumps(payload, default=utils.json_int_dttm_ser)) @api @has_access_api @expose('/fave_slices', methods=['GET']) @expose('/fave_slices/<user_id>/', methods=['GET']) def fave_slices(self, user_id=None): """Favorite slices for a user""" if not user_id: user_id = g.user.id qry = ( db.session.query( models.Slice, models.FavStar.dttm, ) .join( models.FavStar, sqla.and_( models.FavStar.user_id == int(user_id), models.FavStar.class_name == 'slice', models.Slice.id == models.FavStar.obj_id, ), ) .order_by( models.FavStar.dttm.desc(), ) ) payload = [] for o in qry.all(): d = { 'id': o.Slice.id, 'title': o.Slice.slice_name, 'url': o.Slice.slice_url, 'dttm': o.dttm, 'viz_type': o.Slice.viz_type, } if o.Slice.created_by: user = o.Slice.created_by d['creator'] = str(user) d['creator_url'] = '/superset/profile/{}/'.format( user.username) payload.append(d) return json_success( json.dumps(payload, default=utils.json_int_dttm_ser)) @api @has_access_api @expose('/warm_up_cache/', methods=['GET']) def warm_up_cache(self): """Warms up the cache for the slice or table. Note for slices a force refresh occurs. """ slices = None session = db.session() slice_id = request.args.get('slice_id') table_name = request.args.get('table_name') db_name = request.args.get('db_name') if not slice_id and not (table_name and db_name): return json_error_response(__( 'Malformed request. slice_id or table_name and db_name ' 'arguments are expected'), status=400) if slice_id: slices = session.query(models.Slice).filter_by(id=slice_id).all() if not slices: return json_error_response(__( 'Chart %(id)s not found', id=slice_id), status=404) elif table_name and db_name: SqlaTable = ConnectorRegistry.sources['table'] table = ( session.query(SqlaTable) .join(models.Database) .filter( models.Database.database_name == db_name or SqlaTable.table_name == table_name) ).first() if not table: return json_error_response(__( "Table %(t)s wasn't found in the database %(d)s", t=table_name, s=db_name), status=404) slices = session.query(models.Slice).filter_by( datasource_id=table.id, datasource_type=table.type).all() for slc in slices: try: obj = slc.get_viz(force=True) obj.get_json() except Exception as e: return json_error_response(utils.error_msg_from_exception(e)) return json_success(json.dumps( [{'slice_id': slc.id, 'slice_name': slc.slice_name} for slc in slices])) @expose('/favstar/<class_name>/<obj_id>/<action>/') def favstar(self, class_name, obj_id, action): """Toggle favorite stars on Slices and Dashboard""" session = db.session() FavStar = models.FavStar # noqa count = 0 favs = session.query(FavStar).filter_by( class_name=class_name, obj_id=obj_id, user_id=g.user.get_id()).all() if action == 'select': if not favs: session.add( FavStar( class_name=class_name, obj_id=obj_id, user_id=g.user.get_id(), dttm=datetime.now(), ), ) count = 1 elif action == 'unselect': for fav in favs: session.delete(fav) else: count = len(favs) session.commit() return json_success(json.dumps({'count': count})) @has_access @expose('/dashboard/<dashboard_id>/') def dashboard(self, dashboard_id): """Server side rendering for a dashboard""" session = db.session() qry = session.query(models.Dashboard) if dashboard_id.isdigit(): qry = qry.filter_by(id=int(dashboard_id)) else: qry = qry.filter_by(slug=dashboard_id) dash = qry.one() datasources = set() for slc in dash.slices: datasource = slc.datasource if datasource: datasources.add(datasource) if config.get('ENABLE_ACCESS_REQUEST'): for datasource in datasources: if datasource and not security_manager.datasource_access(datasource): flash( __(security_manager.get_datasource_access_error_msg(datasource)), 'danger') return redirect( 'superset/request_access/?' 'dashboard_id={dash.id}&'.format(**locals())) dash_edit_perm = True if check_dbp_user(g.user, app.config['ENABLE_DASHBOARD_SHARE_IN_CUSTOM_ROLE']): dash_edit_perm = check_ownership(dash, raise_if_false=False) and \ security_manager.can_access('can_save_dash', 'Superset') and g.user.id == dash.created_by_fk else: dash_edit_perm = check_ownership(dash, raise_if_false=False) and \ security_manager.can_access('can_save_dash', 'Superset') dash_save_perm = security_manager.can_access('can_save_dash', 'Superset') superset_can_explore = security_manager.can_access('can_explore', 'Superset') slice_can_edit = security_manager.can_access('can_edit', 'SliceModelView') standalone_mode = request.args.get('standalone') == 'true' edit_mode = request.args.get('edit') == 'true' # Hack to log the dashboard_id properly, even when getting a slug @log_this def dashboard(**kwargs): # noqa pass dashboard( dashboard_id=dash.id, dashboard_version='v2', dash_edit_perm=dash_edit_perm, edit_mode=edit_mode) dashboard_data = dash.data dashboard_data.update({ 'standalone_mode': standalone_mode, 'dash_save_perm': dash_save_perm, 'dash_edit_perm': dash_edit_perm, 'superset_can_explore': superset_can_explore, 'slice_can_edit': slice_can_edit, }) bootstrap_data = { 'user_id': g.user.get_id(), 'user_name': g.user.username, 'dashboard_data': dashboard_data, 'datasources': {ds.uid: ds.data for ds in datasources}, 'common': self.common_bootsrap_payload(), 'editMode': edit_mode, } if request.args.get('json') == 'true': return json_success(json.dumps(bootstrap_data)) return self.render_template( 'superset/dashboard.html', entry='dashboard', standalone_mode=standalone_mode, title=dash.dashboard_title, bootstrap_data=json.dumps(bootstrap_data), ) @api @log_this @expose('/log/', methods=['POST']) def log(self): return Response(status=200) @has_access @expose('/sync_druid/', methods=['POST']) @log_this def sync_druid_source(self): """Syncs the druid datasource in main db with the provided config. The endpoint takes 3 arguments: user - user name to perform the operation as cluster - name of the druid cluster config - configuration stored in json that contains: name: druid datasource name dimensions: list of the dimensions, they become druid columns with the type STRING metrics_spec: list of metrics (dictionary). Metric consists of 2 attributes: type and name. Type can be count, etc. `count` type is stored internally as longSum other fields will be ignored. Example: { 'name': 'test_click', 'metrics_spec': [{'type': 'count', 'name': 'count'}], 'dimensions': ['affiliate_id', 'campaign', 'first_seen'] } """ payload = request.get_json(force=True) druid_config = payload['config'] user_name = payload['user'] cluster_name = payload['cluster'] user = security_manager.find_user(username=user_name) DruidDatasource = ConnectorRegistry.sources['druid'] DruidCluster = DruidDatasource.cluster_class if not user: err_msg = __("Can't find User '%(name)s', please ask your admin " 'to create one.', name=user_name) logging.error(err_msg) return json_error_response(err_msg) cluster = db.session.query(DruidCluster).filter_by( cluster_name=cluster_name).first() if not cluster: err_msg = __("Can't find DruidCluster with cluster_name = " "'%(name)s'", name=cluster_name) logging.error(err_msg) return json_error_response(err_msg) try: DruidDatasource.sync_to_db_from_config( druid_config, user, cluster) except Exception as e: logging.exception(utils.error_msg_from_exception(e)) return json_error_response(utils.error_msg_from_exception(e)) return Response(status=201) @has_access @expose('/sqllab_viz/', methods=['POST']) @log_this def sqllab_viz(self): SqlaTable = ConnectorRegistry.sources['table'] data = json.loads(request.form.get('data')) table_name = data.get('datasourceName') table = ( db.session.query(SqlaTable) .filter_by(table_name=table_name) .first() ) if not table: table = SqlaTable(table_name=table_name) table.database_id = data.get('dbId') table.schema = data.get('schema') table.template_params = data.get('templateParams') table.is_sqllab_view = True q = SupersetQuery(data.get('sql')) table.sql = q.stripped() db.session.add(table) cols = [] for config in data.get('columns'): column_name = config.get('name') SqlaTable = ConnectorRegistry.sources['table'] TableColumn = SqlaTable.column_class SqlMetric = SqlaTable.metric_class col = TableColumn( column_name=column_name, filterable=True, groupby=True, is_dttm=config.get('is_date', False), type=config.get('type', False), ) cols.append(col) table.columns = cols table.metrics = [ SqlMetric(metric_name='count', expression='count(*)'), ] db.session.commit() return self.json_response(json.dumps({ 'table_id': table.id, })) @has_access @expose('/table/<database_id>/<table_name>/<schema>/') @log_this def table(self, database_id, table_name, schema): schema = utils.js_string_to_python(schema) mydb = db.session.query(models.Database).filter_by(id=database_id).one() payload_columns = [] indexes = [] primary_key = [] foreign_keys = [] try: columns = mydb.get_columns(table_name, schema) indexes = mydb.get_indexes(table_name, schema) primary_key = mydb.get_pk_constraint(table_name, schema) foreign_keys = mydb.get_foreign_keys(table_name, schema) except Exception as e: return json_error_response(utils.error_msg_from_exception(e)) keys = [] if primary_key and primary_key.get('constrained_columns'): primary_key['column_names'] = primary_key.pop('constrained_columns') primary_key['type'] = 'pk' keys += [primary_key] for fk in foreign_keys: fk['column_names'] = fk.pop('constrained_columns') fk['type'] = 'fk' keys += foreign_keys for idx in indexes: idx['type'] = 'index' keys += indexes for col in columns: dtype = '' try: dtype = '{}'.format(col['type']) except Exception: # sqla.types.JSON __str__ has a bug, so using __class__. dtype = col['type'].__class__.__name__ pass payload_columns.append({ 'name': col['name'], 'type': dtype.split('(')[0] if '(' in dtype else dtype, 'longType': dtype, 'keys': [ k for k in keys if col['name'] in k.get('column_names') ], }) tbl = { 'name': table_name, 'columns': payload_columns, 'selectStar': mydb.select_star( table_name, schema=schema, show_cols=True, indent=True, cols=columns, latest_partition=True), 'primaryKey': primary_key, 'foreignKeys': foreign_keys, 'indexes': keys, } return json_success(json.dumps(tbl)) @has_access @expose('/extra_table_metadata/<database_id>/<table_name>/<schema>/') @log_this def extra_table_metadata(self, database_id, table_name, schema): schema = utils.js_string_to_python(schema) mydb = db.session.query(models.Database).filter_by(id=database_id).one() payload = mydb.db_engine_spec.extra_table_metadata( mydb, table_name, schema) return json_success(json.dumps(payload)) @has_access @expose('/select_star/<database_id>/<table_name>') @expose('/select_star/<database_id>/<table_name>/<schema>') @log_this def select_star(self, database_id, table_name, schema=None): mydb = db.session.query( models.Database).filter_by(id=database_id).first() return json_success( mydb.select_star( table_name, schema, latest_partition=True, show_cols=True, ), ) @expose('/theme/') def theme(self): return self.render_template('superset/theme.html') @has_access_api @expose('/cached_key/<key>/') @log_this def cached_key(self, key): """Returns a key from the cache""" resp = cache.get(key) if resp: return resp return 'nope' @has_access_api @expose('/cache_key_exist/<key>/') @log_this def cache_key_exist(self, key): """Returns if a key from cache exist""" key_exist = True if cache.get(key) else False status = 200 if key_exist else 404 return json_success(json.dumps({'key_exist': key_exist}), status=status) @has_access_api @expose('/results/<key>/') @log_this def results(self, key): """Serves a key off of the results backend""" if not results_backend: return json_error_response("Results backend isn't configured") read_from_results_backend_start = utils.now_as_float() blob = results_backend.get(key) stats_logger.timing( 'sqllab.query.results_backend_read', utils.now_as_float() - read_from_results_backend_start, ) if not blob: return json_error_response( 'Data could not be retrieved. ' 'You may want to re-run the query.', status=410, ) query = db.session.query(Query).filter_by(results_key=key).one() rejected_tables = security_manager.rejected_datasources( query.sql, query.database, query.schema) if rejected_tables: return json_error_response(security_manager.get_table_access_error_msg( '{}'.format(rejected_tables)), status=403) payload = utils.zlib_decompress_to_string(blob) display_limit = app.config.get('DISPLAY_MAX_ROW', None) if display_limit: payload_json = json.loads(payload) payload_json['data'] = payload_json['data'][:display_limit] return json_success( json.dumps( payload_json, default=utils.json_iso_dttm_ser, ignore_nan=True, ), ) @has_access_api @expose('/stop_query/', methods=['POST']) @log_this def stop_query(self): client_id = request.form.get('client_id') try: query = ( db.session.query(Query) .filter_by(client_id=client_id).one() ) query.status = utils.QueryStatus.STOPPED db.session.commit() except Exception: pass return self.json_response('OK') @has_access_api @expose('/sql_json/', methods=['POST', 'GET']) @log_this def sql_json(self): """Runs arbitrary sql and returns and json""" async_ = request.form.get('runAsync') == 'true' sql = request.form.get('sql') database_id = request.form.get('database_id') schema = request.form.get('schema') or None template_params = json.loads( request.form.get('templateParams') or '{}') session = db.session() mydb = session.query(models.Database).filter_by(id=database_id).first() if not mydb: json_error_response( 'Database with id {} is missing.'.format(database_id)) rejected_tables = security_manager.rejected_datasources(sql, mydb, schema) if rejected_tables: return json_error_response( security_manager.get_table_access_error_msg(rejected_tables), link=security_manager.get_table_access_link(rejected_tables), status=403) session.commit() select_as_cta = request.form.get('select_as_cta') == 'true' tmp_table_name = request.form.get('tmp_table_name') if select_as_cta and mydb.force_ctas_schema: tmp_table_name = '{}.{}'.format( mydb.force_ctas_schema, tmp_table_name, ) client_id = request.form.get('client_id') or utils.shortid()[:10] query = Query( database_id=int(database_id), limit=mydb.db_engine_spec.get_limit_from_sql(sql), sql=sql, schema=schema, select_as_cta=request.form.get('select_as_cta') == 'true', start_time=utils.now_as_float(), tab_name=request.form.get('tab'), status=QueryStatus.PENDING if async_ else QueryStatus.RUNNING, sql_editor_id=request.form.get('sql_editor_id'), tmp_table_name=tmp_table_name, user_id=g.user.get_id() if g.user else None, client_id=client_id, ) session.add(query) session.flush() query_id = query.id session.commit() # shouldn't be necessary if not query_id: raise Exception(_('Query record was not created as expected.')) logging.info('Triggering query_id: {}'.format(query_id)) try: template_processor = get_template_processor( database=query.database, query=query) rendered_query = template_processor.process_template( query.sql, **template_params) except Exception as e: return json_error_response( 'Template rendering failed: {}'.format(utils.error_msg_from_exception(e))) # Async request. if async_: logging.info('Running query on a Celery worker') # Ignore the celery future object and the request may time out. try: sql_lab.get_sql_results.delay( query_id, rendered_query, return_results=False, store_results=not query.select_as_cta, user_name=g.user.username if g.user else None, start_time=utils.now_as_float()) except Exception as e: logging.exception(e) msg = ( 'Failed to start remote query on a worker. ' 'Tell your administrator to verify the availability of ' 'the message queue.' ) query.status = QueryStatus.FAILED query.error_message = msg session.commit() return json_error_response('{}'.format(msg)) resp = json_success(json.dumps( {'query': query.to_dict()}, default=utils.json_int_dttm_ser, ignore_nan=True), status=202) session.commit() return resp # Sync request. try: timeout = config.get('SQLLAB_TIMEOUT') timeout_msg = ( 'The query exceeded the {timeout} seconds ' 'timeout.').format(**locals()) with utils.timeout(seconds=timeout, error_message=timeout_msg): # pylint: disable=no-value-for-parameter data = sql_lab.get_sql_results( query_id, rendered_query, return_results=True, user_name=g.user.username if g.user else None) payload = json.dumps( data, default=utils.pessimistic_json_iso_dttm_ser, ignore_nan=True, encoding=None, ) except Exception as e: logging.exception(e) return json_error_response('{}'.format(e)) if data.get('status') == QueryStatus.FAILED: return json_error_response(payload=data) return json_success(payload) @has_access @expose('/csv/<client_id>') @log_this def csv(self, client_id): """Download the query results as csv.""" logging.info('Exporting CSV file [{}]'.format(client_id)) query = ( db.session.query(Query) .filter_by(client_id=client_id) .one() ) rejected_tables = security_manager.rejected_datasources( query.sql, query.database, query.schema) if rejected_tables: flash( security_manager.get_table_access_error_msg('{}'.format(rejected_tables))) return redirect('/') blob = None if results_backend and query.results_key: logging.info( 'Fetching CSV from results backend ' '[{}]'.format(query.results_key)) blob = results_backend.get(query.results_key) if blob: logging.info('Decompressing') json_payload = utils.zlib_decompress_to_string(blob) obj = json.loads(json_payload) columns = [c['name'] for c in obj['columns']] df = pd.DataFrame.from_records(obj['data'], columns=columns) logging.info('Using pandas to convert to CSV') csv = df.to_csv(index=False, **config.get('CSV_EXPORT')) else: logging.info('Running a query to turn into CSV') sql = query.select_sql or query.executed_sql df = query.database.get_df(sql, query.schema) # TODO(bkyryliuk): add compression=gzip for big files. csv = df.to_csv(index=False, **config.get('CSV_EXPORT')) response = Response(csv, mimetype='text/csv') response.headers['Content-Disposition'] = ( 'attachment; filename={}.csv'.format(unidecode(query.name))) logging.info('Ready to return response') return response @has_access @expose('/fetch_datasource_metadata') @log_this def fetch_datasource_metadata(self): datasource_id, datasource_type = ( request.args.get('datasourceKey').split('__')) datasource = ConnectorRegistry.get_datasource( datasource_type, datasource_id, db.session) # Check if datasource exists if not datasource: return json_error_response(DATASOURCE_MISSING_ERR) # Check permission for datasource if not security_manager.datasource_access(datasource): return json_error_response( security_manager.get_datasource_access_error_msg(datasource), link=security_manager.get_datasource_access_link(datasource)) return json_success(json.dumps(datasource.data)) @expose('/queries/<last_updated_ms>') def queries(self, last_updated_ms): """Get the updated queries.""" stats_logger.incr('queries') if not g.user.get_id(): return json_error_response( 'Please login to access the queries.', status=403) # Unix time, milliseconds. last_updated_ms_int = int(float(last_updated_ms)) if last_updated_ms else 0 # UTC date time, same that is stored in the DB. last_updated_dt = utils.EPOCH + timedelta(seconds=last_updated_ms_int / 1000) sql_queries = ( db.session.query(Query) .filter( Query.user_id == g.user.get_id(), Query.changed_on >= last_updated_dt, ) .all() ) dict_queries = {q.client_id: q.to_dict() for q in sql_queries} now = int(round(time.time() * 1000)) unfinished_states = [ utils.QueryStatus.PENDING, utils.QueryStatus.RUNNING, ] queries_to_timeout = [ client_id for client_id, query_dict in dict_queries.items() if ( query_dict['state'] in unfinished_states and ( now - query_dict['startDttm'] > config.get('SQLLAB_ASYNC_TIME_LIMIT_SEC') * 1000 ) ) ] if queries_to_timeout: update(Query).where( and_( Query.user_id == g.user.get_id(), Query.client_id in queries_to_timeout, ), ).values(state=utils.QueryStatus.TIMED_OUT) for client_id in queries_to_timeout: dict_queries[client_id]['status'] = utils.QueryStatus.TIMED_OUT return json_success( json.dumps(dict_queries, default=utils.json_int_dttm_ser)) @has_access @expose('/search_queries') @log_this def search_queries(self): """Search for queries.""" query = db.session.query(Query) search_user_id = request.args.get('user_id') database_id = request.args.get('database_id') search_text = request.args.get('search_text') status = request.args.get('status') # From and To time stamp should be Epoch timestamp in seconds from_time = request.args.get('from') to_time = request.args.get('to') if search_user_id: # Filter on db Id query = query.filter(Query.user_id == search_user_id) if database_id: # Filter on db Id query = query.filter(Query.database_id == database_id) if status: # Filter on status query = query.filter(Query.status == status) if search_text: # Filter on search text query = query \ .filter(Query.sql.like('%{}%'.format(search_text))) if from_time: query = query.filter(Query.start_time > int(from_time)) if to_time: query = query.filter(Query.start_time < int(to_time)) query_limit = config.get('QUERY_SEARCH_LIMIT', 1000) sql_queries = ( query.order_by(Query.start_time.asc()) .limit(query_limit) .all() ) dict_queries = [q.to_dict() for q in sql_queries] return Response( json.dumps(dict_queries, default=utils.json_int_dttm_ser), status=200, mimetype='application/json') @app.errorhandler(500) def show_traceback(self): return render_template( 'superset/traceback.html', error_msg=get_error_msg(), ), 500 @expose('/welcome') def welcome(self): """Personalized welcome page""" if not g.user or not g.user.get_id(): return redirect(appbuilder.get_url_for_login) welcome_dashboard_id = ( db.session .query(UserAttribute.welcome_dashboard_id) .filter_by(user_id=g.user.get_id()) .scalar() ) if welcome_dashboard_id: return self.dashboard(str(welcome_dashboard_id)) payload = { 'user': bootstrap_user_data(), 'common': self.common_bootsrap_payload(), } return self.render_template( 'superset/basic.html', entry='welcome', title='Superset', bootstrap_data=json.dumps(payload, default=utils.json_iso_dttm_ser), ) @has_access @expose('/profile/<username>/') def profile(self, username): """User profile page""" if not username and g.user: username = g.user.username payload = { 'user': bootstrap_user_data(username, include_perms=True), 'common': self.common_bootsrap_payload(), } return self.render_template( 'superset/basic.html', title=_("%(user)s's profile", user=username), entry='profile', bootstrap_data=json.dumps(payload, default=utils.json_iso_dttm_ser), ) @has_access @expose('/sqllab') def sqllab(self): """SQL Editor""" d = { 'defaultDbId': config.get('SQLLAB_DEFAULT_DBID'), 'common': self.common_bootsrap_payload(), } return self.render_template( 'superset/basic.html', entry='sqllab', bootstrap_data=json.dumps(d, default=utils.json_iso_dttm_ser), ) @api @has_access_api @expose('/slice_query/<slice_id>/') def slice_query(self, slice_id): """ This method exposes an API endpoint to get the database query string for this slice """ viz_obj = self.get_viz(slice_id) if not security_manager.datasource_access(viz_obj.datasource): return json_error_response( security_manager.get_datasource_access_error_msg(viz_obj.datasource), status=401, link=security_manager.get_datasource_access_link(viz_obj.datasource)) return self.get_query_string_response(viz_obj) @api @has_access_api @expose('/schema_access_for_csv_upload') def schemas_access_for_csv_upload(self): """ This method exposes an API endpoint to get the schema access control settings for csv upload in this database """ if not request.args.get('db_id'): return json_error_response( 'No database is allowed for your csv upload') db_id = int(request.args.get('db_id')) database = ( db.session .query(models.Database) .filter_by(id=db_id) .one() ) try: schemas_allowed = database.get_schema_access_for_csv_upload() if (security_manager.database_access(database) or security_manager.all_datasource_access()): return self.json_response(schemas_allowed) # the list schemas_allowed should not be empty here # and the list schemas_allowed_processed returned from security_manager # should not be empty either, # otherwise the database should have been filtered out # in CsvToDatabaseForm schemas_allowed_processed = security_manager.schemas_accessible_by_user( database, schemas_allowed, False) return self.json_response(schemas_allowed_processed) except Exception: return json_error_response(( 'Failed to fetch schemas allowed for csv upload in this database! ' 'Please contact Superset Admin!\n\n' 'The error message returned was:\n{}').format(traceback.format_exc())) appbuilder.add_view_no_menu(Superset) class CssTemplateModelView(SupersetModelView, DeleteMixin): datamodel = SQLAInterface(models.CssTemplate) list_title = _('List Css Template') show_title = _('Show Css Template') add_title = _('Add Css Template') edit_title = _('Edit Css Template') list_columns = ['template_name'] edit_columns = ['template_name', 'css'] add_columns = edit_columns label_columns = { 'template_name': _('Template Name'), } class CssTemplateAsyncModelView(CssTemplateModelView): list_columns = ['template_name', 'css'] appbuilder.add_separator('Sources') appbuilder.add_view( CssTemplateModelView, 'CSS Templates', label=__('CSS Templates'), icon='fa-css3', category='Manage', category_label=__('Manage'), category_icon='') appbuilder.add_view_no_menu(CssTemplateAsyncModelView) appbuilder.add_link( 'SQL Editor', label=_('SQL Editor'), href='/superset/sqllab', category_icon='fa-flask', icon='fa-flask', category='SQL Lab', category_label=__('SQL Lab'), ) appbuilder.add_link( 'Query Search', label=_('Query Search'), href='/superset/sqllab#search', icon='fa-search', category_icon='fa-flask', category='SQL Lab', category_label=__('SQL Lab'), ) appbuilder.add_link( 'Upload a CSV', label=__('Upload a CSV'), href='/csvtodatabaseview/form', icon='fa-upload', category='Sources', category_label=__('Sources'), category_icon='fa-wrench') appbuilder.add_separator('Sources') @app.after_request def apply_caching(response): """Applies the configuration's http headers to all responses""" for k, v in config.get('HTTP_HEADERS').items(): response.headers[k] = v return response # --------------------------------------------------------------------- # Redirecting URL from previous names class RegexConverter(BaseConverter): def __init__(self, url_map, *items): super(RegexConverter, self).__init__(url_map) self.regex = items[0] app.url_map.converters['regex'] = RegexConverter @app.route('/<regex("panoramix\/.*"):url>') def panoramix(url): # noqa return redirect(request.full_path.replace('panoramix', 'superset')) @app.route('/<regex("caravel\/.*"):url>') def caravel(url): # noqa return redirect(request.full_path.replace('caravel', 'superset')) # --------------------------------------------------------------------- class SupersetCasAuthDBView(AuthDBView): login_template = 'appbuilder/general/security/login_cas.html' @expose('/hna_iam_authorize', methods=['GET']) def cas_authorized(self): if g.user is not None and g.user.is_authenticated: return redirect(self.appbuilder.get_url_for_index) return redirect(app.config['IAM_LOGIN_VALID_URL'] + "?service=" + app.config['SUPERSET_CAS_CALL_URL'] + "&params=") def add_role_if_missing(self, sm, user_id, role_name): found_role = sm.find_role(role_name) session = sm.get_session user = session.query(sm.user_model).get(user_id) if found_role and found_role not in user.roles: user.roles += [found_role] session.commit() @expose('/callback', methods=['GET']) def cas_callback(self): if 'ticket' not in request.args: flash("Invalid ticket param in callback") return redirect(self.appbuilder.get_url_for_login) ticket = request.args.get('ticket') validateUrl = "%s?service=%s&ticket=%s&format=json" % (app.config['IAM_VALID_URL'], app.config['SUPERSET_CAS_CALL_URL'], ticket) import requests res = requests.get(validateUrl) if res.status_code != 200 : flash("request iam validate failure in callback") return redirect(self.appbuilder.get_url_for_login) user_info = res.content.decode() user_info_json = json.load(user_info) if 'authenticationSuccess' in user_info_json['serviceResponse']: sucessRes = user_info_json['serviceResponse']['authenticationSuccess'] username = sucessRes.get('user') email = sucessRes['attributes'].get('email') sm = self.appbuilder.sm user = sm.find_user(username) role = sm.find_role(app.config['CUSTOM_ROLE_NAME_KEYWORD']) if user is None and username: user = sm.add_user( username=username, first_name=username, last_name='', email=email, role=role ) msg = ("Welcome to Superset, {}".format(username)) flash(msg, 'info') user = sm.auth_user_remote_user(username) self.add_role_if_missing(sm, user.id, app.config['CUSTOM_ROLE_NAME_KEYWORD']) login_user(user) return redirect(self.redirect_url()) else: flash("Error :%s " % user_info_json['serviceResponse']['authenticationFailure']['description']) return redirect(self.appbuilder.get_url_for_login) class VistorRegModelView(SupersetModelView, DeleteMixin): datamodel = SQLAInterface(models.VisitorReg) list_title = _('List Vistors ') show_title = _('Show Vistor') add_title = _('Add Vistor') edit_title = _('Edit Vistor') list_columns = [ 'jbh_uid', 'name', 'phone', 'group_prop', 'registry_type', 'first_vistor_time', 'first_receptor', 'communication_times', 'agree', 'status' ] add_columns = [ 'jbh_uid', 'name', 'phone', 'group_prop', 'registry_type', 'illustration', 'first_vistor_time', 'first_receptor', 'communication_times', 'agree', 'status' ] label_columns = { 'jbh_uid': _('聚宝汇UID'), 'name': _('姓名'), 'phone': _('电话'), 'group_prop': _('集团属性'), 'registry_type': _('登记类型'), 'first_vistor_time': _('首次来访时间'), 'first_receptor': _('首次接待人员'), 'communication_times': _('沟通次数'), 'agree': _('客户是否同意'), 'status': _('状态'), 'illustration': _('客户诉求'), } appbuilder.add_view( VistorRegModelView, 'Vistor Registion', label=__('访客登记'), icon='fa-registered', category='Disposal process', category_label=__('处置流程'), category_icon='fa-hand-lizard-o') appbuilder.add_separator('Disposal process') appbuilder.add_link( 'Investor Communication', label=__('投资人沟通'), href='/csvtodatabaseview/form', icon='fa-odnoklassniki', category='Disposal process', category_label=__('处置流程'), category_icon='fa-hand-lizard-o') appbuilder.add_separator('Disposal process') appbuilder.add_link( 'Cash Plan', label=__('兑付计划'), href='/csvtodatabaseview/form', icon='fa-odnoklassniki', category='Disposal process', category_label=__('处置流程'), category_icon='fa-hand-lizard-o')
the-stack_0_11581
from django.contrib.auth.decorators import login_required from django.shortcuts import render, redirect, \ get_object_or_404 # redirect consegue mandar uma pessoa p uma url, no caso a person_list # get object é para pegar o objeto do usuário e caso não consiga, retorna um 404 from .models import Pessoa from .forms import PersonForm @login_required def person_list(request): persons = Pessoa.objects.all() # é como um select * from Pessoa, ou seja, busca todas as pessoas return render(request, 'person.html', {"galeres": persons}) @login_required def person_new(request): form = PersonForm(request.POST or None, request.FILES or None) # o files são para pegar os arquivos de midia mandados if form.is_valid(): form.save() return redirect('person_list') # após concluir a ação, irá redirecionar para a lista return render(request, 'person_form.html', {'form': form}) @login_required def person_update(request, id): pessoa = get_object_or_404(Pessoa, pk=id) # o pk é que vai procurar a pessoa atraves do id no banco de dados, o pk é o id no bd / Pessoa é no models form = PersonForm(request.POST or None, request.FILES or None, instance=pessoa) # PersonForm é no forms.py if form.is_valid(): form.save() return redirect('person_list') return render(request, 'person_form.html', {'form': form}) @login_required def person_delete(request, id): pessoa = get_object_or_404(Pessoa, pk=id) form = PersonForm(request.POST or None, request.FILES or None, instance=pessoa) # não sei como isso se dá, mas o form nesse caso é usado #para quando clicarmos em deletar, ir para o formulário da pessoa. Caso não seja necessário, podemos apenas deixar a página com o botão delete if request.method == 'POST': # se o usuario usar http post, retornará TRUE, se não, retornará FALSE pessoa.delete() return redirect('person_list') return render(request, 'person_delete_confirm.html', {'form': form})
the-stack_0_11584
# Copyright 2016 - Nokia Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import os from vitrageclient.common import yaml_utils from vitrageclient import exceptions as exc class Template(object): url = 'v1/template/' def __init__(self, api): self.api = api def list(self): """Get templates list""" return self.api.get(self.url).json() def versions(self): """Get templates versions""" return self.api.get(self.url + 'versions').json() def show(self, _id): """Show template content""" url = self.url + _id return self.api.get(url).json() def add(self, path=None, template_type=None, params=None, template_str=None, overwrite=False): """Add a new template :param path: (optional) The template file path or templates dir path :param template_type: (optional) The template type, in case it is not written inside the template metadata section :param params: (optional) Actual values for the template parameters :param template_str: (optional) A string representation of the template :param overwrite: (optional) overwrite the template if exists yaml Either path or template_str must exist (but not both) :return: """ files_content = \ self._load_template(path=path, template_str=template_str) api_params = dict(templates=files_content, template_type=template_type, params=params, overwrite=overwrite) return self.api.put(self.url, json=api_params).json() def delete(self, ids): """Delete existing""" params = dict(id=ids) return self.api.delete(self.url, json=params).json() def validate(self, path=None, template_type=None, params=None, template_str=None): """Template validation Make sure that the template file is correct in terms of syntax and content. It is possible to pass a specific file path in order to validate one template, or directory path for validation of several templates (the directory must contain only templates) :param path: (optional) The template file path or templates dir path :param template_type: (optional) The template type, in case it is not written inside the template metadata section :param params: (optional) Actual values for the template parameters :param template_str: (optional) A string representation of the template yaml Either path or template_str must exist (but not both) :return: """ files_content = \ self._load_template(path=path, template_str=template_str) api_params = dict(templates=files_content, template_type=template_type, params=params) return self.api.post(self.url, json=api_params).json() @classmethod def _load_yaml_files(cls, path): if os.path.isdir(path): files_content = [] for file_name in os.listdir(path): file_path = '%s/%s' % (path, file_name) if os.path.isfile(file_path): template = cls._load_yaml_file(file_path) files_content.append((file_path, template)) else: files_content = [(path, cls._load_yaml_file(path))] return files_content @classmethod def _load_yaml_file(cls, path): with open(path, 'r') as stream: return cls._load_yaml(stream) @classmethod def _load_yaml(cls, yaml_content): try: return yaml_utils.load(yaml_content) except ValueError as e: message = 'Could not load template: %s. Reason: %s' \ % (yaml_content, e) raise exc.CommandError(message) @classmethod def _load_template(cls, path, template_str): if path: files_content = cls._load_yaml_files(path) elif template_str: files_content = [(None, cls._load_yaml(template_str))] else: raise exc.CommandError( 'Add template API must be called with either \'path\' or ' '\'template_str\'') return files_content
the-stack_0_11588
import copy import random import time from functools import partial from sklearn.utils import shuffle import numpy as np from sklearn import linear_model from dnl import Sampling_Methods, Solver from dnl.PredictPlustOptimizeUtils import compute_C_k from dnl.Solver import get_optimization_objective from dnl.Utils import TransitionPoint, get_mini_batches from operator import attrgetter import multiprocessing as mp CONV_CONST = 10E-6 MEDIAN_LOSS = 'MEDIAN' MEAN_LOSS = 'MEAN LOSS' class PredictPlusOptModel: def __init__(self, alphas=None, const=None, opt_params=None, loss=MEDIAN_LOSS, max_step_size_magnitude=1, min_step_size_magnitude=-1, step_size_divider=10, sampling_method=Sampling_Methods.DIVIDE_AND_CONQUER, is_parallel=True, learning_rate=0.1, mini_batch_size=32, beta=0, epoch_limit=3, run_time_limit=100000, verbose=False, is_Val = True): """ :param alphas: model parameters :param const: model constant :param capacities: capacity of the optimization problem :param max_step_size_magnitude: sample space upper bound :param min_step_size_magnitude: sample space lower step size :param step_size_divider: :param sampling_method: """ self.alphas = alphas self.const = const self.opt_params = opt_params self.is_val = is_Val self.step_size_divider = step_size_divider self.is_parallel = is_parallel if mini_batch_size == -1: self.learning_rate = 1 else: self.learning_rate = learning_rate self.mini_batch_size = mini_batch_size self.epoch_limit = epoch_limit self.run_time_limit = run_time_limit self.training_obj_value = [] self.test_regrets = [] self.val_regrets = [] self.epochs = [] self.sub_epochs = [] self.run_time = [] self.max_step_size_magnitude = max_step_size_magnitude self.min_step_size_magnitude = min_step_size_magnitude self.sampling_method = sampling_method self.test_MSE = 0 self.loss = loss self.number_of_epochs = 0 self.test_regret = 0 self.training_MSE = 0 self.test_run_time = 0 self.beta = beta self.verbose = verbose def init_params_lin_regression(self, X,Y): """ initialize the model with linear regression :param train_set: :return: """ params = initialize_parameters(X,Y) self.__setattr__('alphas', params.get('alphas')) self.__setattr__('const', params.get('const')) self.__setattr__('capacities', params.get('capacities')) def coordinate_descent(self, train_X, train_Y, train_weights, val_X, val_Y, val_weights, print_test=False, test_X=None, test_Y=None, test_weights=None, core_number=7): """ Uses coordinate descent to optimize parameters :param train_X: test set features :param train_Y: test set output :param train_weights: :return: profit: average profit of the training set """ # self_decided_features = [4, 5, 6, 7] # self_decided_features = range(8) # self_decided_features = [4] is_break = False self_decided_features = list(range(len(self.alphas))) prev_profit = -10 model_params = {'alphas': self.alphas, 'const': self.const} profit = np.median(get_optimization_objective(X=train_X, Y=train_Y, weights=train_weights, opt_params=self.opt_params, model_params=model_params)) test_regret = np.median(self.get_regret(test_X, test_Y, test_weights)) val_regret = np.median(self.get_regret(val_X, val_Y, val_weights)) self.test_regrets.append(test_regret) self.training_obj_value.append(profit) self.run_time.append(0) self.epochs.append(0) self.sub_epochs.append(0) self.val_regrets.append(val_regret) start_time = time.time() print("original objective value: " + str(profit)) EPOCH = 0 direction = np.zeros(len(self_decided_features)) momentum = np.zeros(len(self_decided_features)) sampler = Sampling_Methods.Sampler(max_step_size_magnitude=self.max_step_size_magnitude, min_step_size_magnitude=self.min_step_size_magnitude, step_size_divider=self.step_size_divider, sampling_method=self.sampling_method, opt_params=self.opt_params) if self.is_parallel: mypool = mp.Pool(processes=min(8, core_number)) else: mypool = None print("------------------------") train_X_og = train_X train_Y_og = train_Y train_weights_og = train_weights if self.mini_batch_size == -1: mini_batch_size = len(train_Y) else: mini_batch_size = self.mini_batch_size mini_batches_X, mini_batches_Y, mini_batches_weights = get_mini_batches(X=train_X, Y=train_Y, weights=train_weights, size=mini_batch_size) sub_epoch = 0 while (EPOCH < self.epoch_limit) and self.run_time[-1] < self.run_time_limit and not converge(profit, prev_profit, CONV_CONST, self.mini_batch_size): mini_batches_X, mini_batches_Y, mini_batches_weights = shuffle(mini_batches_X, mini_batches_Y, mini_batches_weights) for mini_batch_X, mini_batch_Y, mini_batch_weights in zip(mini_batches_X, mini_batches_Y, mini_batches_weights): train_X = mini_batch_X train_Y = mini_batch_Y train_weights = mini_batch_weights profit = np.median(get_optimization_objective(X=train_X, Y=train_Y, weights=train_weights, opt_params=self.opt_params, model_params=model_params)) # cut for minibatch prev_profit = profit print("-----------------------") # use for raandom # for k in random.sample(range(len(self.alphas)), len(self.alphas) - 1): # for k in range(len(self.alphas)): random.seed(time.time()) random.shuffle(self_decided_features) for k in self_decided_features: model_params = {'alphas': self.alphas, 'const': self.const} current_alpha = self.alphas[k, 0] best_transition_points_set = set() if self.is_parallel: map_func = partial(get_and_clean_transition_points, sampler=sampler, model_params=model_params, k=k, opt_params=self.opt_params, current_alpha=current_alpha) iter = [[benchmark_X, benchmark_Y, benchmark_weights] for benchmark_X, benchmark_Y, benchmark_weights in zip(train_X, train_Y, train_weights)] best_transition_points_set = mypool.starmap(map_func, iter) best_transition_points_set = set().union(*best_transition_points_set) benchmark_best_transition_point = find_the_best_transition_point_benchmarks(train_X, train_Y, k=k, model_params=model_params, train_weights=train_weights, opt_params=self.opt_params, transition_point_list=list( best_transition_points_set), prev_profit=profit, pool=mypool) else: for benchmark_X, benchmark_Y, benchmark_weights in zip(train_X, train_Y, train_weights): best_transition_point, __, predicted_regrets, regrets, plot_x = sampler.get_transition_points( model_params=model_params, k=k, train_X=benchmark_X, train_Y=benchmark_Y, train_weights=benchmark_weights) best_transition_point_set_benchmark = clean_transition_points( transition_points=best_transition_point[-1], benchmark_X=benchmark_X, benchmark_Y=benchmark_Y, weights=benchmark_weights, model_params=model_params, opt_params=self.opt_params, current_alpha=current_alpha) best_transition_points_set = best_transition_points_set.union( best_transition_point_set_benchmark) # To reduce training time move this process to the sampling method so we dont iterate through transition points list twice benchmark_best_transition_point = find_the_best_transition_point_benchmarks(train_X, train_Y, k=k, model_params=model_params, train_weights=train_weights, opt_params=self.opt_params, transition_point_list=list( best_transition_points_set), prev_profit=profit) gradient = benchmark_best_transition_point.x - self.alphas[k, 0] # print(( # benchmark_best_transition_point.x - self.alphas[k, 0])) # print('dir', direction[k]) # if abs(gradient) > 0: # gradient = gradient / abs(gradient) direction[k] = -self.beta * momentum[k] - (1 - self.beta) * gradient # print(momentum, gradient, direction) # print('mom: ', momentum[k], 'dir: ', direction[k]) self.alphas[k, 0] = self.alphas[k, 0] - direction[k] * self.learning_rate momentum[k] = direction[k] * 1 profit = benchmark_best_transition_point.true_profit #record data for each parameter update if its full batch if self.mini_batch_size == -1: if self.is_val: # print('val') val_regret = np.median(self.get_regret(val_X, val_Y, val_weights, pool=mypool)) self.val_regrets.append(val_regret) test_run_time = time.time() if print_test: # print('test') test_regret = np.median(self.get_regret(test_X, test_Y, test_weights, pool=mypool)) self.test_regrets.append(test_regret) train_regret = np.median(self.get_regret(train_X, train_Y, train_weights, pool=mypool)) self.training_obj_value.append(train_regret) if self.verbose: print('updating parameter', k, 'test regret', test_regret) print("Updating Parameter: " + str(k) + " profit: " + str(profit)) self.test_run_time = self.test_run_time + time.time() - test_run_time sub_epoch = sub_epoch + 1 self.sub_epochs.append(sub_epoch) self.epochs.append(EPOCH) self.run_time.append((time.time() - start_time - self.test_run_time)) print("EPOCH:", EPOCH, "sub epoch:", sub_epoch, "objective value:", profit, 'val regret', self.val_regrets[-1], 'test regret', self.test_regrets[-1], flush=True) if not self.mini_batch_size == -1: # Record data after each batch for mini batches if self.is_val: # print('val') val_regret = np.median(self.get_regret(val_X,val_Y,val_weights,pool=mypool)) self.val_regrets.append(val_regret) test_run_time = time.time() if (print_test): # print('test') test_regret = np.median(self.get_regret(test_X, test_Y, test_weights,pool=mypool)) self.test_regrets.append(test_regret) train_regret = np.median(self.get_regret(train_X, train_Y, train_weights,pool=mypool)) self.training_obj_value.append(train_regret) if self.verbose: print('updating parameter', k, 'test regret', test_regret) print("Updating Parameter: " + str(k) + " profit: " + str(profit)) self.test_run_time = self.test_run_time + time.time() - test_run_time sub_epoch = sub_epoch + 1 self.sub_epochs.append(sub_epoch) self.epochs.append(EPOCH) self.run_time.append((time.time() - start_time - self.test_run_time)) print("EPOCH:", EPOCH, "sub epoch:", sub_epoch, "objective value:", profit, 'val regret', self.val_regrets[-1],'test regret', self.test_regrets[-1]) if self.run_time[-1] > self.run_time_limit: is_break = True break if is_break: break EPOCH = EPOCH + 1 self.number_of_epochs = EPOCH print("EPOCH:", EPOCH, "objective value:", profit, 'val regret', self.val_regrets[-1], 'test regret', self.test_regrets[-1]) print('Training finished ') print("-----------------------") if self.is_parallel: mypool.close() return profit def get_regret(self, X, Y, weights=None, pool=None): model_params = {'alphas': self.alphas, 'const': self.const} if pool is None: # print('X shape', X[0].shape) # # print('y shape', len(Y)) average_objective_value_with_predicted_items = get_optimization_objective(X=X, Y=Y, weights=weights, opt_params=self.opt_params, model_params=model_params ) optimal_average_objective_value = Solver.get_optimal_average_objective_value(X=X, Y=Y, weights=weights, opt_params=self.opt_params, ) # print('regret predicted item value set',average_objective_value_with_predicted_items,'regret with real item value',optimal_average_objective_value) # print('pred obj', np.sum(average_objective_value_with_predicted_items)) # print('true obj', np.sum(optimal_average_objective_value)) # print(optimal_average_objective_value - average_objective_value_with_predicted_items) # print('true obj', np.sum(optimal_average_objective_value)) regret = np.median(optimal_average_objective_value - average_objective_value_with_predicted_items) # print('regret', regret) # print(regret) else: map_func = partial(get_regret_worker, model_params=model_params, opt_params=self.opt_params) iter = zip(X, Y, weights) # [[x, y] for x, y in zip([4, 1, 0], [5, 1, 1])] objective_values = pool.starmap(map_func, iter) objective_values_predicted_items, optimal_objective_values = zip(*objective_values) # print('optimal_average_objective_value', objective_values_predicted_items) # print('average_objective_value_with_predicted_items', optimal_objective_values) print(np.mean(np.concatenate(optimal_objective_values))) regret = np.median(np.concatenate(optimal_objective_values) - np.concatenate(objective_values_predicted_items)) # print('true obj',np.sum(np.concatenate(optimal_objective_values))) self.test_regret = regret return regret def get_MSE(self, X, Y): predicted_values = compute_C_k(X.T, self.alphas, self.const, isSampling=False) MSE = np.mean((Y - predicted_values) ** 2) self.test_MSE = MSE return MSE def print(self): first_line = ['Method', 'Max Step Size Order', 'Min Step Size Order', 'Run Time Limit', 'Epoch Limit', 'Mini Batch Size', 'Learning rate', 'Parallelism', 'Test MSE'] second_line = [self.sampling_method, self.max_step_size_magnitude, self.min_step_size_magnitude, self.run_time_limit, self.epoch_limit, self.mini_batch_size, self.learning_rate, self.is_parallel, self.test_MSE] third_line = ['epochs', 'sub epochs', 'run time', 'training objective', 'test regret', 'val regret'] rest = np.array( [self.epochs, self.sub_epochs, self.run_time, self.training_obj_value, self.test_regrets, self.val_regrets]).T.tolist() print = [] print.append(first_line) print.append(second_line) print.append(third_line) print.extend(rest) return print def get_file_name(self, file_type='.csv'): file_name = str(self.sampling_method) + '-' + str(self.max_step_size_magnitude) + str( self.min_step_size_magnitude) + file_type return file_name def get_and_clean_transition_points(benchmark_X, benchmark_Y, benchmark_weights, sampler, model_params, k, opt_params, current_alpha): best_transition_point, __, predicted_regrets, regrets, plot_x = sampler.get_transition_points( model_params=model_params, k=k, train_X=benchmark_X, train_Y=benchmark_Y, train_weights=benchmark_weights) best_transition_point_set_benchmark = clean_transition_points( transition_points=best_transition_point[-1], benchmark_X=benchmark_X, benchmark_Y=benchmark_Y, weights=benchmark_weights, model_params=model_params, opt_params=opt_params, current_alpha=current_alpha) return best_transition_point_set_benchmark def find_the_best_transition_point_benchmarks(train_X, train_Y, model_params, transition_point_list, opt_params, train_weights, prev_profit, k, pool=None): alphas = model_params.get('alphas') best_average_profit = prev_profit best_transition_point = TransitionPoint(alphas[k, 0], true_profit=prev_profit) if not (len(transition_point_list) == 1 and alphas[k, 0] == transition_point_list[0]): if pool is not None: map_func = partial(find_the_best_transition_point_benchmarks_worker, train_X=train_X, train_Y=train_Y, train_weights=train_weights, model_params=model_params, opt_params=opt_params, k=k) results = pool.map(map_func, transition_point_list) results.append(best_transition_point) # print('x', [transition_point.x for transition_point in results], ' objective_value' , # [transition_point.true_profit for transition_point in results]) best_transition_point = max(results, key=attrgetter('true_profit')) else: for transition_point_x in transition_point_list: transition_point = find_the_best_transition_point_benchmarks_worker(transition_point_x, train_X=train_X, train_Y=train_Y, train_weights=train_weights, model_params=model_params, opt_params=opt_params, k=k) if transition_point.true_profit > best_average_profit: best_average_profit = transition_point.true_profit best_transition_point = copy.deepcopy(transition_point) return best_transition_point def find_the_best_transition_point_benchmarks_worker(transition_point_x, train_X, train_Y, train_weights, model_params, opt_params, k): alphas = model_params.get('alphas') alphas[k, 0] = transition_point_x model_params['alphas'] = alphas average_profit = np.median(get_optimization_objective(X=train_X, Y=train_Y, weights=train_weights, opt_params=opt_params, model_params=model_params)) # print('k: ' + str(k) + ' transition_point: ' + str(transition_point_x) + ' profit: ' + str(average_profit)) return TransitionPoint(transition_point_x, true_profit=average_profit) def get_regret_worker(X, Y, weights, model_params, opt_params ): # print('im in worker') # print('X shape', X.shape) # print('y shape', Y.shape) # print('weights shape', weights.shape) average_objective_value_with_predicted_items = get_optimization_objective(X=[X], Y=[Y], weights=[weights], opt_params=opt_params, model_params=model_params ) # print('finished average_objective_value_with_predicted_items') optimal_average_objective_value = Solver.get_optimal_average_objective_value(X=[X], Y=[Y], weights=[weights], opt_params=opt_params, ) # print('finished working') return average_objective_value_with_predicted_items, optimal_average_objective_value def converge(profit, prev_profit, conv_const, flag): """ A method to determine if the algorithm has reached the convergence point. Not used at the moment, but will be used in the full algorithm :param cost: :param prev_cost: :param conv_const: Convergence limit :return: is_converge : boolean """ if flag > 0: return False else: print('prev profit', prev_profit, 'profit' , profit) print('ratio', abs((profit - prev_profit) / profit)) if abs((profit - prev_profit) / profit) < conv_const: is_converged = True else: is_converged = False return is_converged def initialize_parameters(X,Y): """ initialize the parameters of the predict-opt model, AKA first stage :param train_set: dictionary containing X, and Y :return: params: dictionary, has initialized parameters of the model. """ model = linear_model.Ridge().fit(X, Y) coef = model.coef_ const = model.intercept_ params = {'alphas': coef.T, 'const': const} return params def clean_transition_points(transition_points, benchmark_X, benchmark_Y, weights, opt_params, model_params, current_alpha): cleaner_transition_points = set() base_profit = np.median(Solver.get_optimization_objective(X=[benchmark_X], Y=[benchmark_Y], weights=weights, model_params=model_params, opt_params=opt_params)) for transition_point in transition_points: if transition_point.true_profit > base_profit: cleaner_transition_points.add(transition_point.x) if not cleaner_transition_points: cleaner_transition_points.add(float(current_alpha)) return cleaner_transition_points
the-stack_0_11589
''' Copyright Vulcan Inc. 2018-2020 Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with the License. A copy of the License is located at http://www.apache.org/licenses/LICENSE-2.0 or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' import setuptools with open("README.md", "r") as f: long_description = f.read() setuptools.setup( name="gcsutils", version="1.1.5", description="Utility functions for Google Cloud Storage", long_description=long_description, long_description_content_type="text/markdown", packages=['gcsutils'], install_requires=['google-cloud-storage==1.16.1'], classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", ], python_requires='>=3.6', url='https://github.com/CoralMapping/proc_gcs_utils' )
the-stack_0_11591
# postgresql/psycopg2.py # Copyright (C) 2005-2019 the SQLAlchemy authors and contributors # <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php r""" .. dialect:: postgresql+psycopg2 :name: psycopg2 :dbapi: psycopg2 :connectstring: postgresql+psycopg2://user:password@host:port/dbname[?key=value&key=value...] :url: http://pypi.python.org/pypi/psycopg2/ psycopg2 Connect Arguments ----------------------------------- psycopg2-specific keyword arguments which are accepted by :func:`.create_engine()` are: * ``server_side_cursors``: Enable the usage of "server side cursors" for SQL statements which support this feature. What this essentially means from a psycopg2 point of view is that the cursor is created using a name, e.g. ``connection.cursor('some name')``, which has the effect that result rows are not immediately pre-fetched and buffered after statement execution, but are instead left on the server and only retrieved as needed. SQLAlchemy's :class:`~sqlalchemy.engine.ResultProxy` uses special row-buffering behavior when this feature is enabled, such that groups of 100 rows at a time are fetched over the wire to reduce conversational overhead. Note that the :paramref:`.Connection.execution_options.stream_results` execution option is a more targeted way of enabling this mode on a per-execution basis. * ``use_native_unicode``: Enable the usage of Psycopg2 "native unicode" mode per connection. True by default. .. seealso:: :ref:`psycopg2_disable_native_unicode` * ``isolation_level``: This option, available for all PostgreSQL dialects, includes the ``AUTOCOMMIT`` isolation level when using the psycopg2 dialect. .. seealso:: :ref:`psycopg2_isolation_level` * ``client_encoding``: sets the client encoding in a libpq-agnostic way, using psycopg2's ``set_client_encoding()`` method. .. seealso:: :ref:`psycopg2_unicode` * ``executemany_mode``, ``executemany_batch_page_size``, ``executemany_values_page_size``: Allows use of psycopg2 extensions for optimizing "executemany"-stye queries. See the referenced section below for details. .. seealso:: :ref:`psycopg2_executemany_mode` * ``use_batch_mode``: this is the previous setting used to affect "executemany" mode and is now deprecated. Unix Domain Connections ------------------------ psycopg2 supports connecting via Unix domain connections. When the ``host`` portion of the URL is omitted, SQLAlchemy passes ``None`` to psycopg2, which specifies Unix-domain communication rather than TCP/IP communication:: create_engine("postgresql+psycopg2://user:password@/dbname") By default, the socket file used is to connect to a Unix-domain socket in ``/tmp``, or whatever socket directory was specified when PostgreSQL was built. This value can be overridden by passing a pathname to psycopg2, using ``host`` as an additional keyword argument:: create_engine("postgresql+psycopg2://user:password@/dbname?host=/var/lib/postgresql") .. seealso:: `PQconnectdbParams \ <http://www.postgresql.org/docs/9.1/static/libpq-connect.html#LIBPQ-PQCONNECTDBPARAMS>`_ Empty DSN Connections / Environment Variable Connections --------------------------------------------------------- The psycopg2 DBAPI can connect to PostgreSQL by passing an empty DSN to the libpq client library, which by default indicates to connect to a localhost PostgreSQL database that is open for "trust" connections. This behavior can be further tailored using a particular set of environment variables which are prefixed with ``PG_...``, which are consumed by ``libpq`` to take the place of any or all elements of the connection string. For this form, the URL can be passed without any elements other than the initial scheme:: engine = create_engine('postgresql+psycopg2://') In the above form, a blank "dsn" string is passed to the ``psycopg2.connect()`` function which in turn represents an empty DSN passed to libpq. .. versionadded:: 1.3.2 support for parameter-less connections with psycopg2. .. seealso:: `Environment Variables\ <https://www.postgresql.org/docs/current/libpq-envars.html>`_ - PostgreSQL documentation on how to use ``PG_...`` environment variables for connections. .. _psycopg2_execution_options: Per-Statement/Connection Execution Options ------------------------------------------- The following DBAPI-specific options are respected when used with :meth:`.Connection.execution_options`, :meth:`.Executable.execution_options`, :meth:`.Query.execution_options`, in addition to those not specific to DBAPIs: * ``isolation_level`` - Set the transaction isolation level for the lifespan of a :class:`.Connection` (can only be set on a connection, not a statement or query). See :ref:`psycopg2_isolation_level`. * ``stream_results`` - Enable or disable usage of psycopg2 server side cursors - this feature makes use of "named" cursors in combination with special result handling methods so that result rows are not fully buffered. If ``None`` or not set, the ``server_side_cursors`` option of the :class:`.Engine` is used. * ``max_row_buffer`` - when using ``stream_results``, an integer value that specifies the maximum number of rows to buffer at a time. This is interpreted by the :class:`.BufferedRowResultProxy`, and if omitted the buffer will grow to ultimately store 1000 rows at a time. .. versionadded:: 1.0.6 .. _psycopg2_executemany_mode: Psycopg2 Fast Execution Helpers ------------------------------- Modern versions of psycopg2 include a feature known as `Fast Execution Helpers \ <http://initd.org/psycopg/docs/extras.html#fast-execution-helpers>`_, which have been shown in benchmarking to improve psycopg2's executemany() performance, primarily with INSERT statements, by multiple orders of magnitude. SQLAlchemy allows this extension to be used for all ``executemany()`` style calls invoked by an :class:`.Engine` when used with :ref:`multiple parameter sets <execute_multiple>`, which includes the use of this feature both by the Core as well as by the ORM for inserts of objects with non-autogenerated primary key values, by adding the ``executemany_mode`` flag to :func:`.create_engine`:: engine = create_engine( "postgresql+psycopg2://scott:tiger@host/dbname", executemany_mode='batch') .. versionchanged:: 1.3.7 - the ``use_batch_mode`` flag has been superseded by a new parameter ``executemany_mode`` which provides support both for psycopg2's ``execute_batch`` helper as well as the ``execute_values`` helper. Possible options for ``executemany_mode`` include: * ``None`` - By default, psycopg2's extensions are not used, and the usual ``cursor.executemany()`` method is used when invoking batches of statements. * ``'batch'`` - Uses ``psycopg2.extras.execute_batch`` so that multiple copies of a SQL query, each one corresponding to a parameter set passed to ``executemany()``, are joined into a single SQL string separated by a semicolon. This is the same behavior as was provided by the ``use_batch_mode=True`` flag. * ``'values'``- For Core :func:`.insert` constructs only (including those emitted by the ORM automatically), the ``psycopg2.extras.execute_values`` extension is used so that multiple parameter sets are grouped into a single INSERT statement and joined together with multiple VALUES expressions. This method requires that the string text of the VALUES clause inside the INSERT statement is manipulated, so is only supported with a compiled :func:`.insert` construct where the format is predictable. For all other constructs, including plain textual INSERT statements not rendered by the SQLAlchemy expression language compiler, the ``psycopg2.extras.execute_batch`` method is used. It is therefore important to note that **"values" mode implies that "batch" mode is also used for all statements for which "values" mode does not apply**. For both strategies, the ``executemany_batch_page_size`` and ``executemany_values_page_size`` arguments control how many parameter sets should be represented in each execution. Because "values" mode implies a fallback down to "batch" mode for non-INSERT statements, there are two independent page size arguments. For each, the default value of ``None`` means to use psycopg2's defaults, which at the time of this writing are quite low at 100. For the ``execute_values`` method, a number as high as 10000 may prove to be performant, whereas for ``execute_batch``, as the number represents full statements repeated, a number closer to the default of 100 is likely more appropriate:: engine = create_engine( "postgresql+psycopg2://scott:tiger@host/dbname", executemany_mode='values', executemany_values_page_size=10000, executemany_batch_page_size=500) .. seealso:: :ref:`execute_multiple` - General information on using the :class:`.Connection` object to execute statements in such a way as to make use of the DBAPI ``.executemany()`` method. .. versionchanged:: 1.3.7 - Added support for ``psycopg2.extras.execute_values``. The ``use_batch_mode`` flag is superseded by the ``executemany_mode`` flag. .. _psycopg2_unicode: Unicode with Psycopg2 ---------------------- By default, the psycopg2 driver uses the ``psycopg2.extensions.UNICODE`` extension, such that the DBAPI receives and returns all strings as Python Unicode objects directly - SQLAlchemy passes these values through without change. Psycopg2 here will encode/decode string values based on the current "client encoding" setting; by default this is the value in the ``postgresql.conf`` file, which often defaults to ``SQL_ASCII``. Typically, this can be changed to ``utf8``, as a more useful default:: # postgresql.conf file # client_encoding = sql_ascii # actually, defaults to database # encoding client_encoding = utf8 A second way to affect the client encoding is to set it within Psycopg2 locally. SQLAlchemy will call psycopg2's :meth:`psycopg2:connection.set_client_encoding` method on all new connections based on the value passed to :func:`.create_engine` using the ``client_encoding`` parameter:: # set_client_encoding() setting; # works for *all* PostgreSQL versions engine = create_engine("postgresql://user:pass@host/dbname", client_encoding='utf8') This overrides the encoding specified in the PostgreSQL client configuration. When using the parameter in this way, the psycopg2 driver emits ``SET client_encoding TO 'utf8'`` on the connection explicitly, and works in all PostgreSQL versions. Note that the ``client_encoding`` setting as passed to :func:`.create_engine` is **not the same** as the more recently added ``client_encoding`` parameter now supported by libpq directly. This is enabled when ``client_encoding`` is passed directly to ``psycopg2.connect()``, and from SQLAlchemy is passed using the :paramref:`.create_engine.connect_args` parameter:: engine = create_engine( "postgresql://user:pass@host/dbname", connect_args={'client_encoding': 'utf8'}) # using the query string is equivalent engine = create_engine("postgresql://user:pass@host/dbname?client_encoding=utf8") The above parameter was only added to libpq as of version 9.1 of PostgreSQL, so using the previous method is better for cross-version support. .. _psycopg2_disable_native_unicode: Disabling Native Unicode ^^^^^^^^^^^^^^^^^^^^^^^^ SQLAlchemy can also be instructed to skip the usage of the psycopg2 ``UNICODE`` extension and to instead utilize its own unicode encode/decode services, which are normally reserved only for those DBAPIs that don't fully support unicode directly. Passing ``use_native_unicode=False`` to :func:`.create_engine` will disable usage of ``psycopg2.extensions.UNICODE``. SQLAlchemy will instead encode data itself into Python bytestrings on the way in and coerce from bytes on the way back, using the value of the :func:`.create_engine` ``encoding`` parameter, which defaults to ``utf-8``. SQLAlchemy's own unicode encode/decode functionality is steadily becoming obsolete as most DBAPIs now support unicode fully. Bound Parameter Styles ---------------------- The default parameter style for the psycopg2 dialect is "pyformat", where SQL is rendered using ``%(paramname)s`` style. This format has the limitation that it does not accommodate the unusual case of parameter names that actually contain percent or parenthesis symbols; as SQLAlchemy in many cases generates bound parameter names based on the name of a column, the presence of these characters in a column name can lead to problems. There are two solutions to the issue of a :class:`.schema.Column` that contains one of these characters in its name. One is to specify the :paramref:`.schema.Column.key` for columns that have such names:: measurement = Table('measurement', metadata, Column('Size (meters)', Integer, key='size_meters') ) Above, an INSERT statement such as ``measurement.insert()`` will use ``size_meters`` as the parameter name, and a SQL expression such as ``measurement.c.size_meters > 10`` will derive the bound parameter name from the ``size_meters`` key as well. .. versionchanged:: 1.0.0 - SQL expressions will use :attr:`.Column.key` as the source of naming when anonymous bound parameters are created in SQL expressions; previously, this behavior only applied to :meth:`.Table.insert` and :meth:`.Table.update` parameter names. The other solution is to use a positional format; psycopg2 allows use of the "format" paramstyle, which can be passed to :paramref:`.create_engine.paramstyle`:: engine = create_engine( 'postgresql://scott:tiger@localhost:5432/test', paramstyle='format') With the above engine, instead of a statement like:: INSERT INTO measurement ("Size (meters)") VALUES (%(Size (meters))s) {'Size (meters)': 1} we instead see:: INSERT INTO measurement ("Size (meters)") VALUES (%s) (1, ) Where above, the dictionary style is converted into a tuple with positional style. Transactions ------------ The psycopg2 dialect fully supports SAVEPOINT and two-phase commit operations. .. _psycopg2_isolation_level: Psycopg2 Transaction Isolation Level ------------------------------------- As discussed in :ref:`postgresql_isolation_level`, all PostgreSQL dialects support setting of transaction isolation level both via the ``isolation_level`` parameter passed to :func:`.create_engine`, as well as the ``isolation_level`` argument used by :meth:`.Connection.execution_options`. When using the psycopg2 dialect, these options make use of psycopg2's ``set_isolation_level()`` connection method, rather than emitting a PostgreSQL directive; this is because psycopg2's API-level setting is always emitted at the start of each transaction in any case. The psycopg2 dialect supports these constants for isolation level: * ``READ COMMITTED`` * ``READ UNCOMMITTED`` * ``REPEATABLE READ`` * ``SERIALIZABLE`` * ``AUTOCOMMIT`` .. seealso:: :ref:`postgresql_isolation_level` :ref:`pg8000_isolation_level` NOTICE logging --------------- The psycopg2 dialect will log PostgreSQL NOTICE messages via the ``sqlalchemy.dialects.postgresql`` logger. When this logger is set to the ``logging.INFO`` level, notice messages will be logged:: import logging logging.getLogger('sqlalchemy.dialects.postgresql').setLevel(logging.INFO) Above, it is assumed that logging is configured externally. If this is not the case, configuration such as ``logging.basicConfig()`` must be utilized:: import logging logging.basicConfig() # log messages to stdout logging.getLogger('sqlalchemy.dialects.postgresql').setLevel(logging.INFO) .. seealso:: `Logging HOWTO <https://docs.python.org/3/howto/logging.html>`_ - on the python.org website .. _psycopg2_hstore: HSTORE type ------------ The ``psycopg2`` DBAPI includes an extension to natively handle marshalling of the HSTORE type. The SQLAlchemy psycopg2 dialect will enable this extension by default when psycopg2 version 2.4 or greater is used, and it is detected that the target database has the HSTORE type set up for use. In other words, when the dialect makes the first connection, a sequence like the following is performed: 1. Request the available HSTORE oids using ``psycopg2.extras.HstoreAdapter.get_oids()``. If this function returns a list of HSTORE identifiers, we then determine that the ``HSTORE`` extension is present. This function is **skipped** if the version of psycopg2 installed is less than version 2.4. 2. If the ``use_native_hstore`` flag is at its default of ``True``, and we've detected that ``HSTORE`` oids are available, the ``psycopg2.extensions.register_hstore()`` extension is invoked for all connections. The ``register_hstore()`` extension has the effect of **all Python dictionaries being accepted as parameters regardless of the type of target column in SQL**. The dictionaries are converted by this extension into a textual HSTORE expression. If this behavior is not desired, disable the use of the hstore extension by setting ``use_native_hstore`` to ``False`` as follows:: engine = create_engine("postgresql+psycopg2://scott:tiger@localhost/test", use_native_hstore=False) The ``HSTORE`` type is **still supported** when the ``psycopg2.extensions.register_hstore()`` extension is not used. It merely means that the coercion between Python dictionaries and the HSTORE string format, on both the parameter side and the result side, will take place within SQLAlchemy's own marshalling logic, and not that of ``psycopg2`` which may be more performant. """ # noqa from __future__ import absolute_import import decimal import logging import re from .base import _DECIMAL_TYPES from .base import _FLOAT_TYPES from .base import _INT_TYPES from .base import ENUM from .base import PGCompiler from .base import PGDialect from .base import PGExecutionContext from .base import PGIdentifierPreparer from .base import UUID from .hstore import HSTORE from .json import JSON from .json import JSONB from ... import exc from ... import processors from ... import types as sqltypes from ... import util from ...engine import result as _result from ...util import collections_abc try: from uuid import UUID as _python_UUID # noqa except ImportError: _python_UUID = None logger = logging.getLogger("sqlalchemy.dialects.postgresql") class _PGNumeric(sqltypes.Numeric): def bind_processor(self, dialect): return None def result_processor(self, dialect, coltype): if self.asdecimal: if coltype in _FLOAT_TYPES: return processors.to_decimal_processor_factory( decimal.Decimal, self._effective_decimal_return_scale ) elif coltype in _DECIMAL_TYPES or coltype in _INT_TYPES: # pg8000 returns Decimal natively for 1700 return None else: raise exc.InvalidRequestError( "Unknown PG numeric type: %d" % coltype ) else: if coltype in _FLOAT_TYPES: # pg8000 returns float natively for 701 return None elif coltype in _DECIMAL_TYPES or coltype in _INT_TYPES: return processors.to_float else: raise exc.InvalidRequestError( "Unknown PG numeric type: %d" % coltype ) class _PGEnum(ENUM): def result_processor(self, dialect, coltype): if util.py2k and self._expect_unicode is True: # for py2k, if the enum type needs unicode data (which is set up as # part of the Enum() constructor based on values passed as py2k # unicode objects) we have to use our own converters since # psycopg2's don't work, a rare exception to the "modern DBAPIs # support unicode everywhere" theme of deprecating # convert_unicode=True. Use the special "force_nocheck" directive # which forces unicode conversion to happen on the Python side # without an isinstance() check. in py3k psycopg2 does the right # thing automatically. self._expect_unicode = "force_nocheck" return super(_PGEnum, self).result_processor(dialect, coltype) class _PGHStore(HSTORE): def bind_processor(self, dialect): if dialect._has_native_hstore: return None else: return super(_PGHStore, self).bind_processor(dialect) def result_processor(self, dialect, coltype): if dialect._has_native_hstore: return None else: return super(_PGHStore, self).result_processor(dialect, coltype) class _PGJSON(JSON): def result_processor(self, dialect, coltype): if dialect._has_native_json: return None else: return super(_PGJSON, self).result_processor(dialect, coltype) class _PGJSONB(JSONB): def result_processor(self, dialect, coltype): if dialect._has_native_jsonb: return None else: return super(_PGJSONB, self).result_processor(dialect, coltype) class _PGUUID(UUID): def bind_processor(self, dialect): if not self.as_uuid and dialect.use_native_uuid: def process(value): if value is not None: value = _python_UUID(value) return value return process def result_processor(self, dialect, coltype): if not self.as_uuid and dialect.use_native_uuid: def process(value): if value is not None: value = str(value) return value return process _server_side_id = util.counter() class PGExecutionContext_psycopg2(PGExecutionContext): def create_server_side_cursor(self): # use server-side cursors: # http://lists.initd.org/pipermail/psycopg/2007-January/005251.html ident = "c_%s_%s" % (hex(id(self))[2:], hex(_server_side_id())[2:]) return self._dbapi_connection.cursor(ident) def get_result_proxy(self): self._log_notices(self.cursor) if self._is_server_side: return _result.BufferedRowResultProxy(self) else: return _result.ResultProxy(self) def _log_notices(self, cursor): # check also that notices is an iterable, after it's already # established that we will be iterating through it. This is to get # around test suites such as SQLAlchemy's using a Mock object for # cursor if not cursor.connection.notices or not isinstance( cursor.connection.notices, collections_abc.Iterable ): return for notice in cursor.connection.notices: # NOTICE messages have a # newline character at the end logger.info(notice.rstrip()) cursor.connection.notices[:] = [] class PGCompiler_psycopg2(PGCompiler): pass class PGIdentifierPreparer_psycopg2(PGIdentifierPreparer): pass EXECUTEMANY_DEFAULT = util.symbol("executemany_default") EXECUTEMANY_BATCH = util.symbol("executemany_batch") EXECUTEMANY_VALUES = util.symbol("executemany_values") class PGDialect_psycopg2(PGDialect): driver = "psycopg2" if util.py2k: supports_unicode_statements = False supports_server_side_cursors = True default_paramstyle = "pyformat" # set to true based on psycopg2 version supports_sane_multi_rowcount = False execution_ctx_cls = PGExecutionContext_psycopg2 statement_compiler = PGCompiler_psycopg2 preparer = PGIdentifierPreparer_psycopg2 psycopg2_version = (0, 0) FEATURE_VERSION_MAP = dict( native_json=(2, 5), native_jsonb=(2, 5, 4), sane_multi_rowcount=(2, 0, 9), array_oid=(2, 4, 3), hstore_adapter=(2, 4), ) _has_native_hstore = False _has_native_json = False _has_native_jsonb = False engine_config_types = PGDialect.engine_config_types.union( [("use_native_unicode", util.asbool)] ) colspecs = util.update_copy( PGDialect.colspecs, { sqltypes.Numeric: _PGNumeric, ENUM: _PGEnum, # needs force_unicode sqltypes.Enum: _PGEnum, # needs force_unicode HSTORE: _PGHStore, JSON: _PGJSON, sqltypes.JSON: _PGJSON, JSONB: _PGJSONB, UUID: _PGUUID, }, ) @util.deprecated_params( use_batch_mode=( "1.3.7", "The psycopg2 use_batch_mode flag is superseded by " "executemany_mode='batch'", ) ) def __init__( self, server_side_cursors=False, use_native_unicode=True, client_encoding=None, use_native_hstore=True, use_native_uuid=True, executemany_mode=None, executemany_batch_page_size=None, executemany_values_page_size=None, use_batch_mode=None, **kwargs ): PGDialect.__init__(self, **kwargs) self.server_side_cursors = server_side_cursors self.use_native_unicode = use_native_unicode self.use_native_hstore = use_native_hstore self.use_native_uuid = use_native_uuid self.supports_unicode_binds = use_native_unicode self.client_encoding = client_encoding # Parse executemany_mode argument, allowing it to be only one of the # symbol names self.executemany_mode = util.symbol.parse_user_argument( executemany_mode, { EXECUTEMANY_DEFAULT: [None], EXECUTEMANY_BATCH: ["batch"], EXECUTEMANY_VALUES: ["values"], }, "executemany_mode", ) if use_batch_mode: self.executemany_mode = EXECUTEMANY_BATCH self.executemany_batch_page_size = executemany_batch_page_size self.executemany_values_page_size = executemany_values_page_size if self.dbapi and hasattr(self.dbapi, "__version__"): m = re.match(r"(\d+)\.(\d+)(?:\.(\d+))?", self.dbapi.__version__) if m: self.psycopg2_version = tuple( int(x) for x in m.group(1, 2, 3) if x is not None ) def initialize(self, connection): super(PGDialect_psycopg2, self).initialize(connection) self._has_native_hstore = ( self.use_native_hstore and self._hstore_oids(connection.connection) is not None ) self._has_native_json = ( self.psycopg2_version >= self.FEATURE_VERSION_MAP["native_json"] ) self._has_native_jsonb = ( self.psycopg2_version >= self.FEATURE_VERSION_MAP["native_jsonb"] ) # http://initd.org/psycopg/docs/news.html#what-s-new-in-psycopg-2-0-9 self.supports_sane_multi_rowcount = ( self.psycopg2_version >= self.FEATURE_VERSION_MAP["sane_multi_rowcount"] and self.executemany_mode is EXECUTEMANY_DEFAULT ) @classmethod def dbapi(cls): import psycopg2 return psycopg2 @classmethod def _psycopg2_extensions(cls): from psycopg2 import extensions return extensions @classmethod def _psycopg2_extras(cls): from psycopg2 import extras return extras @util.memoized_property def _isolation_lookup(self): extensions = self._psycopg2_extensions() return { "AUTOCOMMIT": extensions.ISOLATION_LEVEL_AUTOCOMMIT, "READ COMMITTED": extensions.ISOLATION_LEVEL_READ_COMMITTED, "READ UNCOMMITTED": extensions.ISOLATION_LEVEL_READ_UNCOMMITTED, "REPEATABLE READ": extensions.ISOLATION_LEVEL_REPEATABLE_READ, "SERIALIZABLE": extensions.ISOLATION_LEVEL_SERIALIZABLE, } def set_isolation_level(self, connection, level): try: level = self._isolation_lookup[level.replace("_", " ")] except KeyError: raise exc.ArgumentError( "Invalid value '%s' for isolation_level. " "Valid isolation levels for %s are %s" % (level, self.name, ", ".join(self._isolation_lookup)) ) connection.set_isolation_level(level) def on_connect(self): extras = self._psycopg2_extras() extensions = self._psycopg2_extensions() fns = [] if self.client_encoding is not None: def on_connect(conn): conn.set_client_encoding(self.client_encoding) fns.append(on_connect) if self.isolation_level is not None: def on_connect(conn): self.set_isolation_level(conn, self.isolation_level) fns.append(on_connect) if self.dbapi and self.use_native_uuid: def on_connect(conn): extras.register_uuid(None, conn) fns.append(on_connect) if self.dbapi and self.use_native_unicode: def on_connect(conn): extensions.register_type(extensions.UNICODE, conn) extensions.register_type(extensions.UNICODEARRAY, conn) fns.append(on_connect) if self.dbapi and self.use_native_hstore: def on_connect(conn): hstore_oids = self._hstore_oids(conn) if hstore_oids is not None: oid, array_oid = hstore_oids kw = {"oid": oid} if util.py2k: kw["unicode"] = True if ( self.psycopg2_version >= self.FEATURE_VERSION_MAP["array_oid"] ): kw["array_oid"] = array_oid extras.register_hstore(conn, **kw) fns.append(on_connect) if self.dbapi and self._json_deserializer: def on_connect(conn): if self._has_native_json: extras.register_default_json( conn, loads=self._json_deserializer ) if self._has_native_jsonb: extras.register_default_jsonb( conn, loads=self._json_deserializer ) fns.append(on_connect) if fns: def on_connect(conn): for fn in fns: fn(conn) return on_connect else: return None def do_executemany(self, cursor, statement, parameters, context=None): if self.executemany_mode is EXECUTEMANY_DEFAULT: cursor.executemany(statement, parameters) return if ( self.executemany_mode is EXECUTEMANY_VALUES and context and context.isinsert and context.compiled.insert_single_values_expr ): executemany_values = ( "(%s)" % context.compiled.insert_single_values_expr ) # guard for statement that was altered via event hook or similar if executemany_values not in statement: executemany_values = None else: executemany_values = None if executemany_values: # Currently, SQLAlchemy does not pass "RETURNING" statements # into executemany(), since no DBAPI has ever supported that # until the introduction of psycopg2's executemany_values, so # we are not yet using the fetch=True flag. statement = statement.replace(executemany_values, "%s") if self.executemany_values_page_size: kwargs = {"page_size": self.executemany_values_page_size} else: kwargs = {} self._psycopg2_extras().execute_values( cursor, statement, parameters, template=executemany_values, **kwargs ) else: if self.executemany_batch_page_size: kwargs = {"page_size": self.executemany_batch_page_size} else: kwargs = {} self._psycopg2_extras().execute_batch( cursor, statement, parameters, **kwargs ) @util.memoized_instancemethod def _hstore_oids(self, conn): if self.psycopg2_version >= self.FEATURE_VERSION_MAP["hstore_adapter"]: extras = self._psycopg2_extras() oids = extras.HstoreAdapter.get_oids(conn) if oids is not None and oids[0]: return oids[0:2] return None def create_connect_args(self, url): opts = url.translate_connect_args(username="user") if opts: if "port" in opts: opts["port"] = int(opts["port"]) opts.update(url.query) # send individual dbname, user, password, host, port # parameters to psycopg2.connect() return ([], opts) elif url.query: # any other connection arguments, pass directly opts.update(url.query) return ([], opts) else: # no connection arguments whatsoever; psycopg2.connect() # requires that "dsn" be present as a blank string. return ([""], opts) def is_disconnect(self, e, connection, cursor): if isinstance(e, self.dbapi.Error): # check the "closed" flag. this might not be # present on old psycopg2 versions. Also, # this flag doesn't actually help in a lot of disconnect # situations, so don't rely on it. if getattr(connection, "closed", False): return True # checks based on strings. in the case that .closed # didn't cut it, fall back onto these. str_e = str(e).partition("\n")[0] for msg in [ # these error messages from libpq: interfaces/libpq/fe-misc.c # and interfaces/libpq/fe-secure.c. "terminating connection", "closed the connection", "connection not open", "could not receive data from server", "could not send data to server", # psycopg2 client errors, psycopg2/conenction.h, # psycopg2/cursor.h "connection already closed", "cursor already closed", # not sure where this path is originally from, it may # be obsolete. It really says "losed", not "closed". "losed the connection unexpectedly", # these can occur in newer SSL "connection has been closed unexpectedly", "SSL SYSCALL error: Bad file descriptor", "SSL SYSCALL error: EOF detected", "SSL error: decryption failed or bad record mac", "SSL SYSCALL error: Operation timed out", ]: idx = str_e.find(msg) if idx >= 0 and '"' not in str_e[:idx]: return True return False dialect = PGDialect_psycopg2
the-stack_0_11592
from __future__ import absolute_import import os import posixpath import pysvn from cobra.core.constants import README_MARKUPS from cobra.core.markup import rest2html, can_markup, is_markdown, is_rst, is_plain from cobra.core.markdown import markdown def get_readme(repository, path='', revision=None): # 1 - md # 2 - rst # 3 - txt readme_suffix_names = README_MARKUPS readme_name = '' if repository.root.endswith(posixpath.sep): root = repository.root[:-1] else: root = repository.root root_path = '%s%s' % (root, path) if revision is None: revision = repository.get_latest_revision() c = repository.get_svn_client() r = pysvn.Revision(pysvn.opt_revision_kind.number, revision) ls = c.list(root_path, recurse=False, peg_revision=r, revision=r) ls = map(lambda y: dict(y.items()), map(lambda x: x[0], ls)) for item in ls: if pysvn.node_kind.file == item['kind']: # sometimes double slashes appear in the returned path node_path = item['repos_path'] # we meet a special situation, it is that the root of repo is not real 'root' # and we have no permission to access the real root, so, the repos_path that # has the prefix of real root must be cut off. if repository.prefix: repo_prefix = repository.prefix if repo_prefix.endswith(posixpath.sep): repo_prefix = repo_prefix[:-1] node_path = node_path.replace(repo_prefix, '/', 1) if node_path.startswith('//'): node_path = node_path[1:] head, tail = os.path.split(node_path) file_name, file_suffix = os.path.splitext(tail) if file_name.lower() == 'readme' and (file_suffix in readme_suffix_names): readme_name = node_path break if file_name.lower() == 'readme' and (file_suffix.lower()=='.txt' or file_suffix==''): readme_name = node_path if readme_name: content = c.cat('%s%s' % (root, readme_name), revision=r, peg_revision=r) try: content = content.decode('utf-8') except UnicodeDecodeError: content = content.decode('gbk') if readme_name.startswith('/'): readme_name = readme_name[1:] if is_markdown(readme_name): content = markdown(content) elif is_rst(readme_name): content = rest2html(content) else: content = '<pre class="plain-readme">' + content + '</pre>' readme = { 'name': readme_name, 'content': content } return readme else: return
the-stack_0_11593
# coding: utf-8 # Copyright (c) Scanlon Materials Theory Group # Distributed under the terms of the MIT License. """ A script to calculate and plot optical spectra from ab initio calculations. """ import os from glob import glob import sys import logging import warnings import argparse from collections import OrderedDict import matplotlib as mpl mpl.use('Agg') from pymatgen.io.vasp import Vasprun from pymatgen.util.string import latexify from sumo.io import questaal from sumo.plotting.optics_plotter import SOpticsPlotter from sumo.electronic_structure.optics import (broaden_eps, calculate_dielectric_properties, write_files) __author__ = "Alex Ganose" __version__ = "1.0" __maintainer__ = "Alex Ganose" __email__ = "[email protected]" __date__ = "Jan 10, 2018" def optplot(modes=('absorption',), filenames=None, codes='vasp', prefix=None, directory=None, gaussian=None, band_gaps=None, labels=None, average=True, height=6, width=6, xmin=0, xmax=None, ymin=0, ymax=1e5, colours=None, style=None, no_base_style=None, image_format='pdf', dpi=400, plt=None, fonts=None): """A script to plot optical absorption spectra from VASP calculations. Args: modes (:obj:`list` or :obj:`tuple`): Ordered list of :obj:`str` determining properties to plot. Accepted options are 'absorption' (default), 'eps', 'eps-real', 'eps-im', 'n', 'n-real', 'n-im', 'loss' (equivalent to n-im). filenames (:obj:`str` or :obj:`list`, optional): Path to data file. For VASP this is a *vasprun.xml* file (can be gzipped); for Questaal the *opt.ext* file from *lmf* or *eps_BSE.out* from *bethesalpeter* may be used. Alternatively, a list of paths can be provided, in which case the absorption spectra for each will be plotted concurrently. codes (:obj:`str` or :obj:`list`, optional): Original calculator. Accepted values are 'vasp' and 'questaal'. Items should correspond to filenames. prefix (:obj:`str`, optional): Prefix for file names. directory (:obj:`str`, optional): The directory in which to save files. gaussian (:obj:`float`): Standard deviation for gaussian broadening. band_gaps (:obj:`float`, :obj:`str` or :obj:`list`, optional): The band gap as a :obj:`float`, plotted as a dashed line. If plotting multiple spectra then a :obj:`list` of band gaps can be provided. Band gaps can be provided as a floating-point number or as a path to a *vasprun.xml* file. To skip over a line, set its bandgap to zero or a negative number to place it outside the visible range. labels (:obj:`str` or :obj:`list`): A label to identify the spectra. If plotting multiple spectra then a :obj:`list` of labels can be provided. average (:obj:`bool`, optional): Average the dielectric response across all lattice directions. Defaults to ``True``. height (:obj:`float`, optional): The height of the plot. width (:obj:`float`, optional): The width of the plot. xmin (:obj:`float`, optional): The minimum energy on the x-axis. xmax (:obj:`float`, optional): The maximum energy on the x-axis. ymin (:obj:`float`, optional): The minimum absorption intensity on the y-axis. ymax (:obj:`float`, optional): The maximum absorption intensity on the y-axis. colours (:obj:`list`, optional): A :obj:`list` of colours to use in the plot. The colours can be specified as a hex code, set of rgb values, or any other format supported by matplotlib. style (:obj:`list` or :obj:`str`, optional): (List of) matplotlib style specifications, to be composed on top of Sumo base style. no_base_style (:obj:`bool`, optional): Prevent use of sumo base style. This can make alternative styles behave more predictably. image_format (:obj:`str`, optional): The image file format. Can be any format supported by matplotlib, including: png, jpg, pdf, and svg. Defaults to pdf. dpi (:obj:`int`, optional): The dots-per-inch (pixel density) for the image. plt (:obj:`matplotlib.pyplot`, optional): A :obj:`matplotlib.pyplot` object to use for plotting. fonts (:obj:`list`, optional): Fonts to use in the plot. Can be a a single font, specified as a :obj:`str`, or several fonts, specified as a :obj:`list` of :obj:`str`. Returns: A matplotlib pyplot object. """ # Don't write files if this is being done to manipulate existing plt save_files = False if plt else True ##### BUILD LIST OF FILES AUTOMATICALLY IF NECESSARY ##### if codes == 'vasp': if not filenames: if os.path.exists('vasprun.xml'): filenames = ['vasprun.xml'] elif os.path.exists('vasprun.xml.gz'): filenames = ['vasprun.xml.gz'] else: logging.error('ERROR: No vasprun.xml found!') sys.exit() elif codes == 'questaal': if not filenames: if len(glob('opt.*')) > 0: filenames = glob('opt.*') if len(filenames) == 1: logging.info("Found optics file: " + filenames[0]) else: logging.info("Found optics files: " + ", ".join(filenames)) if isinstance(filenames, str): filenames = [filenames] if isinstance(codes, str): codes = [codes] * len(filenames) elif len(codes) == 1: codes = list(codes) * len(filenames) #### ITERATE OVER FILES READING DIELECTRIC DATA #### dielectrics = [] auto_labels = [] auto_band_gaps = [] for i, (filename, code) in enumerate(zip(filenames, codes)): if code == 'vasp': vr = Vasprun(filename) dielectrics.append(vr.dielectric) auto_labels.append( latexify(vr.final_structure.composition.reduced_formula). replace('$_', '$_\mathregular')) if isinstance(band_gaps, list) and not band_gaps: # band_gaps = [], auto band gap requested auto_band_gaps.append( vr.get_band_structure().get_band_gap()['energy']) else: auto_band_gaps.append(None) elif code == 'questaal': if not save_files: out_filename = None elif len(filenames) == 1: out_filename = 'dielectric.dat' else: out_filename = 'dielectric_{0}.dat'.format(i + 1) dielectrics.append( questaal.dielectric_from_file(filename, out_filename)) auto_band_gaps.append(None) auto_labels.append(filename.split('.')[-1]) if isinstance(band_gaps, list) and not band_gaps: logging.info('Bandgap requested but not supported for Questaal' ' file {}: skipping...'.format(filename)) else: raise Exception('Code selection "{}" not recognised'.format(code)) if not labels and len(filenames) > 1: labels = auto_labels #### PROCESS DIELECTRIC DATA: BROADENING AND DERIVED PROPERTIES #### if gaussian: dielectrics = [broaden_eps(d, gaussian) for d in dielectrics] # initialize spectrum data ready to append from each dataset abs_data = OrderedDict() for mode in modes: abs_data.update({mode: []}) # for each calculation, get all required properties and append to data for d in dielectrics: for mode, spectrum in calculate_dielectric_properties( d, set(modes), average=average).items(): abs_data[mode].append(spectrum) if isinstance(band_gaps, list) and not band_gaps: # empty list therefore use bandgaps collected from vasprun files band_gaps = auto_band_gaps elif isinstance(band_gaps, list): # list containing filenames and/or values: mutate the list in-place for i, item in enumerate(band_gaps): if item is None: pass elif _floatable(item): band_gaps[i] = float(item) elif 'vasprun' in item: band_gaps[i] = ( Vasprun(item).get_band_structure().get_band_gap()['energy'] ) else: raise ValueError('Format not recognised for auto bandgap: ' '{}.'.format(item)) plotter = SOpticsPlotter(abs_data, band_gap=band_gaps, label=labels) plt = plotter.get_plot(width=width, height=height, xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, colours=colours, dpi=dpi, plt=plt, fonts=fonts, style=style, no_base_style=no_base_style) if save_files: basename = 'absorption' if prefix: basename = '{}_{}'.format(prefix, basename) image_filename = '{}.{}'.format(basename, image_format) if directory: image_filename = os.path.join(directory, image_filename) plt.savefig(image_filename, format=image_format, dpi=dpi) for mode, data in abs_data.items(): basename = 'absorption' if mode == 'abs' else mode write_files(data, basename=basename, prefix=prefix, directory=directory) else: return plt def _floatable(item): """Check if an item can be intepreted with float()""" try: float(item) return True except ValueError: return False def _get_parser(): parser = argparse.ArgumentParser(description=""" optplot is a script to produce optical absorption spectra diagrams""", epilog=""" Author: {} Version: {} Last updated: {}""".format(__author__, __version__, __date__)) parser.add_argument('mode', type=str, nargs='*', default='absorption', metavar='M', choices={'absorption', 'loss', 'eps_real', 'eps_imag', 'n_real', 'n_imag'}, help='Optical properties to plot. Multiple choices ' ' will be displayed as subplots. Accepted values:' ' "absorption" (optical absorption over distance)' ', "loss" (energy-loss function -Im(1/eps)), ' '"eps_real" and "eps_imag" (real and imaginary ' 'parts of the dielectric function), ' '"n_real" (real part of complex refractive index)' '"n_imag" (imaginary part of RI, also known as ' 'the extinction coefficient kappa.)') parser.add_argument('-f', '--filenames', metavar='F', help='path to one or more vasprun.xml files', default=None, nargs='+') parser.add_argument('-p', '--prefix', metavar='P', help='prefix for the files generated') parser.add_argument('-d', '--directory', metavar='D', help='output directory for files') parser.add_argument('-c', '--code', metavar='C', default='vasp', nargs='+', help=('Original calculator. Accepted values are ' '"vasp" and "questaal".')) parser.add_argument('-g', '--gaussian', type=float, metavar='G', help='standard deviation of gaussian broadening') parser.add_argument('-b', '--bandgaps', nargs='*', metavar='E', help=('indicate the fundamental band gap (options: ' 'nothing, vasprun.xml file, or float). A ' 'sequence of files and values may be provided, ' 'corresponding to the optical data files. ' 'To skip a line, set a value outside the plot ' 'range (e.g. -1).')) parser.add_argument('-l', '--labels', nargs='+', metavar='L', help='labels for the absorption specta') parser.add_argument('-a', '--anisotropic', action='store_false', help='separate spectra into to x, y, and z directions') parser.add_argument('--height', type=float, default=None, help='height of the graph') parser.add_argument('--width', type=float, default=None, help='width of the graph') parser.add_argument('--xmin', type=float, default=0., help='minimum energy on the x-axis') parser.add_argument('--xmax', type=float, default=None, help='maximum energy on the x-axis') parser.add_argument('--ymin', type=str, default=['auto'], nargs='+', help='minimum intensity on the y-axis; may specify ' 'multiple values if plotting more than one axis. ' 'Use "auto" or "_" for automatic value.') parser.add_argument('--ymax', type=str, default=['auto'], nargs='+', help='maximum intensity on the y-axis; may specify' 'multiple values if plotting more than one axis. ' 'Use "auto" or "_" for automatic value.') parser.add_argument('--style', type=str, nargs='+', default=None, help='matplotlib style specifications') parser.add_argument('--no-base-style', action='store_true', dest='no_base_style', help='prevent use of sumo base style') parser.add_argument('--format', type=str, default='pdf', dest='image_format', metavar='FORMAT', help='image file format (options: pdf, svg, jpg, png)') parser.add_argument('--dpi', type=int, default=400, help='pixel density for image file') parser.add_argument('--font', default=None, help='font to use') return parser def main(): args = _get_parser().parse_args() logging.basicConfig(filename='sumo-optplot.log', level=logging.INFO, filemode='w', format='%(message)s') console = logging.StreamHandler() logging.info(" ".join(sys.argv[:])) logging.getLogger('').addHandler(console) warnings.filterwarnings("ignore", category=UserWarning, module="matplotlib") warnings.filterwarnings("ignore", category=UnicodeWarning, module="matplotlib") warnings.filterwarnings("ignore", category=UserWarning, module="pymatgen") # Wrap mode into list if necessary if not isinstance(args.mode, list): args.mode = [args.mode] # Replace text placeholders with preferred Python representation: None ymin = [None if (x.lower() in ('auto', '_')) else float(x) for x in args.ymin] ymax = [None if (x.lower() in ('auto', '_')) else float(x) for x in args.ymax] # Settings should be list corresponding to n_plots, or value for all ymin = ymin[0] if len(ymin) == 1 else ymin ymax = ymax[0] if len(ymax) == 1 else ymax optplot(modes=args.mode, filenames=args.filenames, codes=args.code, prefix=args.prefix, directory=args.directory, gaussian=args.gaussian, band_gaps=args.bandgaps, labels=args.labels, average=args.anisotropic, height=args.height, width=args.width, xmin=args.xmin, xmax=args.xmax, ymin=ymin, ymax=ymax, colours=None, image_format=args.image_format, dpi=args.dpi, style=args.style, no_base_style=args.no_base_style, fonts=args.font) if __name__ == "__main__": main()
the-stack_0_11594
# Copyright 2014 Cisco Systems, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from neutron.openstack.common import log as logging from neutron.plugins.cisco.common import cisco_exceptions as c_exc from neutron.plugins.cisco.n1kv import n1kv_client LOG = logging.getLogger(__name__) _resource_metadata = {'port': ['id', 'macAddress', 'ipAddress', 'subnetId'], 'vmnetwork': ['name', 'networkSegmentId', 'networkSegment', 'portProfile', 'portProfileId', 'tenantId', 'portId', 'macAddress', 'ipAddress', 'subnetId'], 'subnet': ['addressRangeStart', 'addressRangeEnd', 'ipAddressSubnet', 'description', 'gateway', 'dhcp', 'dnsServersList', 'networkAddress', 'netSegmentName', 'id', 'tenantId']} class TestClient(n1kv_client.Client): def __init__(self, **kwargs): self.broken = False self.inject_params = False self.total_profiles = 2 super(TestClient, self).__init__() def _get_total_profiles(self): return self.total_profiles def _do_request(self, method, action, body=None, headers=None): if self.broken: raise c_exc.VSMError(reason='VSM:Internal Server Error') if self.inject_params and body: body['invalidKey'] = 'catchMeIfYouCan' if method == 'POST': return _validate_resource(action, body) elif method == 'GET': if 'virtual-port-profile' in action: return _policy_profile_generator( self._get_total_profiles()) else: raise c_exc.VSMError(reason='VSM:Internal Server Error') class TestClientInvalidRequest(TestClient): def __init__(self, **kwargs): super(TestClientInvalidRequest, self).__init__() self.inject_params = True class TestClientInvalidResponse(TestClient): def __init__(self, **kwargs): super(TestClientInvalidResponse, self).__init__() self.broken = True def _validate_resource(action, body=None): if body: body_set = set(body.keys()) else: return if 'vm-network' in action and 'port' not in action: vmnetwork_set = set(_resource_metadata['vmnetwork']) if body_set - vmnetwork_set: raise c_exc.VSMError(reason='Invalid Request') elif 'port' in action: port_set = set(_resource_metadata['port']) if body_set - port_set: raise c_exc.VSMError(reason='Invalid Request') elif 'subnet' in action: subnet_set = set(_resource_metadata['subnet']) if body_set - subnet_set: raise c_exc.VSMError(reason='Invalid Request') else: return def _policy_profile_generator(total_profiles): """ Generate policy profile response and return a dictionary. :param total_profiles: integer representing total number of profiles to return """ profiles = {} for num in range(1, total_profiles + 1): name = "pp-%s" % num profile_id = "00000000-0000-0000-0000-00000000000%s" % num profiles[name] = {"properties": {"name": name, "id": profile_id}} return profiles def _policy_profile_generator_xml(total_profiles): """ Generate policy profile response in XML format. :param total_profiles: integer representing total number of profiles to return """ xml = ["""<?xml version="1.0" encoding="utf-8"?> <set name="virtual_port_profile_set">"""] template = ( '<instance name="%(num)d"' ' url="/api/n1k/virtual-port-profile/%(num)s">' '<properties>' '<id>00000000-0000-0000-0000-00000000000%(num)s</id>' '<name>pp-%(num)s</name>' '</properties>' '</instance>' ) xml.extend(template % {'num': n} for n in range(1, total_profiles + 1)) xml.append("</set>") return ''.join(xml)
the-stack_0_11595
# !/usr/bin/env python3 # -*- coding: utf-8 -*- import glob import json import os def main(blastdir): print('Populating organism selftargeting spacer objects') for fn in glob.glob(blastdir + '/*.json'): # get loci intervals of organism accession = os.path.splitext(os.path.split(fn)[1])[0] q_org = Organism.objects.filter(accession=accession) if not q_org.exists(): print('Organism with accession {} is not in db but blast ' 'report exists'.format(accession)) continue org = q_org[0] interval_loci = [ (entry['genomic_start'], entry['genomic_end']) for entry in org.locus_set.all().values('genomic_start', 'genomic_end') ] with open(fn, 'r') as f: try: blastrec = json.loads(f.read()) except Exception as e: print('Error on accession {}\n{}'.format(accession, e)) continue for res in blastrec['BlastOutput2']: query = res['report']['results']['bl2seq'][0] spacerid = query['query_title'] for hit in query['hits']: for hsps in hit['hsps']: start_h, end_h = hsps['hit_from'], hsps['hit_to'] in_locus = any([start_h > start and end_h < end for start, end in interval_loci]) if in_locus: continue q_spacer = Spacer.objects.filter(id=int(spacerid)) if not q_spacer.exists(): print('Spacer with sequence {} for organism {} ' 'not found in db'.format(hsps['qseq'], org.accession)) continue spacer = q_spacer[0] evalue = float(hsps['evalue']) oselftarget, _ = OrganismSelfSpacer.objects.get_or_create( organism=org, spacer=spacer, evalue=evalue, genomic_start=start_h, genomic_end=end_h ) if __name__ == '__main__': import django os.environ.setdefault("DJANGO_SETTINGS_MODULE", "phageAPI.settings") django.setup() from restapi.models import Organism, OrganismSelfSpacer, Spacer main('gbfiles/blastoutput')
the-stack_0_11597
"""This module implements row model of MUFG bank CSV.""" from __future__ import annotations from abc import ABC from dataclasses import dataclass from datetime import datetime from enum import Enum from typing import Optional from zaimcsvconverter.file_csv_convert import FileCsvConvert from zaimcsvconverter.inputcsvformats import InputRow, InputRowFactory, InputStoreRow, InputStoreRowData from zaimcsvconverter.utility import Utility @dataclass class MufgRowData(InputStoreRowData): """This class implements data class for wrapping list of MUFG bunk CSV row model.""" # Reason: This implement depends on design of CSV. pylint: disable=too-many-instance-attributes class Summary(Enum): CARD = "カ−ド" CARD_CONVENIENCE_STORE_ATM = "カ−ドC1" class CashFlowKind(Enum): """This class implements constant of cash flow kind in MUFG CSV.""" INCOME = "入金" PAYMENT = "支払い" TRANSFER_INCOME = "振替入金" TRANSFER_PAYMENT = "振替支払い" _date: str summary: str _summary_content: str _payed_amount: str _deposit_amount: str balance: str note: str is_uncapitalized: str _cash_flow_kind: str @property def date(self) -> datetime: return datetime.strptime(self._date, "%Y/%m/%d") @property def store_name(self) -> str: return self._summary_content @property def payed_amount(self) -> Optional[int]: return Utility.convert_string_to_int_or_none(self._payed_amount) @property def deposit_amount(self) -> Optional[int]: return Utility.convert_string_to_int_or_none(self._deposit_amount) @property def cash_flow_kind(self) -> MufgRowData.CashFlowKind: return self.CashFlowKind(self._cash_flow_kind) @property def validate(self) -> bool: self.stock_error(lambda: self.date, f"Invalid date. Date = {self._date}") # This comment prevents pylint duplicate-code. self.stock_error(lambda: self.payed_amount, f"Invalid payed amount. Payed amount = {self._payed_amount}") self.stock_error( lambda: self.deposit_amount, f"Invalid deposit amount. Deposit amount = {self._deposit_amount}" ) self.stock_error( lambda: self.cash_flow_kind, 'The value of "Cash flow kind" has not been defined in this code. ' f"Cash flow kind = {self._cash_flow_kind}", ) return super().validate class MufgRow(InputRow): """This class implements row model of MUFG bank CSV.""" def __init__(self, input_row_data: MufgRowData, *args, **kwargs): super().__init__(input_row_data, *args, **kwargs) self.cash_flow_kind: MufgRowData.CashFlowKind = input_row_data.cash_flow_kind self._summary: str = input_row_data.summary @property def is_income(self) -> bool: return self.cash_flow_kind == MufgRowData.CashFlowKind.INCOME @property def is_payment(self) -> bool: return self.cash_flow_kind == MufgRowData.CashFlowKind.PAYMENT @property def is_transfer_income(self) -> bool: return self.cash_flow_kind == MufgRowData.CashFlowKind.TRANSFER_INCOME @property def is_transfer_payment(self) -> bool: return self.cash_flow_kind == MufgRowData.CashFlowKind.TRANSFER_PAYMENT @property def is_by_card(self) -> bool: return ( self._summary == MufgRowData.Summary.CARD.value or self._summary == MufgRowData.Summary.CARD_CONVENIENCE_STORE_ATM.value ) @property def is_income_from_other_own_account(self) -> bool: return self.is_income and self.is_by_card class MufgIncomeRow(MufgRow, ABC): """This class implements income row model of MUFG bank CSV.""" def __init__(self, row_data: MufgRowData, *args, **kwargs): super().__init__(row_data, *args, **kwargs) self._deposit_amount: Optional[int] = row_data.deposit_amount @property def deposit_amount(self) -> int: if self._deposit_amount is None: raise ValueError("Deposit amount on income row is not allowed empty.") return self._deposit_amount @property def validate(self) -> bool: self.stock_error( lambda: self.deposit_amount, f"Deposit amount in income row is required. Deposit amount = {self._deposit_amount}", ) return super().validate class MufgPaymentRow(MufgRow, ABC): """This class implements payment row model of MUFG bank CSV.""" def __init__(self, row_data: MufgRowData, *args, **kwargs): super().__init__(row_data, *args, **kwargs) self._payed_amount: Optional[int] = row_data.payed_amount @property def payed_amount(self) -> int: if self._payed_amount is None: raise ValueError("Payed amount on payment row is not allowed empty.") return self._payed_amount @property def validate(self) -> bool: self.stock_error( lambda: self.payed_amount, f"Payed amount in payment row is required. Payed amount = {self._payed_amount}" ) return super().validate class MufgIncomeFromSelfRow(MufgIncomeRow): """This class implements income from self row model of MUFG bank CSV.""" class MufgPaymentToSelfRow(MufgPaymentRow): """This class implements payment from self row model of MUFG bank CSV.""" # pylint: disable=too-many-instance-attributes class MufgStoreRow(MufgRow, InputStoreRow, ABC): """This class implements row model of MUFG bank CSV.""" def __init__(self, input_row_data: MufgRowData): super().__init__(input_row_data, FileCsvConvert.MUFG.value) @property def is_transfer_income_from_other_own_account(self) -> bool: """This method returns whether this row is transfer income from other own account or not.""" return self.is_transfer_income and self.store.transfer_target is not None @property def is_transfer_payment_to_other_own_account(self) -> bool: """This method returns whether this row is transfer payment to other own account or not.""" return self.is_transfer_payment and self.store.transfer_target is not None # pylint: disable=too-many-ancestors class MufgIncomeFromOthersRow(MufgStoreRow, MufgIncomeRow): """This class implements row model of MUFG bank CSV.""" # pylint: disable=too-many-ancestors class MufgPaymentToSomeoneRow(MufgStoreRow, MufgPaymentRow): """ This class implements payment row model of MUFG bank CSV. It may to others, also may to self. """ class MufgRowFactory(InputRowFactory[MufgRowData, MufgRow]): """This class implements factory to create MUFG CSV row instance.""" def create(self, input_row_data: MufgRowData) -> MufgRow: if input_row_data.is_empty_store_name and input_row_data.cash_flow_kind == MufgRowData.CashFlowKind.INCOME: return MufgIncomeFromSelfRow(input_row_data) if input_row_data.is_empty_store_name and input_row_data.cash_flow_kind == MufgRowData.CashFlowKind.PAYMENT: return MufgPaymentToSelfRow(input_row_data) if input_row_data.cash_flow_kind in ( MufgRowData.CashFlowKind.PAYMENT, MufgRowData.CashFlowKind.TRANSFER_PAYMENT, ): return MufgPaymentToSomeoneRow(input_row_data) if input_row_data.cash_flow_kind in (MufgRowData.CashFlowKind.INCOME, MufgRowData.CashFlowKind.TRANSFER_INCOME): return MufgIncomeFromOthersRow(input_row_data) raise ValueError( f"Cash flow kind is not supported. Cash flow kind = {input_row_data.cash_flow_kind}" ) # pragma: no cover # Reason: This line is insurance for future development so process must be not able to reach
the-stack_0_11598
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Base evaluator.""" import abc import dataclasses from typing import List, Optional, Union import numpy as np @dataclasses.dataclass class EvaluatorOutput: """The output of an evaluator.""" # An evaluator does not necessarily generate all fields below. For example, # some evaluators like Kendalls Tau return a scalar and image metric, while # TwoWayCycleConsistency only generates a scalar metric. scalar: Optional[Union[float, List[float]]] = None image: Optional[Union[np.ndarray, List[np.ndarray]]] = None video: Optional[Union[np.ndarray, List[np.ndarray]]] = None @staticmethod def _assert_same_attrs(list_out): """Ensures a list of this class instance have the same attributes.""" def _not_none(o): return [getattr(o, a) is not None for a in ["scalar", "image", "video"]] expected = _not_none(list_out[0]) for o in list_out[1:]: actual = _not_none(o) assert np.array_equal(expected, actual) @staticmethod def merge(list_out): """Merge a list of this class instance into one.""" # We need to make sure that all elements of the list have the same # non-empty (i.e. != None) attributes. EvaluatorOutput._assert_same_attrs(list_out) # At this point, we're confident that we only need to check the # attributes of the first member of the list to guarantee the same # availability for *all* other members of the list. scalars = None if list_out[0].scalar is not None: scalars = [o.scalar for o in list_out] images = None if list_out[0].image is not None: images = [o.image for o in list_out] videos = None if list_out[0].video is not None: videos = [o.video for o in list_out] return EvaluatorOutput(scalars, images, videos) def log(self, logger, global_step, name, prefix): """Log the attributes to tensorboard.""" if self.scalar is not None: if isinstance(self.scalar, list): self.scalar = np.mean(self.scalar) logger.log_scalar(self.scalar, global_step, name, prefix) if self.image is not None: if isinstance(self.image, list): for i, image in enumerate(self.image): logger.log_image(image, global_step, name + f"_{i}", prefix) else: logger.log_image(self.image, global_step, name, prefix) if self.video is not None: if isinstance(self.video, list): for i, video in enumerate(self.video): logger.log_video(video, global_step, name + f"_{i}", prefix) else: logger.log_video(self.video, global_step, name, prefix) logger.flush() class Evaluator(abc.ABC): """Base class for evaluating a self-supervised model on downstream tasks. Subclasses must implement the `_evaluate` method. """ def __init__(self, inter_class): self.inter_class = inter_class @abc.abstractmethod def evaluate(self, outs): """Evaluate the downstream task in embedding space. Args: outs: A list of outputs generated by the model on the downstream dataset. :meta public: """ pass
the-stack_0_11599
""" A Qt API selector that can be used to switch between PyQt and PySide. """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six import os import sys from matplotlib import rcParams, verbose # Available APIs. QT_API_PYQT = 'PyQt4' # API is not set here; Python 2.x default is V 1 QT_API_PYQTv2 = 'PyQt4v2' # forced to Version 2 API QT_API_PYSIDE = 'PySide' # only supports Version 2 API QT_API_PYQT5 = 'PyQt5' # use PyQt5 API; Version 2 with module shim ETS = dict(pyqt=(QT_API_PYQTv2, 4), pyside=(QT_API_PYSIDE, 4), pyqt5=(QT_API_PYQT5, 5)) # ETS is a dict of env variable to (QT_API, QT_MAJOR_VERSION) # If the ETS QT_API environment variable is set, use it, but only # if the varible if of the same major QT version. Note that # ETS requires the version 2 of PyQt4, which is not the platform # default for Python 2.x. QT_API_ENV = os.environ.get('QT_API') if rcParams['backend'] == 'Qt5Agg': QT_RC_MAJOR_VERSION = 5 elif rcParams['backend'] == 'Qt4Agg': QT_RC_MAJOR_VERSION = 4 else: # A different backend was specified, but we still got here because a Qt # related file was imported. This is allowed, so lets try and guess # what we should be using. if "PyQt4" in sys.modules or "PySide" in sys.modules: # PyQt4 or PySide is actually used. QT_RC_MAJOR_VERSION = 4 else: # This is a fallback: PyQt5 QT_RC_MAJOR_VERSION = 5 QT_API = None # check if any binding is already imported, if so silently ignore the # rcparams/ENV settings and use what ever is already imported. if 'PySide' in sys.modules: # user has imported PySide before importing mpl QT_API = QT_API_PYSIDE if 'PyQt4' in sys.modules: # user has imported PyQt4 before importing mpl # this case also handles the PyQt4v2 case as once sip is imported # the API versions can not be changed so do not try QT_API = QT_API_PYQT if 'PyQt5' in sys.modules: # the user has imported PyQt5 before importing mpl QT_API = QT_API_PYQT5 if (QT_API_ENV is not None) and QT_API is None: try: QT_ENV_MAJOR_VERSION = ETS[QT_API_ENV][1] except KeyError: raise RuntimeError( ('Unrecognized environment variable %r, valid values are:' ' %r, %r or %r' % (QT_API_ENV, 'pyqt', 'pyside', 'pyqt5'))) if QT_ENV_MAJOR_VERSION == QT_RC_MAJOR_VERSION: # Only if backend and env qt major version are # compatible use the env variable. QT_API = ETS[QT_API_ENV][0] if QT_API is None: # No ETS environment or incompatible so use rcParams. if rcParams['backend'] == 'Qt5Agg': QT_API = rcParams['backend.qt5'] elif rcParams['backend'] == 'Qt4Agg': QT_API = rcParams['backend.qt4'] else: # A non-Qt backend was specified, no version of the Qt # bindings is imported, but we still got here because a Qt # related file was imported. This is allowed, fall back to Qt5 # using which ever binding the rparams ask for. QT_API = rcParams['backend.qt5'] # We will define an appropriate wrapper for the differing versions # of file dialog. _getSaveFileName = None # Flag to check if sip could be imported _sip_imported = False # Now perform the imports. if QT_API in (QT_API_PYQT, QT_API_PYQTv2, QT_API_PYQT5): try: import sip _sip_imported = True except ImportError: # Try using PySide QT_API = QT_API_PYSIDE cond = ("Could not import sip; falling back on PySide\n" "in place of PyQt4 or PyQt5.\n") verbose.report(cond, 'helpful') if _sip_imported: if QT_API == QT_API_PYQTv2: if QT_API_ENV == 'pyqt': cond = ("Found 'QT_API=pyqt' environment variable. " "Setting PyQt4 API accordingly.\n") else: cond = "PyQt API v2 specified." try: sip.setapi('QString', 2) except: res = 'QString API v2 specification failed. Defaulting to v1.' verbose.report(cond + res, 'helpful') # condition has now been reported, no need to repeat it: cond = "" try: sip.setapi('QVariant', 2) except: res = 'QVariant API v2 specification failed. Defaulting to v1.' verbose.report(cond + res, 'helpful') if QT_API == QT_API_PYQT5: try: from PyQt5 import QtCore, QtGui, QtWidgets _getSaveFileName = QtWidgets.QFileDialog.getSaveFileName except ImportError: # fell through, tried PyQt5, failed fall back to PyQt4 QT_API = rcParams['backend.qt4'] QT_RC_MAJOR_VERSION = 4 # needs to be if so we can re-test the value of QT_API which may # have been changed in the above if block if QT_API in [QT_API_PYQT, QT_API_PYQTv2]: # PyQt4 API from PyQt4 import QtCore, QtGui try: if sip.getapi("QString") > 1: # Use new getSaveFileNameAndFilter() _getSaveFileName = QtGui.QFileDialog.getSaveFileNameAndFilter else: # Use old getSaveFileName() def _getSaveFileName(*args, **kwargs): return (QtGui.QFileDialog.getSaveFileName(*args, **kwargs), None) except (AttributeError, KeyError): # call to getapi() can fail in older versions of sip def _getSaveFileName(*args, **kwargs): return QtGui.QFileDialog.getSaveFileName(*args, **kwargs), None try: # Alias PyQt-specific functions for PySide compatibility. QtCore.Signal = QtCore.pyqtSignal try: QtCore.Slot = QtCore.pyqtSlot except AttributeError: # Not a perfect match but works in simple cases QtCore.Slot = QtCore.pyqtSignature QtCore.Property = QtCore.pyqtProperty __version__ = QtCore.PYQT_VERSION_STR except NameError: # QtCore did not get imported, fall back to pyside QT_API = QT_API_PYSIDE if QT_API == QT_API_PYSIDE: # try importing pyside try: from PySide import QtCore, QtGui, __version__, __version_info__ except ImportError: raise ImportError( "Matplotlib qt-based backends require an external PyQt4, PyQt5,\n" "or PySide package to be installed, but it was not found.") if __version_info__ < (1, 0, 3): raise ImportError( "Matplotlib backend_qt4 and backend_qt4agg require PySide >=1.0.3") _getSaveFileName = QtGui.QFileDialog.getSaveFileName # Apply shim to Qt4 APIs to make them look like Qt5 if QT_API in (QT_API_PYQT, QT_API_PYQTv2, QT_API_PYSIDE): '''Import all used QtGui objects into QtWidgets Here I've opted to simple copy QtGui into QtWidgets as that achieves the same result as copying over the objects, and will continue to work if other objects are used. ''' QtWidgets = QtGui def is_pyqt5(): return QT_API == QT_API_PYQT5
the-stack_0_11600
from pygame import * from random import * from time import time as timer win_widh = 1000 win_hight = 400 win = display.set_mode((win_widh, win_hight)) display.set_caption('Plants') ImegHero = 'Woodman.png' ImeBack = 'Forest.png' ImeAnemi = 'BigCliz.png' img_bullet = 'Ball.png' TimeNow = timer() TimeHit = timer() # clock = time.Clock() class GameSprite(sprite.Sprite): def __init__(self, PLimage, playX, playY, sizeX, sizeY, speed): sprite.Sprite.__init__(self) self.image = transform.scale(image.load(PLimage), (sizeX, sizeY)) self.speed = speed self.rect = self.image.get_rect() self.rect.x = playX self.rect.y = playY def reset(self): win.blit(self.image, (self.rect.x, self.rect.y)) class Plaer(GameSprite): def Went(self): global LastWent global TimeNow went = key.get_pressed() if went[K_UP]: self.rect.y -= self.speed if went[K_DOWN]: self.rect.y += self.speed if went[K_LEFT]: self.rect.x -= self.speed LastWent = 'Left' if went[K_RIGHT]: self.rect.x += self.speed LastWent = 'Right' if (timer() - TimeNow) > 2: if went[K_SPACE]: TimeNow = timer() if LastWent == 'Left': self.rect.x -= 10*self.speed else: self.rect.x += 10*self.speed def fire(self): bullet = Bullet(img_bullet, self.rect.centerx, self.rect.centery, 15, 20, 15) bullets.add(bullet) class PlantsAnami(GameSprite): def update(self): self.rect.x += self.speed if self.rect.x < 0: self.rect.x = win_widh self.rect.y = randint(150, 340) class Bullet(GameSprite): def update(self): self.rect.x += self.speed if self.rect.x > win_widh: self.kill() fps = 30 LastWent = 'Left' HeroGad = Plaer(ImegHero, 50, 50, 60, 60, 10) GameRun = True bacgraund = transform.scale(image.load(ImeBack), (win_widh, win_hight)) monsters = sprite.Group() ds = [50, win_widh-100] for i in range(1,7): monster = PlantsAnami(ImeAnemi, win_widh, randint(150, 400-90), 72, 72, randint(-5,-1)) monsters.add(monster) bullets = sprite.Group() def DrawAll(): win.blit(bacgraund, (0,0)) # draw.rect(win, (0,255,0), (0, 350, 1000, 50)) HeroGad.reset() HeroGad.Went() monsters.update() monsters.draw(win) bullets.update() bullets.draw(win) display.update() while GameRun: for e in event.get(): if e.type == QUIT: GameRun = False elif e.type == KEYDOWN: if e.key == K_q: HeroGad.fire() collide = sprite.groupcollide(bullets, monsters, True, True) for c in collide: while len(monsters) < 6: monster = PlantsAnami(ImeAnemi, win_widh, randint(150, 340), 72, 72, randint(-5,-1)) monsters.add(monster) # tap = key.get_pressed() # if sprite.spritecollide(HeroGad, monsters, True): # print('AAAAAAAAAAAAAA') # # monster = PlantsAnami(ImeAnemi, win_widh, randint(150, 340), 72, 72, randint(-5,-1)) # # monsters.add(monster) # while len(monsters)<6: # monster = PlantsAnami(ImeAnemi, win_widh, randint(150, 340), 72, 72, randint(-5,-1)) # monsters.add(monster) DrawAll() time.delay(fps)
the-stack_0_11601
# pylint: disable=g-direct-third-party-import # pylint: disable=g-bad-file-header # Copyright 2017 The Bazel Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http:#www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Creates the embedded_tools.zip that is part of the Bazel binary.""" import contextlib import fnmatch import os import os.path import re import sys import zipfile from src.create_embedded_tools_lib import copy_tar_to_zip from src.create_embedded_tools_lib import copy_zip_to_zip from src.create_embedded_tools_lib import is_executable output_paths = [ ('*tools/jdk/BUILD*', lambda x: 'tools/jdk/BUILD'), ('*tools/platforms/platforms.BUILD', lambda x: 'platforms/BUILD'), ('*tools/platforms/*', lambda x: 'platforms/' + os.path.basename(x)), ('*tools/cpp/runfiles/generated_*', lambda x: 'tools/cpp/runfiles/' + os.path.basename(x)[len('generated_'):]), ('*jarjar_command_deploy.jar', lambda x: 'tools/jdk/jarjar_command_deploy.jar'), ('*BUILD-new.pkg', lambda x: 'tools/jdk/BUILD.pkg'), ('*BUILD.javalangtools', lambda x: 'third_party/java/jdk/langtools/BUILD'), ('*singlejar_local.exe', lambda x: 'tools/jdk/singlejar/singlejar.exe'), ('*singlejar_local', lambda x: 'tools/jdk/singlejar/singlejar'), ('*launcher.exe', lambda x: 'tools/launcher/launcher.exe'), ('*def_parser.exe', lambda x: 'tools/def_parser/def_parser.exe'), ('*ijar.exe', lambda x: 'tools/jdk/ijar/ijar.exe'), ('*ijar', lambda x: 'tools/jdk/ijar/ijar'), ('*zipper.exe', lambda x: 'tools/zip/zipper/zipper.exe'), ('*zipper', lambda x: 'tools/zip/zipper/zipper'), ('*src/objc_tools/*', lambda x: 'tools/objc/precomp_' + os.path.basename(x)), ('*xcode*StdRedirect.dylib', lambda x: 'tools/objc/StdRedirect.dylib'), ('*xcode*make_hashed_objlist.py', lambda x: 'tools/objc/make_hashed_objlist.py'), ('*xcode*realpath', lambda x: 'tools/objc/realpath'), ('*xcode*xcode-locator', lambda x: 'tools/objc/xcode-locator'), ('*src/tools/xcode/*.sh', lambda x: 'tools/objc/' + os.path.basename(x)), ('*src/tools/xcode/*', lambda x: 'tools/objc/' + os.path.basename(x) + '.sh'), ('*external/openjdk_*/file/*.tar.gz', lambda x: 'jdk.tar.gz'), ('*external/openjdk_*/file/*.zip', lambda x: 'jdk.zip'), ('*src/minimal_jdk.tar.gz', lambda x: 'jdk.tar.gz'), ('*src/minimal_jdk.zip', lambda x: 'jdk.zip'), ('*', lambda x: re.sub(r'^.*bazel-out/[^/]*/bin/', '', x, count=1)), ] def get_output_path(path): for pattern, transformer in output_paths: if fnmatch.fnmatch(path.replace('\\', '/'), pattern): # BUILD.tools are stored as BUILD files. return transformer(path).replace('/BUILD.tools', '/BUILD') def get_input_files(argsfile): """Returns a sorted list of tuples (archive_file, input_file). This describes the files that should be put into the generated archive. Args: argsfile: The file containing the list of input files. """ with open(argsfile, 'r') as f: input_files = set(x.strip() for x in f.readlines()) result = {} for input_file in input_files: # If we have both a BUILD and a BUILD.tools file, take the latter only. if (os.path.basename(input_file) == 'BUILD' and input_file + '.tools' in input_files): continue # This gives us the same behavior as the older bash version of this # tool: If two input files map to the same output files, the one that # comes last in the list of input files overrides all earlier ones. result[get_output_path(input_file)] = input_file # By sorting the file list, the resulting ZIP file will not be reproducible # and deterministic. return sorted(result.items()) def copy_jdk_into_archive(output_zip, archive_file, input_file): """Extract the JDK and adds it to the archive under jdk/*.""" def _replace_dirname(filename): # Rename the first folder to 'jdk', because Bazel looks for a # bundled JDK in the embedded tools using that folder name. return 'jdk/' + '/'.join(filename.split('/')[1:]) # The JDK is special - it's extracted instead of copied. if archive_file.endswith('.tar.gz'): copy_tar_to_zip(output_zip, input_file, _replace_dirname) elif archive_file.endswith('.zip'): copy_zip_to_zip(output_zip, input_file, _replace_dirname) def main(): output_zip = os.path.join(os.getcwd(), sys.argv[1]) input_files = get_input_files(sys.argv[2]) # Copy all the input_files into output_zip. # Adding contextlib.closing to be python 2.6 (for centos 6.7) compatible with contextlib.closing( zipfile.ZipFile(output_zip, 'w', zipfile.ZIP_DEFLATED)) as output_zip: zipinfo = zipfile.ZipInfo('WORKSPACE', (1980, 1, 1, 0, 0, 0)) zipinfo.external_attr = 0o644 << 16 output_zip.writestr(zipinfo, 'workspace(name = "bazel_tools")\n') for archive_file, input_file in input_files: if os.path.basename(archive_file) in ('jdk.tar.gz', 'jdk.zip'): copy_jdk_into_archive(output_zip, archive_file, input_file) else: zipinfo = zipfile.ZipInfo(archive_file, (1980, 1, 1, 0, 0, 0)) zipinfo.external_attr = 0o755 << 16 if is_executable( input_file) else 0o644 << 16 zipinfo.compress_type = zipfile.ZIP_DEFLATED with open(input_file, 'rb') as f: output_zip.writestr(zipinfo, f.read()) if __name__ == '__main__': main()
the-stack_0_11603
# Copyright 2016 PerfKitBenchmarker Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Functions for checking that required Python packages are installed.""" from collections import deque import os import pkg_resources from perfkitbenchmarker import errors # Path of the root of the current git branch. _BRANCH_ROOT_DIR = os.path.dirname(os.path.dirname(__file__)) def _CheckRequirements(requirements_file_path): """Checks that all package requirements specified in a file are met. Args: requirements_file_path: string. Path to a pip requirements file. """ with open(requirements_file_path, 'rb') as fp: requirements_to_check = [(requirements_file_path, deque(fp.readlines()))] try: while requirements_to_check: file_path, lines = requirements_to_check.pop() while lines: line = lines.popleft().strip() if line.startswith('-r'): requirements_to_check.append((file_path, lines)) file_path = os.path.join(os.path.dirname(file_path), line[2:]) with open(file_path, 'rb') as fp: lines = deque(fp.readlines()) elif line: pkg_resources.require(line) except (pkg_resources.DistributionNotFound, pkg_resources.VersionConflict) as e: # In newer versions of setuptools, these exception classes have a report # method that provides a readable description of the error. report = getattr(e, 'report', None) err_msg = report() if report else str(e) raise errors.Setup.PythonPackageRequirementUnfulfilled( 'A Python package requirement was not met while checking "{path}": ' '{msg}{linesep}To install required packages, execute the following ' 'command:{linesep}pip install -r "{path}"{linesep}To bypass package ' 'requirement checks, run PerfKit Benchmarker with the ' '--ignore_package_requirements flag.'.format( linesep=os.linesep, msg=err_msg, path=requirements_file_path)) def CheckBasicRequirements(): """Checks that all basic package requirements are met. The basic requirements include packages used by modules that are imported regardless of the specified cloud providers. The list of required packages and versions is found in the requirements.txt file in the git branch's root directory. If such a file does not exist, then the requirements check is skipped. """ requirements_file_path = os.path.join(_BRANCH_ROOT_DIR, 'requirements.txt') if os.path.isfile(requirements_file_path): _CheckRequirements(requirements_file_path) def CheckProviderRequirements(provider): """Checks that all provider-specific requirements are met. The provider-specific requirements include packages used by modules that are imported when using a particular cloud provider. The list of required packages is found in the requirements-<provider>.txt file in the git branch's root directory. If such a file does not exist, then no additional requirements are necessary. Args: provider: string. Lowercase name of the cloud provider (e.g. 'gcp'). """ requirements_file_path = os.path.join( _BRANCH_ROOT_DIR, 'perfkitbenchmarker', 'providers', provider, 'requirements.txt') if os.path.isfile(requirements_file_path): _CheckRequirements(requirements_file_path)
the-stack_0_11604
"""Load a layout in Blender.""" from pathlib import Path from pprint import pformat from typing import Dict, Optional import bpy import json from avalon import api from avalon.blender.pipeline import AVALON_CONTAINERS from avalon.blender.pipeline import AVALON_CONTAINER_ID from avalon.blender.pipeline import AVALON_PROPERTY from avalon.blender.pipeline import AVALON_INSTANCES from openpype.hosts.blender.api import plugin class JsonLayoutLoader(plugin.AssetLoader): """Load layout published from Unreal.""" families = ["layout"] representations = ["json"] label = "Load Layout" icon = "code-fork" color = "orange" animation_creator_name = "CreateAnimation" def _remove(self, asset_group): objects = list(asset_group.children) for obj in objects: api.remove(obj.get(AVALON_PROPERTY)) def _remove_animation_instances(self, asset_group): instances = bpy.data.collections.get(AVALON_INSTANCES) if instances: for obj in list(asset_group.children): anim_collection = instances.children.get( obj.name + "_animation") if anim_collection: bpy.data.collections.remove(anim_collection) def _get_loader(self, loaders, family): name = "" if family == 'rig': name = "BlendRigLoader" elif family == 'model': name = "BlendModelLoader" if name == "": return None for loader in loaders: if loader.__name__ == name: return loader return None def _process(self, libpath, asset, asset_group, actions): bpy.ops.object.select_all(action='DESELECT') with open(libpath, "r") as fp: data = json.load(fp) all_loaders = api.discover(api.Loader) for element in data: reference = element.get('reference') family = element.get('family') loaders = api.loaders_from_representation(all_loaders, reference) loader = self._get_loader(loaders, family) if not loader: continue instance_name = element.get('instance_name') action = None if actions: action = actions.get(instance_name, None) options = { 'parent': asset_group, 'transform': element.get('transform'), 'action': action, 'create_animation': True if family == 'rig' else False, 'animation_asset': asset } # This should return the loaded asset, but the load call will be # added to the queue to run in the Blender main thread, so # at this time it will not return anything. The assets will be # loaded in the next Blender cycle, so we use the options to # set the transform, parent and assign the action, if there is one. api.load( loader, reference, namespace=instance_name, options=options ) def process_asset(self, context: dict, name: str, namespace: Optional[str] = None, options: Optional[Dict] = None): """ Arguments: name: Use pre-defined name namespace: Use pre-defined namespace context: Full parenthood of representation to load options: Additional settings dictionary """ libpath = self.fname asset = context["asset"]["name"] subset = context["subset"]["name"] asset_name = plugin.asset_name(asset, subset) unique_number = plugin.get_unique_number(asset, subset) group_name = plugin.asset_name(asset, subset, unique_number) namespace = namespace or f"{asset}_{unique_number}" avalon_container = bpy.data.collections.get(AVALON_CONTAINERS) if not avalon_container: avalon_container = bpy.data.collections.new(name=AVALON_CONTAINERS) bpy.context.scene.collection.children.link(avalon_container) asset_group = bpy.data.objects.new(group_name, object_data=None) asset_group.empty_display_type = 'SINGLE_ARROW' avalon_container.objects.link(asset_group) self._process(libpath, asset, asset_group, None) bpy.context.scene.collection.objects.link(asset_group) asset_group[AVALON_PROPERTY] = { "schema": "openpype:container-2.0", "id": AVALON_CONTAINER_ID, "name": name, "namespace": namespace or '', "loader": str(self.__class__.__name__), "representation": str(context["representation"]["_id"]), "libpath": libpath, "asset_name": asset_name, "parent": str(context["representation"]["parent"]), "family": context["representation"]["context"]["family"], "objectName": group_name } self[:] = asset_group.children return asset_group.children def exec_update(self, container: Dict, representation: Dict): """Update the loaded asset. This will remove all objects of the current collection, load the new ones and add them to the collection. If the objects of the collection are used in another collection they will not be removed, only unlinked. Normally this should not be the case though. """ object_name = container["objectName"] asset_group = bpy.data.objects.get(object_name) libpath = Path(api.get_representation_path(representation)) extension = libpath.suffix.lower() self.log.info( "Container: %s\nRepresentation: %s", pformat(container, indent=2), pformat(representation, indent=2), ) assert asset_group, ( f"The asset is not loaded: {container['objectName']}" ) assert libpath, ( "No existing library file found for {container['objectName']}" ) assert libpath.is_file(), ( f"The file doesn't exist: {libpath}" ) assert extension in plugin.VALID_EXTENSIONS, ( f"Unsupported file: {libpath}" ) metadata = asset_group.get(AVALON_PROPERTY) group_libpath = metadata["libpath"] normalized_group_libpath = ( str(Path(bpy.path.abspath(group_libpath)).resolve()) ) normalized_libpath = ( str(Path(bpy.path.abspath(str(libpath))).resolve()) ) self.log.debug( "normalized_group_libpath:\n %s\nnormalized_libpath:\n %s", normalized_group_libpath, normalized_libpath, ) if normalized_group_libpath == normalized_libpath: self.log.info("Library already loaded, not updating...") return actions = {} for obj in asset_group.children: obj_meta = obj.get(AVALON_PROPERTY) if obj_meta.get('family') == 'rig': rig = None for child in obj.children: if child.type == 'ARMATURE': rig = child break if not rig: raise Exception("No armature in the rig asset group.") if rig.animation_data and rig.animation_data.action: namespace = obj_meta.get('namespace') actions[namespace] = rig.animation_data.action mat = asset_group.matrix_basis.copy() self._remove_animation_instances(asset_group) self._remove(asset_group) self._process(str(libpath), asset_group, actions) asset_group.matrix_basis = mat metadata["libpath"] = str(libpath) metadata["representation"] = str(representation["_id"]) def exec_remove(self, container: Dict) -> bool: """Remove an existing container from a Blender scene. Arguments: container (openpype:container-1.0): Container to remove, from `host.ls()`. Returns: bool: Whether the container was deleted. """ object_name = container["objectName"] asset_group = bpy.data.objects.get(object_name) if not asset_group: return False self._remove_animation_instances(asset_group) self._remove(asset_group) bpy.data.objects.remove(asset_group) return True
the-stack_0_11606
# Copyright 2019 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Numpy implementations of `tf.signal` functions.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow_probability.python.internal.backend.numpy import _utils as utils __all__ = [ 'fft', 'fft2d', 'fft3d', 'ifft', 'ifft2d', 'ifft3d', 'irfft', 'irfft2d', 'irfft3d', 'rfft', 'rfft2d', 'rfft3d', ] fft = utils.copy_docstring( 'tf.signal.fft', lambda input, name=None: np.fft.fftn(input, axes=[-1])) fft2d = utils.copy_docstring( 'tf.signal.fft2d', lambda input, name=None: np.fft.fftn(input, axes=[-2, -1])) fft3d = utils.copy_docstring( 'tf.signal.fft3d', lambda input, name=None: np.fft.fftn(input, axes=[-3, -2, -1])) ifft = utils.copy_docstring( 'tf.signal.ifft', lambda input, name=None: np.fft.ifftn(input, axes=[-1])) ifft2d = utils.copy_docstring( 'tf.signal.ifft2d', lambda input, name=None: np.fft.ifftn(input, axes=[-2, -1])) ifft3d = utils.copy_docstring( 'tf.signal.ifft3d', lambda input, name=None: np.fft.ifftn(input, axes=[-3, -2, -1])) rfft = utils.copy_docstring( 'tf.signal.rfft', lambda input, fft_length=None, name=None: np.fft.rfftn( # pylint:disable=g-long-lambda input, s=fft_length, axes=[-1])) rfft2d = utils.copy_docstring( 'tf.signal.rfft2d', lambda input, fft_length=None, name=None: np.fft.rfftn( # pylint:disable=g-long-lambda input, s=fft_length, axes=[-2, -1])) rfft3d = utils.copy_docstring( 'tf.signal.rfft3d', lambda input, fft_length=None, name=None: np.fft.rfftn( # pylint:disable=g-long-lambda input, s=fft_length, axes=[-3, -2, -1])) irfft = utils.copy_docstring( 'tf.signal.irfft', lambda input, fft_length=None, name=None: np.fft.irfftn( # pylint:disable=g-long-lambda input, s=fft_length, axes=[-1])) irfft2d = utils.copy_docstring( 'tf.signal.irfft2d', lambda input, fft_length=None, name=None: np.fft.irfftn( # pylint:disable=g-long-lambda input, s=fft_length, axes=[-2, -1])) irfft3d = utils.copy_docstring( 'tf.signal.irfft3d', lambda input, fft_length=None, name=None: np.fft.irfftn( # pylint:disable=g-long-lambda input, s=fft_length, axes=[-3, -2, -1]))
the-stack_0_11607
import re import django.forms def get_cleaned_text_file_content(uploaded_file): """Read uploaded file, try to fix up encoding to UTF-8 and transform line endings into Unix style, then return the content as a UTF-8 string. Errors are reported as django.forms.ValidationError exceptions.""" if not uploaded_file: return u"" if uploaded_file.size and uploaded_file.size > 10 * 1000 * 1000: raise django.forms.ValidationError("Text file too large (size %s)." % uploaded_file.size) content = "".join(uploaded_file.chunks()) # try to fixup encoding import magic if hasattr(magic, "open"): m = magic.open(magic.MAGIC_MIME) m.load() filetype = m.buffer(content) else: m = magic.Magic() m.cookie = magic.magic_open(magic.MAGIC_NONE | magic.MAGIC_MIME | magic.MAGIC_MIME_ENCODING) magic.magic_load(m.cookie, None) filetype = m.from_buffer(content) if not filetype.startswith("text"): raise django.forms.ValidationError("Uploaded file does not appear to be a text file.") match = re.search("charset=([\w-]+)", filetype) if not match: raise django.forms.ValidationError("File has unknown encoding.") encoding = match.group(1) if "ascii" not in encoding: try: content = content.decode(encoding) except Exception as e: raise django.forms.ValidationError("Error decoding file (%s). Try submitting with UTF-8 encoding or remove non-ASCII characters." % str(e)) # turn line-endings into Unix style content = content.replace("\r\n", "\n").replace("\r", "\n") return content.encode("utf-8")
the-stack_0_11609
#!/usr/bin/python3 import spidev import time tx_array = [0]*512 # Split an integer input into a two byte array to send via SPI def write_pot(input): print(input) msb = input >> 8 lsb = input & 0xFF print(spi.xfer([msb,lsb,msb,lsb])) if __name__ == '__main__': spi = spidev.SpiDev() ret = spi.open(0, 0) print("Spi.open = ", ret) spi.max_speed_hz = 30000 spi.mode = 0 print("Started SPIDEV = ", spi) data = 0x555 while True: # print("Hello, I'm MMRPi-Hardware Energomera Library") time.sleep(0.5) data = data + 1 write_pot(data) # break
the-stack_0_11610
safety_hotline_meta = { 'attributes': { 'primary': { 'field': 'description', 'name': 'Description', }, 'secondary': { 'field': None, 'name': None, }, }, 'dates': { 'date_attribute': 'date_created', 'date_granularity': 'year', 'default_date_filter': '2017', 'min_date': '2008', 'max_date': '2018' }, } crash_meta = { 'attributes': { 'primary': { 'field': 'crash_dt', 'name': 'Crash Date', }, 'secondary': { 'field': None, 'name': None, }, }, 'dates': { 'date_attribute': 'crash_dt', 'date_granularity': 'year', 'default_date_filter': '2014', 'min_date': '2004', 'max_date': '2014' }, } block_change_meta = { 'attributes': { 'primary': { 'field': 'stops_pct_change', 'name': 'Ridership Change from 2009 to 2017', 'visualization': { 'type': 'Text', 'comparison_value': None, 'comparison_name': None, }, }, 'secondary': { 'field': None, 'name': None, }, }, 'dates': { 'date_attribute': None, 'date_granularity': None, 'default_date_filter': '2017', 'min_date': None, 'max_date': None }, } route_change_meta = { 'attributes': { 'primary': { 'field': 'pct_change', 'name': 'Ridership Change from 2009 to 2017', }, 'secondary': { 'field': None, 'name': None, }, }, 'dates': { 'date_attribute': None, 'date_granularity': None, 'default_date_filter': '2017', 'min_date': None, 'max_date': None }, } sensors_meta = { 'attributes': { 'primary': { 'field': None, 'name': None, }, 'secondary': { 'field': None, 'name': None, }, }, 'dates': { 'date_attribute': None, 'date_granularity': None, 'default_date_filter': '2018', 'min_date': None, 'max_date': None }, }
the-stack_0_11612
#cfgfactory.py import utility import numpy.random import cfg import logging class CFGFactory: def __init__(self): self.number_terminals = 100 self.number_nonterminals = 5 self.binary_rules = 40 self.lexical_rules = 100 self.strict_cnf = True def generate_nonterminals(self): nonterminals = [ 'S'] for i in range(1,self.number_nonterminals): nonterminals.append("NT" + str(i)) return nonterminals def sample_uniform(self, lp=0.5,bp = 0.5): """ Sample all productions Bernoulli for lexical and binary. Default 0.5. """ lexicon = list(utility.generate_lexicon(self.number_terminals)) #print("Lexicon",lexicon,self.number_terminals) nonterminals = self.generate_nonterminals() productions = [] for a in nonterminals: for b in lexicon: if numpy.random.random() < lp: productions.append((a,b)) for a in nonterminals: for b in nonterminals[1:]: for c in nonterminals[1:]: if numpy.random.random() < bp: productions.append((a,b,c)) my_cfg = cfg.CFG() my_cfg.start = nonterminals[0] my_cfg.nonterminals = set(nonterminals) my_cfg.terminals = set(lexicon) my_cfg.productions = productions return my_cfg def sample_full(self): lexicon = list(utility.generate_lexicon(self.number_terminals)) #print("Lexicon",lexicon,self.number_terminals) nonterminals = self.generate_nonterminals() lprods = set() bprods= set() for a in nonterminals: for b in lexicon: lprods.add((a,b)) for a in nonterminals: for b in nonterminals[1:]: for c in nonterminals[1:]: bprods.add((a,b,c)) my_cfg = cfg.CFG() my_cfg.start = nonterminals[0] my_cfg.nonterminals = set(nonterminals) my_cfg.terminals = set(lexicon) my_cfg.productions = lprods | bprods #print(my_cfg.terminals) return my_cfg def sample_trim(self): """ Sample one and then trim it. return the trim one. If empty, raise an exception. """ my_cfg = self.sample_raw() #print([ prod for prod in my_cfg.productions if len(prod) == 2 and prod[0] == 'S']) logging.info("CFG nominally has %d nonterminals, %d terminals, %d binary_rules and %d lexical rules", self.number_nonterminals,self.number_terminals,self.binary_rules,self.lexical_rules) ts = my_cfg.compute_trim_set() if len(ts) == 0: # empty language raise ValueError("Empty language") prods = my_cfg.compute_usable_productions(ts) terminals = set() for prod in prods: if len(prod) == 2: terminals.add(prod[1]) tcfg = cfg.CFG() tcfg.start = my_cfg.start tcfg.terminals = terminals tcfg.nonterminals = ts tcfg.productions = set(prods) logging.info("Final CFG has %d nonterminals, %d terminals, %d binary_rules and %d lexical rules", len(tcfg.nonterminals), len(tcfg.terminals), len([prod for prod in tcfg.productions if len(prod) == 3]), len([prod for prod in tcfg.productions if len(prod) == 2])) return tcfg def sample_raw(self): """ return a CFG """ lexicon = list(utility.generate_lexicon(self.number_terminals)) #DEBUGGING lexicon.sort() print(lexicon[0],lexicon[-1]) nonterminals = self.generate_nonterminals() lprods = set() bprods= set() lexicon_size = len(lexicon) while len(lprods) < self.lexical_rules: lhs = numpy.random.choice(nonterminals) rhs = lexicon[numpy.random.choice(range(lexicon_size))] lprods.add( (lhs,rhs)) print(lhs,rhs) while len(bprods) < self.binary_rules: if self.strict_cnf: a = numpy.random.choice(nonterminals) b,c = numpy.random.choice(nonterminals[1:],size=2) else: a,b,c = numpy.random.choice(nonterminals,size=3) bprods.add( (a,b,c)) print(a,b,c) my_cfg = cfg.CFG() my_cfg.start = nonterminals[0] my_cfg.nonterminals = set(nonterminals) my_cfg.terminals = set(lexicon) my_cfg.productions = lprods | bprods return my_cfg
the-stack_0_11614
from PIL import Image class Painter: def __init__(self, k, palette_name, color): self.k = k self.palette_name = palette_name self.color = color self.ctr = 0 # for frames def format_frame(self,n): return f"frames/{self.palette_name}-{self.k}-{n}.png" def current_frame_name(self): self.ctr += 1 return self.format_frame(self.ctr-1) def save_to_image(self, grid, filename): k = self.k color = self.color n = len(grid) # assume grid is square, too lazy to generalize wall = k//2 with Image.new('RGB',(k*n+2*wall,k*n+2*wall)) as painting: for i in range(k*n+2*wall): for j in range(wall): painting.putpixel((i,j),(0,0,0)) painting.putpixel((i,k*n+2*wall-j-1),(0,0,0)) painting.putpixel((j,i),(0,0,0)) painting.putpixel((k*n+2*wall-j-1,i),(0,0,0)) for i in range(k*n): for j in range(k*n): painting.putpixel((i+wall,j+wall),color[grid[i//k][j//k]]) painting.save(filename,"PNG") print(f"Created {filename}")
the-stack_0_11615
# This file is a part of OpenCV project. # It is a subject to the license terms in the LICENSE file found in the top-level directory # of this distribution and at http://opencv.org/license.html. # # Copyright (C) 2018, Intel Corporation, all rights reserved. # Third party copyrights are property of their respective owners. # # Use this script to get the text graph representation (.pbtxt) of SSD-based # deep learning network trained in TensorFlow Object Detection API. # Then you can import it with a binary frozen graph (.pb) using readNetFromTensorflow() function. # See details and examples on the following wiki page: https://github.com/opencv/opencv/wiki/TensorFlow-Object-Detection-API import argparse import re from math import sqrt from tf_text_graph_common import * class SSDAnchorGenerator: def __init__(self, min_scale, max_scale, num_layers, aspect_ratios, reduce_boxes_in_lowest_layer, image_width, image_height): self.min_scale = min_scale self.aspect_ratios = aspect_ratios self.reduce_boxes_in_lowest_layer = reduce_boxes_in_lowest_layer self.image_width = image_width self.image_height = image_height self.scales = [min_scale + (max_scale - min_scale) * i / (num_layers - 1) for i in range(num_layers)] + [1.0] def get(self, layer_id): if layer_id == 0 and self.reduce_boxes_in_lowest_layer: widths = [0.1, self.min_scale * sqrt(2.0), self.min_scale * sqrt(0.5)] heights = [0.1, self.min_scale / sqrt(2.0), self.min_scale / sqrt(0.5)] else: widths = [self.scales[layer_id] * sqrt(ar) for ar in self.aspect_ratios] heights = [self.scales[layer_id] / sqrt(ar) for ar in self.aspect_ratios] widths += [sqrt(self.scales[layer_id] * self.scales[layer_id + 1])] heights += [sqrt(self.scales[layer_id] * self.scales[layer_id + 1])] min_size = min(self.image_width, self.image_height) widths = [w * min_size for w in widths] heights = [h * min_size for h in heights] return widths, heights class MultiscaleAnchorGenerator: def __init__(self, min_level, aspect_ratios, scales_per_octave, anchor_scale): self.min_level = min_level self.aspect_ratios = aspect_ratios self.anchor_scale = anchor_scale self.scales = [2**(float(s) / scales_per_octave) for s in range(scales_per_octave)] def get(self, layer_id): widths = [] heights = [] for a in self.aspect_ratios: for s in self.scales: base_anchor_size = 2**(self.min_level + layer_id) * self.anchor_scale ar = sqrt(a) heights.append(base_anchor_size * s / ar) widths.append(base_anchor_size * s * ar) return widths, heights def createSSDGraph(modelPath, configPath, outputPath): # Nodes that should be kept. keepOps = ['Conv2D', 'BiasAdd', 'Add', 'AddV2', 'Relu', 'Relu6', 'Placeholder', 'FusedBatchNorm', 'DepthwiseConv2dNative', 'ConcatV2', 'Mul', 'MaxPool', 'AvgPool', 'Identity', 'Sub', 'ResizeNearestNeighbor', 'Pad', 'FusedBatchNormV3', 'Mean'] # Node with which prefixes should be removed prefixesToRemove = ('MultipleGridAnchorGenerator/', 'Concatenate/', 'Postprocessor/', 'Preprocessor/map') # Load a config file. config = readTextMessage(configPath) config = config['model'][0]['ssd'][0] num_classes = int(config['num_classes'][0]) fixed_shape_resizer = config['image_resizer'][0]['fixed_shape_resizer'][0] image_width = int(fixed_shape_resizer['width'][0]) image_height = int(fixed_shape_resizer['height'][0]) box_predictor = 'convolutional' if 'convolutional_box_predictor' in config['box_predictor'][0] else 'weight_shared_convolutional' anchor_generator = config['anchor_generator'][0] if 'ssd_anchor_generator' in anchor_generator: ssd_anchor_generator = anchor_generator['ssd_anchor_generator'][0] min_scale = float(ssd_anchor_generator['min_scale'][0]) max_scale = float(ssd_anchor_generator['max_scale'][0]) num_layers = int(ssd_anchor_generator['num_layers'][0]) aspect_ratios = [float(ar) for ar in ssd_anchor_generator['aspect_ratios']] reduce_boxes_in_lowest_layer = True if 'reduce_boxes_in_lowest_layer' in ssd_anchor_generator: reduce_boxes_in_lowest_layer = ssd_anchor_generator['reduce_boxes_in_lowest_layer'][0] == 'true' priors_generator = SSDAnchorGenerator(min_scale, max_scale, num_layers, aspect_ratios, reduce_boxes_in_lowest_layer, image_width, image_height) print('Scale: [%f-%f]' % (min_scale, max_scale)) print('Aspect ratios: %s' % str(aspect_ratios)) print('Reduce boxes in the lowest layer: %s' % str(reduce_boxes_in_lowest_layer)) elif 'multiscale_anchor_generator' in anchor_generator: multiscale_anchor_generator = anchor_generator['multiscale_anchor_generator'][0] min_level = int(multiscale_anchor_generator['min_level'][0]) max_level = int(multiscale_anchor_generator['max_level'][0]) anchor_scale = float(multiscale_anchor_generator['anchor_scale'][0]) aspect_ratios = [float(ar) for ar in multiscale_anchor_generator['aspect_ratios']] scales_per_octave = int(multiscale_anchor_generator['scales_per_octave'][0]) num_layers = max_level - min_level + 1 priors_generator = MultiscaleAnchorGenerator(min_level, aspect_ratios, scales_per_octave, anchor_scale) print('Levels: [%d-%d]' % (min_level, max_level)) print('Anchor scale: %f' % anchor_scale) print('Scales per octave: %d' % scales_per_octave) print('Aspect ratios: %s' % str(aspect_ratios)) else: print('Unknown anchor_generator') exit(0) print('Number of classes: %d' % num_classes) print('Number of layers: %d' % num_layers) print('box predictor: %s' % box_predictor) print('Input image size: %dx%d' % (image_width, image_height)) # Read the graph. outNames = ['num_detections', 'detection_scores', 'detection_boxes', 'detection_classes'] writeTextGraph(modelPath, outputPath, outNames) graph_def = parseTextGraph(outputPath) def getUnconnectedNodes(): unconnected = [] for node in graph_def.node: unconnected.append(node.name) for inp in node.input: if inp in unconnected: unconnected.remove(inp) return unconnected def fuse_nodes(nodesToKeep): # Detect unfused batch normalization nodes and fuse them. # Add_0 <-- moving_variance, add_y # Rsqrt <-- Add_0 # Mul_0 <-- Rsqrt, gamma # Mul_1 <-- input, Mul_0 # Mul_2 <-- moving_mean, Mul_0 # Sub_0 <-- beta, Mul_2 # Add_1 <-- Mul_1, Sub_0 nodesMap = {node.name: node for node in graph_def.node} subgraphBatchNorm = ['Add', ['Mul', 'input', ['Mul', ['Rsqrt', ['Add', 'moving_variance', 'add_y']], 'gamma']], ['Sub', 'beta', ['Mul', 'moving_mean', 'Mul_0']]] subgraphBatchNormV2 = ['AddV2', ['Mul', 'input', ['Mul', ['Rsqrt', ['AddV2', 'moving_variance', 'add_y']], 'gamma']], ['Sub', 'beta', ['Mul', 'moving_mean', 'Mul_0']]] # Detect unfused nearest neighbor resize. subgraphResizeNN = ['Reshape', ['Mul', ['Reshape', 'input', ['Pack', 'shape_1', 'shape_2', 'shape_3', 'shape_4', 'shape_5']], 'ones'], ['Pack', ['StridedSlice', ['Shape', 'input'], 'stack', 'stack_1', 'stack_2'], 'out_height', 'out_width', 'out_channels']] def checkSubgraph(node, targetNode, inputs, fusedNodes): op = targetNode[0] if node.op == op and (len(node.input) >= len(targetNode) - 1): fusedNodes.append(node) for i, inpOp in enumerate(targetNode[1:]): if isinstance(inpOp, list): if not node.input[i] in nodesMap or \ not checkSubgraph(nodesMap[node.input[i]], inpOp, inputs, fusedNodes): return False else: inputs[inpOp] = node.input[i] return True else: return False nodesToRemove = [] for node in graph_def.node: inputs = {} fusedNodes = [] if checkSubgraph(node, subgraphBatchNorm, inputs, fusedNodes) or \ checkSubgraph(node, subgraphBatchNormV2, inputs, fusedNodes): name = node.name node.Clear() node.name = name node.op = 'FusedBatchNorm' node.input.append(inputs['input']) node.input.append(inputs['gamma']) node.input.append(inputs['beta']) node.input.append(inputs['moving_mean']) node.input.append(inputs['moving_variance']) node.addAttr('epsilon', 0.001) nodesToRemove += fusedNodes[1:] inputs = {} fusedNodes = [] if checkSubgraph(node, subgraphResizeNN, inputs, fusedNodes): name = node.name node.Clear() node.name = name node.op = 'ResizeNearestNeighbor' node.input.append(inputs['input']) node.input.append(name + '/output_shape') out_height_node = nodesMap[inputs['out_height']] out_width_node = nodesMap[inputs['out_width']] out_height = int(out_height_node.attr['value']['tensor'][0]['int_val'][0]) out_width = int(out_width_node.attr['value']['tensor'][0]['int_val'][0]) shapeNode = NodeDef() shapeNode.name = name + '/output_shape' shapeNode.op = 'Const' shapeNode.addAttr('value', [out_height, out_width]) graph_def.node.insert(graph_def.node.index(node), shapeNode) nodesToKeep.append(shapeNode.name) nodesToRemove += fusedNodes[1:] for node in nodesToRemove: graph_def.node.remove(node) nodesToKeep = [] fuse_nodes(nodesToKeep) removeIdentity(graph_def) def to_remove(name, op): return (not name in nodesToKeep) and \ (op == 'Const' or (not op in keepOps) or name.startswith(prefixesToRemove)) removeUnusedNodesAndAttrs(to_remove, graph_def) # Connect input node to the first layer assert(graph_def.node[0].op == 'Placeholder') try: input_shape = graph_def.node[0].attr['shape']['shape'][0]['dim'] input_shape[1]['size'] = image_height input_shape[2]['size'] = image_width except: print("Input shapes are undefined") # assert(graph_def.node[1].op == 'Conv2D') weights = graph_def.node[1].input[-1] for i in range(len(graph_def.node[1].input)): graph_def.node[1].input.pop() graph_def.node[1].input.append(graph_def.node[0].name) graph_def.node[1].input.append(weights) # check and correct the case when preprocessing block is after input preproc_id = "Preprocessor/" if graph_def.node[2].name.startswith(preproc_id) and \ graph_def.node[2].input[0].startswith(preproc_id): if not any(preproc_id in inp for inp in graph_def.node[3].input): graph_def.node[3].input.insert(0, graph_def.node[2].name) # Create SSD postprocessing head ############################################### # Concatenate predictions of classes, predictions of bounding boxes and proposals. def addConcatNode(name, inputs, axisNodeName): concat = NodeDef() concat.name = name concat.op = 'ConcatV2' for inp in inputs: concat.input.append(inp) concat.input.append(axisNodeName) graph_def.node.extend([concat]) addConstNode('concat/axis_flatten', [-1], graph_def) addConstNode('PriorBox/concat/axis', [-2], graph_def) for label in ['ClassPredictor', 'BoxEncodingPredictor' if box_predictor is 'convolutional' else 'BoxPredictor']: concatInputs = [] for i in range(num_layers): # Flatten predictions flatten = NodeDef() if box_predictor is 'convolutional': inpName = 'BoxPredictor_%d/%s/BiasAdd' % (i, label) else: if i == 0: inpName = 'WeightSharedConvolutionalBoxPredictor/%s/BiasAdd' % label else: inpName = 'WeightSharedConvolutionalBoxPredictor_%d/%s/BiasAdd' % (i, label) flatten.input.append(inpName) flatten.name = inpName + '/Flatten' flatten.op = 'Flatten' concatInputs.append(flatten.name) graph_def.node.extend([flatten]) addConcatNode('%s/concat' % label, concatInputs, 'concat/axis_flatten') num_matched_layers = 0 for node in graph_def.node: if re.match('BoxPredictor_\d/BoxEncodingPredictor/convolution', node.name) or \ re.match('BoxPredictor_\d/BoxEncodingPredictor/Conv2D', node.name) or \ re.match('WeightSharedConvolutionalBoxPredictor(_\d)*/BoxPredictor/Conv2D', node.name): node.addAttr('loc_pred_transposed', True) num_matched_layers += 1 assert(num_matched_layers == num_layers) # Add layers that generate anchors (bounding boxes proposals). priorBoxes = [] boxCoder = config['box_coder'][0] fasterRcnnBoxCoder = boxCoder['faster_rcnn_box_coder'][0] boxCoderVariance = [1.0/float(fasterRcnnBoxCoder['x_scale'][0]), 1.0/float(fasterRcnnBoxCoder['y_scale'][0]), 1.0/float(fasterRcnnBoxCoder['width_scale'][0]), 1.0/float(fasterRcnnBoxCoder['height_scale'][0])] for i in range(num_layers): priorBox = NodeDef() priorBox.name = 'PriorBox_%d' % i priorBox.op = 'PriorBox' if box_predictor is 'convolutional': priorBox.input.append('BoxPredictor_%d/BoxEncodingPredictor/BiasAdd' % i) else: if i == 0: priorBox.input.append('WeightSharedConvolutionalBoxPredictor/BoxPredictor/Conv2D') else: priorBox.input.append('WeightSharedConvolutionalBoxPredictor_%d/BoxPredictor/BiasAdd' % i) priorBox.input.append(graph_def.node[0].name) # image_tensor priorBox.addAttr('flip', False) priorBox.addAttr('clip', False) widths, heights = priors_generator.get(i) priorBox.addAttr('width', widths) priorBox.addAttr('height', heights) priorBox.addAttr('variance', boxCoderVariance) graph_def.node.extend([priorBox]) priorBoxes.append(priorBox.name) # Compare this layer's output with Postprocessor/Reshape addConcatNode('PriorBox/concat', priorBoxes, 'concat/axis_flatten') # Sigmoid for classes predictions and DetectionOutput layer addReshape('ClassPredictor/concat', 'ClassPredictor/concat3d', [0, -1, num_classes + 1], graph_def) sigmoid = NodeDef() sigmoid.name = 'ClassPredictor/concat/sigmoid' sigmoid.op = 'Sigmoid' sigmoid.input.append('ClassPredictor/concat3d') graph_def.node.extend([sigmoid]) addFlatten(sigmoid.name, sigmoid.name + '/Flatten', graph_def) detectionOut = NodeDef() detectionOut.name = 'detection_out' detectionOut.op = 'DetectionOutput' if box_predictor == 'convolutional': detectionOut.input.append('BoxEncodingPredictor/concat') else: detectionOut.input.append('BoxPredictor/concat') detectionOut.input.append(sigmoid.name + '/Flatten') detectionOut.input.append('PriorBox/concat') detectionOut.addAttr('num_classes', num_classes + 1) detectionOut.addAttr('share_location', True) detectionOut.addAttr('background_label_id', 0) postProcessing = config['post_processing'][0] batchNMS = postProcessing['batch_non_max_suppression'][0] if 'iou_threshold' in batchNMS: detectionOut.addAttr('nms_threshold', float(batchNMS['iou_threshold'][0])) else: detectionOut.addAttr('nms_threshold', 0.6) if 'score_threshold' in batchNMS: detectionOut.addAttr('confidence_threshold', float(batchNMS['score_threshold'][0])) else: detectionOut.addAttr('confidence_threshold', 0.01) if 'max_detections_per_class' in batchNMS: detectionOut.addAttr('top_k', int(batchNMS['max_detections_per_class'][0])) else: detectionOut.addAttr('top_k', 100) if 'max_total_detections' in batchNMS: detectionOut.addAttr('keep_top_k', int(batchNMS['max_total_detections'][0])) else: detectionOut.addAttr('keep_top_k', 100) detectionOut.addAttr('code_type', "CENTER_SIZE") graph_def.node.extend([detectionOut]) while True: unconnectedNodes = getUnconnectedNodes() unconnectedNodes.remove(detectionOut.name) if not unconnectedNodes: break for name in unconnectedNodes: for i in range(len(graph_def.node)): if graph_def.node[i].name == name: del graph_def.node[i] break # Save as text. graph_def.save(outputPath) if __name__ == "__main__": parser = argparse.ArgumentParser(description='Run this script to get a text graph of ' 'SSD model from TensorFlow Object Detection API. ' 'Then pass it with .pb file to cv::dnn::readNetFromTensorflow function.') parser.add_argument('--input', required=True, help='Path to frozen TensorFlow graph.') parser.add_argument('--output', required=True, help='Path to output text graph.') parser.add_argument('--config', required=True, help='Path to a *.config file is used for training.') args = parser.parse_args() createSSDGraph(args.input, args.config, args.output)
the-stack_0_11616
import datetime import os import time from uuid import UUID, uuid4 from django import forms as django_forms, http from django.conf import settings from django.core.exceptions import PermissionDenied from django.core.files.storage import default_storage as storage from django.db import transaction from django.db.models import Count from django.http import JsonResponse from django.shortcuts import get_object_or_404, redirect from django.template import loader from django.utils.http import is_safe_url from django.utils.translation import ugettext, ugettext_lazy as _ from django.views.decorators.cache import never_cache from django.views.decorators.csrf import csrf_exempt import waffle from django_statsd.clients import statsd import olympia.core.logger from olympia import amo from olympia.access import acl from olympia.accounts.utils import redirect_for_login from olympia.accounts.views import API_TOKEN_COOKIE, logout_user from olympia.activity.models import ActivityLog, VersionLog from olympia.activity.utils import log_and_notify from olympia.addons.models import ( Addon, AddonReviewerFlags, AddonUser, AddonUserPendingConfirmation) from olympia.addons.views import BaseFilter from olympia.amo import messages, utils as amo_utils from olympia.amo.decorators import json_view, login_required, post_required from olympia.amo.templatetags.jinja_helpers import absolutify, urlparams from olympia.amo.urlresolvers import get_url_prefix, reverse from olympia.amo.utils import MenuItem, escape_all, render, send_mail from olympia.api.models import APIKey, APIKeyConfirmation from olympia.devhub.decorators import dev_required, no_admin_disabled from olympia.devhub.models import BlogPost, RssKey from olympia.devhub.utils import ( add_dynamic_theme_tag, extract_theme_properties, fetch_existing_translations_from_addon, get_addon_akismet_reports, UploadRestrictionChecker, wizard_unsupported_properties) from olympia.files.models import File, FileUpload, FileValidation from olympia.files.utils import parse_addon from olympia.lib.crypto.signing import sign_file from olympia.reviewers.forms import PublicWhiteboardForm from olympia.reviewers.models import Whiteboard from olympia.reviewers.templatetags.jinja_helpers import get_position from olympia.reviewers.utils import ReviewHelper from olympia.users.models import DeveloperAgreementRestriction from olympia.versions.models import Version from olympia.versions.tasks import extract_version_source_to_git from olympia.versions.utils import get_next_version_number from olympia.zadmin.models import get_config from . import feeds, forms, signals, tasks log = olympia.core.logger.getLogger('z.devhub') # We use a session cookie to make sure people see the dev agreement. MDN_BASE = 'https://developer.mozilla.org/en-US/Add-ons' def get_fileupload_by_uuid_or_404(value): try: UUID(value) except ValueError: raise http.Http404() return get_object_or_404(FileUpload, uuid=value) class AddonFilter(BaseFilter): opts = (('updated', _(u'Updated')), ('name', _(u'Name')), ('created', _(u'Created')), ('popular', _(u'Downloads')), ('rating', _(u'Rating'))) class ThemeFilter(BaseFilter): opts = (('created', _(u'Created')), ('name', _(u'Name')), ('popular', _(u'Downloads')), ('rating', _(u'Rating'))) def addon_listing(request, theme=False): """Set up the queryset and filtering for addon listing for Dashboard.""" if theme: qs = Addon.objects.filter( authors=request.user, type=amo.ADDON_STATICTHEME) filter_cls = ThemeFilter default = 'created' else: qs = Addon.objects.filter(authors=request.user).exclude( type=amo.ADDON_STATICTHEME) filter_cls = AddonFilter default = 'updated' filter_ = filter_cls(request, qs, 'sort', default) return filter_.qs, filter_ def index(request): ctx = {'blog_posts': _get_posts()} if request.user.is_authenticated: user_addons = Addon.objects.filter(authors=request.user) recent_addons = user_addons.order_by('-modified')[:3] ctx['recent_addons'] = [] for addon in recent_addons: ctx['recent_addons'].append({'addon': addon, 'position': get_position(addon)}) return render(request, 'devhub/index.html', ctx) @login_required def dashboard(request, theme=False): addon_items = _get_items( None, Addon.objects.filter(authors=request.user))[:4] data = dict(rss=_get_rss_feed(request), blog_posts=_get_posts(), timestamp=int(time.time()), addon_tab=not theme, theme=theme, addon_items=addon_items) if data['addon_tab']: addons, data['filter'] = addon_listing(request) data['addons'] = amo_utils.paginate(request, addons, per_page=10) if theme: themes, data['filter'] = addon_listing(request, theme=True) data['themes'] = amo_utils.paginate(request, themes, per_page=10) if 'filter' in data: data['sorting'] = data['filter'].field data['sort_opts'] = data['filter'].opts return render(request, 'devhub/addons/dashboard.html', data) @dev_required def ajax_compat_status(request, addon_id, addon): if not (addon.accepts_compatible_apps() and addon.current_version): raise http.Http404() return render(request, 'devhub/addons/ajax_compat_status.html', dict(addon=addon)) @dev_required def ajax_compat_error(request, addon_id, addon): if not (addon.accepts_compatible_apps() and addon.current_version): raise http.Http404() return render(request, 'devhub/addons/ajax_compat_error.html', dict(addon=addon)) @dev_required def ajax_compat_update(request, addon_id, addon, version_id): if not addon.accepts_compatible_apps(): raise http.Http404() version = get_object_or_404(addon.versions.all(), pk=version_id) compat_form = forms.CompatFormSet( request.POST or None, queryset=version.apps.all().select_related('min', 'max'), form_kwargs={'version': version}) if request.method == 'POST' and compat_form.is_valid(): for compat in compat_form.save(commit=False): compat.version = version compat.save() for compat in compat_form.deleted_objects: compat.delete() for form in compat_form.forms: if (isinstance(form, forms.CompatForm) and 'max' in form.changed_data): _log_max_version_change(addon, version, form.instance) return render(request, 'devhub/addons/ajax_compat_update.html', dict(addon=addon, version=version, compat_form=compat_form)) def _get_addons(request, addons, addon_id, action): """Create a list of ``MenuItem``s for the activity feed.""" items = [] a = MenuItem() a.selected = (not addon_id) (a.text, a.url) = (ugettext('All My Add-ons'), reverse('devhub.feed_all')) if action: a.url += '?action=' + action items.append(a) for addon in addons: item = MenuItem() try: item.selected = (addon_id and addon.id == int(addon_id)) except ValueError: pass # We won't get here... EVER url = reverse('devhub.feed', args=[addon.slug]) if action: url += '?action=' + action item.text, item.url = addon.name, url items.append(item) return items def _get_posts(limit=5): return BlogPost.objects.order_by('-date_posted')[0:limit] def _get_activities(request, action): url = request.get_full_path() choices = (None, 'updates', 'status', 'collections', 'reviews') text = {None: ugettext('All Activity'), 'updates': ugettext('Add-on Updates'), 'status': ugettext('Add-on Status'), 'collections': ugettext('User Collections'), 'reviews': ugettext('User Reviews'), } items = [] for c in choices: i = MenuItem() i.text = text[c] i.url, i.selected = urlparams(url, page=None, action=c), (action == c) items.append(i) return items def _get_items(action, addons): filters = { 'updates': (amo.LOG.ADD_VERSION, amo.LOG.ADD_FILE_TO_VERSION), 'status': (amo.LOG.USER_DISABLE, amo.LOG.USER_ENABLE, amo.LOG.CHANGE_STATUS, amo.LOG.APPROVE_VERSION,), 'collections': (amo.LOG.ADD_TO_COLLECTION, amo.LOG.REMOVE_FROM_COLLECTION,), 'reviews': (amo.LOG.ADD_RATING,) } filter_ = filters.get(action) items = (ActivityLog.objects.for_addons(addons) .exclude(action__in=amo.LOG_HIDE_DEVELOPER)) if filter_: items = items.filter(action__in=[i.id for i in filter_]) return items def _get_rss_feed(request): key, _ = RssKey.objects.get_or_create(user=request.user) return urlparams(reverse('devhub.feed_all'), privaterss=key.key.hex) def feed(request, addon_id=None): if request.GET.get('privaterss'): return feeds.ActivityFeedRSS()(request) addon_selected = None if not request.user.is_authenticated: return redirect_for_login(request) else: addons_all = Addon.objects.filter(authors=request.user) if addon_id: addon = get_object_or_404(Addon.objects.id_or_slug(addon_id)) addons = addon # common query set try: key = RssKey.objects.get(addon=addons) except RssKey.DoesNotExist: key = RssKey.objects.create(addon=addons) addon_selected = addon.id rssurl = urlparams(reverse('devhub.feed', args=[addon_id]), privaterss=key.key.hex) if not acl.check_addon_ownership(request, addons, dev=True, ignore_disabled=True): raise PermissionDenied else: rssurl = _get_rss_feed(request) addon = None addons = addons_all action = request.GET.get('action') items = _get_items(action, addons) activities = _get_activities(request, action) addon_items = _get_addons(request, addons_all, addon_selected, action) pager = amo_utils.paginate(request, items, 20) data = dict(addons=addon_items, pager=pager, activities=activities, rss=rssurl, addon=addon) return render(request, 'devhub/addons/activity.html', data) @dev_required def edit(request, addon_id, addon): try: whiteboard = Whiteboard.objects.get(pk=addon.pk) except Whiteboard.DoesNotExist: whiteboard = Whiteboard(pk=addon.pk) previews = ( addon.current_version.previews.all() if addon.current_version and addon.has_per_version_previews else addon.previews.all()) header_preview = ( previews.first() if addon.type == amo.ADDON_STATICTHEME else None) data = { 'page': 'edit', 'addon': addon, 'whiteboard': whiteboard, 'editable': False, 'show_listed_fields': addon.has_listed_versions(), 'valid_slug': addon.slug, 'tags': addon.tags.not_denied().values_list('tag_text', flat=True), 'previews': previews, 'header_preview': header_preview, 'supported_image_types': amo.SUPPORTED_IMAGE_TYPES, } return render(request, 'devhub/addons/edit.html', data) @dev_required(owner_for_post=True) @post_required def delete(request, addon_id, addon): # Database deletes only allowed for free or incomplete addons. if not addon.can_be_deleted(): msg = ugettext( 'Add-on cannot be deleted. Disable this add-on instead.') messages.error(request, msg) return redirect(addon.get_dev_url('versions')) any_theme = addon.type == amo.ADDON_STATICTHEME form = forms.DeleteForm(request.POST, addon=addon) if form.is_valid(): reason = form.cleaned_data.get('reason', '') addon.delete(msg='Removed via devhub', reason=reason) messages.success( request, ugettext('Theme deleted.') if any_theme else ugettext('Add-on deleted.')) return redirect('devhub.%s' % ('themes' if any_theme else 'addons')) else: messages.error( request, ugettext('URL name was incorrect. Theme was not deleted.') if any_theme else ugettext('URL name was incorrect. Add-on was not deleted.')) return redirect(addon.get_dev_url('versions')) @dev_required @post_required def enable(request, addon_id, addon): addon.update(disabled_by_user=False) ActivityLog.create(amo.LOG.USER_ENABLE, addon) return redirect(addon.get_dev_url('versions')) @dev_required(owner_for_post=True) @post_required def cancel(request, addon_id, addon): if addon.status == amo.STATUS_NOMINATED: addon.update(status=amo.STATUS_NULL) ActivityLog.create(amo.LOG.CHANGE_STATUS, addon, addon.status) latest_version = addon.find_latest_version( channel=amo.RELEASE_CHANNEL_LISTED) if latest_version: for file_ in latest_version.files.filter( status=amo.STATUS_AWAITING_REVIEW): file_.update(status=amo.STATUS_DISABLED) return redirect(addon.get_dev_url('versions')) @dev_required @post_required def disable(request, addon_id, addon): # Also set the latest listed version to STATUS_DISABLED if it was # AWAITING_REVIEW, to not waste reviewers time. latest_version = addon.find_latest_version( channel=amo.RELEASE_CHANNEL_LISTED) if latest_version: latest_version.files.filter( status=amo.STATUS_AWAITING_REVIEW).update( status=amo.STATUS_DISABLED) addon.update_version() addon.update_status() addon.update(disabled_by_user=True) ActivityLog.create(amo.LOG.USER_DISABLE, addon) return redirect(addon.get_dev_url('versions')) # Can't use @dev_required, as the user is not a developer yet. Can't use # @addon_view_factory either, because it requires a developer for unlisted # add-ons. So we just @login_required and retrieve the addon ourselves in the # function. @login_required def invitation(request, addon_id): addon = get_object_or_404(Addon.objects.id_or_slug(addon_id)) try: invitation = AddonUserPendingConfirmation.objects.get( addon=addon, user=request.user) except AddonUserPendingConfirmation.DoesNotExist: # To be nice in case the user accidentally visited this page after # having accepted an invite, redirect to the add-on base edit page. # If they are an author, they will have access, otherwise will get the # appropriate error. return redirect(addon.get_dev_url()) if request.method == 'POST': value = request.POST.get('accept') if value == 'yes': # There is a potential race condition on the position, but it's # difficult to find a sensible value anyway. Should a position # conflict happen, owners can easily fix it themselves. last_position = AddonUser.objects.filter( addon=invitation.addon).order_by('position').values_list( 'position', flat=True).last() or 0 AddonUser.objects.create( addon=invitation.addon, user=invitation.user, role=invitation.role, listed=invitation.listed, position=last_position + 1) messages.success(request, ugettext('Invitation accepted.')) redirect_url = addon.get_dev_url() else: messages.success(request, ugettext('Invitation declined.')) redirect_url = reverse('devhub.addons') # Regardless of whether or not the invitation was accepted or not, # it's now obsolete. invitation.delete() return redirect(redirect_url) ctx = { 'addon': addon, 'invitation': invitation, } return render(request, 'devhub/addons/invitation.html', ctx) @dev_required(owner_for_post=True) def ownership(request, addon_id, addon): fs = [] ctx = {'addon': addon} post_data = request.POST if request.method == 'POST' else None # Authors. user_form = forms.AuthorFormSet( post_data, prefix='user_form', queryset=AddonUser.objects.filter(addon=addon).order_by('position'), form_kwargs={'addon': addon}) fs.append(user_form) ctx['user_form'] = user_form # Authors pending confirmation (owner can still remove them before they # accept). authors_pending_confirmation_form = forms.AuthorWaitingConfirmationFormSet( post_data, prefix='authors_pending_confirmation', queryset=AddonUserPendingConfirmation.objects.filter( addon=addon).order_by('id'), form_kwargs={'addon': addon}) fs.append(authors_pending_confirmation_form) ctx['authors_pending_confirmation_form'] = ( authors_pending_confirmation_form) # Versions. license_form = forms.LicenseForm(post_data, version=addon.current_version) ctx.update(license_form.get_context()) if ctx['license_form']: # if addon has a version fs.append(ctx['license_form']) # Policy. if addon.type != amo.ADDON_STATICTHEME: policy_form = forms.PolicyForm(post_data, addon=addon) ctx['policy_form'] = policy_form fs.append(policy_form) else: policy_form = None def mail_user_changes(author, title, template_part, recipients, extra_context=None): from olympia.amo.utils import send_mail context_data = { 'author': author, 'addon': addon, 'DOMAIN': settings.DOMAIN, } if extra_context: context_data.update(extra_context) template = loader.get_template( 'users/email/{part}.ltxt'.format(part=template_part)) send_mail(title, template.render(context_data), None, recipients, use_deny_list=False) def process_author_changes(source_form, existing_authors_emails): addon_users_to_process = source_form.save(commit=False) for addon_user in addon_users_to_process: action = None addon_user.addon = addon if not addon_user.pk: action = amo.LOG.ADD_USER_WITH_ROLE mail_user_changes( author=addon_user, title=ugettext('An author has been added to your add-on'), template_part='author_added', recipients=existing_authors_emails) mail_user_changes( author=addon_user, title=ugettext( 'Author invitation for {addon_name}').format( addon_name=str(addon.name)), template_part='author_added_confirmation', recipients=[addon_user.user.email], extra_context={'author_confirmation_link': absolutify( reverse('devhub.addons.invitation', args=(addon.slug,)) )}) messages.success(request, ugettext( 'A confirmation email has been sent to {email}').format( email=addon_user.user.email)) elif addon_user.role != addon_user._original_role: action = amo.LOG.CHANGE_USER_WITH_ROLE title = ugettext( 'An author role has been changed on your add-on') recipients = list( set(existing_authors_emails + [addon_user.user.email]) ) mail_user_changes( author=addon_user, title=title, template_part='author_changed', recipients=recipients) addon_user.save() if action: ActivityLog.create( action, addon_user.user, str(addon_user.get_role_display()), addon) for addon_user in source_form.deleted_objects: recipients = list( set(existing_authors_emails + [addon_user.user.email]) ) ActivityLog.create( amo.LOG.REMOVE_USER_WITH_ROLE, addon_user.user, str(addon_user.get_role_display()), addon) mail_user_changes( author=addon_user, title=ugettext('An author has been removed from your add-on'), template_part='author_removed', recipients=recipients) addon_user.delete() if request.method == 'POST' and all([form.is_valid() for form in fs]): if license_form in fs: license_form.save() if policy_form and policy_form in fs: policy_form.save() messages.success(request, ugettext('Changes successfully saved.')) existing_authors_emails = list( addon.authors.values_list('email', flat=True)) process_author_changes( authors_pending_confirmation_form, existing_authors_emails) process_author_changes( user_form, existing_authors_emails) return redirect(addon.get_dev_url('owner')) return render(request, 'devhub/addons/owner.html', ctx) @login_required def validate_addon(request): return render(request, 'devhub/validate_addon.html', {'title': ugettext('Validate Add-on'), 'new_addon_form': forms.DistributionChoiceForm()}) def handle_upload(filedata, request, channel, addon=None, is_standalone=False, submit=False): automated_signing = channel == amo.RELEASE_CHANNEL_UNLISTED user = request.user if request.user.is_authenticated else None upload = FileUpload.from_post( filedata, filedata.name, filedata.size, automated_signing=automated_signing, addon=addon, user=user) log.info('FileUpload created: %s' % upload.uuid.hex) from olympia.lib.akismet.tasks import akismet_comment_check # circ import if (channel == amo.RELEASE_CHANNEL_LISTED): existing_data = ( fetch_existing_translations_from_addon( upload.addon, ('name', 'summary', 'description')) if addon and addon.has_listed_versions() else ()) akismet_reports = get_addon_akismet_reports( user=user, user_agent=request.META.get('HTTP_USER_AGENT'), referrer=request.META.get('HTTP_REFERER'), upload=upload, existing_data=existing_data) else: akismet_reports = [] if akismet_reports: pretask = akismet_comment_check.si( [report.id for _, report in akismet_reports]) else: pretask = None if submit: tasks.validate_and_submit( addon, upload, channel=channel, pretask=pretask) else: tasks.validate( upload, listed=(channel == amo.RELEASE_CHANNEL_LISTED), pretask=pretask) return upload @login_required @post_required def upload(request, channel='listed', addon=None, is_standalone=False): channel = amo.CHANNEL_CHOICES_LOOKUP[channel] filedata = request.FILES['upload'] upload = handle_upload( filedata=filedata, request=request, addon=addon, is_standalone=is_standalone, channel=channel) if addon: return redirect('devhub.upload_detail_for_version', addon.slug, upload.uuid.hex) elif is_standalone: return redirect('devhub.standalone_upload_detail', upload.uuid.hex) else: return redirect('devhub.upload_detail', upload.uuid.hex, 'json') @post_required @dev_required def upload_for_version(request, addon_id, addon, channel): return upload(request, channel=channel, addon=addon) @login_required @json_view def standalone_upload_detail(request, uuid): upload = get_fileupload_by_uuid_or_404(uuid) url = reverse('devhub.standalone_upload_detail', args=[uuid]) return upload_validation_context(request, upload, url=url) @dev_required(submitting=True) @json_view def upload_detail_for_version(request, addon_id, addon, uuid): try: upload = get_fileupload_by_uuid_or_404(uuid) response = json_upload_detail(request, upload, addon_slug=addon.slug) statsd.incr('devhub.upload_detail_for_addon.success') return response except Exception as exc: statsd.incr('devhub.upload_detail_for_addon.error') log.error('Error checking upload status: {} {}'.format(type(exc), exc)) raise @dev_required(allow_reviewers=True) def file_validation(request, addon_id, addon, file_id): file_ = get_object_or_404(File, version__addon=addon, id=file_id) validate_url = reverse('devhub.json_file_validation', args=[addon.slug, file_.id]) file_url = reverse('files.list', args=[file_.id, 'file', '']) context = {'validate_url': validate_url, 'file_url': file_url, 'file': file_, 'filename': file_.filename, 'timestamp': file_.created, 'addon': addon, 'automated_signing': file_.automated_signing} if file_.has_been_validated: context['validation_data'] = file_.validation.processed_validation return render(request, 'devhub/validation.html', context) @csrf_exempt @dev_required(allow_reviewers=True) def json_file_validation(request, addon_id, addon, file_id): file = get_object_or_404(File, version__addon=addon, id=file_id) try: result = file.validation except FileValidation.DoesNotExist: if request.method != 'POST': return http.HttpResponseNotAllowed(['POST']) # This API is, unfortunately, synchronous, so wait for the # task to complete and return the result directly. pk = tasks.validate(file, synchronous=True).get() result = FileValidation.objects.get(pk=pk) response = JsonResponse({ 'validation': result.processed_validation, 'error': None, }) # See: https://github.com/mozilla/addons-server/issues/11048 response['Access-Control-Allow-Origin'] = settings.CODE_MANAGER_URL response['Access-Control-Allow-Methods'] = 'GET, OPTIONS' response['Access-Control-Allow-Headers'] = 'Content-Type' response['Access-Control-Allow-Credentials'] = 'true' return response @json_view def json_upload_detail(request, upload, addon_slug=None): addon = None if addon_slug: addon = get_object_or_404(Addon.objects, slug=addon_slug) result = upload_validation_context(request, upload, addon=addon) if result['validation']: try: pkg = parse_addon(upload, addon=addon, user=request.user) except django_forms.ValidationError as exc: # Don't add custom validation errors if we already # failed validation (This can happen because validation does # call `parse_addon` too.) if result['validation'].get('errors', 0): return result # This doesn't guard against client-side tinkering, and is purely # to display those non-linter errors nicely in the frontend. What # does prevent clients from bypassing those is the fact that we # always call parse_addon() before calling from_upload(), so # ValidationError would be raised before proceeding. for i, msg in enumerate(exc.messages): # Simulate a validation error so the UI displays # it as such result['validation']['messages'].insert( i, {'type': 'error', 'message': escape_all(msg), 'tier': 1, 'fatal': True}) if result['validation']['ending_tier'] < 1: result['validation']['ending_tier'] = 1 result['validation']['errors'] += 1 return json_view.error(result) else: result['addon_type'] = pkg.get('type', '') return result def upload_validation_context(request, upload, addon=None, url=None): if not url: if addon: url = reverse('devhub.upload_detail_for_version', args=[addon.slug, upload.uuid.hex]) else: url = reverse( 'devhub.upload_detail', args=[upload.uuid.hex, 'json']) full_report_url = reverse('devhub.upload_detail', args=[upload.uuid.hex]) validation = upload.processed_validation or '' return {'upload': upload.uuid.hex, 'validation': validation, 'error': None, 'url': url, 'full_report_url': full_report_url} def upload_detail(request, uuid, format='html'): upload = get_fileupload_by_uuid_or_404(uuid) if upload.user_id and not request.user.is_authenticated: return redirect_for_login(request) if format == 'json' or request.is_ajax(): try: response = json_upload_detail(request, upload) statsd.incr('devhub.upload_detail.success') return response except Exception as exc: statsd.incr('devhub.upload_detail.error') log.error('Error checking upload status: {} {}'.format( type(exc), exc)) raise validate_url = reverse('devhub.standalone_upload_detail', args=[upload.uuid.hex]) context = {'validate_url': validate_url, 'filename': upload.pretty_name, 'automated_signing': upload.automated_signing, 'timestamp': upload.created} if upload.validation: context['validation_data'] = upload.processed_validation return render(request, 'devhub/validation.html', context) @dev_required def addons_section(request, addon_id, addon, section, editable=False): show_listed = addon.has_listed_versions() static_theme = addon.type == amo.ADDON_STATICTHEME models = {} content_waffle = waffle.switch_is_active('content-optimization') if show_listed: models.update({ 'describe': (forms.DescribeForm if not content_waffle else forms.DescribeFormContentOptimization), 'additional_details': forms.AdditionalDetailsForm, 'technical': forms.AddonFormTechnical }) if not static_theme: models.update({'media': forms.AddonFormMedia}) else: models.update({ 'describe': (forms.DescribeFormUnlisted if not content_waffle else forms.DescribeFormUnlistedContentOptimization), 'additional_details': forms.AdditionalDetailsFormUnlisted, 'technical': forms.AddonFormTechnicalUnlisted }) if section not in models: raise http.Http404() tags, previews, restricted_tags = [], [], [] cat_form = dependency_form = whiteboard_form = None whiteboard = None if section == 'describe' and show_listed: category_form_class = (forms.SingleCategoryForm if static_theme else forms.CategoryFormSet) cat_form = category_form_class( request.POST or None, addon=addon, request=request) elif section == 'additional_details' and show_listed: tags = addon.tags.not_denied().values_list('tag_text', flat=True) restricted_tags = addon.tags.filter(restricted=True) elif section == 'media': previews = forms.PreviewFormSet( request.POST or None, prefix='files', queryset=addon.previews.all()) if section == 'technical': try: whiteboard = Whiteboard.objects.get(pk=addon.pk) except Whiteboard.DoesNotExist: whiteboard = Whiteboard(pk=addon.pk) whiteboard_form = PublicWhiteboardForm(request.POST or None, instance=whiteboard, prefix='whiteboard') # Get the slug before the form alters it to the form data. valid_slug = addon.slug if editable: if request.method == 'POST': form = models[section](request.POST, request.FILES, instance=addon, request=request) if form.is_valid() and (not previews or previews.is_valid()): addon = form.save(addon) if previews: for preview in previews.forms: preview.save(addon) editable = False if section == 'media': ActivityLog.create(amo.LOG.CHANGE_ICON, addon) else: ActivityLog.create(amo.LOG.EDIT_PROPERTIES, addon) valid_slug = addon.slug if cat_form: if cat_form.is_valid(): cat_form.save() else: editable = True if dependency_form: if dependency_form.is_valid(): dependency_form.save() else: editable = True if whiteboard_form: if whiteboard_form.is_valid(): whiteboard_form.save() else: editable = True else: form = models[section](instance=addon, request=request) else: form = False data = { 'addon': addon, 'whiteboard': whiteboard, 'show_listed_fields': show_listed, 'form': form, 'editable': editable, 'tags': tags, 'restricted_tags': restricted_tags, 'cat_form': cat_form, 'preview_form': previews, 'dependency_form': dependency_form, 'whiteboard_form': whiteboard_form, 'valid_slug': valid_slug, 'supported_image_types': amo.SUPPORTED_IMAGE_TYPES, } return render(request, 'devhub/addons/edit/%s.html' % section, data) @never_cache @dev_required @json_view def image_status(request, addon_id, addon): # Default icon needs no checking. if not addon.icon_type or addon.icon_type.split('/')[0] == 'icon': icons = True else: icons = storage.exists(os.path.join(addon.get_icon_dir(), '%s-32.png' % addon.id)) previews = all(storage.exists(p.thumbnail_path) for p in addon.previews.all()) return {'overall': icons and previews, 'icons': icons, 'previews': previews} @dev_required @json_view def upload_image(request, addon_id, addon, upload_type): errors = [] upload_hash = '' if 'upload_image' in request.FILES: upload_preview = request.FILES['upload_image'] upload_preview.seek(0) upload_hash = uuid4().hex loc = os.path.join(settings.TMP_PATH, upload_type, upload_hash) with storage.open(loc, 'wb') as fd: for chunk in upload_preview: fd.write(chunk) is_icon = upload_type == 'icon' is_preview = upload_type == 'preview' image_check = amo_utils.ImageCheck(upload_preview) is_animated = image_check.is_animated() # will also cache .is_image() if (upload_preview.content_type not in amo.IMG_TYPES or not image_check.is_image()): if is_icon: errors.append(ugettext('Icons must be either PNG or JPG.')) else: errors.append(ugettext('Images must be either PNG or JPG.')) if is_animated: if is_icon: errors.append(ugettext('Icons cannot be animated.')) else: errors.append(ugettext('Images cannot be animated.')) if is_icon: max_size = settings.MAX_ICON_UPLOAD_SIZE else: max_size = None if max_size and upload_preview.size > max_size: if is_icon: errors.append( ugettext('Please use images smaller than %dMB.') % (max_size // 1024 // 1024)) content_waffle = waffle.switch_is_active('content-optimization') if image_check.is_image() and content_waffle and is_preview: min_size = amo.ADDON_PREVIEW_SIZES.get('min') # * 100 to get a nice integer to compare against rather than 1.3333 required_ratio = min_size[0] * 100 // min_size[1] actual_size = image_check.size actual_ratio = actual_size[0] * 100 // actual_size[1] if actual_size[0] < min_size[0] or actual_size[1] < min_size[1]: # L10n: {0} is an image width (in pixels), {1} is a height. errors.append( ugettext('Image must be at least {0} pixels wide and {1} ' 'pixels tall.').format(min_size[0], min_size[1])) if actual_ratio != required_ratio: errors.append( ugettext('Image dimensions must be in the ratio 4:3.')) if image_check.is_image() and content_waffle and is_icon: standard_size = amo.ADDON_ICON_SIZES[-1] icon_size = image_check.size if icon_size[0] < standard_size or icon_size[1] < standard_size: # L10n: {0} is an image width/height (in pixels). errors.append( ugettext(u'Icon must be at least {0} pixels wide and ' u'tall.').format(standard_size)) if icon_size[0] != icon_size[1]: errors.append( ugettext(u'Icon must be square (same width and height).')) if errors and is_preview and os.path.exists(loc): # Delete the temporary preview file in case of error. os.unlink(loc) else: errors.append(ugettext('There was an error uploading your preview.')) if errors: upload_hash = '' return {'upload_hash': upload_hash, 'errors': errors} @dev_required def version_edit(request, addon_id, addon, version_id): version = get_object_or_404(addon.versions.all(), pk=version_id) static_theme = addon.type == amo.ADDON_STATICTHEME version_form = forms.VersionForm( request.POST or None, request.FILES or None, instance=version, request=request, ) if not static_theme else None data = {} if version_form: data['version_form'] = version_form is_admin = acl.action_allowed(request, amo.permissions.REVIEWS_ADMIN) if not static_theme and addon.accepts_compatible_apps(): qs = version.apps.all().select_related('min', 'max') compat_form = forms.CompatFormSet( request.POST or None, queryset=qs, form_kwargs={'version': version}) data['compat_form'] = compat_form if (request.method == 'POST' and all([form.is_valid() for form in data.values()])): if 'compat_form' in data: for compat in data['compat_form'].save(commit=False): compat.version = version compat.save() for compat in data['compat_form'].deleted_objects: compat.delete() for form in data['compat_form'].forms: if (isinstance(form, forms.CompatForm) and 'max' in form.changed_data): _log_max_version_change(addon, version, form.instance) if 'version_form' in data: # VersionForm.save() clear the pending info request if the # developer specifically asked for it, but we've got additional # things to do here that depend on it. had_pending_info_request = bool(addon.pending_info_request) data['version_form'].save() if 'approval_notes' in version_form.changed_data: if had_pending_info_request: log_and_notify(amo.LOG.APPROVAL_NOTES_CHANGED, None, request.user, version) else: ActivityLog.create(amo.LOG.APPROVAL_NOTES_CHANGED, addon, version, request.user) if ('source' in version_form.changed_data and version_form.cleaned_data['source']): AddonReviewerFlags.objects.update_or_create( addon=addon, defaults={'needs_admin_code_review': True}) commit_to_git = waffle.switch_is_active( 'enable-uploads-commit-to-git-storage') if commit_to_git: # Extract into git repository extract_version_source_to_git.delay( version_id=data['version_form'].instance.pk, author_id=request.user.pk) if had_pending_info_request: log_and_notify(amo.LOG.SOURCE_CODE_UPLOADED, None, request.user, version) else: ActivityLog.create(amo.LOG.SOURCE_CODE_UPLOADED, addon, version, request.user) messages.success(request, ugettext('Changes successfully saved.')) return redirect('devhub.versions.edit', addon.slug, version_id) data.update({ 'addon': addon, 'version': version, 'is_admin': is_admin, 'choices': File.STATUS_CHOICES, 'files': version.files.all()}) return render(request, 'devhub/versions/edit.html', data) def _log_max_version_change(addon, version, appversion): details = {'version': version.version, 'target': appversion.version.version, 'application': appversion.application} ActivityLog.create(amo.LOG.MAX_APPVERSION_UPDATED, addon, version, details=details) @dev_required @post_required @transaction.atomic def version_delete(request, addon_id, addon): version_id = request.POST.get('version_id') version = get_object_or_404(addon.versions.all(), pk=version_id) if (addon.is_recommended and version.recommendation_approved and version == addon.current_version): # Developers shouldn't be able to delete/disable the current version # of an approved add-on. msg = ugettext('The latest approved version of a Recommended extension' ' cannot be deleted or disabled. Please contact AMO ' 'Admins if you need help with this.') messages.error(request, msg) elif 'disable_version' in request.POST: messages.success( request, ugettext('Version %s disabled.') % version.version) version.is_user_disabled = True # Will update the files/activity log. version.addon.update_status() else: messages.success( request, ugettext('Version %s deleted.') % version.version) version.delete() # Will also activity log. return redirect(addon.get_dev_url('versions')) @dev_required @post_required @transaction.atomic def version_reenable(request, addon_id, addon): version_id = request.POST.get('version_id') version = get_object_or_404(addon.versions.all(), pk=version_id) messages.success( request, ugettext('Version %s re-enabled.') % version.version) version.is_user_disabled = False # Will update the files/activity log. version.addon.update_status() return redirect(addon.get_dev_url('versions')) def check_validation_override(request, form, addon, version): if version and form.cleaned_data.get('admin_override_validation'): helper = ReviewHelper(request=request, addon=addon, version=version) helper.set_data({ 'operating_systems': '', 'applications': '', 'comments': ugettext( u'This upload has failed validation, and may ' u'lack complete validation results. Please ' u'take due care when reviewing it.')}) helper.actions['super']['method']() def auto_sign_file(file_): """If the file should be automatically reviewed and signed, do it.""" addon = file_.version.addon if file_.is_experiment: # See bug 1220097. ActivityLog.create(amo.LOG.EXPERIMENT_SIGNED, file_) sign_file(file_) elif file_.version.channel == amo.RELEASE_CHANNEL_UNLISTED: # Sign automatically without manual review. helper = ReviewHelper(request=None, addon=addon, version=file_.version) # Provide the file to review/sign to the helper. helper.set_data({'addon_files': [file_], 'comments': 'automatic validation'}) helper.handler.process_public() ActivityLog.create(amo.LOG.UNLISTED_SIGNED, file_) def auto_sign_version(version, **kwargs): # Sign all the unapproved files submitted, one for each platform. for file_ in version.files.exclude(status=amo.STATUS_APPROVED): auto_sign_file(file_, **kwargs) @dev_required def version_list(request, addon_id, addon): qs = addon.versions.order_by('-created') versions = amo_utils.paginate(request, qs) is_admin = acl.action_allowed(request, amo.permissions.REVIEWS_ADMIN) token = request.COOKIES.get(API_TOKEN_COOKIE, None) data = {'addon': addon, 'versions': versions, 'token': token, 'is_admin': is_admin} return render(request, 'devhub/versions/list.html', data) @dev_required def version_bounce(request, addon_id, addon, version): # Use filter since there could be dupes. vs = addon.versions.filter(version=version).order_by('-created').first() if vs: return redirect('devhub.versions.edit', addon.slug, vs.id) else: raise http.Http404() @json_view @dev_required def version_stats(request, addon_id, addon): qs = addon.versions.all() reviews = (qs.annotate(review_count=Count('ratings')) .values('id', 'version', 'review_count')) data = {v['id']: v for v in reviews} files = ( qs.annotate(file_count=Count('files')).values_list('id', 'file_count')) for id_, file_count in files: # For backwards compatibility data[id_]['files'] = file_count data[id_]['reviews'] = data[id_].pop('review_count') return data @login_required def submit_addon(request): return render_agreement( request=request, template='devhub/addons/submit/start.html', next_step='devhub.submit.distribution', ) @dev_required def submit_version_agreement(request, addon_id, addon): return render_agreement( request=request, template='devhub/addons/submit/start.html', next_step=reverse('devhub.submit.version', args=(addon.slug,)), submit_page='version', ) @transaction.atomic def _submit_distribution(request, addon, next_view): # Accept GET for the first load so we can preselect the channel. form = forms.DistributionChoiceForm( request.POST if request.method == 'POST' else request.GET if request.GET.get('channel') else None) if request.method == 'POST' and form.is_valid(): data = form.cleaned_data args = [addon.slug] if addon else [] args.append(data['channel']) return redirect(next_view, *args) return render(request, 'devhub/addons/submit/distribute.html', {'distribution_form': form, 'submit_notification_warning': get_config('submit_notification_warning'), 'submit_page': 'version' if addon else 'addon'}) @login_required def submit_addon_distribution(request): if not UploadRestrictionChecker(request).is_submission_allowed(): return redirect('devhub.submit.agreement') return _submit_distribution(request, None, 'devhub.submit.upload') @dev_required(submitting=True) def submit_version_distribution(request, addon_id, addon): if not UploadRestrictionChecker(request).is_submission_allowed(): return redirect('devhub.submit.version.agreement', addon.slug) return _submit_distribution(request, addon, 'devhub.submit.version.upload') WIZARD_COLOR_FIELDS = [ ('frame', _(u'Header area background'), _(u'The color of the header area background, displayed in the part of ' u'the header not covered or visible through the header image. Manifest ' u'field: frame.'), 'rgba(229,230,232,1)'), ('tab_background_text', _(u'Header area text and icons'), _(u'The color of the text and icons in the header area, except the ' u'active tab. Manifest field: tab_background_text.'), 'rgba(0,0,0,1'), ('toolbar', _(u'Toolbar area background'), _(u'The background color for the navigation bar, the bookmarks bar, and ' u'the selected tab. Manifest field: toolbar.'), False), ('bookmark_text', _(u'Toolbar area text and icons'), _(u'The color of the text and icons in the toolbar and the active tab. ' u'Manifest field: bookmark_text.'), False), ('toolbar_field', _(u'Toolbar field area background'), _(u'The background color for fields in the toolbar, such as the URL bar. ' u'Manifest field: toolbar_field.'), False), ('toolbar_field_text', _(u'Toolbar field area text'), _(u'The color of text in fields in the toolbar, such as the URL bar. ' u'Manifest field: toolbar_field_text.'), False) ] @transaction.atomic def _submit_upload(request, addon, channel, next_view, wizard=False): """ If this is a new addon upload `addon` will be None. next_view is the view that will be redirected to. """ form = forms.NewUploadForm( request.POST or None, request.FILES or None, addon=addon, request=request ) if request.method == 'POST' and form.is_valid(): data = form.cleaned_data if addon: version = Version.from_upload( upload=data['upload'], addon=addon, selected_apps=data['compatible_apps'], channel=channel, parsed_data=data['parsed_data']) url_args = [addon.slug, version.id] else: addon = Addon.from_upload( upload=data['upload'], channel=channel, selected_apps=data['compatible_apps'], parsed_data=data['parsed_data'], user=request.user) version = addon.find_latest_version(channel=channel) url_args = [addon.slug] check_validation_override(request, form, addon, version) if (addon.status == amo.STATUS_NULL and addon.has_complete_metadata() and channel == amo.RELEASE_CHANNEL_LISTED): addon.update(status=amo.STATUS_NOMINATED) # auto-sign versions (the method checks eligibility) auto_sign_version(version) add_dynamic_theme_tag(version) return redirect(next_view, *url_args) is_admin = acl.action_allowed(request, amo.permissions.REVIEWS_ADMIN) if addon: channel_choice_text = (forms.DistributionChoiceForm().LISTED_LABEL if channel == amo.RELEASE_CHANNEL_LISTED else forms.DistributionChoiceForm().UNLISTED_LABEL) else: channel_choice_text = '' # We only need this for Version upload. submit_page = 'version' if addon else 'addon' template = ('devhub/addons/submit/upload.html' if not wizard else 'devhub/addons/submit/wizard.html') existing_properties = ( extract_theme_properties(addon, channel) if wizard and addon else {}) unsupported_properties = ( wizard_unsupported_properties( existing_properties, [field for field, _, _, _ in WIZARD_COLOR_FIELDS]) if existing_properties else []) return render(request, template, {'new_addon_form': form, 'is_admin': is_admin, 'addon': addon, 'submit_notification_warning': get_config('submit_notification_warning'), 'submit_page': submit_page, 'channel': channel, 'channel_choice_text': channel_choice_text, 'existing_properties': existing_properties, 'colors': WIZARD_COLOR_FIELDS, 'unsupported_properties': unsupported_properties, 'version_number': get_next_version_number(addon) if wizard else None}) @login_required def submit_addon_upload(request, channel): if not UploadRestrictionChecker(request).is_submission_allowed(): return redirect('devhub.submit.agreement') channel_id = amo.CHANNEL_CHOICES_LOOKUP[channel] return _submit_upload( request, None, channel_id, 'devhub.submit.source') @dev_required(submitting=True) @no_admin_disabled def submit_version_upload(request, addon_id, addon, channel): if not UploadRestrictionChecker(request).is_submission_allowed(): return redirect('devhub.submit.version.agreement', addon.slug) channel_id = amo.CHANNEL_CHOICES_LOOKUP[channel] return _submit_upload( request, addon, channel_id, 'devhub.submit.version.source') @dev_required @no_admin_disabled def submit_version_auto(request, addon_id, addon): if not UploadRestrictionChecker(request).is_submission_allowed(): return redirect('devhub.submit.version.agreement', addon.slug) # choose the channel we need from the last upload last_version = addon.find_latest_version(None, exclude=()) if not last_version: return redirect('devhub.submit.version.distribution', addon.slug) channel = last_version.channel return _submit_upload( request, addon, channel, 'devhub.submit.version.source') @login_required def submit_addon_theme_wizard(request, channel): if not UploadRestrictionChecker(request).is_submission_allowed(): return redirect('devhub.submit.agreement') channel_id = amo.CHANNEL_CHOICES_LOOKUP[channel] return _submit_upload( request, None, channel_id, 'devhub.submit.source', wizard=True) @dev_required @no_admin_disabled def submit_version_theme_wizard(request, addon_id, addon, channel): if not UploadRestrictionChecker(request).is_submission_allowed(): return redirect('devhub.submit.version.agreement', addon.slug) channel_id = amo.CHANNEL_CHOICES_LOOKUP[channel] return _submit_upload( request, addon, channel_id, 'devhub.submit.version.source', wizard=True) def _submit_source(request, addon, version, next_view): redirect_args = [addon.slug, version.pk] if version else [addon.slug] if addon.type != amo.ADDON_EXTENSION: return redirect(next_view, *redirect_args) latest_version = version or addon.find_latest_version(channel=None) form = forms.SourceForm( request.POST or None, request.FILES or None, instance=latest_version, request=request) if request.method == 'POST' and form.is_valid(): if form.cleaned_data.get('source'): AddonReviewerFlags.objects.update_or_create( addon=addon, defaults={'needs_admin_code_review': True}) activity_log = ActivityLog.objects.create( action=amo.LOG.SOURCE_CODE_UPLOADED.id, user=request.user, details={ 'comments': (u'This version has been automatically ' u'flagged for admin review, as it had source ' u'files attached when submitted.')}) VersionLog.objects.create( version_id=latest_version.id, activity_log=activity_log) form.save() # We can extract the actual source file only after the form # has been saved because the file behind it may not have been # written to disk yet (e.g for in-memory uploads) if waffle.switch_is_active('enable-uploads-commit-to-git-storage'): extract_version_source_to_git.delay( version_id=form.instance.pk, author_id=request.user.pk) return redirect(next_view, *redirect_args) context = { 'form': form, 'addon': addon, 'version': version, 'submit_page': 'version' if version else 'addon', } return render(request, 'devhub/addons/submit/source.html', context) @dev_required(submitting=True) def submit_addon_source(request, addon_id, addon): return _submit_source(request, addon, None, 'devhub.submit.details') @dev_required(submitting=True) def submit_version_source(request, addon_id, addon, version_id): version = get_object_or_404(addon.versions.all(), id=version_id) return _submit_source( request, addon, version, 'devhub.submit.version.details') def _submit_details(request, addon, version): static_theme = addon.type == amo.ADDON_STATICTHEME if version: skip_details_step = (version.channel == amo.RELEASE_CHANNEL_UNLISTED or (static_theme and addon.has_complete_metadata())) if skip_details_step: # Nothing to do here. return redirect( 'devhub.submit.version.finish', addon.slug, version.pk) latest_version = version else: # Figure out the latest version early in order to pass the same # instance to each form that needs it (otherwise they might overwrite # each other). latest_version = addon.find_latest_version( channel=amo.RELEASE_CHANNEL_LISTED) if not latest_version: # No listed version ? Then nothing to do in the listed submission # flow. return redirect('devhub.submit.finish', addon.slug) forms_list = [] context = { 'addon': addon, 'version': version, 'sources_provided': latest_version.sources_provided, 'submit_page': 'version' if version else 'addon', } post_data = request.POST if request.method == 'POST' else None show_all_fields = not version or not addon.has_complete_metadata() if show_all_fields: if waffle.switch_is_active('content-optimization'): describe_form = forms.DescribeFormContentOptimization( post_data, instance=addon, request=request, version=version, should_auto_crop=True) else: describe_form = forms.DescribeForm( post_data, instance=addon, request=request, version=version) cat_form_class = (forms.CategoryFormSet if not static_theme else forms.SingleCategoryForm) cat_form = cat_form_class(post_data, addon=addon, request=request) policy_form = forms.PolicyForm(post_data, addon=addon) license_form = forms.LicenseForm( post_data, version=latest_version, prefix='license') context.update(license_form.get_context()) context.update( form=describe_form, cat_form=cat_form, policy_form=policy_form) forms_list.extend([ describe_form, cat_form, policy_form, context['license_form'] ]) if not static_theme: # Static themes don't need this form reviewer_form = forms.VersionForm( post_data, instance=latest_version, request=request) context.update(reviewer_form=reviewer_form) forms_list.append(reviewer_form) if request.method == 'POST' and all( form.is_valid() for form in forms_list): if show_all_fields: addon = describe_form.save() cat_form.save() policy_form.save() license_form.save(log=False) if not static_theme: reviewer_form.save() if addon.status == amo.STATUS_NULL: addon.update(status=amo.STATUS_NOMINATED) signals.submission_done.send(sender=addon) elif not static_theme: reviewer_form.save() if not version: return redirect('devhub.submit.finish', addon.slug) else: return redirect('devhub.submit.version.finish', addon.slug, version.id) template = 'devhub/addons/submit/%s' % ( 'describe.html' if show_all_fields else 'describe_minimal.html') return render(request, template, context) @dev_required(submitting=True) def submit_addon_details(request, addon_id, addon): return _submit_details(request, addon, None) @dev_required(submitting=True) def submit_version_details(request, addon_id, addon, version_id): version = get_object_or_404(addon.versions.all(), id=version_id) return _submit_details(request, addon, version) def _submit_finish(request, addon, version): uploaded_version = version or addon.versions.latest() try: author = addon.authors.all()[0] except IndexError: # This should never happen. author = None if (not version and author and uploaded_version.channel == amo.RELEASE_CHANNEL_LISTED and not Version.objects.exclude(pk=uploaded_version.pk) .filter(addon__authors=author, channel=amo.RELEASE_CHANNEL_LISTED) .exclude(addon__status=amo.STATUS_NULL) .exists()): # If that's the first time this developer has submitted an listed addon # (no other listed Version by this author exists) send them a welcome # email. # We can use locale-prefixed URLs because the submitter probably # speaks the same language by the time he/she reads the email. context = { 'addon_name': str(addon.name), 'app': str(request.APP.pretty), 'detail_url': absolutify(addon.get_url_path()), 'version_url': absolutify(addon.get_dev_url('versions')), 'edit_url': absolutify(addon.get_dev_url('edit')), } tasks.send_welcome_email.delay(addon.id, [author.email], context) submit_page = 'version' if version else 'addon' return render(request, 'devhub/addons/submit/done.html', {'addon': addon, 'uploaded_version': uploaded_version, 'submit_page': submit_page, 'preview': uploaded_version.previews.first()}) @dev_required(submitting=True) def submit_addon_finish(request, addon_id, addon): # Bounce to the details step if incomplete if (not addon.has_complete_metadata() and addon.find_latest_version(channel=amo.RELEASE_CHANNEL_LISTED)): return redirect('devhub.submit.details', addon.slug) # Bounce to the versions page if they don't have any versions. if not addon.versions.exists(): return redirect('devhub.submit.version', addon.slug) return _submit_finish(request, addon, None) @dev_required def submit_version_finish(request, addon_id, addon, version_id): version = get_object_or_404(addon.versions.all(), id=version_id) return _submit_finish(request, addon, version) @dev_required @post_required def remove_locale(request, addon_id, addon): POST = request.POST if 'locale' in POST and POST['locale'] != addon.default_locale: addon.remove_locale(POST['locale']) return http.HttpResponse() return http.HttpResponseBadRequest() @dev_required @post_required def request_review(request, addon_id, addon): if not addon.can_request_review(): return http.HttpResponseBadRequest() latest_version = addon.find_latest_version(amo.RELEASE_CHANNEL_LISTED, exclude=()) if latest_version: for f in latest_version.files.filter(status=amo.STATUS_DISABLED): f.update(status=amo.STATUS_AWAITING_REVIEW) # Clear the nomination date so it gets set again in Addon.watch_status. latest_version.update(nomination=None) if addon.has_complete_metadata(): addon.update(status=amo.STATUS_NOMINATED) messages.success(request, ugettext('Review requested.')) else: messages.success(request, _( 'You must provide further details to proceed.')) ActivityLog.create(amo.LOG.CHANGE_STATUS, addon, addon.status) return redirect(addon.get_dev_url('versions')) def docs(request, doc_name=None): mdn_docs = { None: '', 'getting-started': '', 'reference': '', 'how-to': '', 'how-to/getting-started': '', 'how-to/extension-development': '#Extensions', 'how-to/other-addons': '#Other_types_of_add-ons', 'how-to/thunderbird-mobile': '#Application-specific', 'how-to/theme-development': '#Themes', 'themes': '/Themes/Background', 'themes/faq': '/Themes/Background/FAQ', 'policies': '/AMO/Policy', 'policies/reviews': '/AMO/Policy/Reviews', 'policies/contact': '/AMO/Policy/Contact', 'policies/agreement': '/AMO/Policy/Agreement', } if doc_name in mdn_docs: return redirect(MDN_BASE + mdn_docs[doc_name], permanent=True) raise http.Http404() @login_required def api_key_agreement(request): return render_agreement( request=request, template='devhub/api/agreement.html', next_step='devhub.api_key', ) def render_agreement(request, template, next_step, **extra_context): form = forms.AgreementForm( request.POST if request.method == 'POST' else None, request=request ) if request.method == 'POST' and form.is_valid(): # Developer has validated the form: let's update its profile and # redirect to next step. Note that the form is supposed to always be # invalid if submission is not allowed for this request. data = { 'read_dev_agreement': datetime.datetime.now(), } if 'display_name' in form.cleaned_data: data['display_name'] = form.cleaned_data['display_name'] request.user.update(**data) return redirect(next_step) elif not UploadRestrictionChecker(request).is_submission_allowed(): # Developer has either posted an invalid form or just landed on the # page but haven't read the agreement yet, or isn't allowed to submit # for some other reason (denied ip/email): show the form (with # potential errors highlighted) context = { 'agreement_form': form, 'agreement_message': str( DeveloperAgreementRestriction.error_message ), } context.update(extra_context) return render(request, template, context) else: # The developer has already read the agreement, we should just redirect # to the next step. response = redirect(next_step) return response @login_required @transaction.atomic def api_key(request): if not UploadRestrictionChecker(request).is_submission_allowed(): return redirect(reverse('devhub.api_key_agreement')) try: credentials = APIKey.get_jwt_key(user=request.user) except APIKey.DoesNotExist: credentials = None try: confirmation = APIKeyConfirmation.objects.get( user=request.user) except APIKeyConfirmation.DoesNotExist: confirmation = None if request.method == 'POST': has_confirmed_or_is_confirming = confirmation and ( confirmation.confirmed_once or confirmation.is_token_valid( request.POST.get('confirmation_token')) ) # Revoking credentials happens regardless of action, if there were # credentials in the first place. if (credentials and request.POST.get('action') in ('revoke', 'generate')): credentials.update(is_active=None) log.info('revoking JWT key for user: {}, {}' .format(request.user.id, credentials)) send_key_revoked_email(request.user.email, credentials.key) msg = ugettext( 'Your old credentials were revoked and are no longer valid.') messages.success(request, msg) # If trying to generate with no confirmation instance, we don't # generate the keys immediately but instead send you an email to # confirm the generation of the key. This should only happen once per # user, unless the instance is deleted by admins to reset the process # for that user. if confirmation is None and request.POST.get('action') == 'generate': confirmation = APIKeyConfirmation.objects.create( user=request.user, token=APIKeyConfirmation.generate_token()) confirmation.send_confirmation_email() # If you have a confirmation instance, you need to either have it # confirmed once already or have the valid token proving you received # the email. elif (has_confirmed_or_is_confirming and request.POST.get('action') == 'generate'): confirmation.update(confirmed_once=True) new_credentials = APIKey.new_jwt_credentials(request.user) log.info('new JWT key created: {}'.format(new_credentials)) send_key_change_email(request.user.email, new_credentials.key) else: # If we land here, either confirmation token is invalid, or action # is invalid, or state is outdated (like user trying to revoke but # there are already no credentials). # We can just pass and let the redirect happen. pass # In any case, redirect after POST. return redirect(reverse('devhub.api_key')) context_data = { 'title': ugettext('Manage API Keys'), 'credentials': credentials, 'confirmation': confirmation, 'token': request.GET.get('token') # For confirmation step. } return render(request, 'devhub/api/key.html', context_data) def send_key_change_email(to_email, key): template = loader.get_template('devhub/email/new-key-email.ltxt') url = absolutify(reverse('devhub.api_key')) send_mail( ugettext('New API key created'), template.render({'key': key, 'url': url}), from_email=settings.DEFAULT_FROM_EMAIL, recipient_list=[to_email], ) def send_key_revoked_email(to_email, key): template = loader.get_template('devhub/email/revoked-key-email.ltxt') url = absolutify(reverse('devhub.api_key')) send_mail( ugettext('API key revoked'), template.render({'key': key, 'url': url}), from_email=settings.DEFAULT_FROM_EMAIL, recipient_list=[to_email], ) @dev_required @json_view def theme_background_image(request, addon_id, addon, channel): channel_id = amo.CHANNEL_CHOICES_LOOKUP[channel] version = addon.find_latest_version(channel_id) return (version.get_background_images_encoded(header_only=True) if version else {}) def _clean_next_url(request): gets = request.GET.copy() url = gets.get('to', settings.LOGIN_REDIRECT_URL) if not is_safe_url(url, allowed_hosts=(settings.DOMAIN,)): log.info(u'Unsafe redirect to %s' % url) url = settings.LOGIN_REDIRECT_URL domain = gets.get('domain', None) if domain in settings.VALID_LOGIN_REDIRECTS.keys(): url = settings.VALID_LOGIN_REDIRECTS[domain] + url gets['to'] = url request.GET = gets return request def logout(request): user = request.user if not user.is_anonymous: log.debug(u"User (%s) logged out" % user) if 'to' in request.GET: request = _clean_next_url(request) next_url = request.GET.get('to') if not next_url: next_url = settings.LOGOUT_REDIRECT_URL prefixer = get_url_prefix() if prefixer: next_url = prefixer.fix(next_url) response = http.HttpResponseRedirect(next_url) logout_user(request, response) return response
the-stack_0_11619
"""LSTM Controller.""" import torch from torch import nn from torch.nn import Parameter import numpy as np # torch.set_default_tensor_type('torch.cuda.FloatTensor') class LSTMController(nn.Module): """An NTM controller based on LSTM.""" def __init__(self, num_inputs, num_outputs, num_layers): super(LSTMController, self).__init__() self.num_inputs = num_inputs self.num_outputs = num_outputs self.num_layers = num_layers self.lstm = nn.LSTM(input_size=num_inputs, hidden_size=num_outputs, num_layers=num_layers) # The hidden state is a learned parameter self.lstm_h_bias = Parameter(torch.randn(self.num_layers, 1, self.num_outputs) * 0.05) self.lstm_c_bias = Parameter(torch.randn(self.num_layers, 1, self.num_outputs) * 0.05) self.reset_parameters() def create_new_state(self, batch_size): # Dimension: (num_layers * num_directions, batch, hidden_size) lstm_h = self.lstm_h_bias.clone().repeat(1, batch_size, 1) lstm_c = self.lstm_c_bias.clone().repeat(1, batch_size, 1) return lstm_h, lstm_c def reset_parameters(self): for p in self.lstm.parameters(): if p.dim() == 1: nn.init.constant_(p, 0) else: stdev = 5 / (np.sqrt(self.num_inputs + self.num_outputs)) nn.init.uniform_(p, -stdev, stdev) def size(self): return self.num_inputs, self.num_outputs def forward(self, x, prev_state): x = x.unsqueeze(0) outp, state = self.lstm(x, prev_state) return outp.squeeze(0), state
the-stack_0_11620
import requests import os import zipfile def unzipper(file_path, dirname): with zipfile.ZipFile(file_path) as zf: files = zf.namelist() zf.extractall(dirname) def download_http(url, file_path): r = requests.get(url) with open(file_path, "wb") as f: f.write(r.content) def download(url, file_path): folder = os.path.dirname(file_path) if not os.path.exists(folder): os.makedirs(folder) print("Starting request for file: " + file_path) # start http request if url.startswith('http://'): return download_http(url, file_path) # downlaod file form ftp elif url.startswith('ftp://'): return self.download_ftp(url, file_path)
the-stack_0_11624
''' OpenIMU SPI package version 0.2.0. -pip install spidev3.4, -read package through SPI interface, OpenIMU330BI test on Pi3 board(Raspbian OS,Raspberry 3B+). -Spi slave: OpenIMU 330 EVK -Pins connection: Pi3 330/300 evk miso <==> miso mosi <==> mosi sck <==> sck gpio(bcm4) <==> cs black line gpio(bcm17) <==> drdy red line gnd <==> gnd bcm 27 nRST @cek from Aceinna 2019.11.4 ''' import os import sys import spidev import time, math import struct try: import RPi.GPIO as GPIO except RuntimeError: print("Error import RPi.GPIO!") import traceback from gpio import * class SpiOpenIMU: def __init__(self, target_module = "300", fw='0.0', cs_pin = 4, interrupt_pin = 17, drdy_status = False): ''' pin number use the BCM code ''' self.spi = spidev.SpiDev() self.cs_channel = cs_pin self.interrupt_channel = interrupt_pin self.drdy = drdy_status self.speed = 1000000 # 1M self.delay = 0 #ns self.word = 8 #硬件限制为8位 self.fw_version = fw self.power = aceinna_gpio(use_gpio=True)# bcm gpio rst EVK power self.gpio_setting() self.spidev_setting() self.check_settings() time.sleep(0.1) self.module = target_module print("initialize based on: %s, with DRDY_usage: %s" % (self.module, self.drdy)) def gpio_setting(self): GPIO.setmode(GPIO.BCM) GPIO.setup(self.cs_channel,GPIO.OUT) GPIO.output(self.cs_channel,GPIO.HIGH) # used as CS line replace CS0 default in Pi3 board if self.drdy: GPIO.setup(self.interrupt_channel,GPIO.IN) # channel used as IMU data ready detection time.sleep(0.4) GPIO.add_event_detect(self.interrupt_channel,GPIO.FALLING) return True def single_read(self, target_register): # if self.drdy and self.module != "300": # while not GPIO.event_detected(self.interrupt_channel): # pass if self.module == "381": time.sleep(0.000010) GPIO.output(self.cs_channel,GPIO.LOW) self.spi.xfer2([target_register,0x00],self.speed,self.speed) #return data of 0000 GPIO.output(self.cs_channel,GPIO.HIGH) time.sleep(0.000010) GPIO.output(self.cs_channel,GPIO.LOW) resp_single = self.spi.xfer2([0x00,0x00],self.speed,self.speed) #receive the back target data GPIO.output(self.cs_channel,GPIO.HIGH) return self.combine_reg('>h', resp_single[0],resp_single[1]) else: time.sleep(0.000010) GPIO.output(self.cs_channel,GPIO.LOW) resp_single = self.spi.xfer2([target_register,0x00,0x00,0x00],self.speed,self.speed) GPIO.output(self.cs_channel,GPIO.HIGH) print("SPI raw read:", hex(resp_single[2]), hex(resp_single[3])) return self.combine_reg('>h', resp_single[2],resp_single[3]) def single_write(self, target_register, target_data): # if self.drdy and self.module != "300": # while not GPIO.event_detected(self.interrupt_channel): # pass GPIO.output(self.cs_channel,GPIO.LOW) temp_reg = target_register | 0x80 self.spi.xfer2([temp_reg, target_data],self.speed,self.speed) #write data, such as 0xF010, target address is 0x70, and data input is 0x10 GPIO.output(self.cs_channel,GPIO.HIGH) return True def burst_read(self, first_register, subregister_num, sratm_fac): ''' sratm_fac={"rate":[0.005, 0], "accel":[0.25, 0]} status, rate, accel, temp, mag factors dict ''' sts, rate, acc, deg, tmstp, temp, mag = [], [], [], [], [], [], [] # if self.drdy and self.module != "300": # 300 no drdy now, so only not 300 will go next # while not GPIO.event_detected(self.interrupt_channel): # pass while (not GPIO.event_detected(self.interrupt_channel)) and self.drdy: pass if "381" in self.module: GPIO.output(self.cs_channel,GPIO.LOW) resp = self.spi.xfer2([first_register,0x00],self.speed,self.speed) GPIO.output(self.cs_channel,GPIO.HIGH) for i_381 in range(subregister_num): time.sleep(0.000010) GPIO.output(self.cs_channel,GPIO.LOW) resp += self.spi.xfer2([0x00,0x00],self.speed,self.speed)[:] GPIO.output(self.cs_channel,GPIO.HIGH) #unit:degree per second rate.append(self.combine_reg('>h', resp[4],resp[5]) * (sratm_fac.get("rate")[0]) + (sratm_fac.get("rate")[1])) rate.append(self.combine_reg('>h', resp[6],resp[7]) * (sratm_fac.get("rate")[0]) + (sratm_fac.get("rate")[1])) rate.append(self.combine_reg('>h', resp[8],resp[9]) * (sratm_fac.get("rate")[0]) + (sratm_fac.get("rate")[1])) #unit:mg acc.append(self.combine_reg('>h', resp[10],resp[11]) * (sratm_fac.get("accel")[0]) + (sratm_fac.get("accel")[1])) acc.append(self.combine_reg('>h', resp[12],resp[13]) * (sratm_fac.get("accel")[0]) + (sratm_fac.get("accel")[1])) acc.append(self.combine_reg('>h', resp[14],resp[15]) * (sratm_fac.get("accel")[0]) + (sratm_fac.get("accel")[1])) else: #300,330 is here GPIO.output(self.cs_channel,GPIO.LOW) # xfer2([value],speed_hz,delay_usec_cs), SPI bi-direction data transfer. # default 8 bits mode, if speed_hz set to zero means the maximun supported SPI clock. # delay_usec_cs is the cs hold delay first_register_send = [first_register,0x00] if '330BA' in self.module and first_register == 0x3D: subregister_num += 6 for i_else in range(2*subregister_num): first_register_send.append(0x00) resp = self.spi.xfer2(first_register_send,self.speed,2*self.delay) GPIO.output(self.cs_channel,GPIO.HIGH) sts.append(self.combine_reg('>H', resp[2], resp[3]) * (sratm_fac.get("status")[0]) + (sratm_fac.get("status")[1])) #unit:degree per second if '330BA' in self.module and first_register == 0x3D: rate.append(self.combine_reg('>i', resp[4],resp[5],resp[6],resp[7]) * (sratm_fac.get("rate")[0]) + (sratm_fac.get("rate")[1])) rate.append(self.combine_reg('>i', resp[8],resp[9], resp[10],resp[11]) * (sratm_fac.get("rate")[0]) + (sratm_fac.get("rate")[1])) rate.append(self.combine_reg('>i', resp[12],resp[13], resp[14],resp[15]) * (sratm_fac.get("rate")[0]) + (sratm_fac.get("rate")[1])) else: rate.append(self.combine_reg('>h', resp[4],resp[5]) * (sratm_fac.get("rate")[0]) + (sratm_fac.get("rate")[1])) rate.append(self.combine_reg('>h', resp[6],resp[7]) * (sratm_fac.get("rate")[0]) + (sratm_fac.get("rate")[1])) rate.append(self.combine_reg('>h', resp[8],resp[9]) * (sratm_fac.get("rate")[0]) + (sratm_fac.get("rate")[1])) #unit:g if '330BA' in self.module and first_register == 0x3D: acc.append(self.combine_reg('>i', resp[16],resp[17], resp[18],resp[19]) * (sratm_fac.get("accel")[0]) + (sratm_fac.get("accel")[1])) acc.append(self.combine_reg('>i', resp[20],resp[21], resp[22],resp[23]) * (sratm_fac.get("accel")[0]) + (sratm_fac.get("accel")[1])) acc.append(self.combine_reg('>i', resp[24],resp[25], resp[26],resp[27]) * (sratm_fac.get("accel")[0]) + (sratm_fac.get("accel")[1])) else: acc.append(self.combine_reg('>h', resp[10],resp[11]) * (sratm_fac.get("accel")[0]) + (sratm_fac.get("accel")[1])) acc.append(self.combine_reg('>h', resp[12],resp[13]) * (sratm_fac.get("accel")[0]) + (sratm_fac.get("accel")[1])) acc.append(self.combine_reg('>h', resp[14],resp[15]) * (sratm_fac.get("accel")[0]) + (sratm_fac.get("accel")[1])) #unit:deg if '330BI' in self.module and first_register == 0x3F: deg.append(self.combine_reg('>h', resp[18],resp[19]) * 360/65536) deg.append(self.combine_reg('>h', resp[20],resp[21]) * 360/65536) deg.append(self.combine_reg('>h', resp[22],resp[23]) * 360/65536) # return rate, acc, deg if '330BA' in self.module and first_register == 0x3D: temp.append(self.combine_reg('>h', resp[28],resp[29]) * (sratm_fac.get("temp")[0]) + (sratm_fac.get("temp")[1])) else: temp.append(self.combine_reg('>h', resp[16],resp[17]) * (sratm_fac.get("temp")[0]) + (sratm_fac.get("temp")[1])) if ("330BA" in self.module or '331BI' in self.module) and (first_register == 0x3F or first_register == 0x3D): if first_register == 0x3F: tmstp.append(self.combine_reg('>H', resp[18],resp[19]) * (sratm_fac.get("time")[0]) + (sratm_fac.get("time")[1])) tmstp.append(self.combine_reg('>H', resp[20],resp[21]) * (sratm_fac.get("time")[0]) + (sratm_fac.get("time")[1])) else: tmstp.append(self.combine_reg('>H', resp[30],resp[31]) * (sratm_fac.get("time")[0]) + (sratm_fac.get("time")[1])) tmstp.append(self.combine_reg('>H', resp[32],resp[33]) * (sratm_fac.get("time")[0]) + (sratm_fac.get("time")[1])) # return rate, acc, tmstp if '300ZI' in self.module and first_register == 0x3F: mag.append(self.combine_reg('>h', resp[18],resp[19]) * (sratm_fac.get("mag")[0]) + (sratm_fac.get("mag")[1])) mag.append(self.combine_reg('>h', resp[20],resp[21]) * (sratm_fac.get("mag")[0]) + (sratm_fac.get("mag")[1])) mag.append(self.combine_reg('>h', resp[22],resp[23]) * (sratm_fac.get("mag")[0]) + (sratm_fac.get("mag")[1])) if '300ZI' in self.module and first_register == 0x3D: # deg.append(self.combine_reg('>h', resp[18],resp[19]) * 57.3 * (2*math.pi)/65536) #65536/(2*math.pi)=10430.378350470453 65536/360=0.0054931640625 # deg.append(self.combine_reg('>h', resp[20],resp[21]) * 57.3 * (2*math.pi)/65536) # deg.append(self.combine_reg('>h', resp[22],resp[23]) * 57.3 * (2*math.pi)/65536) deg.append(self.combine_reg('>h', resp[18],resp[19]) * (sratm_fac.get("vg_angle")[0]) + (sratm_fac.get("vg_angle")[1])) deg.append(self.combine_reg('>h', resp[20],resp[21]) * (sratm_fac.get("vg_angle")[0]) + (sratm_fac.get("vg_angle")[1])) deg.append(self.combine_reg('>h', resp[22],resp[23]) * (sratm_fac.get("vg_angle")[0]) + (sratm_fac.get("vg_angle")[1])) return sts, rate, acc, temp, mag, deg, tmstp def spidev_setting(self): bus = 0 #supporyed values:0,1 device = 1 #supported values:0,1 default: 0 self.spi.open(bus,device) #connect to the device. /dev/spidev<bus>.<device> self.spi.bits_per_word = self.word #默认是8,系统上 self.spi.max_speed_hz = self.speed self.spi.mode = 0b11 #spi.bits_per_word = 0 #spi.cshigh #default CS0 in pi3 board #spi.lsbfirst = False #spi.threewire = 0 return True def check_settings(self): print(self.spi.mode) print(self.spi.threewire) print(self.spi.cshigh) print(self.spi.bits_per_word) print(self.spi.lsbfirst) return True def combine_reg(self,fmt='>h',*msb_lsb): temp_bytes = b'' for i in msb_lsb: temp_bytes += struct.pack('B',i) return struct.unpack(fmt,temp_bytes)[0] #MSB firstly def power_reset(self, delay=2): ''' #special for IMU331, WAIT 1.25S at least ''' self.power.power_off() time.sleep(delay) self.power.power_on() time.sleep(delay) def __del__(self): GPIO.cleanup() self.spi.close() if __name__ == "__main__": openimu_spi = SpiOpenIMU(target_module="330BI",drdy_status=True, fw='1.2.1') #set the module name and drdy status(enalbe or not)-----------------step: 1 burst_read, single_read, single_write = True, True, False # set the read style, burst or single------------step:2 f = open("data_" + str(openimu_spi.module) + ".txt", "w") str_config = "module style:{0}; drdy:{1}; burst read:{2}; single read:{3} \n".format(openimu_spi.module, openimu_spi.drdy, burst_read, single_read) print(str_config) f.write(str_config) input("Power on IMU !!!!!!!!") time.sleep(2) try: if openimu_spi.drdy == False: # when no drdy, default SPI ODR is 100HZ time.sleep(0.01) # for i_wd in range(9,12): # for i_wd in [0x00, 0x03,0x04,0x05,0x06,0x30,0x40,0x50,0x60,0x0B, 0x0B]: # ori_list = [0x0000, 0x0009, 0x0023, 0x002A, 0x0041, 0x0048, 0x0062, 0x006B, 0x0085, 0x008C, 0x0092, 0x009B, 0x00C4, 0x00CD, 0x00D3, # 0x00DA, 0x0111, 0x0118, 0x0124, 0x012D, 0x0150, 0x0159, 0x0165, 0x016C # ] # ori_list = [0x0009, 0x016C] # for i_wd in ori_list: if single_read: read_name = [ "X_Rate", "Y_Rate", "Z_Rate", "X_Accel", "Y_Accel", "Z_Accel","X_Mag", "Y_Mag", "Z_Mag", "BOARD_TEMP", "RATE_TEMP", "DRDY_RATE", "ACCEL_LPF", "ACCEL_SCALE_FACTOR", "RATE_SCALE_FACTOR", "SN_1", "SN_2", "SN_3", "PRODUCT_ID", "MASTER_STATUS", "HW_STATUS", "SW_STATUS", "ACCEL_RANGE/RATE_RANGE", "ORIENTATION_MSB/ORIENTATION_LSB", "SAVE_CONFIG", "RATE_LPF", "HW_VERSION/SW_VERSION" ] read_reg = [ 0x04, 0x06, 0x08, 0x0A, 0x0C, 0x0E, 0x10, 0x12, 0x14, 0x16, 0x18, 0x37, 0x38, 0x46, 0x47, 0x52, 0x54, 0x58, 0x56, 0x5A, 0x5C, 0x5E, 0x70, 0x74, 0x76, 0x78, 0x7E ] # read_name = ["ORIENTATION_MSB"] # read_reg = [0x74] for i in zip(read_name, read_reg): read_value = openimu_spi.single_read(i[1]) hex_value = hex(read_value) prt_list = [i[0], hex(i[1]), hex_value] print(prt_list) if 'Rate' in i[0]: read_value /= 64 elif 'Accel' in i[0]: read_value /= 4000 elif 'Mag' in i[0]: read_value /= 16354 elif 'TEMP' in i[0]: read_value = read_value*0.073111172849435 + 31.0 str_temp = "{0:_<40s}0x{1:<5X} read value: 0d {2:<10} hex value: {3:<10s}\n".format(i[0], i[1], read_value, hex_value) print(str_temp) f.write(str(prt_list) + '\n' + str_temp) if single_write: while input('need write? y/n?') != 'y': pass write_name = ["packet rate", "Accel LPF", "orimsb", "orilsb", "Rate LPF", "save config"] write_reg = [0x37, 0x38, 0x74, 0x75, 0x78, 0x76] write_data = [0x01, 0x40, 0x00, 0x6B, 0x40, 0x00] # write_name = ["ORIENTATION_LSB"] # write_reg = [0x75] # write_data = [0x02] # write_data = [i_wd, i_wd] # write_data = [i_wd & 0xFF] for j in zip(write_name, write_reg, write_data): #start to write registers print("write_name:{0:<40s}, write address:0x{1:<5X}, wirte data:0x{2:<5X}".format(j[0], j[1], j[2])) openimu_spi.single_write(j[1], j[2]) time.sleep(0.5) # if single_read or single_write: # break while input('need burst read? y/n?') != 'y': pass while burst_read: # not seting the ODR, if you use burst read, it will same with frequency of DRDY if ('330BI' in openimu_spi.module) or ('330BA' in openimu_spi.module): # list_rate, list_acc = openimu_spi.burst_read(first_register=0x3E,subregister_num=8) #input the read register and numbers of subregisters want to read together # str_burst = "time:{0:>10f}; gyro:{1:>25s}; accel:{2:>25s} \n".format( # time.clock(), ", ".join([str(x) for x in list_rate]), ", ".join([str(x) for x in list_acc]) # ) list_sts, list_rate, list_acc, list_temp, list_mag, list_deg, tmstamp = openimu_spi.burst_read(first_register=0x3E,subregister_num=8) #input the read register and numbers of subregisters want to read together str_burst = "time:{0:>10f}; gyro:{1:>50s}; accel:{2:>50s}; timestamp:{3:>25s} \n".format( time.clock(), ", ".join([str(x) for x in list_rate]), ", ".join([str(x) for x in list_acc]), ", ".join([str(x) for x in tmstamp]) ) else: list_sts, list_rate, list_acc, list_temp, list_mag, list_deg, tmstamp= openimu_spi.burst_read(first_register=0x3D,subregister_num=11) str_burst = "time:{0:>20f}; status:{3:>20s} ; gyro:{1:>50s}; accel:{2:>40s}; temp:{4:>10s}; mag:{5:>20s}; deg:{6:>20s}\n".format( time.clock(), ", ".join([str(x) for x in list_rate]), ", ".join([str(x) for x in list_acc]), ", ".join([str(x) for x in list_sts]), ", ".join([str(x) for x in list_temp]), ", ".join([str(x) for x in list_mag]), ", ".join([str(x) for x in list_deg]) ) print(str_burst) f.write(str_burst) # input('next cycle') except KeyboardInterrupt: f.close() print("stoped by customer!") # except Exception as e: # print(e) # traceback.print_exc() # polling mode reading spi interface, with drdy pin detection # try: # while True: # # GPIO.output(cs_channel,GPIO.LOW) # # product_id = spi.xfer2([0x56,0x00,0x00,0x00],0,10) # # GPIO.output(cs_channel,GPIO.HIGH) # # print('id',product_id) # time.sleep(0.1) # # if GPIO.event_detected(interrupt_channel): # if True: # time.sleep(0.5) # GPIO.output(cs_channel,GPIO.LOW) # # xfer2([value],speed_hz,delay_usec_cs), SPI bi-direction data transfer. # # default 8 bits mode, if speed_hz set to zero means the maximun supported SPI clock. # # delay_usec_cs is the cs hold delay # resp = spi.xfer2([openimu_spi.burst_cmd_std,0x00,0x00,0x00,0x00,0x00,0x00, # 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00],0,10) # GPIO.output(cs_channel,GPIO.HIGH) # #unit:degree per second # x_rate = openimu_spi.combine_reg(resp[4],resp[5])/200 # y_rate = openimu_spi.combine_reg(resp[6],resp[7])/200 # z_rate = openimu_spi.combine_reg(resp[8],resp[8])/200 # #unit:mg # x_acc = openimu_spi.combine_reg(resp[10],resp[11])/4 # y_acc = openimu_spi.combine_reg(resp[12],resp[13])/4 # z_acc = openimu_spi.combine_reg(resp[14],resp[15])/4 # print('g/a',x_rate,y_rate,z_rate,x_acc,y_acc,z_acc) # #write to register # time.sleep(0.5) # GPIO.output(cs_channel,GPIO.LOW) # resp1 = spi.xfer2([0x80|0x50,0x23],0,10) # time.sleep(0.5) # GPIO.output(cs_channel,GPIO.HIGH) # 0x56 OPEN300 ID: 0x30(48) 0x00(0) # 0x56 OPEN330 ID: 0x33(48) 0x00(0) # 0x56 IMU381 ID: 0X38(56) 0x10(16)
the-stack_0_11625
import struct from django.forms import ValidationError from .const import ( BANDTYPE_FLAG_HASNODATA, GDAL_TO_POSTGIS, GDAL_TO_STRUCT, POSTGIS_HEADER_STRUCTURE, POSTGIS_TO_GDAL, STRUCT_SIZE, ) def pack(structure, data): """ Pack data into hex string with little endian format. """ return struct.pack('<' + structure, *data) def unpack(structure, data): """ Unpack little endian hexlified binary string into a list. """ return struct.unpack('<' + structure, bytes.fromhex(data)) def chunk(data, index): """ Split a string into two parts at the input index. """ return data[:index], data[index:] def from_pgraster(data): """ Convert a PostGIS HEX String into a dictionary. """ if data is None: return # Split raster header from data header, data = chunk(data, 122) header = unpack(POSTGIS_HEADER_STRUCTURE, header) # Parse band data bands = [] pixeltypes = [] while data: # Get pixel type for this band pixeltype, data = chunk(data, 2) pixeltype = unpack('B', pixeltype)[0] # Remove nodata byte from band nodata value if it exists. has_nodata = pixeltype & BANDTYPE_FLAG_HASNODATA if has_nodata: pixeltype &= ~BANDTYPE_FLAG_HASNODATA # Convert datatype from PostGIS to GDAL & get pack type and size pixeltype = POSTGIS_TO_GDAL[pixeltype] pack_type = GDAL_TO_STRUCT[pixeltype] pack_size = 2 * STRUCT_SIZE[pack_type] # Parse band nodata value. The nodata value is part of the # PGRaster string even if the nodata flag is True, so it always # has to be chunked off the data string. nodata, data = chunk(data, pack_size) nodata = unpack(pack_type, nodata)[0] # Chunk and unpack band data (pack size times nr of pixels) band, data = chunk(data, pack_size * header[10] * header[11]) band_result = {'data': bytes.fromhex(band)} # If the nodata flag is True, set the nodata value. if has_nodata: band_result['nodata_value'] = nodata # Append band data to band list bands.append(band_result) # Store pixeltype of this band in pixeltypes array pixeltypes.append(pixeltype) # Check that all bands have the same pixeltype. # This is required by GDAL. PostGIS rasters could have different pixeltypes # for bands of the same raster. if len(set(pixeltypes)) != 1: raise ValidationError("Band pixeltypes are not all equal.") return { 'srid': int(header[9]), 'width': header[10], 'height': header[11], 'datatype': pixeltypes[0], 'origin': (header[5], header[6]), 'scale': (header[3], header[4]), 'skew': (header[7], header[8]), 'bands': bands, } def to_pgraster(rast): """ Convert a GDALRaster into PostGIS Raster format. """ # Prepare the raster header data as a tuple. The first two numbers are # the endianness and the PostGIS Raster Version, both are fixed by # PostGIS at the moment. rasterheader = ( 1, 0, len(rast.bands), rast.scale.x, rast.scale.y, rast.origin.x, rast.origin.y, rast.skew.x, rast.skew.y, rast.srs.srid, rast.width, rast.height, ) # Pack raster header. result = pack(POSTGIS_HEADER_STRUCTURE, rasterheader) for band in rast.bands: # The PostGIS raster band header has exactly two elements, a 8BUI byte # and the nodata value. # # The 8BUI stores both the PostGIS pixel data type and a nodata flag. # It is composed as the datatype with BANDTYPE_FLAG_HASNODATA (1 << 6) # for existing nodata values: # 8BUI_VALUE = PG_PIXEL_TYPE (0-11) | BANDTYPE_FLAG_HASNODATA # # For example, if the byte value is 71, then the datatype is # 71 & ~BANDTYPE_FLAG_HASNODATA = 7 (32BSI) # and the nodata value is True. structure = 'B' + GDAL_TO_STRUCT[band.datatype()] # Get band pixel type in PostGIS notation pixeltype = GDAL_TO_POSTGIS[band.datatype()] # Set the nodata flag if band.nodata_value is not None: pixeltype |= BANDTYPE_FLAG_HASNODATA # Pack band header bandheader = pack(structure, (pixeltype, band.nodata_value or 0)) # Add packed header and band data to result result += bandheader + band.data(as_memoryview=True) # Convert raster to hex string before passing it to the DB. return result.hex()
the-stack_0_11626
# -*- coding: utf-8 -*- from django.db import migrations import organizations.fields class Migration(migrations.Migration): dependencies = [("organizations", "0001_initial")] operations = [ migrations.AlterField( model_name="organization", name="slug", field=organizations.fields.SlugField( blank=True, editable=False, help_text="The name in all lowercase, suitable for URL identification", max_length=200, populate_from=("name",), unique=True, ), ) ]
the-stack_0_11627
# (C) Copyright [2020] Hewlett Packard Enterprise Development LP # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR # OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, # ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE. """HPE Container Platform CLI.""" from __future__ import print_function import sys from hpecp.k8s_worker import WorkerK8sStatus, WorkerK8s from hpecp.cli import base from textwrap import dedent class K8sWorkerProxy(base.BaseProxy): """Proxy object to :py:attr:`<hpecp.client.k8s_worker>`.""" def __dir__(self): """Return the CLI method names.""" return [ "create_with_ssh_key", "delete", "examples", "get", "list", "set_storage", "statuses", "wait_for_status", ] def __init__(self): """Create instance of proxy class with the client module name.""" super(K8sWorkerProxy, self).new_instance("k8s_worker", WorkerK8s) @base.intercept_exception def create_with_ssh_key( self, ip=None, ssh_key=None, ssh_key_file=None, ssh_passphrase=None, tags=None, ephemeral_disks=None, persistent_disks=None, wait_for_operation_secs=0, ): """Create a K8s Worker using SSH key authentication. Parameters ---------- ip : str, optional The IP address of the host, this is used for internal communication, by default None. ssh_key : str, optional The SSH key data as a string, instead of this location to a key file may also be provided, by default None. ssh_key_file : str, optional The SSH key file path, by default None ssh_passphrase: str, optional The SSH passphrase tags : list, optional Tags to use, e.g. /api/v2/tag/1:foo,/api/v2/tag/1:bar, by default None ephemeral_disks : str Comma separated string containing ephemeral disks. e.g: "/dev/nvme2n1,/dev/nvme2n2" persistent_disks : str, optional Comma separated string containing persistent disks, by default None. e.g: "/dev/nvme1n1,/dev/nvme1n2" wait_for_operation_secs: int wait for operations to complete. 0 = don't wait """ if ssh_key is None and ssh_key_file is None: print( "At least one of ssh_key or ssh_key_file must be provided", file=sys.stderr, ) sys.exit(1) if ssh_key is not None and ssh_key_file is not None: print( ( "Either ssh_key or ssh_key_file must be provided," " but not both." ), file=sys.stderr, ) sys.exit(1) if ssh_key_file: try: with open(ssh_key_file) as f: ssh_key = f.read() except OSError: print( "Could not open/read ssh-key-file: {}".format( ssh_key_file ), file=sys.stderr, ) sys.exit(1) if ( ephemeral_disks is not None or persistent_disks is not None ) and wait_for_operation_secs == 0: print( ( "If setting disks, 'wait-for-operation-secs' parameter" " must be greater than zero (recommended 600 seconds)" ), file=sys.stderr, ) sys.exit(1) tags_parsed = [] if tags is not None: for tag in tags.split(","): k, v = tag.split(":") tags_parsed.append({"tag_id": k, "tag_value": v}) worker_id = base.get_client().k8s_worker.create_with_ssh_key( ip=ip, ssh_key_data=ssh_key, ssh_passphrase=ssh_passphrase, tags=tags_parsed, ) if wait_for_operation_secs > 0: self.wait_for_status( id=worker_id, status=["storage_pending", "error"], timeout_secs=wait_for_operation_secs, ) if base.get_client().k8s_worker.get(id=worker_id).status == "error": print( ( "Create request has errored. " "Check status message with `hpecp k8sworker get {}".format( id ) ), file=sys.stderr, ) sys.exit(1) if ephemeral_disks is not None or persistent_disks is not None: self.set_storage( id=worker_id, ephemeral_disks=ephemeral_disks, persistent_disks=persistent_disks, ) if wait_for_operation_secs > 0: self.wait_for_status( id=worker_id, status=["ready"], timeout_secs=wait_for_operation_secs, ) print(worker_id) def examples(self): """Show examples for working with k8sclusters.""" print( dedent( """\ # Find id of k8s workers by ip address $ hpecp k8sworker list --query "[*] | @[?contains('10.0.1.10 10.0.1.210', ipaddr)] | [*][_links.self.href]" --output text /api/v2/worker/k8shost/5 /api/v2/worker/k8shost/7 # Retrieve the first master node of a K8S Cluster $ hpecp k8scluster list --query "[?_links.self.href == '/api/v2/k8scluster/1'] | [0] | [k8shosts_config] | [0] | [?role == 'master'] | [0] | [node]" -o text /api/v2/worker/k8shost/7 """ # noqa: E501 ) ) # TODO: verify with engineering if setup_log is a valid parameter # def get(self, id, setup_log=False): # """Get a K8SWorker.""" # if setup_log is True: # params = {"setup_log": "true"} # else: # params = {} # return super(K8sWorkerProxy, self).get(id=id, params=params) @base.intercept_exception def set_storage( self, id, ephemeral_disks, persistent_disks=None, ): """Set storage for a k8s worker. Parameters ---------- id : str The k8s worker ID ephemeral_disks : str Comma separated string containing ephemeral disks. e.g: "/dev/nvme2n1,/dev/nvme2n2" persistent_disks : str, optional Comma separated string containing persistent disks, by default None. e.g: "/dev/nvme1n1,/dev/nvme1n2" """ if not ephemeral_disks: print("'ephemeral_disks' must be provided", file=sys.stderr) sys.exit(1) p_disks = ( persistent_disks.split(",") if persistent_disks is not None else [] ) e_disks = ephemeral_disks.split(",") base.get_client().k8s_worker.set_storage( worker_id=id, persistent_disks=p_disks, ephemeral_disks=e_disks, ) def statuses( self, ): """Return a list of valid statuses.""" print([s.name for s in WorkerK8sStatus])
the-stack_0_11628
from twython import Twython def read_strings_from_file(file_path, how_many): with open(file_path, 'r') as file: data = file.read() return data.split()[:how_many] def read_key_and_secret(file_path): return read_strings_from_file(file_path, 2) def read_token_secret_pin(file_path): return read_strings_from_file(file_path, 2) def write_token_secret(file_path, token, secret): with open(file_path, 'w') as file: file.write("{}\n{}".format(token, secret)) def auth_app(key_file, auth_file): app_key, app_secret = read_key_and_secret(key_file) # obtaining URL for authentication twitter = Twython(app_key, app_secret) auth = twitter.get_authentication_tokens() oauth_token = auth['oauth_token'] oauth_token_secret = auth['oauth_token_secret'] # request pin print('Go here: {}'.format(auth['auth_url'])) pin = input('PIN? ') # complete authorization with PIN twitter = Twython(app_key, app_secret, oauth_token, oauth_token_secret) auth = twitter.get_authorized_tokens(pin) oauth_token = auth['oauth_token'] oauth_token_secret = auth['oauth_token_secret'] # write token and secret to file write_token_secret(auth_file, oauth_token, oauth_token_secret) print('auth credentials written to: {}'.format(auth_file)) def twython_from_key_and_auth(key_file, auth_file): app_key, app_secret = read_key_and_secret(key_file) oauth_token, oauth_token_secret = read_token_secret_pin(auth_file) return Twython(app_key, app_secret, oauth_token, oauth_token_secret)
the-stack_0_11632
# # Copyright (c) 2017, Massachusetts Institute of Technology All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright notice, this # list of conditions and the following disclaimer in the documentation and/or # other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # from MDSplus import DATA,Float64Array,tdi import sys example = '/frame?tree=expt&shot=123&y=SIGNAL:NODE&x=0.0&frame_idx=0' def doFrame(self): def getStringExp(self,name,response_headers,_tdi): if name in self.args: try: response_headers.append((name,str(_tdi(self.args[name][-1]).data()))) except Exception as e: response_headers.append((name,"ERROR: %s"%(e,))) response_headers = list() response_headers.append(('Cache-Control','no-store, no-cache, must-revalidate')) response_headers.append(('Pragma','no-cache')) response_headers.append(('Content-Type','application/octet-stream')) if 'tree' in self.args: tree = self.openTree(self.args['tree'][-1],self.args['shot'][-1].split(',')[0]) _tdi = tree.tdiExecute else: tree = None _tdi = tdi for name in ('title','xlabel','ylabel'): getStringExp(self,name,response_headers,_tdi) if 'frame_idx' in self.args: frame_idx = self.args['frame_idx'][-1] else: frame_idx = '0' expr = self.args['y'][-1] sig = _tdi('GetSegment(' + expr + ',' + frame_idx + ')') frame_data = DATA(sig).evaluate() response_headers.append(('FRAME_WIDTH',str(sig.getShape()[0]))) response_headers.append(('FRAME_HEIGHT',str(sig.getShape()[1]))) response_headers.append(('FRAME_BYTES_PER_PIXEL',str(frame_data.data().itemsize))) response_headers.append(('FRAME_LENGTH',str(len(frame_data)))) output = str(frame_data.data().data) if 'init' in self.args: if 'x' in self.args: expr = self.args['x'][-1] times = DATA(_tdi(expr)).evaulate() else: times = list() numSegments = _tdi('GetNumSegments(' + expr + ')').data() for i in range(0, numSegments): times.append(_tdi('GetSegmentLimits(' + expr + ',' + str(i) + ')').data()[0]) times = Float64Array(times) response_headers.append(('TIMES_DATATYPE',times.__class__.__name__)) response_headers.append(('TIMES_LENGTH',str(len(times)))) output = output + str(times.data().data) status = '200 OK' return (status, response_headers, output)
the-stack_0_11636
from django.http import HttpResponse from django.shortcuts import render from django.contrib import messages from django.http import HttpResponseRedirect from cfbets.forms import SignUpForm, UserProfileForm from django.contrib.auth import authenticate, login from django.contrib.auth.decorators import login_required from bets.models import ProposedBet, AcceptedBet, UserProfile from common.stats import * from django.contrib.auth.models import User def welcome(request): if request.user.is_authenticated(): return HttpResponseRedirect('/bets/my_bets') else: return render(request, 'base_welcome.html') def sign_up(request): if request.method == 'POST': form = SignUpForm(request.POST) # check the group id group_id = request.POST.get('group_id') if group_id != '' and group_id != 'cl3ms0n': form.add_error('group_id', 'Not a valid group id.') elif form.is_valid(): form.save() new_user = authenticate( username=form.cleaned_data['username'], password=form.cleaned_data['password1']) if new_user is not None: login(request, new_user) return HttpResponseRedirect("/") else: return HttpResponseRedirect("/login") else: form = SignUpForm() return render(request, 'base_sign_up.html', {'form': form}) @login_required(login_url='/login/') def profile(request): # get the current user current_user = User.objects.get(id=request.user.id) # get the current user profile current_user_profile = UserProfile.objects.get(user=current_user) # all the form stuff if request.method == 'POST': user_profile_form = UserProfileForm(request.POST) if user_profile_form.is_valid(): # save data for current user / user profile current_user.first_name = user_profile_form.cleaned_data['first_name'] current_user.last_name = user_profile_form.cleaned_data['last_name'] current_user_profile.get_prop_bet_emails = user_profile_form.cleaned_data[ 'get_prop_bet_emails'] current_user_profile.get_accepted_bet_emails = user_profile_form.cleaned_data[ 'get_accepted_bet_emails'] current_user.save(update_fields=['first_name', 'last_name']) current_user_profile.save( update_fields=[ 'get_prop_bet_emails', 'get_accepted_bet_emails']) messages.success(request, 'Profile saved successfully.') return HttpResponseRedirect("/profile") else: user_profile_form = UserProfileForm( initial={ 'first_name': current_user.first_name, 'last_name': current_user.last_name, 'email': current_user.email, 'get_prop_bet_emails': current_user_profile.get_prop_bet_emails, 'get_accepted_bet_emails': current_user_profile.get_accepted_bet_emails}) total_won_bets = get_total_wins(current_user) total_loss_bets = get_total_losses(current_user) total_tie_bets = get_total_ties(current_user) return render(request, 'base_profile.html', {'user_profile_form': user_profile_form, 'total_won_bets': total_won_bets, 'total_tie_bets': total_tie_bets, 'total_loss_bets': total_loss_bets})
the-stack_0_11637
# Copyright (c) OpenMMLab. All rights reserved. import os import os.path as osp from .base_vfi_dataset import BaseVFIDataset from .registry import DATASETS @DATASETS.register_module() class VFIVimeo90K7FramesDataset(BaseVFIDataset): """Utilize Vimeo90K dataset (7 frames) for video frame interpolation. Load 7 GT (Ground-Truth) frames from the dataset, predict several frame(s) from other frames. Then it applies specified transforms and finally returns a dict containing paired data and other information. It reads Vimeo90K keys from the txt file. Each line contains: 1. video frame folder 2. number of frames 3. image shape Examples: :: 00001/0266 7 (256,448,3) 00001/0268 7 (256,448,3) Note: Only `video frame folder` is required information. Args: folder (str | :obj:`Path`): Path to image folder. ann_file (str | :obj:`Path`): Path to the annotation file. pipeline (list[dict | callable]): A sequence of data transformations. input_frames (list[int]): Index of input frames. target_frames (list[int]): Index of target frames. test_mode (bool): Store `True` when building test dataset. Default: `False`. """ def __init__(self, folder, ann_file, pipeline, input_frames, target_frames, test_mode=False): super().__init__( pipeline=pipeline, folder=folder, ann_file=ann_file, test_mode=test_mode) self.input_frames = input_frames self.target_frames = target_frames self.data_infos = self.load_annotations() def load_annotations(self): """Load annoations for Vimeo-90K dataset. Returns: list[dict]: A list of dicts for paired paths and other information. """ # get keys with open(self.ann_file, 'r') as fin: keys = [line.strip().split(' ')[0] for line in fin] data_infos = [] for key in keys: key = key.replace('/', os.sep) inputs_path = [ osp.join(self.folder, key, f'im{i}.png') for i in self.input_frames ] target_path = [ osp.join(self.folder, key, f'im{i}.png') for i in self.target_frames ] data_infos.append( dict( inputs_path=inputs_path, target_path=target_path, key=key)) return data_infos
the-stack_0_11639
""" This process performs a restore of all the application entities from a given restore. """ import argparse import logging import os from appscale.common import appscale_info from ..backup.datastore_restore import DatastoreRestore from ..dbconstants import APP_ENTITY_SCHEMA from ..dbconstants import APP_ENTITY_TABLE from ..dbconstants import APP_KIND_SCHEMA from ..dbconstants import APP_KIND_TABLE from ..dbconstants import ASC_PROPERTY_TABLE from ..dbconstants import COMPOSITE_SCHEMA from ..dbconstants import COMPOSITE_TABLE from ..dbconstants import DSC_PROPERTY_TABLE from ..dbconstants import PROPERTY_SCHEMA from ..utils import fetch_and_delete_entities from ..zkappscale import zktransaction as zk # Where to look to verify the app is deployed. _APPS_LOCATION = '/var/apps/' logger = logging.getLogger(__name__) def init_parser(): """ Initializes the command line argument parser. Returns: A parser object. """ parser = argparse.ArgumentParser( description='Restore application code and data.') main_args = parser.add_argument_group('main args') main_args.add_argument('-a', '--app-id', required=True, help='The application ID to restore data under.') main_args.add_argument('-b', '--backup-dir', required=True, help='The backup directory to restore data from.') main_args.add_argument('-c', '--clear-datastore', required=False, action="store_true", default=False, help='Start with a clean datastore.') main_args.add_argument('-d', '--debug', required=False, action="store_true", default=False, help='Display debug messages.') # TODO # Read in source code location and owner and deploy the app # before restoring data. return parser def app_is_deployed(app_id, zk_client): """ Looks for the app directory in the deployed apps location. Args: app_id: A str, the application ID. Returns: True on success, False otherwise. """ if not zk_client.exists('/appscale/projects/{}'.format(app_id)): logger.error("Seems that \"{0}\" is not deployed.".format(app_id)) logger.info("Please deploy \"{0}\" and try again.".\ format(app_id)) return False return True def backup_dir_exists(backup_dir): """ Checks it the given backup directory exists. Args: backup_dir: A str, the location of the backup directory containing all backup files. Returns: True on success, False otherwise. """ if not os.path.exists(backup_dir): logger.error("Error while accessing backup files.") logger.info("Please provide a valid backup directory.") return False return True def main(): """ This main function allows you to run the restore manually. """ # Parse CLI arguments. parser = init_parser() args = parser.parse_args() # Set up logging. level = logging.INFO if args.debug: level = logging.DEBUG logging.basicConfig(format='%(asctime)s %(levelname)s %(filename)s:' \ '%(lineno)s %(message)s ', level=level) logger.info("Logging started") logger.info(args) zk_connection_locations = appscale_info.get_zk_locations_string() zookeeper = zk.ZKTransaction(host=zk_connection_locations) # Verify app is deployed. if not app_is_deployed(args.app_id, zookeeper.handle): return # Verify backup dir exists. if not backup_dir_exists(args.backup_dir): return if args.clear_datastore: message = "Deleting \"{0}\" data...".\ format(args.app_id, args.backup_dir) logger.info(message) try: tables_to_clear = { APP_ENTITY_TABLE: APP_ENTITY_SCHEMA, ASC_PROPERTY_TABLE: PROPERTY_SCHEMA, DSC_PROPERTY_TABLE: PROPERTY_SCHEMA, COMPOSITE_TABLE: COMPOSITE_SCHEMA, APP_KIND_TABLE: APP_KIND_SCHEMA } for table, schema in tables_to_clear.items(): fetch_and_delete_entities('cassandra', table, schema, args.app_id, False) except Exception as exception: logger.error("Unhandled exception while deleting \"{0}\" data: {1} " \ "Exiting...".format(args.app_id, exception.message)) return # Initialize connection to Zookeeper and database related variables. db_info = appscale_info.get_db_info() table = db_info[':table'] # Start restore process. ds_restore = DatastoreRestore(args.app_id.strip('/'), args.backup_dir, zookeeper, table) try: ds_restore.run() finally: zookeeper.close()
the-stack_0_11640
"""Helper sensor for calculating utility costs.""" from __future__ import annotations from dataclasses import dataclass from functools import partial from typing import Any, Final, Literal, TypeVar, cast from homeassistant.components.sensor import ( ATTR_LAST_RESET, DEVICE_CLASS_MONETARY, STATE_CLASS_MEASUREMENT, SensorEntity, ) from homeassistant.core import HomeAssistant, State, callback, split_entity_id from homeassistant.helpers.entity_platform import AddEntitiesCallback from homeassistant.helpers.event import async_track_state_change_event from homeassistant.helpers.typing import ConfigType, DiscoveryInfoType import homeassistant.util.dt as dt_util from .const import DOMAIN from .data import EnergyManager, async_get_manager async def async_setup_platform( hass: HomeAssistant, config: ConfigType, async_add_entities: AddEntitiesCallback, discovery_info: DiscoveryInfoType | None = None, ) -> None: """Set up the energy sensors.""" manager = await async_get_manager(hass) process_now = partial(_process_manager_data, hass, manager, async_add_entities, {}) manager.async_listen_updates(process_now) if manager.data: await process_now() T = TypeVar("T") @dataclass class FlowAdapter: """Adapter to allow flows to be used as sensors.""" flow_type: Literal["flow_from", "flow_to"] stat_energy_key: Literal["stat_energy_from", "stat_energy_to"] entity_energy_key: Literal["entity_energy_from", "entity_energy_to"] total_money_key: Literal["stat_cost", "stat_compensation"] name_suffix: str entity_id_suffix: str FLOW_ADAPTERS: Final = ( FlowAdapter( "flow_from", "stat_energy_from", "entity_energy_from", "stat_cost", "Cost", "cost", ), FlowAdapter( "flow_to", "stat_energy_to", "entity_energy_to", "stat_compensation", "Compensation", "compensation", ), ) async def _process_manager_data( hass: HomeAssistant, manager: EnergyManager, async_add_entities: AddEntitiesCallback, current_entities: dict[tuple[str, str], EnergyCostSensor], ) -> None: """Process updated data.""" to_add: list[SensorEntity] = [] to_remove = dict(current_entities) async def finish() -> None: if to_add: async_add_entities(to_add) for key, entity in to_remove.items(): current_entities.pop(key) await entity.async_remove() if not manager.data: await finish() return for energy_source in manager.data["energy_sources"]: if energy_source["type"] != "grid": continue for adapter in FLOW_ADAPTERS: for flow in energy_source[adapter.flow_type]: # Opting out of the type complexity because can't get it to work untyped_flow = cast(dict, flow) # No need to create an entity if we already have a cost stat if untyped_flow.get(adapter.total_money_key) is not None: continue # This is unique among all flow_from's key = (adapter.flow_type, untyped_flow[adapter.stat_energy_key]) # Make sure the right data is there # If the entity existed, we don't pop it from to_remove so it's removed if untyped_flow.get(adapter.entity_energy_key) is None or ( untyped_flow.get("entity_energy_price") is None and untyped_flow.get("number_energy_price") is None ): continue current_entity = to_remove.pop(key, None) if current_entity: current_entity.update_config(untyped_flow) continue current_entities[key] = EnergyCostSensor( adapter, manager.data["currency"], untyped_flow, ) to_add.append(current_entities[key]) await finish() class EnergyCostSensor(SensorEntity): """Calculate costs incurred by consuming energy. This is intended as a fallback for when no specific cost sensor is available for the utility. """ def __init__( self, adapter: FlowAdapter, currency: str, flow: dict, ) -> None: """Initialize the sensor.""" super().__init__() self._adapter = adapter self.entity_id = f"{flow[adapter.entity_energy_key]}_{adapter.entity_id_suffix}" self._attr_device_class = DEVICE_CLASS_MONETARY self._attr_state_class = STATE_CLASS_MEASUREMENT self._attr_unit_of_measurement = currency self._flow = flow self._last_energy_sensor_state: State | None = None def _reset(self, energy_state: State) -> None: """Reset the cost sensor.""" self._attr_state = 0.0 self._attr_last_reset = dt_util.utcnow() self._last_energy_sensor_state = energy_state self.async_write_ha_state() @callback def _update_cost(self) -> None: """Update incurred costs.""" energy_state = self.hass.states.get( cast(str, self._flow[self._adapter.entity_energy_key]) ) if energy_state is None or ATTR_LAST_RESET not in energy_state.attributes: return try: energy = float(energy_state.state) except ValueError: return # Determine energy price if self._flow["entity_energy_price"] is not None: energy_price_state = self.hass.states.get(self._flow["entity_energy_price"]) if energy_price_state is None: return try: energy_price = float(energy_price_state.state) except ValueError: return else: energy_price_state = None energy_price = cast(float, self._flow["number_energy_price"]) if self._last_energy_sensor_state is None: # Initialize as it's the first time all required entities are in place. self._reset(energy_state) return cur_value = cast(float, self._attr_state) if ( energy_state.attributes[ATTR_LAST_RESET] != self._last_energy_sensor_state.attributes[ATTR_LAST_RESET] ): # Energy meter was reset, reset cost sensor too self._reset(energy_state) else: # Update with newly incurred cost old_energy_value = float(self._last_energy_sensor_state.state) self._attr_state = cur_value + (energy - old_energy_value) * energy_price self._last_energy_sensor_state = energy_state async def async_added_to_hass(self) -> None: """Register callbacks.""" energy_state = self.hass.states.get(self._flow[self._adapter.entity_energy_key]) if energy_state: name = energy_state.name else: name = split_entity_id(self._flow[self._adapter.entity_energy_key])[ 0 ].replace("_", " ") self._attr_name = f"{name} {self._adapter.name_suffix}" self._update_cost() # Store stat ID in hass.data so frontend can look it up self.hass.data[DOMAIN]["cost_sensors"][ self._flow[self._adapter.entity_energy_key] ] = self.entity_id @callback def async_state_changed_listener(*_: Any) -> None: """Handle child updates.""" self._update_cost() self.async_write_ha_state() self.async_on_remove( async_track_state_change_event( self.hass, cast(str, self._flow[self._adapter.entity_energy_key]), async_state_changed_listener, ) ) async def async_will_remove_from_hass(self) -> None: """Handle removing from hass.""" self.hass.data[DOMAIN]["cost_sensors"].pop( self._flow[self._adapter.entity_energy_key] ) await super().async_will_remove_from_hass() @callback def update_config(self, flow: dict) -> None: """Update the config.""" self._flow = flow
the-stack_0_11644
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Updates a flagfile containing a resign threshold flag Reads the bigtables defined by the flags --cbt_{project, instance, table} to compute the 95 percentile of the bleakest-evaluations found in calibration games, then updates the flagfile on the default bucket path, resetting that value. Recommended usage is via common flagfile (e.g. rl_loop/distributed_flags) """ import sys import re import os import time from absl import app from absl import flags import numpy as np import tensorflow as tf sys.path.insert(0, '.') import mask_flags import bigtable_input import rl_loop.fsdb as fsdb # Fun fact, this only helps for --helpshort. It's not a validator. flags.adopt_module_key_flags(bigtable_input) flags.adopt_module_key_flags(fsdb) FLAGS = flags.FLAGS RESIGN_FLAG_REGEX = re.compile(r'--resign_threshold=([-\d.]+)') def get_95_percentile_bleak(games_nr, n_back=500): """Gets the 95th percentile of bleakest_eval from bigtable""" end_game = int(games_nr.latest_game_number) start_game = end_game - n_back if end_game >= n_back else 0 moves = games_nr.bleakest_moves(start_game, end_game) evals = np.array([m[2] for m in moves]) return np.percentile(evals, 5) def update_flagfile(flags_path, new_threshold): """Updates the flagfile at `flags_path`, changing the value for `resign_threshold` to `new_threshold` """ if abs(new_threshold) > 1: raise ValueError("Invalid new percentile for resign threshold") with tf.gfile.GFile(flags_path) as f: lines = f.read() if new_threshold > 0: new_threshold *= -1 if not RESIGN_FLAG_REGEX.search(lines): print("Resign threshold flag not found in flagfile {}! Aborting.".format(flags_path)) sys.exit(1) old_threshold = RESIGN_FLAG_REGEX.search(lines).groups(1) lines = re.sub(RESIGN_FLAG_REGEX, "--resign_threshold={:.3f}".format(new_threshold), lines) if abs(float(old_threshold[0]) - new_threshold) < 0.001: print("Not updating percentiles; {} ~= {:.3f}".format( old_threshold[0], new_threshold), flush=True) else: print("Updated percentile from {} to {:.3f}".format( old_threshold[0], new_threshold), flush=True) with tf.gfile.GFile(flags_path, 'w') as f: f.write(lines) def main(argv): if len(argv) > 1: raise app.UsageError('Too many command-line arguments.') games_nr = bigtable_input.GameQueue( FLAGS.cbt_project, FLAGS.cbt_instance, FLAGS.cbt_table + '-nr') while True: new_pct = get_95_percentile_bleak(games_nr) update_flagfile(fsdb.flags_path(), new_pct) time.sleep(60 * 3) if __name__ == '__main__': valid_flags = list(map(lambda f: '--' + f, FLAGS.flag_values_dict().keys())) valid_flags += ['--helpshort', '--helpfull', '--help'] parsed_flags = flags.FlagValues().read_flags_from_files(sys.argv[1:]) filtered_flags = mask_flags.filter_flags(parsed_flags, valid_flags) print(filtered_flags, flush=True) app.run(main, argv=sys.argv[:1] + filtered_flags)
the-stack_0_11647
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. import copy import logging import math from typing import Optional import torch import torch.nn as nn import torch.nn.functional as F from reagent import types as rlt from reagent.core.configuration import param_hash from reagent.core.dataclasses import dataclass from reagent.model_utils.seq2slate_utils import ( DECODER_START_SYMBOL, PADDING_SYMBOL, Seq2SlateMode, Seq2SlateOutputArch, attention, clones, mask_logits_by_idx, per_symbol_to_per_seq_log_probs, per_symbol_to_per_seq_probs, subsequent_mask, ) from reagent.models.base import ModelBase from reagent.torch_utils import gather from torch.nn.parallel.distributed import DistributedDataParallel logger = logging.getLogger(__name__) class Generator(nn.Module): """ Define standard linear + softmax generation step. """ def __init__(self, dim_model, candidate_size, temperature): super(Generator, self).__init__() self.dim_model = dim_model self.candidate_size = candidate_size self.temperature = temperature def forward(self, mode, logits=None, tgt_in_idx=None, greedy=None): if mode in ( Seq2SlateMode.PER_SYMBOL_LOG_PROB_DIST_MODE, Seq2SlateMode.PER_SEQ_LOG_PROB_MODE, ): return self._log_probs(logits, tgt_in_idx, mode) elif mode == Seq2SlateMode.DECODE_ONE_STEP_MODE: assert greedy is not None return self._decode_one_step(logits, tgt_in_idx, greedy) else: raise NotImplementedError() def _log_probs(self, logits, tgt_in_idx, mode): """ Return the log probability distribution at each decoding step :param logits: logits of decoder outputs. Shape: batch_size, seq_len, candidate_size :param tgt_idx: the indices of candidates in decoder input sequences. The first symbol is always DECODER_START_SYMBOL. Shape: batch_size, seq_len """ assert mode in ( Seq2SlateMode.PER_SEQ_LOG_PROB_MODE, Seq2SlateMode.PER_SYMBOL_LOG_PROB_DIST_MODE, ) logits = mask_logits_by_idx(logits, tgt_in_idx) # log_probs shape: batch_size, seq_len, candidate_size log_probs = F.log_softmax(logits / self.temperature, dim=2) return log_probs def _decode_one_step(self, logits, tgt_in_idx, greedy): """ Decode one-step :param logits: logits of decoder outputs. Shape: batch_size, seq_len, candidate_size :param tgt_in_idx: input to the decoder, the first symbol is always the starting symbol. Shape: batch_size, seq_len :param greedy: whether to greedily pick or sample the next symbol """ batch_size = logits.shape[0] # get the last step logits shape: batch_size, candidate_size logits = logits[:, -1, :] # invalidate the padding symbol and decoder-starting symbol logits[:, :2] = float("-inf") # invalidate symbols already appeared in decoded sequences logits = logits.scatter(1, tgt_in_idx, float("-inf")) prob = F.softmax(logits / self.temperature, dim=1) if greedy: _, next_candidate = torch.max(prob, dim=1) else: next_candidate = torch.multinomial(prob, num_samples=1, replacement=False) next_candidate = next_candidate.reshape(batch_size, 1) # next_candidate: the decoded symbols for the latest step # shape: batch_size x 1 # prob: generative probabilities of the latest step # shape: batch_size x candidate_size return next_candidate, prob class SublayerConnection(nn.Module): """ A residual connection followed by a layer norm. """ def __init__(self, dim_model): super(SublayerConnection, self).__init__() self.norm = nn.LayerNorm(dim_model) def forward(self, x, sublayer): return x + sublayer(self.norm(x)) class Encoder(nn.Module): "Core encoder is a stack of num_layers layers" def __init__(self, layer, num_layers): super(Encoder, self).__init__() self.layers = clones(layer, num_layers) self.norm = nn.LayerNorm(layer.dim_model) def forward(self, x, mask): "Pass the input (and mask) through each layer in turn." for layer in self.layers: x = layer(x, mask) return self.norm(x) class EncoderLayer(nn.Module): """ Encoder is made up of self-attn and feed forward """ def __init__(self, dim_model, self_attn, feed_forward): super(EncoderLayer, self).__init__() self.self_attn = self_attn self.feed_forward = feed_forward self.sublayer = clones(SublayerConnection(dim_model), 2) self.dim_model = dim_model def forward(self, src_embed, src_mask): # src_embed shape: batch_size, seq_len, dim_model # src_src_mask shape: batch_size, seq_len, seq_len def self_attn_layer(x): return self.self_attn(x, x, x, src_mask) # attn_output shape: batch_size, seq_len, dim_model attn_output = self.sublayer[0](src_embed, self_attn_layer) # return shape: batch_size, seq_len, dim_model return self.sublayer[1](attn_output, self.feed_forward) class Decoder(nn.Module): """ Generic num_layers layer decoder with masking.""" def __init__(self, layer, num_layers): super(Decoder, self).__init__() self.layers = clones(layer, num_layers) self.norm = nn.LayerNorm(layer.size) def forward(self, x, memory, tgt_src_mask, tgt_tgt_mask): # each layer is one DecoderLayer for layer in self.layers: x = layer(x, memory, tgt_src_mask, tgt_tgt_mask) return self.norm(x) class DecoderLayer(nn.Module): """ Decoder is made of self-attn, src-attn, and feed forward """ def __init__(self, size, self_attn, src_attn, feed_forward): super(DecoderLayer, self).__init__() self.size = size self.self_attn = self_attn self.src_attn = src_attn self.feed_forward = feed_forward self.sublayer = clones(SublayerConnection(size), 3) def forward(self, x, m, tgt_src_mask, tgt_tgt_mask): # x is target embedding or the output of previous decoder layer # x shape: batch_size, seq_len, dim_model # m is the output of the last encoder layer # m shape: batch_size, seq_len, dim_model # tgt_src_mask shape: batch_size, tgt_seq_len, src_seq_len # tgt_tgt_mask shape: batch_size, tgt_seq_len, tgt_seq_len def self_attn_layer_tgt(x): return self.self_attn(query=x, key=x, value=x, mask=tgt_tgt_mask) def self_attn_layer_src(x): return self.src_attn(query=x, key=m, value=m, mask=tgt_src_mask) x = self.sublayer[0](x, self_attn_layer_tgt) x = self.sublayer[1](x, self_attn_layer_src) # return shape: batch_size, seq_len, dim_model return self.sublayer[2](x, self.feed_forward) class MultiHeadedAttention(nn.Module): def __init__(self, num_heads, dim_model): """ Take in model size and number of heads """ super(MultiHeadedAttention, self).__init__() assert dim_model % num_heads == 0 # We assume d_v always equals d_k self.d_k = dim_model // num_heads self.num_heads = num_heads self.linears = clones(nn.Linear(dim_model, dim_model), 4) def forward(self, query, key, value, mask=None): if mask is not None: # Same mask applied to all num_heads heads. # mask shape: batch_size, 1, seq_len, seq_len mask = mask.unsqueeze(1) nbatches = query.size(0) # 1) Do all the linear projections in batch from dim_model => num_heads x d_k # self.linear[0, 1, 2] is query weight matrix, key weight matrix, and # value weight matrix, respectively. # l(x) represents the transformed query matrix, key matrix and value matrix # l(x) has shape (batch_size, seq_len, dim_model). You can think l(x) as # the matrices from a one-head attention; or you can think # l(x).view(...).transpose(...) as the matrices of num_heads attentions, # each attention has d_k dimension. query, key, value = [ l(x).view(nbatches, -1, self.num_heads, self.d_k).transpose(1, 2) for l, x in zip(self.linears, (query, key, value)) ] # 2) Apply attention on all the projected vectors in batch. # x shape: batch_size, num_heads, seq_len, d_k x, _ = attention(query, key, value, mask, self.d_k) # 3) "Concat" using a view and apply a final linear. # each attention's output is d_k dimension. Concat num_heads attention's outputs # x shape: batch_size, seq_len, dim_model x = x.transpose(1, 2).contiguous().view(nbatches, -1, self.num_heads * self.d_k) return self.linears[-1](x) class PositionwiseFeedForward(nn.Module): def __init__(self, dim_model, dim_feedforward): super(PositionwiseFeedForward, self).__init__() self.net = torch.nn.Sequential( torch.nn.Linear(dim_model, dim_feedforward), torch.nn.ReLU(), torch.nn.Linear(dim_feedforward, dim_model), ) def forward(self, x): return self.net(x) class Embedder(nn.Module): def __init__(self, dim_in, dim_out): super(Embedder, self).__init__() self.dim_in = dim_in self.dim_out = dim_out self.linear = nn.Linear(self.dim_in, self.dim_out) def forward(self, x): # x: raw input features. Shape: batch_size, seq_len, dim_in output = self.linear(x) * math.sqrt(self.dim_out) # output shape: batch_size, seq_len, dim_out return output class PositionalEncoding(nn.Module): def __init__(self, dim_model, max_len): super(PositionalEncoding, self).__init__() self.pos_embed = nn.Embedding(max_len, dim_model) def forward(self, x): device = x.device batch_size, seq_len, _ = x.shape position_idx = ( torch.arange(0, seq_len).unsqueeze(0).repeat(batch_size, 1).to(device) ) x = x + self.pos_embed(position_idx) return x class BaselineNet(nn.Module): def __init__(self, state_dim, dim_feedforward, num_stacked_layers): super(BaselineNet, self).__init__() nn_blocks = [nn.Linear(state_dim, dim_feedforward), nn.ReLU()] assert num_stacked_layers >= 1 for _ in range(num_stacked_layers - 1): nn_blocks.extend([nn.Linear(dim_feedforward, dim_feedforward), nn.ReLU()]) nn_blocks.append(nn.Linear(dim_feedforward, 1)) self.mlp = nn.Sequential(*nn_blocks) def forward(self, input: rlt.PreprocessedRankingInput): x = input.state.float_features return self.mlp(x) class Seq2SlateTransformerModel(nn.Module): """ A Seq2Slate network with Transformer. The network is essentially an encoder-decoder structure. The encoder inputs a sequence of candidate feature vectors and a state feature vector, and the decoder outputs an ordered list of candidate indices. The output order is learned through REINFORCE algorithm to optimize sequence-wise reward. One application example is to rank candidate feeds to a specific user such that the final list of feeds as a whole optimizes the user's engagement. Seq2Slate paper: https://arxiv.org/abs/1810.02019 Transformer paper: https://arxiv.org/abs/1706.03762 The model archtecture can also adapt to some variations. (1) The decoder can be autoregressive (2) The decoder can take encoder scores and perform iterative softmax (aka frechet sort) (3) No decoder and the output order is solely based on encoder scores """ def __init__( self, state_dim: int, candidate_dim: int, num_stacked_layers: int, num_heads: int, dim_model: int, dim_feedforward: int, max_src_seq_len: int, max_tgt_seq_len: int, output_arch: Seq2SlateOutputArch, temperature: float = 1.0, ): """ :param state_dim: state feature dimension :param candidate_dim: candidate feature dimension :param num_stacked_layers: number of stacked layers in Transformer :param num_heads: number of attention heads used in Transformer :param dim_model: number of attention dimensions in Transformer :param dim_feedforward: number of hidden units in FeedForward layers in Transformer :param max_src_seq_len: the maximum length of input sequences :param max_tgt_seq_len: the maximum length of output sequences :param output_arch: determines seq2slate output architecture :param temperature: temperature used in decoder sampling """ super().__init__() self.state_dim = state_dim self.candidate_dim = candidate_dim self.num_stacked_layers = num_stacked_layers self.num_heads = num_heads self.dim_model = dim_model self.dim_feedforward = dim_feedforward self.max_src_seq_len = max_src_seq_len self.max_tgt_seq_len = max_tgt_seq_len self.output_arch = output_arch self._DECODER_START_SYMBOL = DECODER_START_SYMBOL self._PADDING_SYMBOL = PADDING_SYMBOL self._RANK_MODE = Seq2SlateMode.RANK_MODE self._PER_SYMBOL_LOG_PROB_DIST_MODE = ( Seq2SlateMode.PER_SYMBOL_LOG_PROB_DIST_MODE ) self._PER_SEQ_LOG_PROB_MODE = Seq2SlateMode.PER_SEQ_LOG_PROB_MODE self._DECODE_ONE_STEP_MODE = Seq2SlateMode.DECODE_ONE_STEP_MODE self._ENCODER_SCORE_MODE = Seq2SlateMode.ENCODER_SCORE_MODE c = copy.deepcopy attn = MultiHeadedAttention(num_heads, dim_model) ff = PositionwiseFeedForward(dim_model, dim_feedforward) self.encoder = Encoder( EncoderLayer(dim_model, c(attn), c(ff)), num_stacked_layers ) if self.output_arch == Seq2SlateOutputArch.FRECHET_SORT: # Compute score at each encoder step self.encoder_scorer = nn.Linear(dim_model, 1) # Generator needs to know the output symbol size, # Possible output symbols include candidate indices, decoder-start symbol # and padding symbol self.generator = Generator(dim_model, max_src_seq_len + 2, temperature) elif self.output_arch == Seq2SlateOutputArch.AUTOREGRESSIVE: self.decoder = Decoder( DecoderLayer(dim_model, c(attn), c(attn), c(ff)), num_stacked_layers ) self.decoder_logit_proj = nn.Linear(dim_model, max_src_seq_len + 2) self.generator = Generator(dim_model, max_src_seq_len + 2, temperature) elif self.output_arch == Seq2SlateOutputArch.ENCODER_SCORE: # Compute score at each encoder step self.encoder_scorer = nn.Linear(dim_model, 1) self.candidate_embedder = Embedder(candidate_dim, dim_model // 2) self.state_embedder = Embedder(state_dim, dim_model // 2) self.positional_encoding_encoder = PositionalEncoding( dim_model, max_len=max_src_seq_len ) self.positional_encoding_decoder = PositionalEncoding( dim_model, max_len=max_tgt_seq_len ) # Initialize parameters with Glorot / fan_avg. for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) self._print_model_info() __constants__ = [ "state_dim", "candidate_dim", "num_stacked_layers", "num_heads", "dim_model", "dim_feedforward", "max_src_seq_len", "max_tgt_seq_len", "output_path", "_DECODER_START_SYMBOL", "_PADDING_SYMBOL", "_RANK_MODE", "_PER_SYMBOL_LOG_PROB_DIST_MODE", "_PER_SEQ_LOG_PROB_MODE", "_DECODE_ONE_STEP_MODE", "_ENCODER_SCORE_MODE", ] def _print_model_info(self): def _num_of_params(model): return len(torch.cat([p.flatten() for p in model.parameters()])) logger.info(f"Num of total params: {_num_of_params(self)}") logger.info(f"Num of Encoder params: {_num_of_params(self.encoder)}") logger.info( f"Num of Candidate Embedder params: {_num_of_params(self.candidate_embedder)}" ) logger.info( f"Num of State Embedder params: {_num_of_params(self.state_embedder)}" ) if self.output_arch == Seq2SlateOutputArch.FRECHET_SORT: logger.info( f"Num of Encoder_Scorer params: {_num_of_params(self.encoder_scorer)}" ) elif self.output_arch == Seq2SlateOutputArch.AUTOREGRESSIVE: logger.info(f"Num of Decoder params: {_num_of_params(self.decoder)}") logger.info( f"Num of Decoder Projection params: {_num_of_params(self.decoder_logit_proj)}" ) elif self.output_arch == Seq2SlateOutputArch.ENCODER_SCORE: logger.info( f"Num of Encoder_Scorer params: {_num_of_params(self.encoder_scorer)}" ) def forward( self, input: rlt.PreprocessedRankingInput, mode: str, tgt_seq_len: Optional[int] = None, greedy: Optional[bool] = None, ): """ :param input: model input :param mode: a string indicating which mode to perform. "rank": return ranked actions and their generative probabilities. "per_seq_log_probs": return generative log probabilities of given tgt sequences (used for REINFORCE training) "per_symbol_log_probs": return generative log probabilties of each symbol in given tgt sequences (used in TEACHER FORCING and DIFFERENTIABLE_REWARD training) :param tgt_seq_len: the length of output sequence to be decoded. Only used in rank mode :param greedy: whether to sample based on softmax distribution or greedily when decoding. Only used in rank mode """ if mode == self._RANK_MODE: if tgt_seq_len is None: tgt_seq_len = self.max_tgt_seq_len return self._rank( state=input.state.float_features, src_seq=input.src_seq.float_features, src_src_mask=input.src_src_mask, tgt_seq_len=tgt_seq_len, greedy=greedy, ) elif mode in (self._PER_SEQ_LOG_PROB_MODE, self._PER_SYMBOL_LOG_PROB_DIST_MODE): assert input.tgt_in_seq is not None return self._log_probs( state=input.state.float_features, src_seq=input.src_seq.float_features, # pyre-fixme[16]: `Optional` has no attribute `float_features`. tgt_in_seq=input.tgt_in_seq.float_features, src_src_mask=input.src_src_mask, tgt_tgt_mask=input.tgt_tgt_mask, tgt_in_idx=input.tgt_in_idx, tgt_out_idx=input.tgt_out_idx, mode=mode, ) elif mode == self._ENCODER_SCORE_MODE: assert self.output_arch == Seq2SlateOutputArch.ENCODER_SCORE return self.encoder_output_to_scores( state=input.state.float_features, src_seq=input.src_seq.float_features, src_src_mask=input.src_src_mask, tgt_out_idx=input.tgt_out_idx, ) def _rank(self, state, src_seq, src_src_mask, tgt_seq_len, greedy): """ Decode sequences based on given inputs """ device = src_seq.device batch_size, src_seq_len, candidate_dim = src_seq.shape candidate_size = src_seq_len + 2 # candidate_features is used as look-up table for candidate features. # the second dim is src_seq_len + 2 because we also want to include # features of start symbol and padding symbol candidate_features = torch.zeros( batch_size, src_seq_len + 2, candidate_dim, device=device ) # TODO: T62502977 create learnable feature vectors for start symbol # and padding symbol candidate_features[:, 2:, :] = src_seq # memory shape: batch_size, src_seq_len, dim_model memory = self.encode(state, src_seq, src_src_mask) ranked_per_symbol_probs = torch.zeros( batch_size, tgt_seq_len, candidate_size, device=device ) ranked_per_seq_probs = torch.zeros(batch_size, 1) if self.output_arch == Seq2SlateOutputArch.ENCODER_SCORE: # encoder_scores shape: batch_size, src_seq_len encoder_scores = self.encoder_scorer(memory).squeeze(dim=2) tgt_out_idx = torch.argsort(encoder_scores, dim=1, descending=True)[ :, :tgt_seq_len ] # +2 to account for start symbol and padding symbol tgt_out_idx += 2 # every position has propensity of 1 because we are just using argsort ranked_per_symbol_probs = ranked_per_symbol_probs.scatter( 2, tgt_out_idx.unsqueeze(2), 1.0 ) ranked_per_seq_probs[:, :] = 1.0 return ranked_per_symbol_probs, ranked_per_seq_probs, tgt_out_idx tgt_in_idx = ( torch.ones(batch_size, 1, device=device) .fill_(self._DECODER_START_SYMBOL) .type(torch.long) ) assert greedy is not None for l in range(tgt_seq_len): tgt_in_seq = gather(candidate_features, tgt_in_idx) tgt_src_mask = src_src_mask[:, : l + 1, :] # shape batch_size, l + 1, candidate_size logits = self.decode( memory=memory, state=state, tgt_src_mask=tgt_src_mask, tgt_in_seq=tgt_in_seq, tgt_tgt_mask=subsequent_mask(l + 1, device), tgt_seq_len=l + 1, ) # next candidate shape: batch_size, 1 # prob shape: batch_size, candidate_size next_candidate, prob = self.generator( mode=self._DECODE_ONE_STEP_MODE, logits=logits, tgt_in_idx=tgt_in_idx, greedy=greedy, ) ranked_per_symbol_probs[:, l, :] = prob tgt_in_idx = torch.cat([tgt_in_idx, next_candidate], dim=1) # remove the decoder start symbol # tgt_out_idx shape: batch_size, tgt_seq_len tgt_out_idx = tgt_in_idx[:, 1:] ranked_per_seq_probs = per_symbol_to_per_seq_probs( ranked_per_symbol_probs, tgt_out_idx ) # ranked_per_symbol_probs shape: batch_size, tgt_seq_len, candidate_size # ranked_per_seq_probs shape: batch_size, 1 # tgt_out_idx shape: batch_size, tgt_seq_len return ranked_per_symbol_probs, ranked_per_seq_probs, tgt_out_idx def _log_probs( self, state, src_seq, tgt_in_seq, src_src_mask, tgt_tgt_mask, tgt_in_idx, tgt_out_idx, mode, ): """ Compute log of generative probabilities of given tgt sequences (used for REINFORCE training) """ # encoder_output shape: batch_size, src_seq_len, dim_model encoder_output = self.encode(state, src_seq, src_src_mask) tgt_seq_len = tgt_in_seq.shape[1] src_seq_len = src_seq.shape[1] assert tgt_seq_len <= src_seq_len # tgt_src_mask shape: batch_size, tgt_seq_len, src_seq_len tgt_src_mask = src_src_mask[:, :tgt_seq_len, :] # decoder_logits shape: batch_size, tgt_seq_len, candidate_size decoder_logits = self.decode( memory=encoder_output, state=state, tgt_src_mask=tgt_src_mask, tgt_in_seq=tgt_in_seq, tgt_tgt_mask=tgt_tgt_mask, tgt_seq_len=tgt_seq_len, ) # log_probs shape: # if mode == PER_SEQ_LOG_PROB_MODE: batch_size, 1 # if mode == PER_SYMBOL_LOG_PROB_DIST_MODE: batch_size, tgt_seq_len, candidate_size log_probs = self._decoder_logits_to_log_probs( decoder_logits, tgt_in_idx, tgt_out_idx, mode ) return log_probs def _decoder_logits_to_log_probs(self, logits, tgt_in_idx, tgt_out_idx, mode): """ :param logits: the logits from the decoder, with shape: (batch_size, seq_len, candidate_size) :param tgt_in_idx: input idx to the decoder, the first symbol is always the DECODER_START_SYMBOL. Shape: batch_size x seq_len :param tgt_out_idx: output idx of the decoder. Shape: batch_size x seq_len :param mode: return log prob distribution per symbol or reduce them per sequence """ assert mode in ( self._PER_SEQ_LOG_PROB_MODE, self._PER_SYMBOL_LOG_PROB_DIST_MODE, ) # per_symbol_log_probs: log probability distribution of each symbol # shape: batch_size, seq_len, candidate_size per_symbol_log_probs = self.generator( mode=mode, logits=logits, tgt_in_idx=tgt_in_idx ) if mode == self._PER_SYMBOL_LOG_PROB_DIST_MODE: return per_symbol_log_probs # shape: batch_size, 1 return per_symbol_to_per_seq_log_probs(per_symbol_log_probs, tgt_out_idx) def encoder_output_to_scores(self, state, src_seq, src_src_mask, tgt_out_idx): # encoder_output shape: batch_size, src_seq_len, dim_model encoder_output = self.encode(state, src_seq, src_src_mask) # encoder_output shape: batch_size, src_seq_len, dim_model # tgt_out_idx shape: batch_size, tgt_seq_len batch_size, tgt_seq_len = tgt_out_idx.shape # order encoder_output by tgt_out_idx # slate_encoder_output shape: batch_size, tgt_seq_len, dim_model slate_encoder_output = gather(encoder_output, tgt_out_idx - 2) # encoder_scores shape: batch_size, tgt_seq_len return self.encoder_scorer(slate_encoder_output).squeeze() def encode(self, state, src_seq, src_mask): # state: batch_size, state_dim # src_seq: batch_size, src_seq_len, dim_candidate # src_src_mask shape: batch_size, src_seq_len, src_seq_len batch_size = src_seq.shape[0] # candidate_embed: batch_size, src_seq_len, dim_model/2 candidate_embed = self.candidate_embedder(src_seq) # state_embed: batch_size, dim_model/2 state_embed = self.state_embedder(state) # transform state_embed into shape: batch_size, src_seq_len, dim_model/2 state_embed = state_embed.repeat(1, self.max_src_seq_len).reshape( batch_size, self.max_src_seq_len, -1 ) # Input at each encoder step is actually concatenation of state_embed # and candidate embed. state_embed is replicated at each encoding step. # src_embed shape: batch_size, src_seq_len, dim_model src_embed = self.positional_encoding_encoder( torch.cat((state_embed, candidate_embed), dim=2) ) # encoder_output shape: batch_size, src_seq_len, dim_model return self.encoder(src_embed, src_mask) def decode( self, memory, state, tgt_src_mask, tgt_in_seq, tgt_tgt_mask, tgt_seq_len ): # memory is the output of the encoder, the attention of each input symbol # memory shape: batch_size, src_seq_len, dim_model # tgt_src_mask shape: batch_size, tgt_seq_len, src_seq_len # tgt_seq shape: batch_size, tgt_seq_len, dim_candidate # tgt_tgt_mask shape: batch_size, tgt_seq_len, tgt_seq_len batch_size, src_seq_len, _ = memory.shape candidate_size = src_seq_len + 2 if self.output_arch == Seq2SlateOutputArch.FRECHET_SORT: # encoder_scores shape: batch_size, src_seq_len encoder_scores = self.encoder_scorer(memory).squeeze(dim=2) logits = torch.zeros(batch_size, tgt_seq_len, candidate_size).to( encoder_scores.device ) logits[:, :, :2] = float("-inf") logits[:, :, 2:] = encoder_scores.repeat(1, tgt_seq_len).reshape( batch_size, tgt_seq_len, src_seq_len ) elif self.output_arch == Seq2SlateOutputArch.AUTOREGRESSIVE: # candidate_embed shape: batch_size, tgt_seq_len, dim_model/2 candidate_embed = self.candidate_embedder(tgt_in_seq) # state_embed: batch_size, dim_model/2 state_embed = self.state_embedder(state) # state_embed: batch_size, tgt_seq_len, dim_model/2 state_embed = state_embed.repeat(1, tgt_seq_len).reshape( batch_size, tgt_seq_len, -1 ) # tgt_embed: batch_size, tgt_seq_len, dim_model tgt_embed = self.positional_encoding_decoder( torch.cat((state_embed, candidate_embed), dim=2) ) # output of decoder will be later transformed into probabilities over symbols. # shape: batch_size, tgt_seq_len, dim_model decoder_output = self.decoder(tgt_embed, memory, tgt_src_mask, tgt_tgt_mask) # logits shape: batch_size, seq_len, candidate_size logits = self.decoder_logit_proj(decoder_output) return logits @dataclass class Seq2SlateNet(ModelBase): __hash__ = param_hash state_dim: int candidate_dim: int num_stacked_layers: int dim_model: int max_src_seq_len: int max_tgt_seq_len: int output_arch: Seq2SlateOutputArch temperature: float def __post_init_post_parse__(self) -> None: super(Seq2SlateNet, self).__init__() # pyre-fixme[16]: `Seq2SlateNet` has no attribute `seq2slate`. self.seq2slate = self._build_model() def _build_model(self): return None def input_prototype(self): return rlt.PreprocessedRankingInput.from_tensors( state=torch.randn(1, self.state_dim), src_seq=torch.randn(1, self.max_src_seq_len, self.candidate_dim), tgt_in_seq=torch.randn(1, self.max_tgt_seq_len, self.candidate_dim), tgt_out_seq=torch.randn(1, self.max_tgt_seq_len, self.candidate_dim), src_src_mask=torch.ones(1, self.max_src_seq_len, self.max_src_seq_len), tgt_tgt_mask=torch.ones(1, self.max_tgt_seq_len, self.max_tgt_seq_len), slate_reward=torch.randn(1), ) def forward( self, input: rlt.PreprocessedRankingInput, mode: str, tgt_seq_len: Optional[int] = None, greedy: Optional[bool] = None, ): # pyre-fixme[16]: `Seq2SlateNet` has no attribute `seq2slate`. res = self.seq2slate(input, mode=mode, tgt_seq_len=tgt_seq_len, greedy=greedy) if mode == Seq2SlateMode.RANK_MODE: return rlt.RankingOutput( ranked_per_symbol_probs=res[0], ranked_per_seq_probs=res[1], ranked_tgt_out_idx=res[2], ) elif mode in ( Seq2SlateMode.PER_SYMBOL_LOG_PROB_DIST_MODE, Seq2SlateMode.PER_SEQ_LOG_PROB_MODE, ): return rlt.RankingOutput(log_probs=res) elif mode == Seq2SlateMode.ENCODER_SCORE_MODE: return rlt.RankingOutput(encoder_scores=res) else: raise NotImplementedError() def get_distributed_data_parallel_model(self): return _DistributedSeq2SlateNet(self) @dataclass class Seq2SlateTransformerNet(Seq2SlateNet): __hash__ = param_hash num_heads: int dim_feedforward: int def _build_model(self): return Seq2SlateTransformerModel( state_dim=self.state_dim, candidate_dim=self.candidate_dim, num_stacked_layers=self.num_stacked_layers, num_heads=self.num_heads, dim_model=self.dim_model, dim_feedforward=self.dim_feedforward, max_src_seq_len=self.max_src_seq_len, max_tgt_seq_len=self.max_tgt_seq_len, output_arch=self.output_arch, temperature=self.temperature, ) class _DistributedSeq2SlateNet(ModelBase): def __init__(self, seq2slate_net: Seq2SlateNet): super().__init__() current_device = torch.cuda.current_device() self.data_parallel = DistributedDataParallel( # pyre-fixme[16]: `Seq2SlateNet` has no attribute `seq2slate`. seq2slate_net.seq2slate, device_ids=[current_device], output_device=current_device, ) self.seq2slate_net = seq2slate_net def input_prototype(self): return self.seq2slate_net.input_prototype() def cpu_model(self): return self.seq2slate_net.cpu_model() def forward( self, input: rlt.PreprocessedRankingInput, mode: str, tgt_seq_len: Optional[int] = None, greedy: Optional[bool] = None, ): res = self.data_parallel( input, mode=mode, tgt_seq_len=tgt_seq_len, greedy=greedy ) if mode == Seq2SlateMode.RANK_MODE: return rlt.RankingOutput( ranked_per_symbol_probs=res[0], ranked_per_seq_probs=res[1], ranked_tgt_out_idx=res[2], ) elif mode in ( Seq2SlateMode.PER_SYMBOL_LOG_PROB_DIST_MODE, Seq2SlateMode.PER_SEQ_LOG_PROB_MODE, ): return rlt.RankingOutput(log_probs=res) elif mode == Seq2SlateMode.ENCODER_SCORE_MODE: return rlt.RankingOutput(encoder_scores=res) else: raise NotImplementedError()
the-stack_0_11648
# -*- coding: utf-8 -*- """Vertical structure functions for ROMS :func:`sdepth` Depth of s-levels :func:`zslice` Slice a 3D field in s-coordinates to fixed depth :func:`multi_zslice` Slice a 3D field to several depth levels :func:`z_average` Vertical average of a 3D field :func:`s_stretch` Compute vertical stretching arrays Cs_r or Cs_w """ # ----------------------------------- # Bjørn Ådlandsvik <[email protected]> # Institute of Marine Research # Bergen, Norway # 2010-09-30 # ----------------------------------- from __future__ import absolute_import, division import numpy as np def sdepth(H, Hc, C, stagger="rho", Vtransform=1): """Depth of s-levels *H* : arraylike Bottom depths [meter, positive] *Hc* : scalar Critical depth *cs_r* : 1D array s-level stretching curve *stagger* : [ 'rho' | 'w' ] *Vtransform* : [ 1 | 2 ] defines the transform used, defaults 1 = Song-Haidvogel Returns an array with ndim = H.ndim + 1 and shape = cs_r.shape + H.shape with the depths of the mid-points in the s-levels. Typical usage:: >>> fid = Dataset(roms_file) >>> H = fid.variables['h'][:, :] >>> C = fid.variables['Cs_r'][:] >>> Hc = fid.variables['hc'].getValue() >>> z_rho = sdepth(H, Hc, C) """ H = np.asarray(H) Hshape = H.shape # Save the shape of H H = H.ravel() # and make H 1D for easy shape maniplation C = np.asarray(C) N = len(C) outshape = (N,) + Hshape # Shape of output if stagger == "rho": S = -1.0 + (0.5 + np.arange(N)) / N # Unstretched coordinates elif stagger == "w": S = np.linspace(-1.0, 0.0, N) else: raise ValueError("stagger must be 'rho' or 'w'") if Vtransform == 1: # Default transform by Song and Haidvogel A = Hc * (S - C)[:, None] B = np.outer(C, H) return (A + B).reshape(outshape) elif Vtransform == 2: # New transform by Shchepetkin N = Hc * S[:, None] + np.outer(C, H) D = 1.0 + Hc / H return (N / D).reshape(outshape) else: raise ValueError("Unknown Vtransform") # ------------------------------------ def sdepth_w(H, Hc, cs_w): """Return depth of w-points in s-levels Kept for backwards compatibility use *sdepth(H, Hc, cs_w, stagger='w')* instead """ return sdepth(H, Hc, cs_w, stagger="w") # ------------------------------------------ # Vertical slicing e.t.c. # ------------------------------------------ def zslice(F, S, z): """Vertical slice of a 3D ROMS field Vertical interpolation of a field in s-coordinates to (possibly varying) depth level *F* : array with vertical profiles, first dimension is vertical *S* : array with depths of the F-values, *z* : Depth level(s) for output, scalar or ``shape = F.shape[1:]`` The z values should be negative Return value : array, `shape = F.shape[1:]`, the vertical slice Example: H is an array of depths (positive values) Hc is the critical depth C is 1D containing the s-coordinate stretching at rho-points returns F50, interpolated values at 50 meter with F50.shape = H.shape >>> z_rho = sdepth(H, Hc, C) >>> F50 = zslice(F, z_rho, -50.0) """ # TODO: # Option to Save A, D, Dm # => faster interpolate more fields to same depth F = np.asarray(F) S = np.asarray(S) z = np.asarray(z, dtype="float") Fshape = F.shape # Save original shape if S.shape != Fshape: raise ValueError("F and z_r must have same shape") if z.shape and z.shape != Fshape[1:]: raise ValueError("z must be scalar or have shape = F.shape[1:]") # Flatten all non-vertical dimensions N = F.shape[0] # Length of vertical dimension M = F.size // N # Combined length of horizontal dimension(s) F = F.reshape((N, M)) S = S.reshape((N, M)) if z.shape: z = z.reshape((M,)) # Find integer array C with shape (M,) # with S[C[i]-1, i] < z <= S[C[i], i] # C = np.apply_along_axis(np.searchsorted, 0, S, z) # but the following is much faster C = np.sum(S < z, axis=0) C = C.clip(1, N - 1) # For vectorisation # construct index array tuples D and Dm such that # F[D][i] = F[C[i], i] # F[Dm][i] = F[C[i]-1, i] I = np.arange(M, dtype="int") D = (C, I) Dm = (C - 1, I) # Compute interpolation weights A = (z - S[Dm]) / (S[D] - S[Dm]) A = A.clip(0.0, 1.0) # Control the extrapolation # Do the linear interpolation R = (1 - A) * F[Dm] + A * F[D] # Give the result the correct s R = R.reshape(Fshape[1:]) return R # ----------------------------------------------- def multi_zslice(F, S, Z): """Slice a 3D ROMS field to fixed depth Vertical interpolation of a field in s-coordinates to fixed vertical level *F* : array of with vertical profiles, first dimension is vertical *S* : array with depth of s-levels (at rho-points) 1D (constant depth) or S.shape = F.shape *Z* : single depth value, negative Returns : array, ``shape = F.shape[1:]`` the vertical slice """ # TODO: # Option to Save A, D, Dm # => faster interpolate more fields to same depth F = np.asarray(F) S = np.asarray(S) Fshape = F.shape # Save original shape # Flat all dimensions after first N = F.shape[0] M = F.size // N F = F.reshape((N, M)) S = S.reshape((N, M)) # Make z.shape = (M,) Z = np.asarray(Z, dtype="float") # Valid possibilities # 1) Z = single scalar (shape = ()), one constant value # 2) Z = 1D array, shape=(kmax), a set of constant depths # 3) Z = 2D or more, reshapeable to (kmax, M) if Z.ndim == 0: Z = Z + np.zeros((1, M)) kmax = 1 elif Z.ndim == 1: kmax = Z.size Z = Z[:, np.newaxis] + np.zeros((kmax, M)) else: kmax = Z.size // M Z = Z.reshape((kmax, M)) # Find C, C.shape = (kmax, M) such that # z_r[C[k,i]-1, i] < Z[k] <= z_r[C[k,i], i] # shape: kmax, N, M => kmax, M C = np.sum(S[np.newaxis, :, :] < Z[:, np.newaxis, :], axis=1) C = C.clip(1, N - 1) # Horizontal index I = np.arange(M, dtype=int) # Compute interpolation weights A = (Z - S[(C - 1, I)]) / (S[(C, I)] - S[(C - 1, I)]) A = A.clip(0.0, 1.0) # Control the extrapolation # Do the interpolation R = (1 - A) * F[(C - 1, I)] + A * F[(C, I)] # Give the result the correct shape R = R.reshape((kmax,) + Fshape[1:]) return R # ------------------------------------------------------ def z_average(F, z_r, z0, z1): """Slice a 3D ROMS field to fixed depth Vertical interpolation of a field in s-coordinates to fixed vertical level *F* : array Vertical profiles, first dimension is vertical *z_r* : array Depth of s-levels (at rho-points), requires `z_r.shape = F.shape` *z0*, *z1* : floats Single depth values with z0 <= z1 <= 0 return value : array `shape = F.shape[1:]`, the vertical average """ F = np.asarray(F) z_r = np.asarray(z_r) Fshape = F.shape # Save original shape # Flatten all dimensions after first N = F.shape[0] M = F.size // N F = F.reshape((N, M)) z_r = z_r.reshape((N, M)) # z0, z1 are scalars or horizontal arrays z0 = np.asarray(z0) if z0.shape: # Array, must be 2D z0 = z0.reshape((M,)) z1 = np.asarray(z1) if z1.shape: z1 = z1.reshape((M,)) # Bracket z0, i.e. # Find integer array C0 with shape (M,) # with z_r[C0[i]-1, i] < z0 <= z_r[C0[i], i] # Can be done with: # C0 = np.apply_along_axis(np.searchsorted, 0, z_r, z0) # but the following is much faster C0 = np.sum(z_r < z0, axis=0) C0 = C0.clip(1, N - 1) # Clip to avoid illegal indices # Bracket z1 C1 = np.sum(z_r < z1, axis=0) C1 = C1.clip(1, N - 1) # Use advanced indexing for vectorisation # F[(C0,I)][i] = F[C0[i], i] I = np.arange(M, dtype="int") # Interpolate F to the two levels A0 = (z0 - z_r[(C0 - 1, I)]) / (z_r[(C0, I)] - z_r[(C0 - 1, I)]) A0 = A0.clip(0.0, 1.0) # Control the extrapolation F0 = (1 - A0) * F[(C0 - 1, I)] + A0 * F[(C0, I)] A1 = (z1 - z_r[(C1 - 1, I)]) / (z_r[(C1, I)] - z_r[(C1 - 1, I)]) A1 = A1.clip(0.0, 1.0) F1 = (1 - A1) * F[(C1 - 1, I)] + A1 * F[(C1, I)] # Find indices again (unclipped) C0 = np.sum(z_r < z0, axis=0) C1 = np.sum(z_r < z1, axis=0) R = np.zeros(M, dtype=np.float64) X = np.zeros(N + 2, dtype=np.float64) Y = np.zeros(N + 2, dtype=np.float64) z0 = z0 + R # Make sure they are spatial arrays z1 = z1 + R # For indexing below for i in I: X[:] = 0.0 Y[:] = 0.0 nz = C1[i] - C0[i] # Number of rho-points between z0 and z1 # Set up arrays for trapezoidal integration X[0] = z0[i] X[1 : nz + 1] = z_r[C0[i] : C1[i], i] X[nz + 1] = z1[i] Y[0] = F0[i] Y[1 : nz + 1] = F[C0[i] : C1[i], i] Y[nz + 1] = F1[i] # Perform the integration R[i] = 0.5 * np.dot( X[1 : nz + 2] - X[0 : nz + 1], Y[1 : nz + 2] + Y[0 : nz + 1] ) # Compute average and revert to correct shape R = R / (z1 - z0) R = R.reshape(Fshape[1:]) return R # ---------------------------------- def s_stretch(N, theta_s, theta_b, stagger="rho", Vstretching=1): """Compute a s-level stretching array *N* : Number of vertical levels *theta_s* : Surface stretching factor *theta_b* : Bottom stretching factor *stagger* : "rho"|"w" *Vstretching* : 1|2|3|4|5 """ # if stagger == "rho": # S = -1.0 + (0.5 + np.arange(N)) / N # elif stagger == "w": # S = np.linspace(-1.0, 0.0, N + 1) if stagger == "rho": K = np.arange(0.5, N) elif stagger == "w": K = np.arange(N + 1) else: raise ValueError("stagger must be 'rho' or 'w'") S = -1 + K / N if Vstretching == 1: cff1 = 1.0 / np.sinh(theta_s) cff2 = 0.5 / np.tanh(0.5 * theta_s) return (1.0 - theta_b) * cff1 * np.sinh(theta_s * S) + theta_b * ( cff2 * np.tanh(theta_s * (S + 0.5)) - 0.5 ) elif Vstretching == 2: a, b = 1.0, 1.0 Csur = (1 - np.cosh(theta_s * S)) / (np.cosh(theta_s) - 1) Cbot = np.sinh(theta_b * (S + 1)) / np.sinh(theta_b) - 1 mu = (S + 1) ** a * (1 + (a / b) * (1 - (S + 1) ** b)) return mu * Csur + (1 - mu) * Cbot elif Vstretching == 3: gamma_ = 3.0 Csur = -np.log(np.cosh(gamma_ * (-S) ** theta_s)) / np.log(np.cosh(gamma_)) # Csur = -np.log(np.cosh(gamma_ * np.abs(S) ** theta_s)) / np.log(np.cosh(gamma_)) Cbot = ( np.log(np.cosh(gamma_ * (S + 1) ** theta_b)) / np.log(np.cosh(gamma_)) - 1 ) mu = 0.5 * (1 - np.tanh(gamma_ * (S + 0.5))) return mu * Csur + (1 - mu) * Cbot elif Vstretching == 4: C = (1 - np.cosh(theta_s * S)) / (np.cosh(theta_s) - 1) C = (np.exp(theta_b * C) - 1) / (1 - np.exp(-theta_b)) return C elif Vstretching == 5: S1 = (K * K - 2 * K * N + K + N * N - N) / (N * N - N) S2 = (K * K - K * N) / (1 - N) S = -S1 - 0.01 * S2 C = (1 - np.cosh(theta_s * S)) / (np.cosh(theta_s) - 1) C = (np.exp(theta_b * C) - 1) / (1 - np.exp(-theta_b)) return C else: raise ValueError("Unknown Vstretching") # wrapper for backwards compatibility def s_stretch_w(N, theta_s, theta_b, Vstretching=1): """Obsolete use *s_stretch* instead""" return s_stretch(N, theta_s, theta_b, stagger="w", Vstretching=Vstretching)
the-stack_0_11652
import subprocess import os import urllib.request import sys from typing import Optional from conapp.file_paths import get_snapshot_filename from conapp.validate import validate_subprocess from conapp.definitions import USER_HOME_DIR, DEFAULT_STRIP_COMPONENTS def apply_config(file_name: str) -> None: """ A wrapper around apply snapshot but for stripping the top level :param file_name: :return: """ return apply_snapshot(file_name, True) def apply_snapshot(file_name: str, strip_top_level=False) -> None: """Given file_name use tar to apply it to the users home directory""" if not os.path.isfile(file_name): print(f"Error! attempted to apply nonexistent snapshot {file_name}") print(f"Applying snapshot {file_name}") validate_subprocess( subprocess.run([ 'tar', '-C', USER_HOME_DIR, DEFAULT_STRIP_COMPONENTS if strip_top_level else '', '--show-transformed-names', '-zvxf', file_name, ]) ) def create_snapshot(file_name: str) -> Optional[str]: file_names_result = get_files_from_tar(file_name, True) files = list( filter( lambda file_path: os.path.isfile(os.path.expanduser(f"~/{file_path}")), file_names_result.stdout.split() ) ) if len(files) > 0: snapshot_name = get_snapshot_filename() backup_command = [ 'tar', '-C', USER_HOME_DIR, '-czvf', snapshot_name, ] + files print(f"Local files would get overridden, creating backup of: {' '.join(files)}") validate_subprocess(subprocess.run( backup_command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=True, )) print(f"Successfully backed up files to {snapshot_name}") return snapshot_name else: print("No files will be overridden, not creating backup") return None def get_files_from_tar(file_name: str, strip_top_level=False) -> subprocess.CompletedProcess: get_file_names_command = [ "tar", DEFAULT_STRIP_COMPONENTS if strip_top_level else '', '--show-transformed-names', '-tf', file_name ] result = subprocess.run( get_file_names_command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=True, ) validate_subprocess(result) return result def download_file(file_name: str, url: str) -> None: """Attempt to download a file or exit""" try: print(f"Attempting to download {url}") urllib.request.urlretrieve(url, file_name) print(f"Success, downloaded to {file_name}") except urllib.request.HTTPError as ex: print(f"Error occurred, does {url} exist?\n{ex}") sys.exit(-1)
the-stack_0_11653
from django.conf.urls import url from . import views app_name = 'polls' urlpatterns = [ # ex: /polls/ url(r'^$', views.IndexView.as_view(), name='index'), # ex: /polls/5/ url(r'^(?P<pk>[0-9]+)/$', views.DetailView.as_view(), name='detail'), # ex: /polls/5/results/ url(r'^(?P<pk>[0-9]+)/results/$', views.ResultsView.as_view(), name='results'), # ex: /polls/5/vote/ url(r'^(?P<question_id>[0-9]+)/vote/$', views.vote, name='vote'), ]
the-stack_0_11655
from typing import Tuple import PIL import torch import torchvision.transforms as transforms from .datasets import DATASET_STATS, SUPPORTED_DATASETS from .gaussian_blur import GaussianBlur class SimCLRDataTransform: """Applies augmentations to sample two times, as described in SimCLR paper""" def __init__(self, transform: transforms.Compose): self.transform = transform def __call__(self, sample: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: xi = self.transform(sample) xj = self.transform(sample) return xi, xj class ContrastiveAugmentor: """Applies augmentation for contrastive learning, as in SimCLR paper""" def __init__(self, dataset: str, input_size: Tuple[int, int, int]): """ Args: dataset: dataset to apply augmentations to input_size: input image size Raises: ValueError: if specified dataset is unsupported """ if dataset not in SUPPORTED_DATASETS: raise ValueError('Unsupported dataset') stats = DATASET_STATS[dataset] h, w = input_size[:2] size = (h, w) blur_kernel_size = 2 * int(.05 * h) + 1 color = transforms.ColorJitter(0.8, 0.8, 0.8, 0.2) augmentations = transforms.Compose([ transforms.Resize(size, interpolation=PIL.Image.LANCZOS), transforms.RandomResizedCrop(size=size, interpolation=PIL.Image.LANCZOS), transforms.RandomHorizontalFlip(), transforms.RandomApply([color], p=0.8), transforms.RandomGrayscale(p=0.2), GaussianBlur(kernel_size=blur_kernel_size), transforms.ToTensor(), transforms.Normalize(mean=stats['mean'], std=stats['std']) ]) self._augmentations = SimCLRDataTransform(augmentations) def __call__(self, sample: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: return self._augmentations(sample) class ValidAugmentor: """Applies augmentation for validation and testing""" def __init__(self, dataset: str, input_size: Tuple[int, int, int]): """ Args: dataset: dataset to apply augmentations to input_size: input image size Raises: ValueError: if specified dataset is unsupported """ if dataset not in SUPPORTED_DATASETS: raise ValueError('Unsupported dataset') stats = DATASET_STATS[dataset] h, w = input_size[:2] size = (h, w) self._augmentations = transforms.Compose([ transforms.Resize(size=size), transforms.ToTensor(), transforms.Normalize(mean=stats['mean'], std=stats['std']) ]) def __call__(self, sample: torch.Tensor) -> torch.Tensor: return self._augmentations(sample) class PatchAugmentor: """Applies augmentations to patch""" def __init__(self, input_size: Tuple[int, int, int]): """ Args: input_size: input image size """ h, w = input_size[:2] size = (h, w) self._augmentations = transforms.Compose([ transforms.Resize(size=size), transforms.ToTensor() ]) def __call__(self, sample: torch.Tensor) -> torch.Tensor: return self._augmentations(sample)
the-stack_0_11656
import reveallib import reveallib64 from utils import * from multiprocessing.pool import Pool import signal import os import math import argparse import logging import intervaltree import matplotlib import sortedcontainers import time def plot(plt,anchors,sep,wait=True,nc='r',rc='g',color=None,edges=False,lines=False,alpha=1,args=None): if len(anchors)==0: return if len(anchors[0])==2: #unaligned blocks for start,stop in anchors: ax = plt.axes() if start<sep: #ref ax.add_patch( matplotlib.patches.Rectangle( (start, 0), #bottom left stop-start, #width sep, #height #should be qry length! alpha=.25, color="blue" ) ) else: ax.add_patch( matplotlib.patches.Rectangle( (0, start-sep), #bottom left sep, #width stop-start, #height alpha=.25, color="grey" ) ) elif len(anchors[0])==3: #mums for l,sps,revcomp in anchors: if revcomp: plt.plot( (sps[0],sps[0]+l), ((sps[1]-sep)+l, (sps[1]-sep)),'%s-'%rc,alpha=alpha) else: plt.plot( (sps[0],sps[0]+l), ((sps[1]-sep), (sps[1]-sep)+l),'%s-'%nc,alpha=alpha) elif len(anchors[0])==4: #synteny blocks, without orientation for anchor in anchors: s1,e1,s2,e2=anchor ax = plt.axes() ax.add_patch( matplotlib.patches.Rectangle( (s1, s2-sep), #bottom left e1-s1, #width e2-s2, #height alpha=.5, color=color ) ) elif len(anchors[0])==5: #synteny blocks with orientation for anchor in anchors: s1,e1,s2,e2,revcomp=anchor ax = plt.axes() ax.add_patch( matplotlib.patches.Rectangle( (s1, s2-sep), #bottom left e1-s1, #width e2-s2, #height alpha=.25, color="green" if revcomp else "red" ) ) elif len(anchors[0])==8: #synteny blocks with score and ctg if edges: for c in [0,2]: anchors.sort(key=lambda a:a[c]) xedges,yedges=[],[] panchor=None for anchor in anchors: s1,e1,s2,e2,revcomp,score,ref,ctg=anchor if panchor!=None: ps1,pe1,ps2,pe2,prevcomp,pscore,pref,pctg=panchor if pctg!=ctg and pref!=ref: panchor=anchor continue if c==0: xedges.append(pe1) xedges.append(s1) xedges.append(None) if prevcomp: yedges.append(ps2-sep) else: yedges.append(pe2-sep) if revcomp: yedges.append(e2-sep) else: yedges.append(s2-sep) yedges.append(None) else: if prevcomp: xedges.append(ps1) else: xedges.append(pe1) if revcomp: xedges.append(e1) else: xedges.append(s1) xedges.append(None) yedges.append(pe2-sep) yedges.append(s2-sep) yedges.append(None) panchor=anchor if c==0: plt.plot(xedges,yedges,'b--',alpha=alpha) else: plt.plot(xedges,yedges,'y--',alpha=alpha) if lines: rcxpoints,xpoints=[],[] rcypoints,ypoints=[],[] for anchor in anchors: s1,e1,s2,e2,revcomp,score,ref,ctg=anchor # plt.text(s1+((e1-s1)/2),(s2-sep)+(((e2-sep)-(s2-sep))/2) ,str(anchor),fontsize=6) if revcomp: # plt.plot((s1,e1), (e2-sep,s2-sep),'g-') rcxpoints.append(s1) rcxpoints.append(e1) rcxpoints.append(None) rcypoints.append(e2-sep) rcypoints.append(s2-sep) rcypoints.append(None) else: # plt.plot((s1,e1), (s2-sep,e2-sep),'r-') xpoints.append(s1) xpoints.append(e1) xpoints.append(None) ypoints.append(s2-sep) ypoints.append(e2-sep) ypoints.append(None) plt.plot(xpoints,ypoints,'r-' if color==None else '%s-'%color,alpha=alpha) plt.plot(rcxpoints,rcypoints,'g-' if color==None else '%s-'%color,alpha=alpha) else: #plot squares for anchor in anchors: s1,e1,s2,e2,revcomp,score,ref,ctg=anchor ax = plt.axes() ax.add_patch( matplotlib.patches.Rectangle( (s1, s2-sep), #bottom left e1-s1, #width e2-s2, #height alpha=.25, color="green" if revcomp else "red" ) ) if wait: plt.show() else: plt.draw() def addctginfo(mums,ctg2range): logging.debug("Augment contig information.") #add ref information to mums mums.sort(key=lambda m: m[1][0]) #sort mums by ref domain intvidx=0 for i in range(len(mums)): while mums[i][1][0]>ctg2range[intvidx][1]: intvidx+=1 mums[i]=mums[i]+(intvidx,) #add contig information to mums mums.sort(key=lambda m: m[1][1]) #sort mums by query domain intvidx=0 for i in range(len(mums)): while mums[i][1][1]>ctg2range[intvidx][1]: intvidx+=1 mums[i]=mums[i]+(intvidx,) logging.debug("Done.") return mums def transform_cmd(args): for qry in args.contigs: logging.info("Running transform for %s"%qry) transform(args,qry) logging.info("Done") def transform(args,qry): if not args.interactive: matplotlib.use("agg") if args.plot: from matplotlib import pyplot as plt if args.output==None: prefix=os.path.splitext(os.path.basename(qry))[0] else: prefix=args.output refnames=[] ctgnames=[] if args.sa64: idx=reveallib64.index() else: idx=reveallib.index() ctg2range=[] for sample in [args.reference[0],qry]: idx.addsample(os.path.basename(sample)) for name,seq in fasta_reader(sample, cutN=args.cutn): if len(seq)<args.minctglength: logging.debug("Skip transform for contig: %s"%name) continue intv=idx.addsequence(seq) ctg2range.append(intv) if sample==args.reference[0]: refnames.append(name) else: ctgnames.append(name) T=idx.T logging.info("Compute mums.") idx.construct(rc=False) mums=addctginfo(idx.getmums(args.minlength),ctg2range) logging.info("Done, %d mums."%len(mums)) if args.cluster: logging.info("Cluster mums by diagonals.") blocks=clustermumsbydiagonal(mums,maxdist=args.maxdist,minclustsize=args.mincluster,rcmums=False) logging.info("Done, %d clusters."%len(blocks)) else: blocks=[(mum[1][0], mum[1][0]+mum[0], mum[1][1], mum[1][1]+mum[0], mum[2], mum[0], mum[3], mum[4]) for mum in mums] # rcidx=idx.copy() # rcidx.construct(rc=True) # mums+=rcidx.getmums(args.minlength) logging.info("Compute RC mums.") idx.construct(rc=True) rcmums=addctginfo(idx.getmums(args.minlength),ctg2range) logging.info("Done, %d rc mums."%len(rcmums)) sep=idx.nsep[0] idxn=idx.n rlength=idx.nsep[0] qlength=idxn-idx.nsep[0] del idx if args.cluster: logging.info("Cluster rc mums by anti-diagonals.") if len(rcmums)==0: rcblocks = [(mum[1][0], mum[1][0] + mum[0], mum[1][1], mum[1][1] + mum[0], mum[2], mum[0], mum[3], mum[4]) for mum in rcmums] else: rcblocks=clustermumsbydiagonal(rcmums,maxdist=args.maxdist,minclustsize=args.mincluster,rcmums=True) logging.info("Done, %d rc clusters."%len(rcblocks)) else: rcblocks=[(mum[1][0], mum[1][0]+mum[0], mum[1][1], mum[1][1]+mum[0], mum[2], mum[0], mum[3], mum[4]) for mum in rcmums] blocks+=rcblocks if args.plot: plot(plt,blocks,sep,wait=False,lines=True,alpha=0.2,args=args) # if args.plot: # plot(blocks,sep,wait=False,lines=True) logging.info("Start glocal chaining for filtering anchors (reference).") # blocks.sort(key=lambda b: b[1]-b[0]) # logging.info("Largest ref block: %s"%str(blocks[-1])) # minbacktrack=blocks[-1][1]-blocks[-1][0] nbefore=len(blocks) syntenyblocks=blocks nafter=None refiteration=0 # maxiter=1 while nbefore!=nafter:# or refiteration==maxiter: logging.info("Glocal chain iteration %d"%refiteration) nbefore=len(syntenyblocks) syntenyblocks=glocalchain(syntenyblocks,rlength,qlength,ctg2range,rearrangecost=args.rearrangecost, inversioncost=args.inversioncost, _lambda=args._lambda, eps=args.eps, useheap=args.useheap, lastn=args.lastn, lastbp=args.lastbp, alfa=args.alfa, gapopen=args.gapopen, axis=0) nafter=len(syntenyblocks) logging.info("Anchor before chaining: %s"%nbefore) logging.info("Anchor after chaining: %s"%nafter) refiteration+=1 if args.plot: plot(plt,syntenyblocks,sep,wait=False,lines=True,color='k',alpha=.7) logging.info("%d anchors remain after glocal chaining (reference)."%len(syntenyblocks)) logging.info("Start glocal chaining for filtering anchors (query).") nbefore=len(syntenyblocks) nafter=None qryiteration=0 while nbefore!=nafter:# or qryiteration==maxiter: logging.info("Glocal chain iteration %d"%qryiteration) nbefore=len(syntenyblocks) syntenyblocks=glocalchain(syntenyblocks,rlength,qlength,ctg2range,rearrangecost=args.rearrangecost, inversioncost=args.inversioncost, _lambda=args._lambda, eps=args.eps, useheap=args.useheap, lastn=args.lastn, lastbp=args.lastbp, alfa=args.alfa, gapopen=args.gapopen, axis=1) nafter=len(syntenyblocks) logging.info("Anchor before chaining: %s"%nbefore) logging.info("Anchor after chaining: %s"%nafter) qryiteration+=1 # G=localcolinearchains(syntenyblocks,rlength,qlength,rearrangecost=rearrangecost,inversioncost=inversioncost) # chain,rcchain=colinearchains(syntenyblocks,rlength,qlength) logging.info("%d anchors remain after glocal chaining (query)."%len(syntenyblocks)) if args.plot: plot(plt,syntenyblocks,sep,wait=False,lines=True,color='b',alpha=.7) #take the intersection of both the chains # logging.info("Determine intersection between the chains...") # syntenyblocks=list(set(rsyntenyblocks) & set(qsyntenyblocks)) # logging.info("Done. %d chains remain."%len(qsyntenyblocks)) # logging.info("Remove anchors that are contained in other clusters." # syntenyblocks=remove_contained_blocks(blocks) # logging.info("Done, %d anchors remain."%len(syntenyblocks)) # logging.info("Done.") logging.info("Merge consecutive blocks.") syntenyblocks=merge_consecutive(syntenyblocks) logging.info("%d blocks after merging consecutive blocks."%len(syntenyblocks)) # if args.plot: # plot(syntenyblocks,sep,wait=True,lines=True,color='b') # logging.info("Merge consecutive blocks.") # syntenyblocks=merge_consecutive(syntenyblocks) # logging.info("%d blocks after merging consecutive blocks."%len(syntenyblocks)) if args.greedy: logging.info("Assign overlap between MUMs in a greedy manner.") syntenyblocks=remove_overlap_greedy_blocks(syntenyblocks) logging.info("Done.") else: logging.info("Assign overlap between MUMs in a conservative manner.") syntenyblocks=remove_overlap_conservative_blocks(syntenyblocks) logging.info("Done.") logging.info("Remove all blocks that are shorter than minchainsum (%d)."%args.minchainsum) syntenyblocks=[b for b in syntenyblocks if b[5] >= args.minchainsum] logging.info("%d blocks after filtering for minchainsum."%len(syntenyblocks)) logging.info("Merge consecutive blocks.") syntenyblocks=merge_consecutive(syntenyblocks) logging.info("%d blocks after merging consecutive blocks."%len(syntenyblocks)) if args.optimise and len(syntenyblocks)>1: weight,cost,edgecosts=chainscore(syntenyblocks, rlength, qlength, ctg2range,rearrangecost=args.rearrangecost,inversioncost=args.inversioncost,_lambda=args._lambda,eps=args.eps,alfa=args.alfa,gapopen=args.gapopen) #determine the actual cost of the glocal chain score=weight-cost assert(len(edgecosts) == len(syntenyblocks)+1) iteration=0 while True: iteration+=1 logging.info("Optimise chain, iteration %d."%iteration) tsyntenyblocks,tweight,tcost,tedgecosts=optimise(syntenyblocks,rlength, qlength, ctg2range,rearrangecost=args.rearrangecost,inversioncost=args.inversioncost,_lambda=args._lambda,eps=args.eps,alfa=args.alfa,gapopen=args.gapopen) nscore=tweight-tcost if nscore<=score: break else: score=nscore syntenyblocks=tsyntenyblocks weight=tweight cost=tcost edgecosts=tedgecosts syntenyblocks=merge_consecutive(syntenyblocks) logging.info("Done. %d blocks after optimisation."%len(syntenyblocks)) syntenyblocks=merge_consecutive(syntenyblocks) weight,cost,edgecosts=chainscore(syntenyblocks, rlength, qlength, ctg2range,rearrangecost=args.rearrangecost,inversioncost=args.inversioncost,_lambda=args._lambda,eps=args.eps,alfa=args.alfa,gapopen=args.gapopen) #determine the actual cost of the glocal chain score=weight-cost assert(len(edgecosts) == len(syntenyblocks)+1) if args.outputbed: #before extending to the edges of the contig, output the breakpoint regions logging.info("Write bedfile with contig mappings on reference to: %s.bed"%prefix) with open(prefix+".bed",'w') as bedout: block2ctgidx=dict() pctgid=None ctgid2lastblock=dict() ci=0 syntenyblocks.sort(key=lambda b: b[2]) #sort by query for i,block in enumerate(syntenyblocks): #sorted by query s1,e1,s2,e2,o,score,refid,ctgid=block if ctgid!=pctgid: if pctgid!=None: ctgid2lastblock[pctgid]=ci ci=0 else: ci+=1 block2ctgidx[block]=ci pctgid=ctgid ctgid2lastblock[pctgid]=ci syntenyblocks.sort(key=lambda b: b[0]) #sort by reference bedout.write("#reference\trefbegin\trefend\tcontig:segmentidx:lastsegmentidx:begin:end\tscore:cost\torientation\taln-start\taln-end\n") pblock=None for i,block in enumerate(syntenyblocks): #sorted by reference s1,e1,s2,e2,o,score,refid,ctgid=block if i>0: ps1,pe1,ps2,pe2,po,pscore,prefid,pctgid=pblock else: pblock=None cost=edgecosts[i] #cost to connect to pblock to block if i<len(syntenyblocks)-2: nblock=syntenyblocks[i+1] ns1,ne1,ns2,ne2,no,nscore,nrefid,nctgid=nblock else: nblock=None ctgoffsets=ctg2range[ctgid] refoffsets=ctg2range[refid] if pblock!=None and prefid==refid: start=(s1-refoffsets[0])-((s1-pe1)/2) else: start=s1-refoffsets[0] if nblock!=None and nrefid==refid: end=(e1-refoffsets[0])+((ns1-e1)/2) else: end=e1-refoffsets[0] qstart=s2-ctgoffsets[0] qend=e2-ctgoffsets[0] chromname=refnames[refid].split()[0] qi=block2ctgidx[block] bedout.write("%s\t%d\t%d\t%s:%d:%d:%d:%d\t%d:%d\t%s\t%d\t%d\n"%(chromname, #chrom start, #start end, #end ctgnames[ctgid-len(refnames)].split()[0], #name, make sure there's no whitespace to comply with bed 'format' qi, ctgid2lastblock[ctgid], qstart, qend, score, cost, '+' if o==False else '-', #strand s1-refoffsets[0], #thick start e1-refoffsets[0]) #thick end #itemRgb #blockCount #blockSizes #blockStarts ) #bedout.write("%s\t%d\t%d\t%s\t%s\t%s\t%s\n"%(refnames[refid], pe1-refoffsets[0], s1-refoffsets[0], ctgnames[ctgid-len(refnames)], ctgnames[pctgid-len(refnames)], 'n' if po==False else 'r', 'n' if o==False else 'r')) pblock=block if args.plot: plot(plt,syntenyblocks,sep,wait=False,args=args) logging.debug("Extend %d blocks to query borders."%len(syntenyblocks)) extendblocks(syntenyblocks,ctg2range) logging.debug("Done.") if args.plot: for start,end in ctg2range: if start<sep: plt.axvline(x=start, ymin=0, ymax=idxn-sep, linewidth=.1, linestyle='solid') else: plt.axhline(y=start-sep, xmin=0, xmax=sep, linewidth=.1, linestyle='solid') plot(plt,syntenyblocks,sep,wait=False,edges=False,args=args) plt.xlim(0,rlength) plt.ylim(0,qlength) if args.interactive: plt.show() else: plt.savefig("%s.png"%(prefix)) plt.clf() #determine the subset of mappable contigs from ref and qry mappablectgs=set() for s1,e1,s2,e2,o,score,refid,ctgid in syntenyblocks: mappablectgs.add(ctgid) mappablectgs.add(refid) if len(mappablectgs)!=0: logging.info("Write breakpoint graph to: %s.gfa"%prefix) write_breakpointgraph(syntenyblocks,T,refnames,ctgnames,mappablectgs,prefix) else: logging.info("No mappable contigs.") def clustermumsbydiagonal(mums,maxdist=90,minclustsize=65,rcmums=True): logging.debug("Sorting anchors by diagonals...") if rcmums: mums.sort(key=lambda m: (m[1][0]+(m[1][1]+m[0]), m[1][0]-(m[1][1]+m[0])) ) #sort mums by anti-diagonal, then diagonal else: mums.sort(key=lambda m: (m[1][0]-m[1][1], m[1][0]+m[1][1])) #sort mums by diagonal, then anti-diagonal logging.debug("Done.") l,sps,rc,ctg,ref=mums[0] clusters=[(sps[0],sps[0]+l,sps[1],sps[1]+l,rc,l,ctg,ref)] update_progress(0,len(mums)) for i in xrange(1,len(mums)): update_progress(i,len(mums)) l,sps,rc,ctg,ref=mums[i] s1,e1,s2,e2,prc,score,pctg,pref=clusters[-1] if rcmums: d=mums[i][1][0]+(mums[i][1][1]+mums[i][0]) pd=e1+s2 else: d=mums[i][1][0]-mums[i][1][1] pd=s1-s2 if d==pd and pctg==ctg and pref==ref: #same diagonal and same contigs dist=mums[i][1][0]-e1 assert(dist>=0) if dist < maxdist: if rc==0: clusters[-1]=(s1,sps[0]+l,s2,sps[1]+l,rc,score+l,ctg,ref) else: clusters[-1]=(s1,sps[0]+l,sps[1],e2,rc,score+l,ctg,ref) else: clusters.append((sps[0],sps[0]+l,sps[1],sps[1]+l,rc,l,ctg,ref)) else: clusters.append((sps[0],sps[0]+l,sps[1],sps[1]+l,rc,l,ctg,ref)) return [c for c in clusters if c[5]>=minclustsize] def write_breakpointgraph(syntenyblocks,T,refnames,ctgnames,mappablectgs,outputprefix): #build a breakpoint graph, that we can write to GFA G=nx.MultiDiGraph() start=uuid.uuid4().hex end=uuid.uuid4().hex G.graph['startnodes']=[start] G.graph['endnodes']=[end] G.graph['paths']=[] G.graph['path2id']={} G.graph['id2path']={} G.add_node(start,offsets=dict()) G.add_node(end,offsets=dict()) pid=0 for name in refnames: if pid in mappablectgs: # name=os.path.splitext(os.path.basename(reference))[0]+"_"+name name=os.path.basename(outputprefix+"_"+name) G.graph['paths'].append(name) G.graph['path2id'][name]=pid G.graph['id2path'][pid]=name G.node[start]['offsets'][pid]=0 else: logging.info("No contigs were mapped to: %s"%name) pid+=1 for name in ctgnames: if pid in mappablectgs: name="*"+name #prefix so we can recognise the two paths afterwards G.graph['paths'].append(name) G.graph['path2id'][name]=pid G.graph['id2path'][pid]=name G.node[start]['offsets'][pid]=0 else: logging.info("Contig: %s could not be uniquely placed on the reference"%name) pid+=1 #write the reference layout of the query sequences syntenyblocks.sort(key=lambda b: b[0]) #TODO: check if not already the case.. prefid=None pnid=None l=0 mapping=dict() nid=0 for i,block in enumerate(syntenyblocks): s1,e1,s2,e2,o,score,refid,ctgid=block mapping[(s2,e2)]=nid if refid!=prefid: if prefid!=None: G.add_edge(pnid,end,paths=set([prefid]),ofrom="+", oto="+") pnid=start l=0 if o==0: G.add_node(nid,seq=T[s2:e2],offsets={refid:l}) else: G.add_node(nid,seq=rc(T[s2:e2]),offsets={refid:l}) G.add_edge(pnid,nid,paths=set([refid]),ofrom="+", oto="+") prefid=refid pnid=nid nid+=1 l+=e2-s2 if i!=len(syntenyblocks)-1: #add gap node, so we later know which bubbles are caused by gaps in the assembly gapsize=1 #TODO: if specified use reference to add a gap G.add_node(nid,seq="N"*gapsize,offsets={refid:l}) l+=gapsize G.add_edge(pnid,nid,paths=set([refid]),ofrom="+", oto="+") pnid=nid nid+=1 G.add_edge(pnid,end,paths=set([refid]),ofrom="+", oto="+") writeorg=True if writeorg: #write the original layout of the query sequences, so we can reconstruct the input afterwards syntenyblocks.sort(key=lambda b: b[2]) pctgid=None pnid=None l=0 for nid,block in enumerate(syntenyblocks): s1,e1,s2,e2,o,score,refid,ctgid=block nid=mapping[(s2,e2)] if ctgid!=pctgid: if pctgid!=None: G.add_edge(pnid,end,paths=set([pctgid]),ofrom="+" if o==0 else "-", oto="+") pnid=start l=0 po=0 G.node[nid]['offsets'][ctgid]=l l+=e2-s2 G.add_edge(pnid,nid,paths=set([ctgid]),ofrom="+" if po==0 else "-", oto="+" if o==0 else "-") po=o pctgid=ctgid pnid=nid G.add_edge(pnid,end,paths=set([ctgid]),ofrom="+" if o==0 else "-", oto="+") write_gfa(G,None,outputfile=outputprefix if outputprefix.endswith(".gfa") else outputprefix+".gfa") def merge_consecutive(syntenyblocks): if len(syntenyblocks)<2: return syntenyblocks #first merge consecutive blocks in the chain syntenyblocks.sort(key=lambda s: s[0]) #order by ref position qryorder = sorted(xrange(len(syntenyblocks)), key= lambda i: syntenyblocks[i][2]) #qry order qryorder_inv = sorted(xrange(len(syntenyblocks)), key=qryorder.__getitem__) #inverse qry order head=0 for ri in xrange(1,len(syntenyblocks)): pblock=syntenyblocks[ri-1] block=syntenyblocks[ri] pqi=qryorder_inv[ri-1] #index within the qryorder of pblock qi=qryorder_inv[ri] #index within the qryorder of block ps1,pe2,ps2,pe2,po,pscore,prefid,pctgid=pblock #previous block on reference s1,e1,s2,e2,o,score,refid,ctgid=block es1,ee1,es2,ee2,eo,escore,erefid,ectgid=syntenyblocks[head] if ctgid==pctgid: if pqi+1==qi and o==po==0: syntenyblocks[head]=(es1,e1,es2,e2,eo,escore+score,erefid,ectgid) elif pqi-1==qi and o==po==1: syntenyblocks[head]=(es1,e1,s2,ee2,eo,escore+score,erefid,ectgid) else: head+=1 syntenyblocks[head]=block else: head+=1 syntenyblocks[head]=block while head!=ri:#len(syntenyblocks)-1: syntenyblocks.pop() head+=1 return syntenyblocks def extendblocks(syntenyblocks,ctg2range): syntenyblocks.sort(key=lambda s: s[0]) #order by reference position for i in xrange(len(syntenyblocks)): s1,e1,s2,e2,o,score,ref,ctg=syntenyblocks[i] if i==0: #first s1=ctg2range[ref][0] else: ps1,pe1,ps2,pe2,po,pscore,pref,pctg=syntenyblocks[i-1] if pref==ref: s1=pe1 else: s1=ctg2range[ref][0] if i==len(syntenyblocks)-1: #last e1=ctg2range[ref][1] else: ns1,ne1,ns2,ne2,no,nscore,nref,nctg=syntenyblocks[i+1] if nref==ref: e1+=((ns1-e1)/2) else: e1=ctg2range[ref][1] assert(s1<e1) syntenyblocks[i]=(s1,e1,s2,e2,o,score,ref,ctg) syntenyblocks.sort(key=lambda s: s[2]) #order by qry position for i in xrange(len(syntenyblocks)): s1,e1,s2,e2,o,score,ref,ctg=syntenyblocks[i] if i==0: #first s2=ctg2range[ctg][0] else: ps1,pe1,ps2,pe2,po,pscore,pref,pctg=syntenyblocks[i-1] if pctg==ctg: s2=pe2 else: s2=ctg2range[ctg][0] if i==len(syntenyblocks)-1: #last e2=ctg2range[ctg][1] else: ns1,ne1,ns2,ne2,no,nscore,nref,nctg=syntenyblocks[i+1] if nctg==ctg: e2+=((ns2-e2)/2) else: e2=ctg2range[ctg][1] assert(s2<e2) syntenyblocks[i]=(s1,e1,s2,e2,o,score,ref,ctg) def optimise(syntenyblocks,rlength, qlength, ctg2range,rearrangecost=1000,inversioncost=1,_lambda=5,eps=1,alfa=1,gapopen=10): orgchain=sorted(syntenyblocks,key=lambda c: c[5]) maxchain=syntenyblocks maxchain_weight,maxchain_cost,maxchain_edgecosts=chainscore(maxchain, rlength, qlength, ctg2range, rearrangecost=rearrangecost,inversioncost=inversioncost,_lambda=_lambda,eps=eps,alfa=alfa,gapopen=gapopen) maxchainscore=maxchain_weight-maxchain_cost stack=[] loglevel=logging.getLogger().getEffectiveLevel() if loglevel>logging.DEBUG: update_progress(0,len(orgchain)) for i in xrange(len(orgchain)): if loglevel>logging.DEBUG: update_progress(i,len(orgchain)) tmp=list(stack+orgchain[i+1:]) weight,cost,edgecosts=chainscore(tmp, rlength, qlength, ctg2range, rearrangecost=rearrangecost,inversioncost=inversioncost,_lambda=_lambda,eps=eps,alfa=alfa,gapopen=gapopen) tmpchainscore=weight-cost if tmpchainscore<maxchainscore: stack.append(orgchain[i]) #keep it else: logging.debug("Dropped block %s, gain: %d"%(orgchain[i],tmpchainscore-maxchainscore)) maxchainscore=tmpchainscore maxchain=tmp maxchain_cost=cost maxchain_weight=weight maxchain_edgecosts=edgecosts logging.debug("Optimal chain has %d blocks and scores: %d"%(len(maxchain),maxchainscore)) return maxchain,maxchain_weight,maxchain_cost,maxchain_edgecosts def chainscore(chain, rlength, qlength, ctg2range, rearrangecost=1000, inversioncost=1, _lambda=5, eps=1, alfa=1, gapopen=10): # logging.debug("rearrangecost=%d, inversioncost=%d, _lambda=%d, eps=%d, alfa=%d, gapopen=%d"%(rearrangecost, inversioncost, _lambda, eps, alfa, gapopen)) if len(chain)==0: start=(0,0,rlength,rlength,0,0,0,0) end=(rlength,rlength,rlength+qlength,rlength+qlength,0,0,0,0) cost=gapcost(start,end,rearrangecost=rearrangecost,inversioncost=inversioncost,_lambda=_lambda,eps=eps,gapopen=gapopen,axis=0) return 0,cost,[cost] chain.sort(key=lambda s: s[0]) #order by reference position qryorder = sorted(xrange(len(chain)), key= lambda i: chain[i][2]) #qry order qryorder_inv = sorted(xrange(len(chain)), key=qryorder.__getitem__) #inverse qry order lastqstart,lastqend=ctg2range[chain[-1][7]] if chain[0][4]==0: end=(rlength,rlength,lastqend,lastqend,chain[0][4]) else: end=(rlength,rlength,lastqstart,lastqstart,chain[0][4]) firstqstart,firstqend=ctg2range[chain[0][7]] if chain[0][4]==0: start=(0,0,firstqstart,firstqstart,chain[0][4]) else: start=(0,0,firstqend,firstqend,chain[0][4]) #count out of order traversals rearrangements=0 inversions=0 startcost=gapcost(start,chain[0],rearrangecost=rearrangecost,inversioncost=inversioncost,_lambda=_lambda,eps=eps,gapopen=gapopen,axis=0) cost=startcost edgecosts=[startcost] weight=alfa*chain[0][5] for ri in xrange(1,len(chain)): pblock=chain[ri-1] block=chain[ri] ps1,pe1,ps2,pe2,po,pscore,pref,pctg=pblock s1,e1,s2,e2,o,score,ref2,ctg=block weight+=(alfa*score) # xgap=0#s1-pe1 pqi=qryorder_inv[ri-1] #index within the qryorder of pblock qi=qryorder_inv[ri] #index within the qryorder of block if pctg==ctg and pref==ref2: if (pqi==qi-1) or (pqi==qi+1): #check if the two blocks are colinear gc=gapcost(pblock,block,rearrangecost=rearrangecost,inversioncost=inversioncost,_lambda=_lambda,eps=eps,gapopen=gapopen,axis=0) cost+=gc edgecosts.append(gc) else: #all other options use rearrangement penalty rearrangements+=1 cost+=(gapopen+rearrangecost) edgecosts.append(gapopen+rearrangecost) else: #cross contigs if o==0: if qi>0: pqs1,pqe1,pqs2,pqe2,pqo,pqscore,pq_ref,pq_ctg=chain[qryorder[qi-1]] else: pq_ctg='start' else: if qi<len(qryorder)-1: pqs1,pqe1,pqs2,pqe2,pqo,pqscore,pq_ref,pq_ctg=chain[qryorder[qi+1]] else: pq_ctg='end' if po==0: if pqi<len(qryorder)-1: nqs1,nqe1,nqs2,nqe2,nqo,nqscore,nq_ref,nq_ctg=chain[qryorder[pqi+1]] else: nq_ctg='end' else: if pqi>0: nqs1,nqe1,nqs2,nqe2,nqo,nqscore,nq_ref,nq_ctg=chain[qryorder[pqi-1]] else: nq_ctg='start' if pq_ctg==ctg or nq_ctg==pctg: #there exists another block on this query contig before changing contigs, so has to be rearranged rearrangements+=1 cost+=(gapopen+rearrangecost) edgecosts.append((gapopen+rearrangecost)) else: edgecosts.append(gapopen) #simple traversal between two contigs endcost=gapcost(chain[-1],end,rearrangecost=rearrangecost,inversioncost=inversioncost,_lambda=_lambda,eps=eps,gapopen=gapopen,axis=0) cost+=endcost edgecosts.append(endcost) return weight,cost,edgecosts def update_progress(i,n): fullbar=100 if (i+1) % (n/fullbar if n>fullbar else 1)==0 or i+1==n: done=int(fullbar*((i+1)/float(n))) todo=fullbar-done sys.stdout.write('\r[%s%s]'%("#"*done," "*todo)) if i+1==n: sys.stdout.write('\n') sys.stdout.flush() def glocalchain(syntenyblocks, rlength, qlength, ctg2range, rearrangecost=1000, inversioncost=1, lastn=50, lastbp=10000, useheap=False, axis=0, _lambda=5, eps=1, alfa=1, gapopen=10): sep=rlength #add some dummy blocks for the contig start/ends if axis==0: for refid,(refstart,refend) in enumerate(ctg2range): if refstart>=sep: break if refid==0: start=(refstart,refstart,None,None,0,0,None,None) syntenyblocks.append((refend,refend,None,None,0,0,None,None)) end=syntenyblocks[-1] if axis==1: first=True for ctgid,(ctgstart,ctgend) in enumerate(ctg2range): if ctgstart<sep: continue if first: start=(None,None,ctgstart,ctgstart,0,0,None,None) first=False syntenyblocks.append((None,None,ctgend,ctgend,0,0,None,None)) end=syntenyblocks[-1] if axis==0: #sort by ref c1,c2=0,2 else: #sort by qry c1,c2=2,0 syntenyblocks.sort(key=lambda s: (s[c1],-s[5]) ) #order by reference position, then score if useheap: heap=sortedcontainers.SortedList() heap.add((0,start)) else: heap=[(0,start)]+[None]*(len(syntenyblocks)) G={b:None for b in syntenyblocks} maxscore=None n=len(syntenyblocks) bt=range(n+1) update_progress(0,n) pri=0 t0=time.time() deepest=0 # best=None for ri in xrange(n): block=syntenyblocks[ri] while syntenyblocks[deepest][c1+1]<block[c1]: deepest+=1 if ri%1000==0: t1=time.time() sec=t1-t0 bd=ri-pri logging.debug("Blocks per sec: %d"%(bd/sec)) t0=t1 pri=ri update_progress(ri,n) s1,e1,s2,e2,o,score,refid,ctgid=block trace=False # starttrace=105637436 # endtrace=starttrace+10 # if s1>=starttrace and s1<endtrace: # and refid==ctgtrace: # # # if block==(4499237, 4502780, 9008394, 9011937, 0, 3543, 0, 1) or block==end: # logging.info("BLOCK: %s"%str(block)) # print "deepest",syntenyblocks[deepest], syntenyblocks[deepest][c1+1] # trace=True bestscore=None bestblock=None bestcost=0 # checkedbest=False l=0 for j in bt: #back track on the heap if useheap: if j>=len(heap): break cscore,pblock=heap[-j] else: i=(ri+1)-j-1 if i<0: break cscore,pblock=heap[i] # if best==None or cscore==best: # checkedbest=True ps1,pe1,ps2,pe2,po,pscore,prefid,pctgid=pblock if (pblock[c1]==block[c1] and prefid!=None and refid!=None) or (pblock[c1+1]>=block[c1+1] and prefid!=None and refid!=None): continue if (pblock[c2]>=block[c2] and prefid!=None and refid!=None) and (pblock[c2+1]<=block[c2+1] and prefid!=None and refid!=None): continue l+=1 if bestscore!=None: if cscore<=bestscore: if useheap: break else: if block[c1]-pblock[c1]>lastbp and l>=lastn and pblock[c1]<syntenyblocks[deepest][c1]: break else: continue #if block is a dummy block, make it relative to pblock, if possible if block[6]==None and pblock[6]!=None: #update current block to be relative to pblock if axis==0: _block=(s1, e1, pe2 if po==0 else ps2, pe2 if po==0 else ps2, po, 0, prefid, pctgid) else: _block=(pe1 if po==0 else ps1, pe1 if po==0 else ps1, s2, e2, po, 0, prefid, pctgid) else: _block=block #if pblock is a dummy block, make it relative to block, if possible if pblock[6]==None and block[6]!=None: if axis==0: _pblock=(ps1, pe1, s2 if o==0 else e2, s2 if o==0 else e2, o, 0, refid, ctgid) else: _pblock=(s1 if o==0 else e1, s1 if o==0 else e1, ps2, pe2, o, 0, refid, ctgid) else: _pblock=pblock #if blocks come from same query contig and reference contig, compute gapcost, else introduce rearrangement cost if _pblock[6]==_block[6]!=None and _pblock[7]==_block[7]!=None: c=gapcost(_pblock,_block,rearrangecost=rearrangecost,inversioncost=inversioncost,eps=eps,_lambda=_lambda,gapopen=gapopen,axis=axis) elif _pblock[6]==_block[6]==None and _pblock[7]==_block[7]==None: #connect two dummy blocks c=gapopen+(abs(block[c1]-(pblock[c1+1]))*eps) else: #blocks cross contigs or ref without passing a dummy block, introduce rearrangement cost pblockctgstart,pblockctgend=ctg2range[_pblock[7]] blockctgstart,blockctgend=ctg2range[_block[7]] pblockrefstart,pblockrefend=ctg2range[_pblock[6]] blockrefstart,blockrefend=ctg2range[_block[6]] if _pblock[6]==_block[6] and axis==0: if _pblock[4]==0: cp=abs( pblockctgend-_pblock[3]) else: cp=abs( _pblock[2]-pblockctgstart) if _block[4]==0: cb=abs( blockctgend-_block[3] ) else: cb=abs( _block[2]-blockctgstart ) c=gapopen+min((rearrangecost,((cp+cb)*eps))) elif _pblock[7]==_block[7] and axis==1: if _pblock[4]==0: cp=abs( pblockrefend-_pblock[1]) else: cp=abs( _pblock[0]-pblockrefstart) if _block[4]==0: cb=abs( _block[0]-blockrefstart ) else: cb=abs( blockrefend-_block[1]) c=gapopen+min((rearrangecost,((cp+cb)*eps))) else: c=rearrangecost+gapopen+(abs(block[c1]-(pblock[c1+1]))*eps) assert(c>=0) if trace: logging.info("Connect to PBLOCK: %s costs %s, depth=%s, lastbp=%d, cscore,%s, cscore-c=%d, bestscore=%s"%(pblock,c,l,block[c1]-pblock[c1],cscore,cscore-c,bestscore)) if bestscore==None or cscore-c > bestscore: bestscore=cscore-c bestblock=pblock bestcost=c if not useheap: if block[c1]-pblock[c1]>lastbp and l>=lastn and pblock[c1]<syntenyblocks[deepest][c1]: break # if l>lastn: # logging.info("Forced deeper %d backtrack for block: %s"%(l,block)) cscore=bestscore+(alfa*score) # if best==None or cscore>best: # best=cscore if useheap: heap.add((cscore,block)) else: heap[ri+1]=(cscore,block) if maxscore==None or maxscore<cscore: maxscore=cscore maxnode=block if trace: logging.info("CONNECT TO BLOCK: %s, score=%s, cost=%s, depth=%s"%(bestblock,bestscore,bestcost,l)) G[block]=(bestblock,bestscore) node,cscore=G[end] chain=[] while node!=start:# and node!=startrc: if node[6]!=None: #only add to the chain if it is an actual anchor, exclude contig endpoints chain.append(node) s1,e1,s2,e2,o,score,refid,ctgid=node nnode,score=G[node] if node==nnode: logging.fatal("Loop in chain!") sys.exit(1) node=nnode logging.info("Optimal glocal chain contains: %d anchors and scores %d"%(len(chain),cscore)) return chain[::-1] def gapcost(block1,block2,rearrangecost=10000,inversioncost=0,eps=0,_lambda=0.5,gapopen=10,axis=0): if axis==0: #sorted by ref c1,c2=0,2 else: #sorted by qry c1,c2=2,0 assert(block1[c1]<=block2[c1]) d1=block2[c1]-block1[c1+1] if block1[4]==block2[4]==0: #both normal orientation if block2[c2]<block1[c2]:#always has to be rearranged! indelcost=rearrangecost substitutioncost=eps*(d1 if d1>0 else 0) #do not penalize if overlap return gapopen+indelcost+substitutioncost else: d2=block2[c2]-block1[c2+1] indelcost=min((rearrangecost,_lambda*abs(d1-d2))) substitutioncost=eps*max(((d1 if d1<d2 else d2),0)) return gapopen+indelcost+substitutioncost elif block1[4]==block2[4]==1: #both reverse comp orientation if block2[c2]>block1[c2]: #always has to be rearranged! indelcost=rearrangecost substitutioncost=eps*(d1 if d1>0 else 0) return gapopen+indelcost+substitutioncost else: d2=block1[c2]-block2[c2+1] indelcost=min((rearrangecost,_lambda*abs(d1-d2))) substitutioncost=eps*max(((d1 if d1<d2 else d2),0)) return gapopen+indelcost+substitutioncost elif block1[4]==1 and block2[4]==0: d1=max((0,d1)) if block2[c2]>block1[c2]: d2=block2[c2]-block1[c2+1] d2=max((0,d2)) indelcost=min((rearrangecost,_lambda*abs(d1-d2))) substitutioncost=eps*max(((d1 if d1<d2 else d2),0)) return gapopen+indelcost+substitutioncost+inversioncost else: d2=block1[c2]-block2[c2+1] d2=max((0,d2)) indelcost=min((rearrangecost,_lambda*abs(d1-d2))) substitutioncost=eps*max(((d1 if d1<d2 else d2),0)) return gapopen+indelcost+substitutioncost+inversioncost else: # assert(block1[4]==0 and block2[4]==1) d1=max((0,d1)) if block2[c2]>block1[c2]: d2=block2[c2]-block1[c2+1] d2=max((0,d2)) indelcost=min((rearrangecost,_lambda*abs(d1-d2))) substitutioncost=eps*max(((d1 if d1<d2 else d2),0)) return gapopen+indelcost+substitutioncost+inversioncost else: d2=block1[c2]-block2[c2+1] d2=max((0,d2)) indelcost=min((rearrangecost,_lambda*abs(d1-d2))) substitutioncost=eps*max(((d1 if d1<d2 else d2),0)) return gapopen+indelcost+substitutioncost+inversioncost def _gapcost(block1,block2,rearrangecost=10000,inversioncost=0,eps=0,_lambda=0.5,gapopen=10,axis=0): if axis==0: #sorted by ref c1,c2=0,2 else: #sorted by qry c1,c2=2,0 assert(block1[c1]<=block2[c1]) d1=abs(block2[c1]-block1[c1+1]) if block1[4]==block2[4]==0: #both normal orientation if block2[c2]<block1[c2]:#always has to be rearranged! indelcost=rearrangecost substitutioncost=eps*d1 return gapopen+indelcost+substitutioncost else: d2=abs(block2[c2]-block1[c2+1]) indelcost=min((rearrangecost,_lambda*abs(d1-d2))) substitutioncost=eps*(d1 if d1<d2 else d2) return gapopen+indelcost+substitutioncost elif block1[4]==block2[4]==1: #both reverse comp orientation if block2[c2]>block1[c2]: #always has to be rearranged! indelcost=rearrangecost substitutioncost=eps*d1 return gapopen+indelcost+substitutioncost else: d2=abs(block1[c2]-block2[c2+1]) indelcost=min((rearrangecost,_lambda*abs(d1-d2))) substitutioncost=eps*(d1 if d1<d2 else d2) return gapopen+indelcost+substitutioncost elif block1[4]==1 and block2[4]==0: if block2[c2]>block1[c2]: d2=abs(block2[c2]-block1[c2+1]) indelcost=min((rearrangecost,_lambda*abs(d1-d2))) substitutioncost=eps*(d1 if d1<d2 else d2) return gapopen+indelcost+substitutioncost+inversioncost else: d2=abs(block1[c2]-block2[c2+1]) indelcost=min((rearrangecost,_lambda*abs(d1-d2))) substitutioncost=eps*(d1 if d1<d2 else d2) return gapopen+indelcost+substitutioncost+inversioncost else: # assert(block1[4]==0 and block2[4]==1) if block2[c2]>block1[c2]: d2=abs(block2[c2]-block1[c2+1]) indelcost=min((rearrangecost,_lambda*abs(d1-d2))) substitutioncost=eps*(d1 if d1<d2 else d2) return gapopen+indelcost+substitutioncost+inversioncost else: d2=abs(block1[c2]-block2[c2+1]) indelcost=min((rearrangecost,_lambda*abs(d1-d2))) substitutioncost=eps*(d1 if d1<d2 else d2) return gapopen+indelcost+substitutioncost+inversioncost def printSA(index,maxline=100,start=0,end=None,fn="sa.txt"): sa=index.SA lcp=index.LCP t=index.T #so=index.SO if end==None: end=len(sa) # with open(fn,'w') as f: sys.stdout.write("%d\t%d\n"%(len(sa), len(lcp))) assert(len(sa)==len(lcp)) for i in xrange(len(sa)): s=sa[i] lcpi=lcp[i] if i>0 and i<len(sa)-1: l1=lcp[i] l2=lcp[i+1] elif i==len(sa)-1: l1=max([lcp[i-1],lcp[i]]) l2=0 else: l1=0 l2=lcp[i+1] if i>=start and i<=end: #f.write("%s\t%s\t%s\n"%(str(s).zfill(8), str(lcpi).zfill(6), t[s:s+maxline].ljust(maxline) if l1<=maxline else t[s:s+maxline]+"..."+t[s+l1-40:s+l1].ljust(maxline) ) ) sys.stdout.write("%s\t%s\t%s\t%s\t%s\n"%(str(s).zfill(8), str(lcpi).zfill(6), t[s:s+maxline] ,t[s+l1-maxline:s+l1], t[s+l2-maxline:s+l2] ) ) def remove_overlap_conservative_blocks(anchors): for coord in [0,2]: if len(anchors)<=1: #by definition no containment return anchors anchors.sort(key=lambda m: (m[coord], (m[coord+1]-m[coord])*-1)) #sort by start position, then -1*size _anchors=[anchors[0]] last=anchors[0] for anchor in anchors[1:]: if anchor[coord] < last[coord+1]: #overlap if anchor[coord+1]<=last[coord+1]: #contained continue _anchors.append(anchor) last=anchor anchors=_anchors _anchors=[anchors[0]] for anchor in anchors[1:]: s1,e1,s2,e2,o,score,refid,ctgid=anchor ps1,pe1,ps2,pe2,po,pscore,prefid,pctgid=_anchors[-1] overlap=(_anchors[-1][coord+1]) - anchor[coord] pl=pe1-ps1 if overlap > 0: #overlap if score<=overlap: continue assert(score-overlap >= 0) if o==0: anchor=(s1+overlap,e1,s2+overlap,e2,o,score-overlap if overlap<score else 0,refid,ctgid) else: if coord==0: anchor=(s1+overlap,e1,s2,e2-overlap,o,score-overlap if overlap<score else 0,refid,ctgid) else: anchor=(s1,e1-overlap,s2+overlap,e2,o,score-overlap if overlap<score else 0,refid,ctgid) assert(anchor[coord+1]>_anchors[-1][coord+1]) while pl<=overlap or pscore<=overlap: _anchors.pop() ps1,pe1,ps2,pe2,po,pscore,prefid,pctgid=_anchors[-1] overlap=(_anchors[-1][coord+1]) - anchor[coord] if overlap<0: break pl=pe1-ps1 if overlap>0: assert(pscore-overlap >= 0) if po==0: _anchors[-1]=(ps1,pe1-overlap,ps2,pe2-overlap,po,pscore-overlap if overlap<pscore else 0,prefid,pctgid) else: if coord==0: _anchors[-1]=(ps1,pe1-overlap, ps2+overlap,pe2, po,pscore-overlap if overlap<pscore else 0, prefid,pctgid) else: _anchors[-1]=(ps1+overlap,pe1,ps2,pe2-overlap,po,pscore-overlap if overlap<pscore else 0, prefid,pctgid) _anchors.append(anchor) anchors=_anchors return anchors def remove_overlap_greedy_blocks(anchors): #TODO: remove duplicates! for coord in [0,2]: if len(anchors)<=1: #by definition no containment return anchors update_progress(0,len(anchors)) anchors.sort(key=lambda m: (m[coord], (m[coord+1]-m[coord])*-1)) #sort by start position, then -1*size _anchors=[anchors[0]] last=anchors[0] for anchor in anchors[1:]: if anchor[coord] < last[coord+1]: #overlap if anchor[coord+1]<=last[coord+1]: #contained continue _anchors.append(anchor) last=anchor anchors=_anchors _anchors=[anchors[0]] # for anchor in anchors[1:]: for i in xrange(1,len(anchors)): anchor=anchors[i] update_progress(i,len(anchors)) s1,e1,s2,e2,o,score,refid,ctgid=anchor ps1,pe1,ps2,pe2,po,pscore,prefid,pctgid=_anchors[-1] pl=pe1-ps1 overlap=(_anchors[-1][coord+1]) - anchor[coord] if overlap > 0: #overlap if pscore > score: #update current anchor if score<=overlap: continue assert(score-overlap >= 0) if o==0: anchor=(s1+overlap,e1,s2+overlap,e2,o,score-overlap if overlap<score else 0,refid,ctgid) else: if coord==0: anchor=(s1+overlap,e1,s2,e2-overlap,o,score-overlap if overlap<score else 0,refid,ctgid) else: anchor=(s1,e1-overlap,s2+overlap,e2,o,score-overlap if overlap<score else 0,refid,ctgid) _anchors.append(anchor) else: while pl<=overlap or pscore<=overlap: _anchors.pop() ps1,pe1,ps2,pe2,po,pscore,prefid,pctgid=_anchors[-1] overlap=(_anchors[-1][coord+1]) - anchor[coord] if overlap<0: break pl=pe1-ps1 if overlap>0: assert(pl>overlap) assert(pscore>overlap) assert(pscore-overlap >= 0) if po==0: _anchors[-1]=(ps1,pe1-overlap,ps2,pe2-overlap,po,pscore-overlap if overlap<pscore else 0,prefid,pctgid) else: if coord==0: _anchors[-1]=(ps1,pe1-overlap, ps2+overlap,pe2, po,pscore-overlap if overlap<pscore else 0,prefid,pctgid) else: _anchors[-1]=(ps1+overlap,pe1,ps2,pe2-overlap,po,pscore-overlap if overlap<pscore else 0,prefid,pctgid) _anchors.append(anchor) else: _anchors.append(anchor) anchors=_anchors return anchors def remove_contained_blocks(anchors): #remove duplicates! for coord in [0,2]: logging.info("Remove overlap in %s dimension."%("first" if coord==0 else "second")) if len(anchors)<=1: #by definition no containment return anchors anchors.sort(key=lambda m: (m[coord], (m[coord+1]-m[coord])*-1) ) #sort by start position, then -1*size _anchors=[anchors[0]] last=anchors[0] update_progress(0,len(anchors)) # for anchor in anchors[1:]: for i in xrange(1,len(anchors)): anchor=anchors[i] update_progress(i,len(anchors)) if anchor[coord] < last[coord+1]: #overlap if anchor[coord+1]<=last[coord+1]: #contained continue _anchors.append(anchor) last=anchor anchors=_anchors return anchors #unused def remove_overlap_greedy_mums(anchors): #remove duplicates! n=2 for coord in range(n): if len(anchors)<=1: #by definition no containment return anchors anchors.sort(key=lambda m: (m[1][coord], m[0]*-1)) #sort by start position, then -1*size _anchors=[anchors[0]] last=anchors[0] for anchor in anchors[1:]: if anchor[1][coord] < last[1][coord]+last[0]: #overlap if anchor[1][coord]+anchor[0]<=last[1][coord]+last[0]: #contained continue _anchors.append(anchor) last=anchor anchors=_anchors _anchors=[anchors[0]] for anchor in anchors[1:]: overlap=(_anchors[-1][1][coord]+_anchors[-1][0]) - anchor[1][coord] if overlap > 0: #overlap if _anchors[-1][0] > anchor[0]: if anchor[2]==0: anchor=(anchor[0]-overlap, (anchor[1][0]+overlap, anchor[1][1]+overlap), anchor[2]) else: if coord==0: anchor=(anchor[0]-overlap, (anchor[1][0]+overlap, anchor[1][1]), anchor[2]) else: anchor=(anchor[0]-overlap, (anchor[1][0], anchor[1][1]+overlap), anchor[2]) _anchors.append(anchor) else: while _anchors[-1][0]<=overlap and overlap>0: _anchors.pop() overlap=(_anchors[-1][1][coord]+_anchors[-1][0]) - anchor[1][coord] if overlap>0: if _anchors[-1][2]==0: _anchors[-1]=(_anchors[-1][0]-overlap,_anchors[-1][1],_anchors[-1][2]) #update stack else: if coord==0: _anchors[-1]=(_anchors[-1][0]-overlap,_anchors[-1][1],_anchors[-1][2]) else: _anchors[-1]=(_anchors[-1][0]-overlap,(_anchors[-1][1][0]+overlap, _anchors[-1][1][1]),_anchors[-1][2]) _anchors.append(anchor) else: _anchors.append(anchor) anchors=_anchors return anchors #unused def remove_contained_mums(anchors): #remove duplicates! for coord in range(2): if len(anchors)<=1: #by definition no containment return anchors anchors.sort(key=lambda m: (m[1][coord], m[0]*-1)) #sort by start position, then -1*size _anchors=[anchors[0]] last=anchors[0] for anchor in anchors[1:]: if anchor[1][coord] < last[1][coord]+last[0]: #overlap if anchor[1][coord]+anchor[0]<=last[1][coord]+last[0]: #contained continue _anchors.append(anchor) last=anchor anchors=_anchors return anchors #unused def remove_overlap_conservative_mums(anchors): #remove duplicates! n=2 for coord in range(n): if len(anchors)<=1: #by definition no containment return anchors anchors.sort(key=lambda m: (m[1][coord], m[0]*-1)) #sort by start position, then -1*size _anchors=[anchors[0]] last=anchors[0] for anchor in anchors[1:]: if anchor[1][coord] < last[1][coord]+last[0]: #overlap if anchor[1][coord]+anchor[0]<=last[1][coord]+last[0]: #contained continue _anchors.append(anchor) last=anchor anchors=_anchors _anchors=[anchors[0]] last=anchors[0] for anchor in anchors[1:]: if anchor[1][coord] < last[1][coord]+last[0]: #overlap assert(anchor[1][coord]+anchor[0] > last[1][coord]+last[0]) #may not be contained, as we filtered these out already overlap=(last[1][coord]+last[0])-anchor[1][coord] assert(overlap>=0) assert(anchor[0]>overlap) if anchor[2]==0: anchor=(anchor[0]-overlap, (anchor[1][0]+overlap, anchor[1][1]+overlap), anchor[2]) else: if coord==0: anchor=(anchor[0]-overlap, (anchor[1][0]+overlap, anchor[1][1]), anchor[2]) else: anchor=(anchor[0]-overlap, (anchor[1][0], anchor[1][1]+overlap), anchor[2]) # assert(last[0]>overlap) if last[2]==0: _anchors[-1]=(last[0]-overlap,last[1],last[2]) #update last else: if coord==0: _anchors[-1]=(last[0]-overlap,(last[1][0], last[1][1]+overlap),last[2]) else: _anchors[-1]=(last[0]-overlap,(last[1][0]+overlap, last[1][1]),last[2]) if _anchors[-1][0]<=0: _anchors[-1]=anchor else: _anchors.append(anchor) last=anchor anchors=_anchors return anchors
the-stack_0_11658
# ------------------------------------------------------------------------------ # Training code. # Example command: # python -m torch.distributed.launch --nproc_per_node=4 tools/train_net.py --cfg PATH_TO_CONFIG_FILE # Written by Bowen Cheng ([email protected]) # ------------------------------------------------------------------------------ import argparse import os import pprint import logging import time import torch from torch import nn import torch.backends.cudnn as cudnn from torch.nn.parallel import DistributedDataParallel import tools._init_paths from fvcore.common.file_io import PathManager from segmentation.config import config, update_config from segmentation.utils.logger import setup_logger from segmentation.model import build_segmentation_model_from_cfg from segmentation.utils import comm from segmentation.solver import build_optimizer, build_lr_scheduler from segmentation.data import build_train_loader_from_cfg, build_test_loader_from_cfg from segmentation.solver import get_lr_group_id from segmentation.utils import save_debug_images from segmentation.utils import AverageMeter from segmentation.utils.utils import get_loss_info_str, to_cuda, get_module def parse_args(): parser = argparse.ArgumentParser(description='Train segmentation network') parser.add_argument('--cfg', help='experiment configure file name', required=True, type=str) parser.add_argument("--local_rank", type=int, default=0) parser.add_argument('opts', help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER) args = parser.parse_args() update_config(config, args) return args def main(): args = parse_args() logger = logging.getLogger('segmentation') if not logger.isEnabledFor(logging.INFO): # setup_logger is not called setup_logger(output=config.OUTPUT_DIR, distributed_rank=args.local_rank) # logger.info(pprint.pformat(args)) # logger.info(config) # cudnn related setting cudnn.benchmark = config.CUDNN.BENCHMARK cudnn.deterministic = config.CUDNN.DETERMINISTIC cudnn.enabled = config.CUDNN.ENABLED gpus = list(config.GPUS) distributed = len(gpus) > 1 device = torch.device('cuda:{}'.format(args.local_rank)) if distributed: torch.cuda.set_device(args.local_rank) torch.distributed.init_process_group( backend="nccl", init_method="env://", ) # build model model = build_segmentation_model_from_cfg(config) # logger.info("Model:\n{}".format(model)) logger.info("Rank of current process: {}. World size: {}".format(comm.get_rank(), comm.get_world_size())) if distributed: model = nn.SyncBatchNorm.convert_sync_batchnorm(model) model = model.to(device) if comm.get_world_size() > 1: model = DistributedDataParallel( model, device_ids=[args.local_rank], output_device=args.local_rank ) data_loader = build_train_loader_from_cfg(config) optimizer = build_optimizer(config, model) lr_scheduler = build_lr_scheduler(config, optimizer) data_loader_iter = iter(data_loader) start_iter = 0 max_iter = config.TRAIN.MAX_ITER best_param_group_id = get_lr_group_id(optimizer) # initialize model if os.path.isfile(config.MODEL.WEIGHTS): model_weights = torch.load(config.MODEL.WEIGHTS) get_module(model, distributed).load_state_dict(model_weights, strict=False) logger.info('Pre-trained model from {}'.format(config.MODEL.WEIGHTS)) elif config.MODEL.BACKBONE.PRETRAINED: if os.path.isfile(config.MODEL.BACKBONE.WEIGHTS): pretrained_weights = torch.load(config.MODEL.BACKBONE.WEIGHTS) get_module(model, distributed).backbone.load_state_dict(pretrained_weights, strict=False) logger.info('Pre-trained backbone from {}'.format(config.MODEL.BACKBONE.WEIGHTS)) else: logger.info('No pre-trained weights for backbone, training from scratch.') # load model if config.TRAIN.RESUME: model_state_file = os.path.join(config.OUTPUT_DIR, 'checkpoint.pth.tar') if os.path.isfile(model_state_file): checkpoint = torch.load(model_state_file) start_iter = checkpoint['start_iter'] get_module(model, distributed).load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) lr_scheduler.load_state_dict(checkpoint['lr_scheduler']) logger.info('Loaded checkpoint (starting from iter {})'.format(checkpoint['start_iter'])) data_time = AverageMeter() batch_time = AverageMeter() loss_meter = AverageMeter() # 显示模型的参数量 def get_parameter_number(net): total_num = sum(p.numel() for p in net.parameters()) trainable_num = sum(p.numel() for p in net.parameters() if p.requires_grad) # return {'Total': total_num/1000000, 'Trainable': trainable_num/1000000} logger.info('Total:{}M, Trainable:{}M'.format(total_num/1000000, trainable_num/1000000)) print(get_parameter_number(model)) # Debug output. if config.DEBUG.DEBUG: debug_out_dir = os.path.join(config.OUTPUT_DIR, 'debug_train') PathManager.mkdirs(debug_out_dir) # Train loop. try: for i in range(start_iter, max_iter): # data start_time = time.time() data = next(data_loader_iter) if not distributed: data = to_cuda(data, device) data_time.update(time.time() - start_time) # 取出mini-bach的数据和标签 image = data.pop('image') label = data.pop('label') # import imageio # import numpy as np # print(label.shape) # label_image = np.array(label.cpu()[0]) # print(label_image.shape) # imageio.imwrite('%s/%d_%s.png' % ('./', 1, 'debug_batch_label'), label_image.transpose(1, 2, 0)) # 向前传播 out_dict = model(image, data) # 计算代价函数 loss = out_dict['loss'] # 清零梯度准备计算 optimizer.zero_grad() # 反向传播 loss.backward() # 更新训练参数 optimizer.step() # Get lr. lr = optimizer.param_groups[best_param_group_id]["lr"] lr_scheduler.step() batch_time.update(time.time() - start_time) loss_meter.update(loss.detach().cpu().item(), image.size(0)) if i == 0 or (i + 1) % config.PRINT_FREQ == 0: msg = '[{0}/{1}] LR: {2:.7f}\t' \ 'Time: {batch_time.val:.3f}s ({batch_time.avg:.3f}s)\t' \ 'Data: {data_time.val:.3f}s ({data_time.avg:.3f}s)\t'.format( i + 1, max_iter, lr, batch_time=batch_time, data_time=data_time) msg += get_loss_info_str(get_module(model, distributed).loss_meter_dict) logger.info(msg) if i == 0 or (i + 1) % config.DEBUG.DEBUG_FREQ == 0: if comm.is_main_process() and config.DEBUG.DEBUG: save_debug_images( dataset=data_loader.dataset, label=label, batch_images=image, batch_targets=data, batch_outputs=out_dict, out_dir=debug_out_dir, iteration=i, target_keys=config.DEBUG.TARGET_KEYS, output_keys=config.DEBUG.OUTPUT_KEYS, iteration_to_remove=i - config.DEBUG.KEEP_INTERVAL ) if i == 0 or (i + 1) % config.CKPT_FREQ == 0: if comm.is_main_process(): torch.save({ 'start_iter': i + 1, 'state_dict': get_module(model, distributed).state_dict(), 'optimizer': optimizer.state_dict(), 'lr_scheduler': lr_scheduler.state_dict(), }, os.path.join(config.OUTPUT_DIR, 'checkpoint.pth.tar')) except Exception: logger.exception("Exception during training:") raise finally: if comm.is_main_process(): torch.save(get_module(model, distributed).state_dict(), os.path.join(config.OUTPUT_DIR, 'final_state.pth')) logger.info("Training finished.") if __name__ == '__main__': main()
the-stack_0_11659
# 利用鸢尾花数据集,实现前向传播、反向传播,可视化loss曲线 # 导入所需模块 import tensorflow as tf from sklearn import datasets from matplotlib import pyplot as plt import numpy as np import time ##1## # 导入数据,分别为输入特征和标签 x_data = datasets.load_iris().data y_data = datasets.load_iris().target # 随机打乱数据(因为原始数据是顺序的,顺序不打乱会影响准确率) # seed: 随机数种子,是一个整数,当设置之后,每次生成的随机数都一样(为方便教学,以保每位同学结果一致) np.random.seed(116) # 使用相同的seed,保证输入特征和标签一一对应 np.random.shuffle(x_data) np.random.seed(116) np.random.shuffle(y_data) tf.random.set_seed(116) # 将打乱后的数据集分割为训练集和测试集,训练集为前120行,测试集为后30行 x_train = x_data[:-30] y_train = y_data[:-30] x_test = x_data[-30:] y_test = y_data[-30:] # 转换x的数据类型,否则后面矩阵相乘时会因数据类型不一致报错 x_train = tf.cast(x_train, tf.float32) x_test = tf.cast(x_test, tf.float32) # from_tensor_slices函数使输入特征和标签值一一对应。(把数据集分批次,每个批次batch组数据) train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32) test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32) # 生成神经网络的参数,4个输入特征故,输入层为4个输入节点;因为3分类,故输出层为3个神经元 # 用tf.Variable()标记参数可训练 # 使用seed使每次生成的随机数相同(方便教学,使大家结果都一致,在现实使用时不写seed) w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1, seed=1)) b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1, seed=1)) lr = 0.1 # 学习率为0.1 train_loss_results = [] # 将每轮的loss记录在此列表中,为后续画loss曲线提供数据 test_acc = [] # 将每轮的acc记录在此列表中,为后续画acc曲线提供数据 epoch = 500 # 循环500轮 loss_all = 0 # 每轮分4个step,loss_all记录四个step生成的4个loss的和 ########################################################################## m_w, m_b = 0, 0 beta = 0.9 ########################################################################## # 训练部分 now_time = time.time() ##2## for epoch in range(epoch): # 数据集级别的循环,每个epoch循环一次数据集 for step, (x_train, y_train) in enumerate(train_db): # batch级别的循环 ,每个step循环一个batch with tf.GradientTape() as tape: # with结构记录梯度信息 y = tf.matmul(x_train, w1) + b1 # 神经网络乘加运算 y = tf.nn.softmax(y) # 使输出y符合概率分布(此操作后与独热码同量级,可相减求loss) y_ = tf.one_hot(y_train, depth=3) # 将标签值转换为独热码格式,方便计算loss和accuracy loss = tf.reduce_mean(tf.square(y_ - y)) # 采用均方误差损失函数mse = mean(sum(y-out)^2) loss_all += loss.numpy() # 将每个step计算出的loss累加,为后续求loss平均值提供数据,这样计算的loss更准确 # 计算loss对各个参数的梯度 grads = tape.gradient(loss, [w1, b1]) ########################################################################## # sgd-momentun m_w = beta * m_w + (1 - beta) * grads[0] m_b = beta * m_b + (1 - beta) * grads[1] w1.assign_sub(lr * m_w) b1.assign_sub(lr * m_b) ########################################################################## # 每个epoch,打印loss信息 print("Epoch {}, loss: {}".format(epoch, loss_all / 4)) train_loss_results.append(loss_all / 4) # 将4个step的loss求平均记录在此变量中 loss_all = 0 # loss_all归零,为记录下一个epoch的loss做准备 # 测试部分 # total_correct为预测对的样本个数, total_number为测试的总样本数,将这两个变量都初始化为0 total_correct, total_number = 0, 0 for x_test, y_test in test_db: # 使用更新后的参数进行预测 y = tf.matmul(x_test, w1) + b1 y = tf.nn.softmax(y) pred = tf.argmax(y, axis=1) # 返回y中最大值的索引,即预测的分类 # 将pred转换为y_test的数据类型 pred = tf.cast(pred, dtype=y_test.dtype) # 若分类正确,则correct=1,否则为0,将bool型的结果转换为int型 correct = tf.cast(tf.equal(pred, y_test), dtype=tf.int32) # 将每个batch的correct数加起来 correct = tf.reduce_sum(correct) # 将所有batch中的correct数加起来 total_correct += int(correct) # total_number为测试的总样本数,也就是x_test的行数,shape[0]返回变量的行数 total_number += x_test.shape[0] # 总的准确率等于total_correct/total_number acc = total_correct / total_number test_acc.append(acc) print("Test_acc:", acc) print("--------------------------") total_time = time.time() - now_time ##3## print("total_time", total_time) ##4## # 绘制 loss 曲线 plt.title('Loss Function Curve') # 图片标题 plt.xlabel('Epoch') # x轴变量名称 plt.ylabel('Loss') # y轴变量名称 plt.plot(train_loss_results, label="$Loss$") # 逐点画出trian_loss_results值并连线,连线图标是Loss plt.legend() # 画出曲线图标 plt.show() # 画出图像 # 绘制 Accuracy 曲线 plt.title('Acc Curve') # 图片标题 plt.xlabel('Epoch') # x轴变量名称 plt.ylabel('Acc') # y轴变量名称 plt.plot(test_acc, label="$Accuracy$") # 逐点画出test_acc值并连线,连线图标是Accuracy plt.legend() plt.show() # 请将loss曲线、ACC曲线、total_time记录到 class2\优化器对比.docx 对比各优化器收敛情况
the-stack_0_11660
import cgi import re import urllib.parse import warnings from collections import defaultdict from pathlib import Path from typing import TYPE_CHECKING from typing import Any from typing import Dict from typing import Iterator from typing import List from typing import Optional import requests import requests.auth from cachecontrol import CacheControl from cachecontrol.caches.file_cache import FileCache from cachy import CacheManager from poetry.core.packages.package import Package from poetry.core.packages.utils.link import Link from poetry.core.semver.helpers import parse_constraint from poetry.core.semver.version import Version from poetry.core.semver.version_constraint import VersionConstraint from poetry.core.semver.version_range import VersionRange from poetry.locations import REPOSITORY_CACHE_DIR from poetry.utils.helpers import canonicalize_name from poetry.utils.patterns import wheel_file_re from ..config.config import Config from ..inspection.info import PackageInfo from ..installation.authenticator import Authenticator from .exceptions import PackageNotFound from .exceptions import RepositoryError from .pypi_repository import PyPiRepository if TYPE_CHECKING: from poetry.core.packages.dependency import Dependency try: from html import unescape except ImportError: try: from html.parser import HTMLParser except ImportError: from HTMLParser import HTMLParser unescape = HTMLParser().unescape try: from urllib.parse import quote except ImportError: from urllib import quote with warnings.catch_warnings(): warnings.simplefilter("ignore") import html5lib class Page: VERSION_REGEX = re.compile(r"(?i)([a-z0-9_\-.]+?)-(?=\d)([a-z0-9_.!+-]+)") SUPPORTED_FORMATS = [ ".tar.gz", ".whl", ".zip", ".tar.bz2", ".tar.xz", ".tar.Z", ".tar", ] def __init__(self, url: str, content: str, headers: Dict[str, Any]) -> None: if not url.endswith("/"): url += "/" self._url = url encoding = None if headers and "Content-Type" in headers: content_type, params = cgi.parse_header(headers["Content-Type"]) if "charset" in params: encoding = params["charset"] self._content = content if encoding is None: self._parsed = html5lib.parse(content, namespaceHTMLElements=False) else: self._parsed = html5lib.parse( content, transport_encoding=encoding, namespaceHTMLElements=False ) @property def versions(self) -> Iterator[Version]: seen = set() for link in self.links: version = self.link_version(link) if not version: continue if version in seen: continue seen.add(version) yield version @property def links(self) -> Iterator[Link]: for anchor in self._parsed.findall(".//a"): if anchor.get("href"): href = anchor.get("href") url = self.clean_link(urllib.parse.urljoin(self._url, href)) pyrequire = anchor.get("data-requires-python") pyrequire = unescape(pyrequire) if pyrequire else None link = Link(url, self, requires_python=pyrequire) if link.ext not in self.SUPPORTED_FORMATS: continue yield link def links_for_version(self, version: Version) -> Iterator[Link]: for link in self.links: if self.link_version(link) == version: yield link def link_version(self, link: Link) -> Optional[Version]: m = wheel_file_re.match(link.filename) if m: version = m.group("ver") else: info, ext = link.splitext() match = self.VERSION_REGEX.match(info) if not match: return version = match.group(2) try: version = Version.parse(version) except ValueError: return return version _clean_re = re.compile(r"[^a-z0-9$&+,/:;=?@.#%_\\|-]", re.I) def clean_link(self, url: str) -> str: """Makes sure a link is fully encoded. That is, if a ' ' shows up in the link, it will be rewritten to %20 (while not over-quoting % or other characters).""" return self._clean_re.sub(lambda match: "%%%2x" % ord(match.group(0)), url) class LegacyRepository(PyPiRepository): def __init__( self, name: str, url: str, config: Optional[Config] = None, disable_cache: bool = False, cert: Optional[Path] = None, client_cert: Optional[Path] = None, ) -> None: if name == "pypi": raise ValueError("The name [pypi] is reserved for repositories") self._packages = [] self._name = name self._url = url.rstrip("/") self._client_cert = client_cert self._cert = cert self._cache_dir = REPOSITORY_CACHE_DIR / name self._cache = CacheManager( { "default": "releases", "serializer": "json", "stores": { "releases": {"driver": "file", "path": str(self._cache_dir)}, "packages": {"driver": "dict"}, "matches": {"driver": "dict"}, }, } ) self._authenticator = Authenticator( config=config or Config(use_environment=True) ) self._session = CacheControl( self._authenticator.session, cache=FileCache(str(self._cache_dir / "_http")) ) username, password = self._authenticator.get_credentials_for_url(self._url) if username is not None and password is not None: self._authenticator.session.auth = requests.auth.HTTPBasicAuth( username, password ) if self._cert: self._authenticator.session.verify = str(self._cert) if self._client_cert: self._authenticator.session.cert = str(self._client_cert) self._disable_cache = disable_cache @property def cert(self) -> Optional[Path]: return self._cert @property def client_cert(self) -> Optional[Path]: return self._client_cert @property def authenticated_url(self) -> str: if not self._session.auth: return self.url parsed = urllib.parse.urlparse(self.url) return "{scheme}://{username}:{password}@{netloc}{path}".format( scheme=parsed.scheme, username=quote(self._session.auth.username, safe=""), password=quote(self._session.auth.password, safe=""), netloc=parsed.netloc, path=parsed.path, ) def find_packages(self, dependency: "Dependency") -> List[Package]: packages = [] constraint = dependency.constraint if constraint is None: constraint = "*" if not isinstance(constraint, VersionConstraint): constraint = parse_constraint(constraint) allow_prereleases = dependency.allows_prereleases() if isinstance(constraint, VersionRange): if ( constraint.max is not None and constraint.max.is_prerelease() or constraint.min is not None and constraint.min.is_prerelease() ): allow_prereleases = True key = dependency.name if not constraint.is_any(): key = "{}:{}".format(key, str(constraint)) ignored_pre_release_versions = [] if self._cache.store("matches").has(key): versions = self._cache.store("matches").get(key) else: page = self._get("/{}/".format(dependency.name.replace(".", "-"))) if page is None: return [] versions = [] for version in page.versions: if version.is_prerelease() and not allow_prereleases: if constraint.is_any(): # we need this when all versions of the package are pre-releases ignored_pre_release_versions.append(version) continue if constraint.allows(version): versions.append(version) self._cache.store("matches").put(key, versions, 5) for package_versions in (versions, ignored_pre_release_versions): for version in package_versions: package = Package( dependency.name, version, source_type="legacy", source_reference=self.name, source_url=self._url, ) packages.append(package) self._log( "{} packages found for {} {}".format( len(packages), dependency.name, str(constraint) ), level="debug", ) if packages or not constraint.is_any(): # we have matching packages, or constraint is not (*) break return packages def package( self, name: str, version: str, extras: Optional[List[str]] = None ) -> Package: """ Retrieve the release information. This is a heavy task which takes time. We have to download a package to get the dependencies. We also need to download every file matching this release to get the various hashes. Note that this will be cached so the subsequent operations should be much faster. """ try: index = self._packages.index(Package(name, version, version)) return self._packages[index] except ValueError: package = super(LegacyRepository, self).package(name, version, extras) package._source_type = "legacy" package._source_url = self._url package._source_reference = self.name return package def find_links_for_package(self, package: Package) -> List[Link]: page = self._get("/{}/".format(package.name.replace(".", "-"))) if page is None: return [] return list(page.links_for_version(package.version)) def _get_release_info(self, name: str, version: str) -> dict: page = self._get("/{}/".format(canonicalize_name(name).replace(".", "-"))) if page is None: raise PackageNotFound('No package named "{}"'.format(name)) data = PackageInfo( name=name, version=version, summary="", platform=None, requires_dist=[], requires_python=None, files=[], cache_version=str(self.CACHE_VERSION), ) links = list(page.links_for_version(Version.parse(version))) if not links: raise PackageNotFound( 'No valid distribution links found for package: "{}" version: "{}"'.format( name, version ) ) urls = defaultdict(list) files = [] for link in links: if link.is_wheel: urls["bdist_wheel"].append(link.url) elif link.filename.endswith( (".tar.gz", ".zip", ".bz2", ".xz", ".Z", ".tar") ): urls["sdist"].append(link.url) h = link.hash if h: h = link.hash_name + ":" + link.hash files.append({"file": link.filename, "hash": h}) data.files = files info = self._get_info_from_urls(urls) data.summary = info.summary data.requires_dist = info.requires_dist data.requires_python = info.requires_python return data.asdict() def _get(self, endpoint: str) -> Optional[Page]: url = self._url + endpoint try: response = self.session.get(url) if response.status_code == 404: return response.raise_for_status() except requests.HTTPError as e: raise RepositoryError(e) if response.status_code in (401, 403): self._log( "Authorization error accessing {url}".format(url=response.url), level="warn", ) return if response.url != url: self._log( "Response URL {response_url} differs from request URL {url}".format( response_url=response.url, url=url ), level="debug", ) return Page(response.url, response.content, response.headers)
the-stack_0_11661
''' Client.Processor.* tests. ''' from tests.integration.util import ( create_client ) import pytest import plaid import json from plaid.model.processor_token_create_request import ProcessorTokenCreateRequest from plaid.model.processor_stripe_bank_account_token_create_request import ProcessorStripeBankAccountTokenCreateRequest def test_stripe_processor_token(): client = create_client() # Just test the failure case - behavior here depends on the API keys used with pytest.raises(plaid.ApiException) as e: request = ProcessorStripeBankAccountTokenCreateRequest( access_token='fakeAccessToken', account_id='fakeAccountId', ) client.processor_stripe_bank_account_token_create(request) response = json.loads(e.body) assert response['error_code'] == 'INVALID_INPUT' def test_dwolla_processor_token(): client = create_client() # Just test the failure case - behavior here depends on the API keys used with pytest.raises(plaid.ApiException) as e: request = ProcessorTokenCreateRequest( access_token='fakeAccessToken', account_id='fakeAccountId', processor='dwolla' ) client.processor_token_create(request) response = json.loads(e.body) assert response['error_code'] == 'INVALID_INPUT'
the-stack_0_11664
import pathlib from setuptools import setup, find_packages BASE_DIR = pathlib.Path(__file__).parent PACKAGE_NAME = 'nlp_api' VERSION = '0.0.01' AUTHOR = 'Aivin V. Solatorio' URL = 'https://github.com/avsolatorio/wb_nlp/app/nlp_api' LICENSE = 'MIT' DESCRIPTION = 'Python API' INSTALL_REQUIRES = ['fastapi'] # Setting up setup( name=PACKAGE_NAME, version=VERSION, author=AUTHOR, url=URL, description=DESCRIPTION, install_requires=INSTALL_REQUIRES, packages=find_packages(include=['wb_nlp']) )
the-stack_0_11666
""" This is a sample simulation that does not represent any particular biological system. It is just a showcase of how create a Simulation object, add forces, and initialize the reporter. In this simulation, a simple polymer chain of 10,000 monomers is """ import time import numpy as np import os, sys import polychrom from polychrom import simulation, starting_conformations, forces, forcekits from polychrom.integrators import ActiveBrownianIntegrator, CorrelatedNoiseIntegrator import openmm from polychrom.hdf5_format import HDF5Reporter from simtk import unit from pathlib import Path total_runs = 2500 runs_per_gpu = total_runs // 2 def run_sim(i, gpuid=None, timestep=170, ntimesteps=10000, blocksize=100): """ Run a single simulation on GPU i.""" N=100 density = 0.224 r = (3 * N / (4 * 3.141592 * density)) ** (1/3) print(f"Radius of confinement: {r}") D = np.ones((N, 3)) rhos = 0.5*np.ones((1, N)) rhos[0, 0:20] = -0.5 rhos[0, 20:40] = 0.0 rhos[0, 60:80] = 0.0 timestep = timestep collision_rate = 2.0 friction = collision_rate * (1.0/unit.picosecond) conlen = 1.0 * unit.nanometer mass = 100 * unit.amu temperature = 300 kB = unit.BOLTZMANN_CONSTANT_kB * unit.AVOGADRO_CONSTANT_NA kT = kB * temperature * unit.kelvin particleD = unit.Quantity(D, kT/(friction * mass)) integrator = CorrelatedNoiseIntegrator(timestep, collision_rate, particleD, rhos) if gpuid is None: gpuid = f"{i % 4}" traj = f"/net/dau/home/dkannan/simulations/corr_sameT/ensemble10000_100/run{i}" Path(traj).mkdir(parents=True, exist_ok=True) reporter = HDF5Reporter(folder=traj, max_data_length=100, overwrite=True) sim = simulation.Simulation( platform="CUDA", integrator=integrator, timestep=timestep, temperature=temperature, GPU=gpuid, collision_rate=collision_rate, N=N, save_decimals=2, PBCbox=False, reporters=[reporter], ) polymer = starting_conformations.grow_cubic(N, 5) sim.set_data(polymer, center=True) # loads a polymer, puts a center of mass at zero sim.set_velocities(v=np.zeros((N,3))) sim.add_force(forces.spherical_confinement(sim, density=density, k=5.0)) sim.add_force( forcekits.polymer_chains( sim, chains=[(0, None, False)], # By default the library assumes you have one polymer chain # If you want to make it a ring, or more than one chain, use self.setChains # self.setChains([(0,50,True),(50,None,False)]) will set a 50-monomer ring and a chain from monomer 50 to the end bond_force_func=forces.harmonic_bonds, bond_force_kwargs={ "bondLength": 1.0, "bondWiggleDistance": 0.3, # Bond distance will fluctuate +- 0.05 on average }, angle_force_func=None, angle_force_kwargs={}, nonbonded_force_func=forces.polynomial_repulsive, nonbonded_force_kwargs={ "trunc": 3.0, # this will let chains cross sometimes #'trunc':10.0, # this will resolve chain crossings and will not let chain cross anymore }, except_bonds=True, ) ) tic = time.perf_counter() for _ in range(ntimesteps): # Do 10 blocks sim.do_block(blocksize) # Of 100 timesteps each. Data is saved automatically. toc = time.perf_counter() print(f'Ran simulation in {(toc - tic):0.4f}s') sim.print_stats() # In the end, print very simple statistics reporter.dump_data() # always need to run in the end to dump the block cache to the disk if __name__ == '__main__': #run 8 simulations, one on each gpu, for the same parameters #run_sim(1) for i in range(1, 1 + 2*runs_per_gpu, 2): run_sim(i, gpuid="3")
the-stack_0_11667
""" Command line tool to copy experiment metadata from one NeXus file to the other. """ import sys import logging import argparse import freephil from pathlib import Path from . import ( version_parser, full_copy_parser, tristan_copy_parser, ) from ..nxs_copy import CopyNexus, CopyTristanNexus # Define a logger object and a formatter logger = logging.getLogger("CopyNeXus") logger.setLevel(logging.DEBUG) formatter = logging.Formatter("%(levelname)s %(message)s") # Phil scopes general_scope = freephil.parse( """ input{ original_nexus = None .type = path .help = "NeXus file to be copied." data_filename = None .multiple = True .type = path .help = "HDF5 data file." data_type = *images events .type = choice .help = "Type of data in the HDF5 file, can be either images or events." simple_copy = False .type = bool .help = "If True, the full NeXus tree is copied." skip = NXdata .multiple = True .optional = True .type = str .help = "NX_class object, or list of, to be skipped when copying metadata. If called, it will always first skip NXdata." } """ ) tristan_scope = freephil.parse( """ input { tristan_nexus = None .type = path .help = "NeXus file associated with Tristan detector" data_filename = None .multiple = True .type = path .help = "HDF5 file with binned images" experiment_type = stationary *rotation .type = choice .help = "Specify whether an experiment is stationary or a rotation scan. Defaults to rotation." write_mode = r+ w *x a .type = choice .help = "Specify write mode for new NeXus file." } """ ) # Parse command line arguments parser = argparse.ArgumentParser( description="Copy metadata from input NeXus file.", parents=[version_parser], ) parser.add_argument("--debug", action="store_const", const=True) parser.add_argument( "-c", "--show-config", action="store_true", default=False, dest="show_config", help="Show the configuration parameters.", ) # CLIs def copy_nexus(args): clai = general_scope.command_line_argument_interpreter() working_phil = general_scope.fetch(clai.process_and_fetch(args.phil_args)) params = working_phil.extract() working_phil.show() logger.info("Copy metadata from one NeXus file to another.") # Path to data file and original nexus file data_file = [Path(d).expanduser().resolve() for d in params.input.data_filename] nexus_file = Path(params.input.original_nexus).expanduser().resolve() logger.info(f"NeXus file to be copied: {nexus_file}") logger.info(f"Input data to be saved in NeXus file: {data_file}") logger.info(f"Data type: {params.input.data_type}") if params.input.simple_copy is True: logger.info(f"{nexus_file} will be copied in its entirety.") else: logger.info( f"The following groups will not be copied from NXentry of {nexus_file}: {params.input.skip}" ) try: if params.input.data_type == "images": new_nxs = CopyNexus.images_nexus( data_file, nexus_file, simple_copy=params.input.simple_copy, skip_group=params.input.skip, ) elif params.input.data_type == "events": new_nxs = CopyNexus.pseudo_events_nexus( data_file, nexus_file, ) logger.info(f"File {nexus_file} correctly copied to {new_nxs}.") except Exception as err: logger.info(f"File {nexus_file} could not be copied.") logger.exception(err) def copy_tristan_nexus(args): clai = tristan_scope.command_line_argument_interpreter() working_phil = tristan_scope.fetch(clai.process_and_fetch(args.phil_args)) params = working_phil.extract() working_phil.show() logger.info("Copy metadata from Tristan NeXus file.") # Path to data and original nexus file data_file = [Path(d).expanduser().resolve() for d in params.input.data_filename] nexus_file = Path(params.input.tristan_nexus).expanduser().resolve() logger.info(f"Working directory: {data_file[0].parent}") logger.info(f"NeXus file to be copied: {nexus_file}") logger.info(f"Input data to be saved in NeXus file: {data_file}") try: if params.input.experiment_type == "stationary": logger.info( "Copying metadata for a stationary dataset. \n" "This means either a single image or a pump-probe experiment.\n" "The 'scan_axis' will be a single scalar." ) nxs_img = CopyTristanNexus.single_image_nexus( data_file[0], nexus_file, params.input.write_mode, ) elif params.input.experiment_type == "rotation": logger.info( "Copying metadata for a roation dataset. \n" "This means either a multiple images or a multi sequences pump-probe experiment.\n" ) if args.osc_angle: logger.info( f"Scan_axis will be a list of values defined by an oscillation angle of {args.osc_angle}." ) elif args.num_bins: logger.info(f"Scan_ axis will be a list of {args.num_bins} values.") for filename in data_file: nxs_img = CopyTristanNexus.multiple_images_nexus( filename, nexus_file, params.input.write_mode, args.osc_angle, args.num_bins, ) logger.info( f"Experiment metadata correctly copied from {nexus_file} to {nxs_img}." ) except Exception as err: logger.info(f"File {nexus_file} could not be copied.") logger.exception(err) # Define subparsers subparsers = parser.add_subparsers( help="Choose copy methods.", required=True, dest="sub-command", ) parser_general = subparsers.add_parser( "gen", aliases=["copy-file"], description=("Copy experiment metadata to a new NeXus file."), parents=[full_copy_parser], ) parser_general.set_defaults(func=copy_nexus) parser_tristan = subparsers.add_parser( "tristan", aliases=["copy-tristan"], description=( "Create a new NeXus file for binned images by copying the metadata from the original experiment NeXus file." ), parents=[tristan_copy_parser], ) parser_tristan.set_defaults(func=copy_tristan_nexus) def main(): # Define a stream handler CH = logging.StreamHandler(sys.stdout) CH.setLevel(logging.DEBUG) CH.setFormatter(formatter) # Add handler to logger logger.addHandler(CH) args = parser.parse_args() args.func(args) main()
the-stack_0_11669
# # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """test for str and repr Make sure things can print and in a nice form. Put all the print tests together so that running this test file alone can inspect all the print messages in the project """ import torch from torch import nn from pytorch_quantization import calib from pytorch_quantization import tensor_quant from pytorch_quantization import nn as quant_nn from pytorch_quantization.nn.modules.tensor_quantizer import TensorQuantizer # pylint:disable=missing-docstring, no-self-use class TestPrint(): def test_print_descriptor(self): test_desc = tensor_quant.QUANT_DESC_8BIT_CONV2D_WEIGHT_PER_CHANNEL print(test_desc) def test_print_tensor_quantizer(self): test_quantizer = TensorQuantizer() print(test_quantizer) def test_print_module(self): class _TestModule(nn.Module): def __init__(self): super(_TestModule, self).__init__() self.conv = nn.Conv2d(33, 65, 3) self.quant_conv = quant_nn.Conv2d(33, 65, 3) self.linear = nn.Linear(33, 65) self.quant_linear = quant_nn.Linear(33, 65) test_module = _TestModule() print(test_module) def test_print_calibrator(self): print(calib.MaxCalibrator(7, 1, False)) hist_calibrator = calib.HistogramCalibrator(8, None, True) hist_calibrator.collect(torch.rand(10)) print(hist_calibrator)
the-stack_0_11670
if __name__ != "__main__": import csv import time import pandas as pd class ObrasBot(): def __init__(self, browser, portal_url, categorias, veiculo, nome_csv, *colunas): self.browser = browser self.categorias = [c.upper() for c in categorias] self.veiculo = [v.upper() for v in veiculo] self.portal_url = portal_url self.nome_csv = nome_csv self.colunas = list(colunas) #acessa o site self.browser.get(self.portal_url) self.browser.maximize_window() #botao busca avancada self.browser.find_element_by_xpath( "/html/body/table/tbody/tr/td/table[6]/tbody/tr/td/form[1]/table[1]/tbody/tr[3]/td/a" ).click() time.sleep(2) def criaBase(self): with open(self.nome_csv, 'w') as base: writer = csv.DictWriter(base, self.colunas) writer.writeheader() def alimentaBase(self, obra, diretores, veiculo, distribuidor, classificacao): with open(self.nome_csv, 'a') as base: writer = csv.DictWriter(base, self.colunas) writer.writerow({self.colunas[0]: obra, self.colunas[1]: diretores, self.colunas[2]: veiculo, self.colunas[3]: distribuidor, self.colunas[4]: classificacao}) def limpaBase(self): base = pd.read_csv(self.nome_csv, encoding='ISO-8859-1') #ou latin 1 base.drop_duplicates(inplace=True) base.to_csv(self.nome_csv, index=False, encoding='ISO-8859-1') self.browser.quit() def portalObras(self, obra): obra = obra.upper().replace('"', '') #limpa o campo self.browser.find_element_by_xpath( "/html/body/table/tbody/tr/td/table[6]/tbody/tr/td/form[1]/table[1]/tbody/tr[1]/td[2]/input").clear() #digita o titulo titulo_br_input = self.browser.find_element_by_xpath( "/html/body/table/tbody/tr/td/table[6]/tbody/tr/td/form[1]/table[1]/tbody/tr[1]/td[2]/input") for o in obra: time.sleep(0.1) titulo_br_input.send_keys(o) #botao consultar self.browser.find_element_by_xpath( "/html/body/table/tbody/tr/td/table[6]/tbody/tr/td/form[1]/table[2]/tbody/tr/td/a" ).click() time.sleep(2) linha = 1 while True: try: #pega o titulo br e categoria presentes na tabela 1 titulo_br_tabela = self.browser.find_element_by_xpath( '//*[@id="lista"]/tbody/tr[' + str(linha) + ']/td[1]' ).text categoria_tabela = self.browser.find_element_by_xpath( '//*[@id="lista"]/tbody/tr[' + str(linha) + ']/td[4]' ).text if titulo_br_tabela.strip().upper() == obra and categoria_tabela.strip().upper() in self.categorias: #abre a página de interesse clicando num botão presente em cada linha da tabela 1 self.browser.find_element_by_xpath('//*[@id="lista"]/tbody/tr[' + str(linha) + ']/td[5]/a').click() time.sleep(2) aux = 1 while True: try: #acessa a tabela 2, filtra veiculo e novamente a categoria categoria_tabela2 = self.browser.find_element_by_xpath( '//*[@id="TRbl_report_ClassificacaoProcessoObraView'+str(aux)+'"]/td[4]' ).text veiculo_tabela2 = self.browser.find_element_by_xpath( '//*[@id="TRbl_report_ClassificacaoProcessoObraView'+str(aux)+'"]/td[3]' ).text if categoria_tabela2.strip().upper() in self.categorias and veiculo_tabela2.strip().upper() in self.veiculo: diretores_tabela = self.browser.find_element_by_xpath( '//*[@id="TRbl_report_TbObra"]/tbody/tr[6]/td' ).text #quando é mais de um diretor(a) #costuma vir assim: Jurandir Muller/Roberto Tibiriçá/Claudia Priscilla diretores_tabela = diretores_tabela.replace('Diretores:', '').replace('/', ' - ').replace('"', '').strip().upper() veiculo = self.browser.find_element_by_xpath('//*[@id="TRbl_report_ClassificacaoProcessoObraView'+str(aux)+'"]/td[3]').text distribuidor = self.browser.find_element_by_xpath('//*[@id="TRbl_report_ClassificacaoProcessoObraView'+str(aux)+'"]/td[5]').text distribuidor = distribuidor.replace('"', "") classificacao = self.browser.find_element_by_xpath('//*[@id="TRbl_report_ClassificacaoProcessoObraView'+str(aux)+'"]/td[6]').text self.alimentaBase(obra, diretores_tabela, veiculo, distribuidor, classificacao) aux += 1 except: break #voltar à página anterior self.browser.find_element_by_xpath('/html/body/table/tbody/tr/td/table[6]/tbody/tr/td/a').click() linha += 1 except: break
the-stack_0_11671
# -*- coding: utf-8 -*- # Copyright 2018-2019 Streamlit Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import streamlit as st import pandas as pd import time st.title("Empty charts") st.write( """ This file tests what happens when you pass an empty dataframe or `None` into a chart. In some cases, we handle it nicely. In others, we show an error. The reason for the latter is because some chart types derive their configuration from the dataframe you pass in at the start. So when there's no dataframe we cannot detect that configuration. """ ) data = pd.DataFrame({"a": [1, 2, 3, 4], "b": [1, 3, 2, 4]}) spec = { "mark": "line", "encoding": { "x": {"field": "a", "type": "quantitative"}, "y": {"field": "b", "type": "quantitative"}, }, } st.subheader("Here are 4 empty charts") st.vega_lite_chart(spec) st.line_chart() st.area_chart() st.bar_chart() st.write("Below is an empty pyplot chart (i.e. just a blank image)") st.pyplot() st.write("...and that was it.") st.subheader("Here are 2 filled charts") x = st.vega_lite_chart(spec) x.vega_lite_chart(data, spec) x = st.vega_lite_chart(spec) time.sleep(0.2) # Sleep a little so the add_rows gets sent separately. x.add_rows(data) x = st.line_chart() x.add_rows(data) x = st.area_chart() x.add_rows(data) x = st.bar_chart() x.add_rows(data) st.subheader("Here is 1 empty map") st.deck_gl_chart() # TODO: Implement add_rows on DeckGL # st.subheader('1 filled map') # x = st.deck_gl_chart() # x.add_rows({'lat': 0, 'lon': 0}) # TODO: write Python tests for these: # (This manual test doesn't work anymore since errors break execution now) # st.subheader('Here are 10 errors') # st.write(1) # st.vega_lite_chart({}) # st.write(2) # st.vega_lite_chart(data, {}) # st.write(3) # st.vega_lite_chart(data) # st.write(4) # st.vega_lite_chart() # st.write(5) # st.altair_chart() # st.write(6) # st.line_chart() # st.write(7) # st.area_chart() # st.write(8) # st.bar_chart() # st.write(9) # st._native_chart() # st.write(10) # st.map()
the-stack_0_11672
from torchvision.transforms import ToPILImage from datasets.data_utils import DatasetOutput, default_transform from typing import Callable from PIL import Image from .data_utils import slide_windows_over_img, DatasetOutput import torch import torch.nn as nn from torch.utils.data import Dataset class GenericImageDataset(Dataset): """Generic dataset which defines all basic operations for the images.""" def __init__( self, path_to_images: str, get_sub_images: bool = False, sub_images_nr_windows: int = 10, sub_images_batch_size: int = 10, sub_images_min_size: int = 30, sub_images_max_size: int = 64, sub_images_stride: float = 0.2, classification_label: int = 0, transform: Callable = default_transform, **kwargs ): self.path_to_images = path_to_images self.transform = transform self.classification_label = classification_label # Sub images properties self.get_sub_images = get_sub_images self.sub_images_min_size = sub_images_min_size self.sub_images_max_size = sub_images_max_size self.sub_images_nr_windows = sub_images_nr_windows self.sub_images_batch_size = sub_images_batch_size self.sub_images_stride = sub_images_stride self.pil_transformer = ToPILImage() # Create store for data self.store = None def __getitem__(self, idx: int): # Read the image from the store index, and a dataset-defined `.read_image` img: Image = self.read_image(idx) # Apply transformation to the image tensor_img: torch.Tensor = self.transform(img) sub_images: torch.Tensor = torch.tensor(0) # Extract sub images if applicable if self.get_sub_images: sub_images = slide_windows_over_img( tensor_img, min_win_size=self.sub_images_min_size, max_win_size=self.sub_images_max_size, nr_windows=self.sub_images_nr_windows, stride=self.sub_images_stride ) return DatasetOutput( image=tensor_img, label=torch.tensor(self.classification_label), idx=torch.tensor(idx).long(), sub_images=sub_images ) def read_image(self, idx: int): """Interface, returns an PIL Image using the index.""" pass def __len__(self): return len(self.store)
the-stack_0_11676
import numpy as np import cv2 as cv from matplotlib import pyplot as plt img = cv.imread('img/entrada/folha-de-mamao-menor.jpg',0) edges = cv.Canny(img,100,200) plt.subplot(121),plt.imshow(img,cmap = 'gray') plt.title('Original Image'), plt.xticks([]), plt.yticks([]) plt.subplot(122),plt.imshow(edges,cmap = 'gray') plt.title('Edge Image'), plt.xticks([]), plt.yticks([]) plt.show()
the-stack_0_11677
# coding=utf-8 # Copyright 2021 TF-Transformers Authors and The TensorFlow Authors. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import, division, print_function import tensorflow as tf from tf_transformers.core import LegacyLayer from tf_transformers.layers import dense_einsum from tf_transformers.layers.attention import BartAttention from tf_transformers.utils import tf_utils class TransformerBART(LegacyLayer): """Transformer This layer implements the Transformer from "Attention Is All You Need". (https://arxiv.org/abs/1706.03762). """ def __init__( self, hidden_size, num_attention_heads, intermediate_size, intermediate_activation, use_auto_regressive, attention_head_size=None, dropout_rate=0.0, attention_dropout_rate=0.0, kernel_initializer="glorot_uniform", bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, use_bias=True, use_decoder=False, share_attention_layers=True, layer_norm_epsilon=None, is_training=False, use_dropout=False, name="transformer", **kwargs, ): """ Args: num_attention_heads: int, Number of attention heads. intermediate_size: int, Size of the intermediate layer. intermediate_activation: keras object, Activation for the intermediate layer. attention_cfg: The config with which to instantiate `attention_cls`. Ignored if attention_cls is a layer instance. dropout_rate: float (between 0 and 1), Dropout probability for the post-attention and output dropout. attention_dropout_rate: float (between 0 and 1), Dropout probability for within the attention layer. kernel_initializer: Initializer for dense layer kernels. bias_initializer: Initializer for dense layer biases. kernel_regularizer: Regularizer for dense layer kernels. bias_regularizer: Regularizer for dense layer biases. activity_regularizer: Regularizer for dense layer activity. kernel_constraint: Constraint for dense layer kernels. bias_constraint: Constraint for dense layer kernels. share_attention_layers: To share same attention layers in decoder cross attentions cross_attention_inside_encoder: Whether we want to use cross attention \ inside encoder. is_decoder: bool """ super(TransformerBART, self).__init__(name=name, is_training=is_training, use_dropout=use_dropout, **kwargs) # mostly embedding_size is same as projecting after attention self._hidden_size = hidden_size self._num_heads = num_attention_heads self._intermediate_size = intermediate_size self._intermediate_activation = intermediate_activation self._attention_head_size = attention_head_size self._dropout_rate = dropout_rate self._attention_dropout_rate = attention_dropout_rate self._kernel_initializer = tf.keras.initializers.get(kernel_initializer) self._bias_initializer = tf.keras.initializers.get(bias_initializer) self._kernel_regularizer = tf.keras.regularizers.get(kernel_regularizer) self._bias_regularizer = tf.keras.regularizers.get(bias_regularizer) self._kernel_constraint = tf.keras.constraints.get(kernel_constraint) self._bias_constraint = tf.keras.constraints.get(bias_constraint) self._use_bias = use_bias self._use_decoder = use_decoder self._layer_norm_epsilon = layer_norm_epsilon self._is_training = is_training self._use_dropout = use_dropout self._use_auto_regressive = use_auto_regressive def build(self, input_shape): """Build variables based on shape at run time. Args: input_shape ([input_word_embeddings 3D, attention_mask 3D]): input_word_embeddings (b x s x h) and attention_mask (b x 1 x s) Raises: ValueError: [description] ValueError: [description] """ input_tensor = input_shape[0] input_tensor_shape = tf.TensorShape(input_tensor) batch_size, sequence_length, embedding_size = input_tensor_shape if not self._attention_head_size: # If attention_head is None, then make sure # it can be inferred from (embedding_size // self._num_heads) if embedding_size % self._num_heads != 0: raise ValueError( "The input size (%d) is not a multiple of the number of attention " "heads (%d)" % (embedding_size, self._num_heads) ) self._attention_head_size = int(embedding_size // self._num_heads) # Common kwargs common_kwargs = dict( bias_initializer=self._bias_initializer, kernel_regularizer=self._kernel_regularizer, bias_regularizer=self._bias_regularizer, activity_regularizer=self._activity_regularizer, kernel_constraint=self._kernel_constraint, bias_constraint=self._bias_constraint, ) # Self Attention Layer self._attention_layer = BartAttention( num_heads=self._num_heads, head_size=self._attention_head_size, dropout_rate=self._attention_dropout_rate, name="self_attention", is_training=self._is_training, use_decoder=self._use_decoder, use_auto_regressive=self._use_auto_regressive, use_dropout=self._use_dropout, **common_kwargs, ) # Dense layer self._attention_output_dense = dense_einsum.DenseEinsum( output_shape=self._hidden_size, name="self_attention_output", **common_kwargs ) # Attention Dropout self._attention_dropout = tf.keras.layers.Dropout(rate=self._dropout_rate) # Self Attention Norm self._attention_layer_norm = tf.keras.layers.LayerNormalization( name="self_attention_layer_norm", axis=-1, epsilon=self._layer_norm_epsilon, dtype=tf.float32, ) # Cross Attention for Decoder if self._use_decoder: # Cross Attention layer self._cross_attention_layer = BartAttention( num_heads=self._num_heads, head_size=self._attention_head_size, dropout_rate=self._attention_dropout_rate, name="cross_attention", is_training=self._is_training, use_auto_regressive=self._use_auto_regressive, use_decoder=self._use_decoder, use_dropout=self._use_dropout, **common_kwargs, ) # Dense self._cross_attention_output_dense = dense_einsum.DenseEinsum( output_shape=self._hidden_size, name="cross_attention_output", **common_kwargs ) # Norm self._cross_attention_layer_norm = tf.keras.layers.LayerNormalization( name="cross_attention_layer_norm", axis=-1, epsilon=self._layer_norm_epsilon, dtype=tf.float32, ) # Main Dense Layer after Attention, with activation self._intermediate_dense = dense_einsum.DenseEinsum( output_shape=self._intermediate_size, activation=self._intermediate_activation, # This layer is always float32 for numeric stability. dtype=tf.float32, name="intermediate", **common_kwargs, ) # intermediate Dense self._output_dense = dense_einsum.DenseEinsum(output_shape=self._hidden_size, name="output", **common_kwargs) self._output_dropout = tf.keras.layers.Dropout(rate=self._dropout_rate) # Use float32 in layernorm for numeric stability. self._output_layer_norm = tf.keras.layers.LayerNormalization( name="output_layer_norm", axis=-1, epsilon=self._layer_norm_epsilon, dtype=tf.float32 ) super(TransformerBART, self).build(input_shape) def get_config(self): config = { "hidden_size": self._hidden_size, "num_attention_heads": self._num_heads, "intermediate_size": self._intermediate_size, "intermediate_activation": self._intermediate_activation, "dropout_rate": self._dropout_rate, "attention_dropout_rate": self._attention_dropout_rate, "kernel_initializer": tf.keras.initializers.serialize(self._kernel_initializer), "bias_initializer": tf.keras.initializers.serialize(self._bias_initializer), "kernel_regularizer": tf.keras.regularizers.serialize(self._kernel_regularizer), "bias_regularizer": tf.keras.regularizers.serialize(self._bias_regularizer), "activity_regularizer": tf.keras.regularizers.serialize(self._activity_regularizer), "kernel_constraint": tf.keras.constraints.serialize(self._kernel_constraint), "bias_constraint": tf.keras.constraints.serialize(self._bias_constraint), "is_training": self.is_training, "use_auto_regressive": self._use_auto_regressive, } base_config = super(TransformerBART, self).get_config() return dict(list(base_config.items()) + list(config.items())) def call_encoder(self, inputs, cache_key=None, cache_value=None): """ Training pipeline """ # b x s x h # b x s x s input_tensor, attention_mask = inputs # [from_tensor, to_tensor] attention_inputs = [input_tensor, input_tensor] if attention_mask is not None: attention_inputs.append(attention_mask) # attention_inputs = [from_tensor, to_tensor, attention_mask] ((b x s x 768)) attention_output, key, value = self._attention_layer( attention_inputs, cache_key=cache_key, cache_value=cache_value ) attention_output = self._attention_output_dense(attention_output) attention_output = self._attention_dropout(attention_output, training=self._use_dropout) attention_output = self._attention_layer_norm(input_tensor + attention_output) # mixed precision stability requires Normalization to be in tf.ffloat32 attention_output = tf.cast(attention_output, dtype=tf_utils.get_dtype()) intermediate_output = self._intermediate_dense(attention_output) layer_output = self._output_dense(intermediate_output) layer_output = self._output_dropout(layer_output) layer_output = self._output_layer_norm(layer_output + attention_output) return layer_output, key, value def call_decoder(self, inputs, cache_key=None, cache_value=None): """ Training pipeline """ input_tensor, attention_mask, encoder_output, decoder_encoder_mask = inputs # Decoder Self Attention (Call goes to bart_attention.py call_training) attention_inputs = [input_tensor, input_tensor] if attention_mask is not None: attention_inputs.append(attention_mask) attention_output, key, value = self._attention_layer( attention_inputs, cache_key=cache_key, cache_value=cache_value ) # Self Attention Dense + Norm attention_output = self._attention_output_dense(attention_output) attention_output = self._attention_dropout(attention_output, training=self.use_dropout) attention_output = self._attention_layer_norm(attention_output + input_tensor) if self._use_decoder: # Cross Attention attention_output_copy = tf.identity(attention_output, name="attention_output_copy") attention_inputs_for_decoder = [ attention_output_copy, encoder_output, decoder_encoder_mask, ] # For auto-regressive we need this # cache_key has to be zeros, because nothng # to cache in cross_attention cache_key_cross = None cache_value_cross = None if cache_key is not None and self._use_auto_regressive: cache_key_cross = tf.zeros_like(cache_key) cache_value_cross = tf.zeros_like(cache_value) attention_output, _, _ = self._cross_attention_layer( attention_inputs_for_decoder, cache_key=cache_key_cross, cache_value=cache_value_cross ) attention_output = self._cross_attention_output_dense(attention_output) attention_output = self._attention_dropout(attention_output, training=self.use_dropout) attention_output_copy = tf.cast(attention_output_copy, dtype=tf_utils.get_dtype()) attention_output = self._cross_attention_layer_norm(attention_output_copy + attention_output) attention_output = tf.cast(attention_output, dtype=tf_utils.get_dtype()) # Last Projection intermediate_output = self._intermediate_dense(attention_output) layer_output = self._output_dense(intermediate_output) layer_output = self._output_dropout(layer_output) layer_output = self._output_layer_norm(layer_output + attention_output) layer_output = tf.cast(layer_output, dtype=tf_utils.get_dtype()) return layer_output, key, value def call(self, inputs, mode="encoder", cache_key=None, cache_value=None): """Call Args: inputs ([embeddings 3D, attention_mask 3D]): List of [embeddings, attention_mask] mode (str, optional): [description]. Defaults to "encoder". cache_key ([type], optional): [description]. Defaults to None. cache_value ([type], optional): [description]. Defaults to None. Returns: [type]: [description] """ if self._use_decoder: outputs = self.call_decoder(inputs, cache_key=cache_key, cache_value=cache_value) else: outputs = self.call_encoder(inputs, cache_key=cache_key, cache_value=cache_value) return outputs
the-stack_0_11678
#!/usr/bin/python """ Convert polarised CST element files to OSKAR scalar element pattern format. """ from __future__ import print_function import sys import numpy def load_cst_file(filename): """" Loads a CST element pattern file into a numpy matrix. Parameters ---------- filename : string Path of the CST element pattern file to load. Returns ------- Matrix of values from the CST file. """ f = open(filename, 'r') lines = f.readlines() f.close() X = [] for line in lines: values = line.split() if not len(values) == 8: continue else: x_all = numpy.array(values, dtype=numpy.dtype('f8')) X.append(x_all) return numpy.array(X, dtype=numpy.dtype('f8')) def convert(cst_file_in, scalar_file_out): """ Calculates a scalar element pattern file from a CST element pattern file Parameters ---------- cst_file_in : string Input CST format element pattern file scalar_file_out : string Output scalar format element pattern file Notes ----- This function is designed to be used to create scalar element input files for the oskar_fit_element_data application. """ # Load the CST element pattern data. X = load_cst_file(cst_file_in) # Only require columns for: # Theta, Phi, Abs(Theta), Phase(Theta), Abs(Phi), Phase(Phi) X = numpy.copy(X[:, [0, 1, 3, 4, 5, 6]]) # Discard any data at values of phi >= 360 degrees, # as any duplicated entries will cause this method to fail. X = X[X[:, 1] < 360.0, :] # Generate the rotated data for Y from X by adding 90 degrees to the phi # values Y = numpy.copy(X) Y[:, 1] += 90.0 Y[Y[:, 1] >= 360.0, 1] -= 360.0 # Linked column sort by phi and then theta for both X and Y. X = X[numpy.lexsort((X[:, 0], X[:, 1])), :] Y = Y[numpy.lexsort((Y[:, 0], Y[:, 1])), :] # Check that the coordinate columns in X and Y now match. assert numpy.sum(numpy.abs(X[:, 0] - Y[:, 0])) < 1e-6 assert numpy.sum(numpy.abs(X[:, 1] - Y[:, 1])) < 1e-6 # Generate scalar values from sorted data. X_theta = X[:, 2] * numpy.exp(1j * numpy.radians(X[:, 3])) X_phi = X[:, 4] * numpy.exp(1j * numpy.radians(X[:, 5])) Y_theta = Y[:, 2] * numpy.exp(1j * numpy.radians(Y[:, 3])) Y_phi = Y[:, 4] * numpy.exp(1j * numpy.radians(Y[:, 5])) s = X_theta * numpy.conj(X_theta) + X_phi * numpy.conj(X_phi) + \ Y_theta * numpy.conj(Y_theta) + Y_phi * numpy.conj(Y_phi) # Take the sqrt to convert to a 'voltage' s = numpy.sqrt(0.5 * s) s_amp = numpy.absolute(s) s_phase = numpy.angle(s, deg=True) # Write scalar values to file Columns = (theta, phi, amp, phase). o = numpy.column_stack((X[:, 0], X[:, 1], s_amp, s_phase)) numpy.savetxt(scalar_file_out, o, fmt=['%12.4f', '%12.4f', '%20.6e', '%12.4f']) if __name__ == "__main__": if len(sys.argv) < 3: print("Usage: oskar_convert_cst_to_scalar.py " "<input CST file> <output scalar file>") sys.exit(1) convert(sys.argv[1], sys.argv[2])
the-stack_0_11679
import asyncio from datetime import datetime import io import os from pathlib import Path from telethon import events, functions, types from telethon.tl.types import InputMessagesFilterDocument from . import * @bot.on(phoenix_cmd(pattern=r"cmds")) @bot.on(sudo_cmd(pattern=r"cmds", allow_sudo=True)) async def kk(event): if event.fwd_from: return reply_to_id = event.message.id if event.reply_to_msg_id: reply_to_id = event.reply_to_msg_id cmd = "ls phoenix/plugins" thumb = phoenix_logo process = await asyncio.create_subprocess_shell( cmd, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE ) stdout, stderr = await process.communicate() o = stdout.decode() _o = o.split("\n") o = "\n".join(_o) OUTPUT = f"List of Plugins in bot :- \n\n{o}\n\n<><><><><><><><><><><><><><><><><><><><><><><><>\nHELP:- If you want to know the commands for a plugin, do :- \n.plinfo <plugin name> without the < > brackets. \nJoin {hell_grp} for help." if len(OUTPUT) > 69: with io.BytesIO(str.encode(OUTPUT)) as out_file: out_file.name = "cmd_list.text" phoenix_file = await bot.send_file( event.chat_id, out_file, force_document=True, allow_cache=False, thumb=thumb, reply_to=reply_to_id, ) await edit_or_reply(phoenix_file, f"Output Too Large. This is the file for the list of plugins in bot.\n\n**BY :-** {PHOENIX_USER}") await event.delete() @bot.on(phoenix_cmd(pattern=r"send (?P<shortname>\w+)", outgoing=True)) @bot.on(sudo_cmd(pattern=r"send (?P<shortname>\w+)", allow_sudo=True)) async def send(event): if event.fwd_from: return message_id = event.message.id thumb = phoenix_logo input_str = event.pattern_match.group(1) omk = f"**• Plugin name ≈** `{input_str}`\n**• Uploaded by ≈** {phoenix_mention}\n\n⚡ **[ρнσєηιχ ]({chnl_link})** ⚡" the_plugin_file = "./hellbot/plugins/{}.py".format(input_str) if os.path.exists(the_plugin_file): lauda = await event.client.send_file( event.chat_id, the_plugin_file, thumb=thumb, caption=omk, force_document=True, allow_cache=False, reply_to=message_id, ) await event.delete() else: await eod(event, "File not found..... Kk vaii !!!") @bot.on(phoenix_cmd(pattern="install$", outgoing=True)) @bot.on(sudo_cmd(pattern="install$", allow_sudo=True)) async def install(event): if event.fwd_from: return a = "__Installing.__" b = 1 await event.edit(a) if event.fwd_from: return if event.reply_to_msg_id: try: downloaded_file_name = await event.client.download_media( # pylint:disable=E0602 await event.get_reply_message(), "./phoenix/plugins/" # pylint:disable=E0602 ) if "(" not in downloaded_file_name: path1 = Path(downloaded_file_name) shortname = path1.stem load_module(shortname.replace(".py", "")) if shortname in CMD_LIST: string = "**Commands found in** `{}`\n".format((os.path.basename(downloaded_file_name))) for i in CMD_LIST[shortname]: string += " • `" + i string += "`\n" if b == 1: a = "__Installing..__" b = 2 else: a = "__Installing...__" b = 1 await eor(event, a) return await eor(event, f"✅ **Installed module** :- `{shortname}` \n✨ BY :- {phoenix_mention}\n\n{string}\n\n ⚡ **[ʟɛɢɛռɖaʀʏ ᴀғ ρнσєηιχ]({chnl_link})** ⚡", link_preview=False) return await eor(event, f"Installed module `{os.path.basename(downloaded_file_name)}`") else: os.remove(downloaded_file_name) return await eod(event, f"**Failed to Install** \n`Error`\nModule already installed or unknown format") except Exception as e: await eod(event, f"**Failed to Install** \n`Error`\n{str(e)}") return os.remove(downloaded_file_name) @bot.on(phoenix_cmd(pattern=r"uninstall (?P<shortname>\w+)", outgoing=True)) @bot.on(sudo_cmd(pattern=r"uninstall (?P<shortname>\w+)", allow_sudo=True)) async def uninstall(kraken): if kraken.fwd_from: return shortname = kraken.pattern_match["shortname"] dir_path =f"./phoenix/plugins/{shortname}.py" try: remove_plugin(shortname) os.remove(dir_path) await eod(kraken, f"Uninstalled `{shortname}` successfully") except OSError as e: await kraken.edit("Error: %s : %s" % (dir_path, e.strerror)) @bot.on(phoenix_cmd(pattern=r"unload (?P<shortname>\w+)$")) @bot.on(sudo_cmd(pattern=r"unload (?P<shortname>\w+)$", allow_sudo=True)) async def unload(event): if event.fwd_from: return shortname = event.pattern_match["shortname"] try: remove_plugin(shortname) await event.edit(f"Successfully unloaded `{shortname}`") except Exception as e: await event.edit( "Successfully unloaded {shortname}\n{}".format( shortname, str(e) ) ) @bot.on(phoenix_cmd(pattern=r"load (?P<shortname>\w+)$")) @bot.on(sudo_cmd(pattern=r"load (?P<shortname>\w+)$", allow_sudo=True)) async def load(event): if event.fwd_from: return shortname = event.pattern_match["shortname"] try: try: remove_plugin(shortname) except BaseException: pass load_module(shortname) await event.edit(f"Successfully loaded `{shortname}`") except Exception as e: await event.edit( f"Sorry, could not load {shortname} because of the following error.\n{str(e)}" ) CmdHelp("core").add_command( "install", "<reply to a .py file>", "Installs the replied python file if suitable to Hêllẞø†'s codes." ).add_command( "uninstall", "<plugin name>", "Uninstalls the given plugin from ρнσєηιχ. To get that again do .restart", "uninstall alive" ).add_command( "load", "<plugin name>", "Loades the unloaded plugin to your userbot", "load alive" ).add_command( "unload", "<plugin name>", "Unloads the plugin from your userbot", "unload alive" ).add_command( "send", "<file name>", "Sends the given file from your userbot server, if any.", "send alive" ).add_command( "cmds", None, "Gives out the list of modules in HellBot." ).add_warning( "❌ Install External Plugin On Your Own Risk. We won't help if anything goes wrong after installing a plugin." ).add() # hellbot
the-stack_0_11682
#!/usr/bin/python # # sslsniff Captures data on read/recv or write/send functions of OpenSSL and # GnuTLS # For Linux, uses BCC, eBPF. # # USAGE: sslsniff.py [-h] [-p PID] [-c COMM] [-o] [-g] [-d] # # Licensed under the Apache License, Version 2.0 (the "License") # # 12-Aug-2016 Adrian Lopez Created this. # 13-Aug-2016 Mark Drayton Fix SSL_Read # 17-Aug-2016 Adrian Lopez Capture GnuTLS and add options # from __future__ import print_function import ctypes as ct from bcc import BPF import argparse # arguments examples = """examples: ./sslsniff # sniff OpenSSL and GnuTLS functions ./sslsniff -p 181 # sniff PID 181 only ./sslsniff -c curl # sniff curl command only ./sslsniff --no-openssl # don't show OpenSSL calls ./sslsniff --no-gnutls # don't show GnuTLS calls """ parser = argparse.ArgumentParser( description="Sniff SSL data", formatter_class=argparse.RawDescriptionHelpFormatter, epilog=examples) parser.add_argument("-p", "--pid", type=int, help="sniff this PID only.") parser.add_argument("-c", "--comm", help="sniff only commands matching string.") parser.add_argument("-o", "--no-openssl", action="store_false", dest="openssl", help="do not show OpenSSL calls.") parser.add_argument("-g", "--no-gnutls", action="store_false", dest="gnutls", help="do not show GnuTLS calls.") parser.add_argument('-d', '--debug', dest='debug', action='count', default=0, help='debug mode.') args = parser.parse_args() prog = """ #include <linux/ptrace.h> #include <linux/sched.h> /* For TASK_COMM_LEN */ struct probe_SSL_data_t { u64 timestamp_ns; u32 pid; char comm[TASK_COMM_LEN]; char v0[464]; u32 len; }; BPF_PERF_OUTPUT(perf_SSL_write); int probe_SSL_write(struct pt_regs *ctx, void *ssl, void *buf, int num) { u32 pid = bpf_get_current_pid_tgid(); FILTER struct probe_SSL_data_t __data = {0}; __data.timestamp_ns = bpf_ktime_get_ns(); __data.pid = pid; __data.len = num; bpf_get_current_comm(&__data.comm, sizeof(__data.comm)); if ( buf != 0) { bpf_probe_read(&__data.v0, sizeof(__data.v0), buf); } perf_SSL_write.perf_submit(ctx, &__data, sizeof(__data)); return 0; } BPF_PERF_OUTPUT(perf_SSL_read); BPF_HASH(bufs, u32, u64); int probe_SSL_read_enter(struct pt_regs *ctx, void *ssl, void *buf, int num) { u32 pid = bpf_get_current_pid_tgid(); FILTER bufs.update(&pid, (u64*)&buf); return 0; } int probe_SSL_read_exit(struct pt_regs *ctx, void *ssl, void *buf, int num) { u32 pid = bpf_get_current_pid_tgid(); FILTER u64 *bufp = bufs.lookup(&pid); if (bufp == 0) { return 0; } struct probe_SSL_data_t __data = {0}; __data.timestamp_ns = bpf_ktime_get_ns(); __data.pid = pid; __data.len = PT_REGS_RC(ctx); bpf_get_current_comm(&__data.comm, sizeof(__data.comm)); if (bufp != 0) { bpf_probe_read(&__data.v0, sizeof(__data.v0), (char *)*bufp); } bufs.delete(&pid); perf_SSL_read.perf_submit(ctx, &__data, sizeof(__data)); return 0; } """ if args.pid: prog = prog.replace('FILTER', 'if (pid != %d) { return 0; }' % args.pid) else: prog = prog.replace('FILTER', '') if args.debug: print(prog) b = BPF(text=prog) # It looks like SSL_read's arguments aren't available in a return probe so you # need to stash the buffer address in a map on the function entry and read it # on its exit (Mark Drayton) # if args.openssl: b.attach_uprobe(name="ssl", sym="SSL_write", fn_name="probe_SSL_write", pid=args.pid or -1) b.attach_uprobe(name="ssl", sym="SSL_read", fn_name="probe_SSL_read_enter", pid=args.pid or -1) b.attach_uretprobe(name="ssl", sym="SSL_read", fn_name="probe_SSL_read_exit", pid=args.pid or -1) if args.gnutls: b.attach_uprobe(name="gnutls", sym="gnutls_record_send", fn_name="probe_SSL_write", pid=args.pid or -1) b.attach_uprobe(name="gnutls", sym="gnutls_record_recv", fn_name="probe_SSL_read_enter", pid=args.pid or -1) b.attach_uretprobe(name="gnutls", sym="gnutls_record_recv", fn_name="probe_SSL_read_exit", pid=args.pid or -1) # define output data structure in Python TASK_COMM_LEN = 16 # linux/sched.h MAX_BUF_SIZE = 464 # Limited by the BPF stack # Max size of the whole struct: 512 bytes class Data(ct.Structure): _fields_ = [ ("timestamp_ns", ct.c_ulonglong), ("pid", ct.c_uint), ("comm", ct.c_char * TASK_COMM_LEN), ("v0", ct.c_char * MAX_BUF_SIZE), ("len", ct.c_uint) ] # header print("%-12s %-18s %-16s %-6s %-6s" % ("FUNC", "TIME(s)", "COMM", "PID", "LEN")) # process event start = 0 def print_event_write(cpu, data, size): print_event(cpu, data, size, "WRITE/SEND") def print_event_read(cpu, data, size): print_event(cpu, data, size, "READ/RECV") def print_event(cpu, data, size, rw): global start event = ct.cast(data, ct.POINTER(Data)).contents # Filter events by command if args.comm: if not args.comm == event.comm: return if start == 0: start = event.timestamp_ns time_s = (float(event.timestamp_ns - start)) / 1000000000 s_mark = "-" * 5 + " DATA " + "-" * 5 e_mark = "-" * 5 + " END DATA " + "-" * 5 truncated_bytes = event.len - MAX_BUF_SIZE if truncated_bytes > 0: e_mark = "-" * 5 + " END DATA (TRUNCATED, " + str(truncated_bytes) + \ " bytes lost) " + "-" * 5 print("%-12s %-18.9f %-16s %-6d %-6d\n%s\n%s\n%s\n\n" % (rw, time_s, event.comm.decode(), event.pid, event.len, s_mark, event.v0.decode(), e_mark)) b["perf_SSL_write"].open_perf_buffer(print_event_write) b["perf_SSL_read"].open_perf_buffer(print_event_read) while 1: b.kprobe_poll()
the-stack_0_11683
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import os import json import time import logging from . import builder_config from .utils import save_profiled_results, merge_info from nn_meter.builder.backends import connect_backend logging = logging.getLogger("nn-Meter") def convert_models(backend, models, mode = 'predbuild', broken_point_mode = False): """ convert the model to the needed format by backend, in order to increase efficiency when profiling on device. @params: backend (subclass instance of BaseBackend): applied backend instance models (str or dict): the Dict of models or the path of the json file about models information mode (str): the mode for running models, including ['ruletest', 'predbuild'] broken_point_mode (boolean): broken_point_mode will skip all models have attributes "converted_model" """ if isinstance(models, str): save_name = os.path.basename(models) with open(models, 'r') as fp: models = json.load(fp) else: save_name = "converted_results.json" workspace_path = builder_config.get('WORKSPACE', mode) model_save_path = os.path.join(workspace_path, 'models') os.makedirs(model_save_path, exist_ok=True) info_save_path = os.path.join(workspace_path, "results") os.makedirs(info_save_path, exist_ok=True) # convert models count = 0 for module in models.values(): for id, model in module.items(): if broken_point_mode and 'converted_model' in model: continue try: model_path = model['model'] converted_model = backend.convert_model(model_path, model_save_path, model['shapes']) model['converted_model'] = converted_model except Exception as e: open(os.path.join(info_save_path, "convert_error.log"), 'a').write(f"{id}: {e}\n") # save information to json file for per 50 models count += 1 if count % 50 == 0: with open(os.path.join(info_save_path, save_name), 'w') as fp: json.dump(models, fp, indent=4) logging.keyinfo(f"{count} models complete. Still converting... Save the intermediate results to {os.path.join(info_save_path, save_name)}.") with open(os.path.join(info_save_path, save_name), 'w') as fp: json.dump(models, fp, indent=4) logging.keyinfo(f"Complete convert all {count} models. Save the intermediate results to {os.path.join(info_save_path, save_name)}.") # save information to json file with open(os.path.join(info_save_path, save_name), 'w') as fp: json.dump(models, fp, indent=4) logging.keyinfo(f"Save the converted models information to {os.path.join(info_save_path, save_name)}") return models def profile_models(backend, models, mode = 'ruletest', metrics = ["latency"], save_name = None, have_converted = False, log_frequency = 50, broken_point_mode = False, **kwargs): """ run models with given backend and return latency of testcase models @params: backend (subclass instance of BaseBackend): applied backend instance models (str or dict): the Dict of models or the path of the json file about models information mode (str): the mode for running models, including ['ruletest', 'predbuild'] metrics (list): required metrics to report. We only support latency for metric by now. save_name (str): the save name to store profiled results. The whole path should be `<workspace>/<mode-folder>/results/<save-name>` have_converted (boolean): if the model have been converted to the needed format by backend, the model will not be converted before profiling. The model path of `model['converted_model']` will be profiled on device directly. The conversion of model could be done by appling `nn_meter.builder.convert_models` broken_point_mode (boolean): broken_point_mode will check file in `<workspace>/<mode-folder>/results/<save-name>` (if the file exists) and skip all models already have attributes "latency" **kwargs: arguments for profiler, such as `taskset` and `close_xnnpack` in TFLite profiler """ if isinstance(models, str): with open(models, 'r') as fp: models = json.load(fp) workspace_path = builder_config.get('WORKSPACE', mode) model_save_path = os.path.join(workspace_path, 'models') os.makedirs(model_save_path, exist_ok=True) info_save_path = os.path.join(workspace_path, "results") os.makedirs(info_save_path, exist_ok=True) # in broken point model, if the output file `<workspace>/<mode-folder>/results/<save-name>` exists, # load the existing latency and skip these model in profiling if broken_point_mode and os.path.isfile(os.path.join(info_save_path, save_name)): from nn_meter.builder.backend_meta.utils import read_profiled_results with open(os.path.join(info_save_path, save_name), 'r') as fp: profiled_models = read_profiled_results(json.load(fp)) for module_key, module in models.items(): if module_key not in profiled_models: continue for id, model in module.items(): if id in profiled_models[module_key]: model.update(profiled_models[module_key][id]) # profile models and get metric results count = 0 detail = builder_config.get('DETAIL', mode) save_name = save_name or "profiled_results.json" logging.info("Profiling ...") for module in models.values(): for id, model in module.items(): if broken_point_mode and 'latency' in model and model['latency'].avg != 0: continue if have_converted: # the models have been converted for the backend try: model_path = model['converted_model'] profiled_res = backend.profile(model_path, metrics, model['shapes'], **kwargs) for metric in metrics: model[metric] = profiled_res[metric] time.sleep(0.2) count += 1 except Exception as e: open(os.path.join(info_save_path, "profile_error.log"), 'a').write(f"{id}: {e}\n") else: # the models have not been converted try: model_path = model['model'] profiled_res = backend.profile_model_file(model_path, model_save_path, model['shapes'], metrics, **kwargs) for metric in metrics: model[metric] = profiled_res[metric] time.sleep(0.2) count += 1 except Exception as e: open(os.path.join(info_save_path, "profile_error.log"), 'a').write(f"{id}: {e}\n") # save information to json file for per 50 models if count > 0 and count % log_frequency == 0: save_profiled_results(models, os.path.join(info_save_path, save_name), detail, metrics) logging.keyinfo(f"{count} models complete. Still profiling... Save the intermediate results to {os.path.join(info_save_path, save_name)}.") # save information to json file save_profiled_results(models, os.path.join(info_save_path, save_name), detail, metrics) logging.keyinfo(f"All {count} models profiling complete. Save all success profiled results to {os.path.join(info_save_path, save_name)}.") return models def sample_and_profile_kernel_data(kernel_type, sample_num, backend, sampling_mode = 'prior', configs = None, mark = '', detail = True, metrics = ["latency"], **kwargs): ''' sample kernel configs and profile kernel model based on configs ''' from nn_meter.builder.kernel_predictor_builder import generate_config_sample # sample configs for kernel and generate models models = generate_config_sample(kernel_type, sample_num, mark=mark, sampling_mode=sampling_mode, configs=configs) # connect to backend, run models and get latency backend = connect_backend(backend_name=backend) profiled_results = profile_models(backend, models, mode='predbuild', metrics=metrics, save_name=f"profiled_{kernel_type}.json") return profiled_results def build_predictor_for_kernel(kernel_type, backend, init_sample_num = 1000, finegrained_sample_num = 10, iteration = 5, error_threshold = 0.1, predict_label = "latency", mark = ""): """ Build latency predictor for given kernel. This method contains three main steps: 1. sample kernel configs and profile kernel model based on configs; 2. initialize latency predictor of kernel based on the profiled data; 3. adopt adaptive sampler with iteratively doing step 1 for finegrained sampling to improve predictor performance @params kernel_type (str): the type of kernel backend (str): the name of backend instance to profile models init_sample_num (int, optional): the data size for predictor initialization. Defaults to 1000. finegrained_sample_num (int, optional): the data size for adaptive sampling. For each data with error higher than error_threshold, #finegrained_sample_num data will be generated based the the large error data. Defaults to 10. iteration (int, optional): the iteration for sampling and training. Initial sampling is regarded as iteration 1, thus `iteration == 2` means one iteration for adaptive sampling. Defaults to 5. error_threshold (float, optional): the threshold of large error. Defaults to 0.2. predict_label (str): the predicting label to build kernel predictor. Defaults to "latency" """ from nn_meter.builder.kernel_predictor_builder import build_predictor_by_data workspace_path = builder_config.get('WORKSPACE', 'predbuild') mark = mark if mark == "" else "_" + mark # init predictor builder with prior data sampler kernel_data = sample_and_profile_kernel_data(kernel_type, init_sample_num, backend, sampling_mode='prior', mark=f'prior{mark}') # use current sampled data to build regression model, and locate data with large errors in testset predictor, acc10, error_configs = build_predictor_by_data(kernel_type, kernel_data, backend, error_threshold=error_threshold, mark=f'prior{mark}', save_path=os.path.join(workspace_path, "results"), predict_label=predict_label) logging.keyinfo(f'Iteration 0: acc10 {acc10}, error_configs number: {len(error_configs)}') for i in range(1, iteration): # finegrained sampling and profiling for large error data new_kernel_data = sample_and_profile_kernel_data(kernel_type, finegrained_sample_num, backend, sampling_mode='finegrained', configs=error_configs, mark=f'finegrained{i}{mark}') # merge finegrained data with previous data and build new regression model kernel_data = merge_info(new_info=new_kernel_data, prev_info=kernel_data) predictor, acc10, error_configs = build_predictor_by_data(kernel_type, kernel_data, backend, error_threshold=error_threshold, mark=f'finegrained{i}{mark}', save_path=os.path.join(workspace_path, "results"), predict_label=predict_label) logging.keyinfo(f'Iteration {i}: acc10 {acc10}, error_configs number: {len(error_configs)}') return predictor, kernel_data def build_initial_predictor_by_data(kernel_type, backend = None, init_sample_num = 20, error_threshold = 0.1, mark = '', predict_label = "latency"): return build_predictor_for_kernel(kernel_type, backend, init_sample_num=init_sample_num, iteration=1, error_threshold=error_threshold, predict_label=predict_label, mark=f'{mark}') def build_adaptive_predictor_by_data(kernel_type, kernel_data, backend = None, finegrained_sample_num = 20, error_threshold = 0.1, mark = '', predict_label = "latency"): """ Run adaptive sampler in one iteration based """ workspace_path = builder_config.get('WORKSPACE', 'predbuild') save_path = os.path.join(workspace_path, "results") from nn_meter.builder.kernel_predictor_builder import build_predictor_by_data, collect_kernel_data _, _, error_configs = build_predictor_by_data(kernel_type, kernel_data, backend = backend, error_threshold=error_threshold, save_path=None, predict_label=predict_label) new_kernel_data = sample_and_profile_kernel_data(kernel_type, finegrained_sample_num, backend, sampling_mode='finegrained', configs=error_configs, mark=mark) # merge finegrained data with previous data and build new regression model mark = mark if mark == "" else "_" + mark kernel_data = merge_info(new_info=new_kernel_data, prev_info=collect_kernel_data(kernel_data)) predictor, acc10, error_configs = build_predictor_by_data(kernel_type, kernel_data, backend, error_threshold=error_threshold, mark=f'finegrained{mark}', save_path=save_path, predict_label=predict_label) logging.keyinfo(f'{mark}: acc10 {acc10}, error_configs number: {len(error_configs)}') return predictor, kernel_data def build_latency_predictor(backend): """ Build latency predictor for all kernel in `<workspace-path>/configs/predictorbuild_config.yaml` @params backend (str): the name of backend instance to profile models """ kernels = builder_config.get("KERNELS", 'predbuild') for kernel_type in kernels: init_sample_num = kernels[kernel_type]["INIT_SAMPLE_NUM"] finegrained_sample_num = kernels[kernel_type]["FINEGRAINED_SAMPLE_NUM"] iteration = kernels[kernel_type]["ITERATION"] error_threshold = kernels[kernel_type]["ERROR_THRESHOLD"] build_predictor_for_kernel( kernel_type, backend, init_sample_num = init_sample_num, finegrained_sample_num = finegrained_sample_num, iteration = iteration, error_threshold = error_threshold )
the-stack_0_11685
import numpy as np class KNN: """ K-neariest-neighbor classifier using L1 loss """ def __init__(self, k=1): self.k = k def fit(self, X, y): self.train_X = X self.train_y = y def predict(self, X, num_loops=0): ''' Uses the KNN model to predict clases for the data samples provided Arguments: X, np array (num_samples, num_features) - samples to run through the model num_loops, int - which implementation to use Returns: predictions, np array of ints (num_samples) - predicted class for each sample ''' if num_loops == 0: dists = self.compute_distances_no_loops(X) elif num_loops == 1: dists = self.compute_distances_one_loop(X) else: dists = self.compute_distances_two_loops(X) if self.train_y.dtype == np.bool: return self.predict_labels_binary(dists) else: return self.predict_labels_multiclass(dists) def compute_distances_two_loops(self, X): ''' Computes L1 distance from every sample of X to every training sample Uses simplest implementation with 2 Python loops Arguments: X, np array (num_test_samples, num_features) - samples to run Returns: dists, np array (num_test_samples, num_train_samples) - array with distances between each test and each train sample ''' num_train = self.train_X.shape[0] num_test = X.shape[0] dists = np.zeros((num_test, num_train), np.float32) for i_test in range(num_test): for i_train in range(num_train): dists[i_test][i_train] = np.sum(np.abs(X[i_test] - self.train_X[i_train])) return dists def compute_distances_one_loop(self, X): ''' Computes L1 distance from every sample of X to every training sample Vectorizes some of the calculations, so only 1 loop is used Arguments: X, np array (num_test_samples, num_features) - samples to run Returns: dists, np array (num_test_samples, num_train_samples) - array with distances between each test and each train sample ''' num_train = self.train_X.shape[0] num_test = X.shape[0] dists = np.zeros((num_test, num_train), np.float32) for i_test in range(num_test): dists[i_test] = np.sum(np.abs(X[i_test] - self.train_X), axis=1) return dists def compute_distances_no_loops(self, X): ''' Computes L1 distance from every sample of X to every training sample Fully vectorizes the calculations using numpy Arguments: X, np array (num_test_samples, num_features) - samples to run Returns: dists, np array (num_test_samples, num_train_samples) - array with distances between each test and each train sample ''' num_train = self.train_X.shape[0] num_test = X.shape[0] # Using float32 to to save memory - the default is float64 dists = np.zeros((num_test, num_train), np.float32) dists = np.abs(X[:, None] - self.train_X).sum(-1) return dists def predict_labels_binary(self, dists): ''' Returns model predictions for binary classification case Arguments: dists, np array (num_test_samples, num_train_samples) - array with distances between each test and each train sample Returns: pred, np array of bool (num_test_samples) - binary predictions for every test sample ''' num_test = dists.shape[0] pred = np.zeros(num_test, np.bool) for i in range(num_test): pred[i] = self.train_y[np.argsort(dists[i])[:self.k]].sum() > self.k / 2 return pred def predict_labels_multiclass(self, dists): ''' Returns model predictions for multi-class classification case Arguments: dists, np array (num_test_samples, num_train_samples) - array with distances between each test and each train sample Returns: pred, np array of int (num_test_samples) - predicted class index for every test sample ''' num_test = dists.shape[0] num_test = dists.shape[0] pred = np.zeros(num_test, np.int) for i in range(num_test): # TODO: Implement choosing best class based on k # nearest training samples pass return pred
the-stack_0_11687
"""Class :py:class:`CMDBBUtils` utilities for calib manager DB methods ============================================================================== Usage :: # Test: python lcls2/psana/psana/graphqt/CMDBUtils.py # Import from psana.graphqt.CMDBUtils import dbu # See test at the EOF See: - :class:`CMWMain` - :class:`CMWConfig` - `on github <https://github.com/slac-lcls/lcls2>`_. Created on 2018-04-10 by Mikhail Dubrovin """ import logging logger = logging.getLogger(__name__) #_name = 'DCMDBUtils' #from psana.pyalgos.generic.Logger import logger import psana.pscalib.calib.MDBUtils as dbu ObjectId = dbu.ObjectId connect_to_server = dbu.connect_to_server #database_names = dbu.database_names database = dbu.database #collection_names = dbu.collection_names collection = dbu.collection timestamp_id = dbu.timestamp_id doc_add_id_ts = dbu.doc_add_id_ts db_prefixed_name = dbu.db_prefixed_name time_and_timestamp= dbu.time_and_timestamp exportdb = dbu.exportdb importdb = dbu.importdb out_fname_prefix = dbu.out_fname_prefix save_doc_and_data_in_file = dbu.save_doc_and_data_in_file #insert_data_and_doc = dbu.insert_data_and_doc #document_info = dbu.document_info #db_prefixed_name = dbu.db_prefixed_name # ('') #delete_databases = dbu.delete_databases # (list_db_names) #delete_collections= dbu.delete_collections # (dic_db_cols) #collection_info = dbu.collection_info # (client, dbname, colname) from psana.graphqt.CMConfigParameters import cp def connect_client(host=None, port=None, user=cp.user, upwd=cp.upwd): # user=dbu.cc.USERNAME _host = cp.cdb_host.value() if host is None else host _port = cp.cdb_port.value() if port is None else port #logger.debug('CMDBBUtils: Connect client to host: %s port: %d user: %s upwd: %s' % (_host, _port, user, upwd)) return dbu.connect_to_server(_host, _port, user, upwd) # if cp.upwd else dbu.connect_to_server(_host, _port, cp.user) def database_names(client=None): """ """ if client is None: client = connect_client() return dbu.database_names(client) def collection_names(db): """ """ if isinstance(db, str): client = connect_client() db = dbu.database(client, db) return dbu.collection_names(db) def delete_databases(list_db_names): """Delete databases specified in the list_db_names """ client = connect_client() logger.debug('Delete databases:\n %s' % ('\n '.join(list_db_names))) dbu.delete_databases(client, list_db_names) def delete_collections(dic_db_cols): """Delete collections specified in the dic_db_cols consisting of pairs {dbname:lstcols} """ msg = 'Delete collections:' client = connect_client() for dbname, lstcols in dic_db_cols.items(): db = dbu.database(client, dbname) msg += '\nFrom database: %s delete collections:\n %s' % (dbname, '\n '.join(lstcols)) dbu.delete_collections(db, lstcols) logger.debug(msg) def delete_documents(dbname, colname, doc_ids): """Delete documents with _id-s in doc_ids from dbname, colname """ #logger.debug('Deleting documents:\n %s' % ('\n '.join(doc_ids))) client = connect_client() db, fs = dbu.db_and_fs(client, dbname) col = collection(db, colname) #msg = 'Deleted documents from db: %s col: %s' % (dbname, colname) for s in doc_ids: oid = ObjectId(s) doc = dbu.find_doc(col, query={'_id':oid}) if doc is None: continue #msg += '\n %s and its data' % doc.get('_id', 'N/A') dbu.del_document_data(doc, fs) dbu.delete_document_from_collection(col, oid) #logger.debug(msg) def insert_document_and_data(dbname, colname, doc, data): client = connect_client() db, fs = dbu.db_and_fs(client, dbname) col = collection(db, colname) id_data, id_doc = dbu.insert_data_and_doc(data, fs, col, **doc) return id_data, id_doc def get_data_for_doc(dbname, doc): client = connect_client() db, fs = dbu.db_and_fs(client, dbname) return dbu.get_data_for_doc(fs, doc) def collection_info(dbname, colname): """Delete collections specified in the dic_db_cols consisting of pairs {dbname:lstcols} """ client = connect_client() return dbu.collection_info(client, dbname, colname) def list_of_documents(dbname, colname): client = connect_client() db = database(client, dbname) #db, fs = dbu.db_and_fs(client, dbname='cdb-cxi12345') col = collection(db, colname) docs = col.find().sort('_id', dbu.DESCENDING) return [d for d in docs] def document_info(doc, keys=('time_sec','time_stamp','experiment',\ 'detector','ctype','run','id_data_ts','data_type','data_dtype', '_id'),\ fmt='%10s %24s %11s %24s %16s %4s %30s %10s %10s %24s'): """The same as dbu.document_info, but with different default parameters (added _id). """ return dbu.document_info(doc, keys, fmt) # EOF
the-stack_0_11688
# Copyright 2021 The Private Cardinality Estimation Framework Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Base class for data sets. Represents real or simulated impression log data for multiple publishers. """ from collections import defaultdict from copy import deepcopy from os import listdir from os.path import isfile, join from pathlib import Path from typing import Dict from typing import Iterable from typing import List from wfa_planning_evaluation_framework.data_generators.publisher_data import ( PublisherData, ) from wfa_planning_evaluation_framework.models.reach_point import ReachPoint class DataSet: """Real or simulated impression log data for multiple publishers. A DataSet represents a real or simulated configuration of impression log data for a collection of related campaigns across multiple publishers. It represents the basic unit across which modeling strategies are compared. It is expected that this class will be sub-classed for each of the different types of publisher overlap models that will be investigate. Thus, we might have an IndependentDataSet, a SequentiallyCorrelatedDataSet, etc. """ def __init__(self, publisher_data_list: Iterable[PublisherData], name: str = None): """Constructor Args: publisher_data_list: An iterable list of PublisherDatas, one for each of the publishers that comprise this DataSet. name: If specified, a human-readable name that will be associated to this DataSet. For example, it could be an encoding of the parameters that were used to create this DataSet, such as "homog_p=10_rep=3". If no name is given, then a random digit string is assigned as the name. """ self._data = deepcopy(publisher_data_list) total_audience = set() for pub in self._data: total_audience.update([id for id, _ in pub._data]) self._maximum_reach = len(total_audience) if name: self._name = name else: self._name = "{:012d}".format(randint(0, 1e12)) @property def publisher_count(self): """Number of publishers represented in this DataSet.""" return len(self._data) @property def maximum_reach(self): """Total number of reachable people across all publishers.""" return self._maximum_reach @property def name(self): """Name of this DataSet.""" return self._name def spend_by_impressions(self, impressions: Iterable[int]) -> List[float]: """Returns spend vector corresponding to a given impression vector. Args: impressions: Iterable of hypothetical impression buys, having one value per publisher. Returns: List of corresponding spends. If I is the vector of impressions and S is the returned vector of spends, then S[k] is the amount that would need to be spent with the k-th publisher to obtain I[k] impressions. """ return [ self._data[i].spend_by_impressions(impressions[i]) for i in range(len(self._data)) ] def impressions_by_spend(self, spends: Iterable[float]) -> List[int]: """Returns impression vector corresponding to a given spend vector. Args: spends: Iterable of hypothetical spend amounts, having one value per publisher. Returns: List of corresponding impression counts. If S is the vector of spends and I is the returned vector of impression counts, then I[k] is the number of impressions that would be obtained for a spend of S[k] with publisher k. """ return [ self._data[i].impressions_by_spend(spends[i]) for i in range(len(self._data)) ] def reach_by_impressions( self, impressions: Iterable[int], max_frequency: int = 10 ) -> ReachPoint: """Number of people reached for a given impression count. Args: impressions: A list of impression counts. The length of the list must equal the value of publisher_count. Specifies the number of impressions that each publisher will deliver. max_frequency: int, The maximum frequency that should be counted. All frequencies about this amount will be grouped into a single bucket. Returns: A ReachPoint object representing the k+ reach for each frequency in the range 1..max_frequency. """ if len(impressions) != self.publisher_count: raise ValueError( "Invalid impression vector length. Got {}, expected {}".format( len(impressions), self.publisher_count ) ) counts = defaultdict(int) spends = [] for i, imp in enumerate(impressions): spends.append(self._data[i].spend_by_impressions(imp)) for id, freq in self._data[i].user_counts_by_impressions(imp).items(): counts[id] += freq kplus_reaches = self._counts_to_histogram(counts, max_frequency) return ReachPoint(impressions, kplus_reaches, spends) def _counts_to_histogram( self, counts: Dict[int, int], max_frequency: int ) -> List[int]: """Constructs k+ reach list from a dictionary of per-id reach counts.""" frequency_counts = [0] * max_frequency for c in counts.values(): frequency_counts[min(c, max_frequency) - 1] += 1 # At this point, frequency_counts[k] represents the number of people who are # reach exactly k+1 times, except that frequency_counts[max_frequency-1] contains # the number of people reached at least max_frequency times. Now, we convert this # to a list of k+ reach values. for i in range(max_frequency - 2, -1, -1): frequency_counts[i] += frequency_counts[i + 1] return frequency_counts def reach_by_spend( self, spends: Iterable[float], max_frequency: int = 10 ) -> ReachPoint: """Number of people reached for a given spend. Args: spends: A list of spend amounts. The length of the list must equal the value of publisher_count. Specifies the amount spent with each publisher. max_frequency: int, The maximum frequency that should be counted. All frequencies about this amount will be grouped into a single bucket. Returns: A ReachPoint object representing the k+ reach for each frequency in the range 1..max_frequency. """ if len(spends) != self.publisher_count: raise ValueError( "Invalid spends vector length. Got {}, expected {}".format( len(spends), self.publisher_count ) ) counts = defaultdict(int) impressions = [] for i, publisher_spend in enumerate(spends): user_counts = self._data[i].user_counts_by_spend(publisher_spend) impressions.append(sum(user_counts.values())) for id, freq in user_counts.items(): counts[id] += freq kplus_reaches = self._counts_to_histogram(counts, max_frequency) return ReachPoint(impressions, kplus_reaches, spends) def write_data_set(self, parent_dir: str, dataset_dir: str = None) -> None: """Writes this DataSet object to disk. Args: parent_dir: The directory where the DataSet is to be written. dataset:dir: The directory name of the DataSet itself. If not specified, then the name given in the object constructor is used. If no name was given in the object constructor, then a random name is used. """ if not dataset_dir: dataset_dir = self._name fulldir = join(parent_dir, dataset_dir) Path(fulldir).mkdir(parents=True, exist_ok=True) for pdf in self._data: with open(join(fulldir, pdf.name), "w") as file: pdf.write_publisher_data(file) file.close() @classmethod def read_data_set(cls, dirpath: str) -> "DataSet": """Reads a DataSet from disk. A DataSet is given by a directory containing a collection of files, each of which represents a PublisherDataSet. The name associated to the DataSet object is the last component of the dirpath. Args: dirpath: Directory containing the PublisherDataSets that comprise this DataSet. Returns: The DataSet object representing the contents of this directory. """ pdf_list = [] for f in sorted(listdir(dirpath)): filepath = join(dirpath, f) if isfile(filepath): with open(filepath) as file: try: pdf = PublisherData.read_publisher_data(file) pdf.name = f pdf_list.append(pdf) except (ValueError, RuntimeError) as e: raise RuntimeError( "In publisher file {}".format(filepath) ) from e name = dirpath.split("/")[-1] return cls(pdf_list, name)
the-stack_0_11689
import torch torch.cuda.manual_seed(3) torch.manual_seed(3) import data_handler, tracking_nn import sys from torch.optim import Adam flag = int(sys.argv[1]) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print("Working on", device) batch_size = 32 cnn = tracking_nn.CNN().to(device) if flag: cnn.load_state_dict(torch.load("cnn_model.pt", map_location = device)) for param in cnn.parameters(): param.requires_grad = False rnn = tracking_nn.RNN().to(device) model = tracking_nn.Net(device, cnn, rnn).to(device) paths = ["p11/2.a", "p11/3.a", "p16/3.a", "p17/2.a", "p17/3.a", "p1/2.a", "p18/2.a", "p18/3.a"] data = data_handler.LegDataLoader(batch_size = batch_size) # Train the nn epochs = 1000 patience = 0 learning_rate = 0.0001 grid = 7 optimizer = Adam(model.parameters(), lr = learning_rate) best_acc = float("Inf") if flag: save_path = "model.pt" else: save_path = "cnn_model.pt" def eucl_dist(out, labels): ret = 0 m = 0 for i in range(out.shape[0]): yh = out[i] p1_h = yh[0, :, :] p2_h = yh[3, :, :] detect_cell1 = p1_h.reshape(-1).argmax(axis = 0) detect_cell2 = p2_h.reshape(-1).argmax(axis = 0) x1, y1 = detect_cell1 // grid, detect_cell1 % grid x2, y2 = detect_cell2 // grid, detect_cell2 % grid d1 = (torch.sqrt((x1 + out[i, 1, x1, y1] - labels[i, 0, 0]) ** 2 + (y1 + out[i, 2, x1, y1] - labels[i, 0, 1]) ** 2)).item() d2 = (torch.sqrt((x2 + out[i, 4, x2, y2] - labels[i, 1, 0]) ** 2 + (y2 + out[i, 5, x2, y2] - labels[i, 1, 1]) ** 2)).item() if d1 > m: m = d1 if d2 > m: m = d2 ret += (d1 + d2) / 2 return m, ret / out.shape[0] print("Started training...") for epoch in range(epochs): running_loss = 0 if epoch == 20 or epoch == 50: learning_rate *= 0.1 optimizer = Adam(model.parameters(), lr = learning_rate) f, input, label = data.load(0) model.init_hidden() c = 0 while(True): input, label = input.to(device), label.to(device) optimizer.zero_grad() output = model.forward(input) #print("labels", labels[0]) loss = model.loss(output, label) loss.backward() optimizer.step() running_loss += loss.item() / input.shape[0] c += 1 if f == -1: break if f: model.init_hidden() f, input, label = data.load(0) #model.init_hidden() model.detach_hidden() print("epoch:{}, running loss: {}".format(epoch, running_loss / c)) running_loss = 0 if epoch >= patience: with torch.no_grad(): acc = 0 dist = 0 c = 0 f, input, label = data.load(1) model.init_hidden() m = 0 while(True): input, label = input.to(device), label.to(device) output = model.forward(input) acc += model.loss(output, label).item() / input.shape[0] m1, d = eucl_dist(output, label) dist += d if m1 > m: m = m1 c += 1 if f == -1: break if f: model.init_hidden() f, input, label = data.load(1) #model.init_hidden() if acc < best_acc: best_acc = acc print("Saving model with acc:", acc / c, ", mean dist:", dist / c / grid * 100, ", max dist:", m / grid * 100) #mean dist in cm if flag: torch.save(model, save_path) else: torch.save(cnn.state_dict(), save_path)
the-stack_0_11691
import numpy as np import multidim import itertools import os import hdbscan import sys import time import pandas as pd from copy import deepcopy from matplotlib.patches import Ellipse from ripser import ripser from persim import plot_diagrams from numba import jit, njit, prange from sklearn import mixture from sklearn.model_selection import train_test_split, cross_val_score from sklearn.linear_model import RidgeClassifier from multidim.covertree import CoverTree from multidim.models import CDER import matplotlib.pyplot as plt np.set_printoptions(precision=2) sys.path.append('../..') from ATS import * # ----------------------------------------------------------------------------- # ------------------------------ IMPORT DATA ---------------------------------- # ----------------------------------------------------------------------------- num_dgms = int(sys.argv[1]) N = num_dgms*6 d = 10 colors = ['red', 'yellow', 'magenta', 'green', 'blue', 'black'] os.system('mkdir cder_images') os.system('rm -r cder_images/*') score_train = [] score_test = [] for n in range(10): X = testSetManifolds(numDgms = num_dgms, numPts = 200, permute = True) F_labels = X.trainingLabel labels = X.trainingLabel.unique() X_dgm0 = X.Dgm0.tolist() # We need to perturbate H_0 to use CDER. for h0 in X_dgm0: h0[:,0] = h0[:,0] + np.random.uniform(-0.05, 0.05, len(h0)) h0[:,1][h0[:,1]==np.inf] = 10 # Changge all inf values in H_0 for 10. X_dgm1 = X.Dgm1.tolist() i=0 for l in labels: F_labels[F_labels == l]=i i += 1 F = F_labels.tolist() # ----------------------------------------------------------------------------- # ------------------------------ H_0 ------------------------------------------ # ----------------------------------------------------------------------------- X_train, X_test, F_train, F_test = train_test_split(X_dgm0, F, test_size=0.33, random_state=10) # ----------------------------------------------------------------------------- # ------------------------------ GMM ------------------------------------------ # ----------------------------------------------------------------------------- print('Begin GMM...') t0 = time.time() X_train_temp = np.vstack(X_train) X_train_temp = X_train_temp[:,1] X_train_temp = X_train_temp.reshape((-1,1)) gmm_f_train=[] for i in range(len(X_train)): gmm_f_train.append(F_train[i]*np.ones(len(X_train[i]))) gmm_f_train = np.concatenate(gmm_f_train) gmm = mixture.BayesianGaussianMixture(n_components=d, covariance_type='full', max_iter=int(10e4)).fit(X_train_temp, gmm_f_train) ellipses = [] for i in range(len(gmm.means_)): L, v = np.linalg.eig(gmm.covariances_[i]) temp = {'mean':gmm.means_[i], 'std':np.sqrt(L), 'rotation':v.transpose(), 'radius':max(np.sqrt(L)), 'entropy':gmm.weights_[i]} ellipses.append(temp) t1 = time.time() print('Finish GMM. Time: {}'.format(t1-t0)) # ----------------------------------------------------------------------------- # ------------------------------ GMM features --------------------------------- # ----------------------------------------------------------------------------- t0 = time.time() X_train_temp = [dgm[:,1] for dgm in X_train] X_train_features_0 = get_all_features(X_train_temp, ellipses, f_gaussian) X_test_temp = [dgm[:,1] for dgm in X_test] X_test_features_0 = get_all_features(X_test_temp, ellipses, f_gaussian) t1 = time.time() print('Features H_0:{}'.format(t1-t0)) # ----------------------------------------------------------------------------- # ------------------------------ H_1 ------------------------------------------ # ----------------------------------------------------------------------------- X_train, X_test, F_train, F_test = train_test_split(X_dgm1, F, test_size=0.33, random_state=10) # ----------------------------------------------------------------------------- # ------------------------------ CDER ----------------------------------------- # ----------------------------------------------------------------------------- F_train_cder = F_train.copy() for l in range(6): for k, j in enumerate(F_train_cder): if j == l: F_train_cder[k] = colors[l] pc_train = multidim.PointCloud.from_multisample_multilabel(X_train, F_train_cder) ct_train = CoverTree(pc_train) cder = CDER(parsimonious=True) cder.fit(ct_train) cder_result = cder.gaussians ellipses = [] for c in cder_result: temp = {key:c[key] for key in ['mean', 'std', 'rotation', 'radius', 'entropy']} temp['std'] = 3*temp['std'] ellipses.append(temp) for i in range(len(X_train)): dgm = np.array(X_train[i]) plt.scatter(dgm[:,0], dgm[:,1], color='grey') ellipses_plot_cder = [] for i in range(len(ellipses)): e = ellipses[i] ellipses_plot_cder.append(Ellipse(xy=e['mean'], width=e['std'][0], height=e['std'][1], angle=np.arccos(e['rotation'][0,0]))) for e in ellipses_plot_cder: plt.gca().add_artist(e) e.set_clip_box(plt.gca().bbox) e.set_alpha(0.5) e.set_facecolor([1,0,0]) plt.savefig('cder_images/{}_h1_cder_n_{}.png'.format(n, num_dgms)) plt.close() # ----------------------------------------------------------------------------- # ------------------------------ CDER features -------------------------------- # ----------------------------------------------------------------------------- X_train_features_1 = get_all_features(X_train, ellipses, f_ellipse) X_test_features_1 = get_all_features(X_test, ellipses, f_ellipse) # ----------------------------------------------------------------------------- # ------------------------------ Ridge Classification ------------------------ # ----------------------------------------------------------------------------- X_train_features = np.column_stack((X_train_features_0, X_train_features_1)) X_test_features = np.column_stack((X_test_features_0, X_test_features_1)) ridge_model = RidgeClassifier().fit(X_train_features, F_train) score_train.append(ridge_model.score(X_train_features, F_train)) score_test.append(ridge_model.score(X_test_features, F_test)) # print('train', score_train[-1]) # print('test', score_test[-1]) print(np.mean(score_train), np.std(score_train)) print(np.mean(score_test), np.std(score_test))
the-stack_0_11692
from os.path import abspath, join, dirname from sys import path from envs.keys_and_passwords import * PROJECT_ROOT = abspath(join(dirname(__file__), "../")) APPS_DIR = abspath(join(dirname(__file__), "../", "apps")) path.insert(0, PROJECT_ROOT) path.insert(0, APPS_DIR) DEBUG = True TEMPLATE_DEBUG = DEBUG ADMINS = ( ('Steven Skoczen', '[email protected]'), ) DEFAULT_FROM_EMAIL = "[email protected]" SERVER_EMAIL = DEFAULT_FROM_EMAIL MANAGERS = ADMINS DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', # Add 'postgresql_psycopg2', 'postgresql', 'mysql', 'sqlite3' or 'oracle'. 'NAME': 'project.sqlite3', # Or path to database file if using sqlite3. 'USER': '', # Not used with sqlite3. 'PASSWORD': DB_PASSWORD, # Not used with sqlite3. 'HOST': '', # Set to empty string for localhost. Not used with sqlite3. 'PORT': '', # Set to empty string for default. Not used with sqlite3. } } TIME_ZONE = 'America/Vancouver' LANGUAGE_CODE = 'en-us' SITE_ID = 1 USE_I18N = False USE_L10N = True MEDIA_ROOT = join(PROJECT_ROOT, "media_root") MEDIA_URL = '' STATIC_ROOT = join(PROJECT_ROOT, "collected_static") STATIC_URL = '/static/' STATICFILES_DIRS = () STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', 'compressor.finders.CompressorFinder', ) # URL prefix for admin static files -- CSS, JavaScript and images. # Make sure to use a trailing slash. # Examples: "http://foo.com/static/admin/", "/static/admin/". ADMIN_MEDIA_PREFIX = '/static/admin/' AUTH_PROFILE_MODULE = 'my_schools.Person' FACEBOOK_APP_ID = '400474649994341' # Make this unique, and don't share it with anybody. SECRET_KEY = '^7!$isr6jd!o+mgl1qy@+8197dm53uhp2i*vp8k4p#*g#8mg1n' # List of callables that know how to import templates from various sources. TEMPLATE_LOADERS = ( 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', # 'django.template.loaders.eggs.Loader', ) MIDDLEWARE_CLASSES = ( 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', ) AUTHENTICATION_BACKENDS = ( 'django.contrib.auth.backends.ModelBackend', 'django_facebook.auth_backends.FacebookBackend', ) ROOT_URLCONF = 'project.urls' TEMPLATE_DIRS = ( join(abspath(PROJECT_ROOT), "templates"), ) INSTALLED_APPS = ( 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.admin', # 'django.contrib.admindocs', "analytical", "annoying", "compressor", "django_extensions", "django_facebook", "lettuce.django", "gunicorn", "south", "home", "schools", "events", "my_schools", ) TEMPLATE_CONTEXT_PROCESSORS = ( "django.contrib.auth.context_processors.auth", "django.core.context_processors.debug", "django.core.context_processors.i18n", "django.core.context_processors.media", "django.core.context_processors.static", "django.core.context_processors.request", 'django_facebook.context_processors.facebook', ) STATICFILES_EXCLUDED_APPS = [] COMPRESS_ROOT = STATIC_ROOT EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend' GOOGLE_ANALYTICS_PROPERTY_ID = "UA-35602695-1" GAUGES_SITE_ID = "" LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'handlers': { 'mail_admins': { 'level': 'ERROR', 'class': 'django.utils.log.AdminEmailHandler' } }, 'loggers': { 'django.request': { 'handlers': ['mail_admins'], 'level': 'ERROR', 'propagate': True, }, } }
the-stack_0_11693
#!/usr/bin/env python3 import argparse from migen import * from migen.genlib.resetsync import AsyncResetSynchronizer from litex.soc.integration.soc_core import * from litex.soc.integration.builder import * from litex_boards.platforms import arty from ring import * # CRG ---------------------------------------------------------------------------------------------- class CRG(Module): def __init__(self, platform, sys_clk_freq): self.rst = Signal() self.clock_domains.cd_sys = ClockDomain() # # # clk = platform.request("clk100") rst_n = platform.request("cpu_reset") self.comb += self.cd_sys.clk.eq(clk) self.specials += AsyncResetSynchronizer(self.cd_sys, ~rst_n) platform.add_period_constraint(clk, 1e9/100e6) # BaseSoC ------------------------------------------------------------------------------------------ class BaseSoC(SoCMini): def __init__(self, sys_clk_freq=int(100e6), mode=mode.DOUBLE, **kwargs): platform = arty.Platform(variant="a7-35", toolchain="vivado") from litex.build.generic_platform import Pins, IOStandard platform.add_extension([("do", 0, Pins("B7"), IOStandard("LVCMOS33"))]) SoCMini.__init__(self, platform, sys_clk_freq, ident = "LiteX SoC on Arty A7-35", ident_version = True) self.submodules.crg = CRG(platform, sys_clk_freq) led = RingControl(platform.request("do"), mode, 12, sys_clk_freq) self.submodules.ledring = led self.add_csr("ledring") self.add_uartbone() # Build -------------------------------------------------------------------------------------------- def main(): parser = argparse.ArgumentParser(description="LiteX SoC on Arty A7-35") parser.add_argument("--build", action="store_true", help="Build bitstream") parser.add_argument("--mode-single", action="store_true", help="Build bitstream") parser.add_argument("--load", action="store_true", help="Load bitstream") parser.add_argument("--flash", action="store_true", help="Flash Bitstream") builder_args(parser) soc_core_args(parser) args = parser.parse_args() m = mode.DOUBLE if args.mode_single: m = mode.SINGLE soc = BaseSoC( sys_clk_freq = 100e6, mode = m, **soc_core_argdict(args) ) builder = Builder(soc, **builder_argdict(args)) builder.build(run=args.build) if args.load: prog = soc.platform.create_programmer() prog.load_bitstream(os.path.join(builder.gateware_dir, soc.build_name + ".bit")) exit() if __name__ == "__main__": main()
the-stack_0_11694
import os, sys import math import numpy as np import cv2 from PIL import Image, ImageDraw, ImageFont import argparse def parse_args(): def str2bool(v): return v.lower() in ("true", "t", "1") parser = argparse.ArgumentParser() # params for prediction engine parser.add_argument("--use_gpu", type=str2bool, default=True) # parser.add_argument("--ir_optim", type=str2bool, default=True) # parser.add_argument("--use_tensorrt", type=str2bool, default=False) # parser.add_argument("--use_fp16", type=str2bool, default=False) parser.add_argument("--gpu_mem", type=int, default=500) # params for text detector parser.add_argument("--image_dir", type=str) parser.add_argument("--det_algorithm", type=str, default='DB') parser.add_argument("--det_model_path", type=str) parser.add_argument("--det_limit_side_len", type=float, default=960) parser.add_argument("--det_limit_type", type=str, default='max') # DB parmas parser.add_argument("--det_db_thresh", type=float, default=0.3) parser.add_argument("--det_db_box_thresh", type=float, default=0.5) parser.add_argument("--det_db_unclip_ratio", type=float, default=1.6) parser.add_argument("--max_batch_size", type=int, default=10) parser.add_argument("--use_dilation", type=bool, default=False) parser.add_argument("--det_db_score_mode", type=str, default="fast") # EAST parmas parser.add_argument("--det_east_score_thresh", type=float, default=0.8) parser.add_argument("--det_east_cover_thresh", type=float, default=0.1) parser.add_argument("--det_east_nms_thresh", type=float, default=0.2) # SAST parmas parser.add_argument("--det_sast_score_thresh", type=float, default=0.5) parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2) parser.add_argument("--det_sast_polygon", type=bool, default=False) # params for text recognizer parser.add_argument("--rec_algorithm", type=str, default='CRNN') parser.add_argument("--rec_model_path", type=str) parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320") parser.add_argument("--rec_char_type", type=str, default='ch') parser.add_argument("--rec_batch_num", type=int, default=6) parser.add_argument("--max_text_length", type=int, default=25) parser.add_argument("--use_space_char", type=str2bool, default=True) parser.add_argument("--drop_score", type=float, default=0.5) parser.add_argument("--limited_max_width", type=int, default=1280) parser.add_argument("--limited_min_width", type=int, default=16) parser.add_argument( "--vis_font_path", type=str, default=os.path.join(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))), 'doc/fonts/simfang.ttf')) parser.add_argument( "--rec_char_dict_path", type=str, default=os.path.join(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))), 'pytorchocr/utils/ppocr_keys_v1.txt')) # params for text classifier parser.add_argument("--use_angle_cls", type=str2bool, default=False) parser.add_argument("--cls_model_path", type=str) parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192") parser.add_argument("--label_list", type=list, default=['0', '180']) parser.add_argument("--cls_batch_num", type=int, default=6) parser.add_argument("--cls_thresh", type=float, default=0.9) parser.add_argument("--enable_mkldnn", type=str2bool, default=False) parser.add_argument("--use_pdserving", type=str2bool, default=False) # params for e2e parser.add_argument("--e2e_algorithm", type=str, default='PGNet') parser.add_argument("--e2e_model_path", type=str) parser.add_argument("--e2e_limit_side_len", type=float, default=768) parser.add_argument("--e2e_limit_type", type=str, default='max') # PGNet parmas parser.add_argument("--e2e_pgnet_score_thresh", type=float, default=0.5) parser.add_argument( "--e2e_char_dict_path", type=str, default=os.path.join(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))), 'pytorchocr/utils/ic15_dict.txt')) parser.add_argument("--e2e_pgnet_valid_set", type=str, default='totaltext') parser.add_argument("--e2e_pgnet_polygon", type=bool, default=True) parser.add_argument("--e2e_pgnet_mode", type=str, default='fast') # params .yaml parser.add_argument("--det_yaml_path", type=str, default=None) parser.add_argument("--rec_yaml_path", type=str, default=None) parser.add_argument("--cls_yaml_path", type=str, default=None) parser.add_argument("--e2e_yaml_path", type=str, default=None) return parser.parse_args() def get_default_config(args): return vars(args) def read_network_config_from_yaml(yaml_path): if not os.path.exists(yaml_path): raise FileNotFoundError('{} is not existed.'.format(yaml_path)) import yaml with open(yaml_path, encoding='utf-8') as f: res = yaml.safe_load(f) if res.get('Architecture') is None: raise ValueError('{} has no Architecture'.format(yaml_path)) return res['Architecture'] def AnalysisConfig(weights_path, yaml_path=None): if not os.path.exists(os.path.abspath(weights_path)): raise FileNotFoundError('{} is not found.'.format(weights_path)) if yaml_path is not None: return read_network_config_from_yaml(yaml_path) weights_basename = os.path.basename(weights_path) weights_name = weights_basename.lower() # supported_weights = ['ch_ptocr_server_v2.0_det_infer.pth', # 'ch_ptocr_server_v2.0_rec_infer.pth', # 'ch_ptocr_mobile_v2.0_det_infer.pth', # 'ch_ptocr_mobile_v2.0_rec_infer.pth', # 'ch_ptocr_mobile_v2.0_cls_infer.pth', # ] # assert weights_name in supported_weights, \ # "supported weights are {} but input weights is {}".format(supported_weights, weights_name) if weights_name == 'ch_ptocr_server_v2.0_det_infer.pth': network_config = {'model_type':'det', 'algorithm':'DB', 'Transform':None, 'Backbone':{'name':'ResNet', 'layers':18, 'disable_se':True}, 'Neck':{'name':'DBFPN', 'out_channels':256}, 'Head':{'name':'DBHead', 'k':50}} elif weights_name == 'ch_ptocr_server_v2.0_rec_infer.pth': network_config = {'model_type':'rec', 'algorithm':'CRNN', 'Transform':None, 'Backbone':{'name':'ResNet', 'layers':34}, 'Neck':{'name':'SequenceEncoder', 'hidden_size':256, 'encoder_type':'rnn'}, 'Head':{'name':'CTCHead', 'fc_decay': 4e-05}} elif weights_name == 'ch_ptocr_mobile_v2.0_det_infer.pth': network_config = {'model_type': 'det', 'algorithm': 'DB', 'Transform': None, 'Backbone': {'name': 'MobileNetV3', 'model_name': 'large', 'scale': 0.5, 'disable_se': True}, 'Neck': {'name': 'DBFPN', 'out_channels': 96}, 'Head': {'name': 'DBHead', 'k': 50}} elif weights_name == 'ch_ptocr_mobile_v2.0_rec_infer.pth': network_config = {'model_type':'rec', 'algorithm':'CRNN', 'Transform':None, 'Backbone':{'model_name':'small', 'name':'MobileNetV3', 'scale':0.5, 'small_stride':[1,2,2,2]}, 'Neck':{'name':'SequenceEncoder', 'hidden_size':48, 'encoder_type':'rnn'}, 'Head':{'name':'CTCHead', 'fc_decay': 4e-05}} elif weights_name == 'ch_ptocr_mobile_v2.0_cls_infer.pth': network_config = {'model_type':'cls', 'algorithm':'CLS', 'Transform':None, 'Backbone':{'name':'MobileNetV3', 'model_name':'small', 'scale':0.35}, 'Neck':None, 'Head':{'name':'ClsHead', 'class_dim':2}} elif weights_name == 'det_mv3_db_v2.0_infer.pth': network_config = {'model_type': 'det', 'algorithm': 'DB', 'Transform': None, 'Backbone': {'name': 'MobileNetV3', 'model_name': 'large'}, 'Neck': {'name': 'DBFPN', 'out_channels': 256}, 'Head': {'name': 'DBHead', 'k': 50}} elif weights_name == 'det_r50_vd_db_v2.0_infer.pth': network_config = {'model_type': 'det', 'algorithm': 'DB', 'Transform': None, 'Backbone': {'name': 'ResNet', 'layers': 50}, 'Neck': {'name': 'DBFPN', 'out_channels': 256}, 'Head': {'name': 'DBHead', 'k': 50}} elif weights_name == 'det_mv3_east_v2.0_infer.pth': network_config = {'model_type': 'det', 'algorithm': 'EAST', 'Transform': None, 'Backbone': {'name': 'MobileNetV3', 'model_name': 'large'}, 'Neck': {'name': 'EASTFPN', 'model_name': 'small'}, 'Head': {'name': 'EASTHead', 'model_name': 'small'}} elif weights_name == 'det_r50_vd_east_v2.0_infer.pth': network_config = {'model_type': 'det', 'algorithm': 'EAST', 'Transform': None, 'Backbone': {'name': 'ResNet', 'layers': 50}, 'Neck': {'name': 'EASTFPN', 'model_name': 'large'}, 'Head': {'name': 'EASTHead', 'model_name': 'large'}} elif weights_name == 'det_r50_vd_sast_icdar15_v2.0_infer.pth': network_config = {'model_type': 'det', 'algorithm': 'SAST', 'Transform': None, 'Backbone': {'name': 'ResNet_SAST', 'layers': 50}, 'Neck': {'name': 'SASTFPN', 'with_cab': True}, 'Head': {'name': 'SASTHead'}} elif weights_name == 'det_r50_vd_sast_totaltext_v2.0_infer.pth': network_config = {'model_type': 'det', 'algorithm': 'SAST', 'Transform': None, 'Backbone': {'name': 'ResNet_SAST', 'layers': 50}, 'Neck': {'name': 'SASTFPN', 'with_cab': True}, 'Head': {'name': 'SASTHead'}} elif weights_name == 'en_server_pgneta_infer.pth': network_config = {'model_type': 'e2e', 'algorithm': 'PGNet', 'Transform': None, 'Backbone': {'name': 'ResNet', 'layers': 50}, 'Neck': {'name': 'PGFPN'}, 'Head': {'name': 'PGHead'}} else: network_config = {'model_type': 'rec', 'algorithm': 'CRNN', 'Transform': None, 'Backbone': {'model_name': 'small', 'name': 'MobileNetV3', 'scale': 0.5, 'small_stride': [1, 2, 2, 2]}, 'Neck': {'name': 'SequenceEncoder', 'hidden_size': 48, 'encoder_type': 'rnn'}, 'Head': {'name': 'CTCHead', 'fc_decay': 4e-05}} # raise NotImplementedError return network_config def draw_e2e_res(dt_boxes, strs, img_path): src_im = cv2.imread(img_path) for box, str in zip(dt_boxes, strs): box = box.astype(np.int32).reshape((-1, 1, 2)) cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2) cv2.putText( src_im, str, org=(int(box[0, 0, 0]), int(box[0, 0, 1])), fontFace=cv2.FONT_HERSHEY_COMPLEX, fontScale=0.7, color=(0, 255, 0), thickness=1) return src_im def draw_text_det_res(dt_boxes, img_path): src_im = cv2.imread(img_path) for box in dt_boxes: box = np.array(box).astype(np.int32).reshape(-1, 2) cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2) return src_im def resize_img(img, input_size=600): """ resize img and limit the longest side of the image to input_size """ img = np.array(img) im_shape = img.shape im_size_max = np.max(im_shape[0:2]) im_scale = float(input_size) / float(im_size_max) img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale) return img def draw_ocr_box_txt(image, boxes, txts, scores=None, drop_score=0.5, font_path="./doc/simfang.ttf"): h, w = image.height, image.width img_left = image.copy() img_right = Image.new('RGB', (w, h), (255, 255, 255)) import random random.seed(0) draw_left = ImageDraw.Draw(img_left) draw_right = ImageDraw.Draw(img_right) for idx, (box, txt) in enumerate(zip(boxes, txts)): if scores is not None and scores[idx] < drop_score: continue color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) draw_left.polygon(box, fill=color) draw_right.polygon( [ box[0][0], box[0][1], box[1][0], box[1][1], box[2][0], box[2][1], box[3][0], box[3][1] ], outline=color) box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][ 1])**2) box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][ 1])**2) if box_height > 2 * box_width: font_size = max(int(box_width * 0.9), 10) font = ImageFont.truetype(font_path, font_size, encoding="utf-8") cur_y = box[0][1] for c in txt: char_size = font.getsize(c) draw_right.text( (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font) cur_y += char_size[1] else: font_size = max(int(box_height * 0.8), 10) font = ImageFont.truetype(font_path, font_size, encoding="utf-8") draw_right.text( [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font) img_left = Image.blend(image, img_left, 0.5) img_show = Image.new('RGB', (w * 2, h), (255, 255, 255)) img_show.paste(img_left, (0, 0, w, h)) img_show.paste(img_right, (w, 0, w * 2, h)) return np.array(img_show) def str_count(s): """ Count the number of Chinese characters, a single English character and a single number equal to half the length of Chinese characters. args: s(string): the input of string return(int): the number of Chinese characters """ import string count_zh = count_pu = 0 s_len = len(s) en_dg_count = 0 for c in s: if c in string.ascii_letters or c.isdigit() or c.isspace(): en_dg_count += 1 elif c.isalpha(): count_zh += 1 else: count_pu += 1 return s_len - math.ceil(en_dg_count / 2) def text_visual(texts, scores, img_h=400, img_w=600, threshold=0., font_path="./doc/simfang.ttf"): """ create new blank img and draw txt on it args: texts(list): the text will be draw scores(list|None): corresponding score of each txt img_h(int): the height of blank img img_w(int): the width of blank img font_path: the path of font which is used to draw text return(array): """ if scores is not None: assert len(texts) == len( scores), "The number of txts and corresponding scores must match" def create_blank_img(): blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255 blank_img[:, img_w - 1:] = 0 blank_img = Image.fromarray(blank_img).convert("RGB") draw_txt = ImageDraw.Draw(blank_img) return blank_img, draw_txt blank_img, draw_txt = create_blank_img() font_size = 20 txt_color = (0, 0, 0) font = ImageFont.truetype(font_path, font_size, encoding="utf-8") gap = font_size + 5 txt_img_list = [] count, index = 1, 0 for idx, txt in enumerate(texts): index += 1 if scores[idx] < threshold or math.isnan(scores[idx]): index -= 1 continue first_line = True while str_count(txt) >= img_w // font_size - 4: tmp = txt txt = tmp[:img_w // font_size - 4] if first_line: new_txt = str(index) + ': ' + txt first_line = False else: new_txt = ' ' + txt draw_txt.text((0, gap * count), new_txt, txt_color, font=font) txt = tmp[img_w // font_size - 4:] if count >= img_h // gap - 1: txt_img_list.append(np.array(blank_img)) blank_img, draw_txt = create_blank_img() count = 0 count += 1 if first_line: new_txt = str(index) + ': ' + txt + ' ' + '%.3f' % (scores[idx]) else: new_txt = " " + txt + " " + '%.3f' % (scores[idx]) draw_txt.text((0, gap * count), new_txt, txt_color, font=font) # whether add new blank img or not if count >= img_h // gap - 1 and idx + 1 < len(texts): txt_img_list.append(np.array(blank_img)) blank_img, draw_txt = create_blank_img() count = 0 count += 1 txt_img_list.append(np.array(blank_img)) if len(txt_img_list) == 1: blank_img = np.array(txt_img_list[0]) else: blank_img = np.concatenate(txt_img_list, axis=1) return np.array(blank_img) def base64_to_cv2(b64str): import base64 data = base64.b64decode(b64str.encode('utf8')) data = np.fromstring(data, np.uint8) data = cv2.imdecode(data, cv2.IMREAD_COLOR) return data def draw_boxes(image, boxes, scores=None, drop_score=0.5): if scores is None: scores = [1] * len(boxes) for (box, score) in zip(boxes, scores): if score < drop_score: continue box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64) image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2) return image
the-stack_0_11695
""" Generic setup of the data sources and the model training. Based on: https://github.com/fchollet/keras/blob/master/examples/mnist_mlp.py and also on https://github.com/fchollet/keras/blob/master/examples/mnist_cnn.py """ import logging # Keras from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.regularizers import l2 from keras.callbacks import EarlyStopping, Callback from keras.layers import Conv2D, MaxPooling2D from keras import backend as K # Scipy from scipy.stats import pearsonr # Sklearn from sklearn.model_selection import train_test_split from GA.utils.utils import clean_data # Helper: Early stopping. early_stopper = EarlyStopping(monitor='val_loss', min_delta=0.1, patience=2, verbose=0, mode='auto') # In case that your training loss is not dropping - which means you are learning nothing after each epoch. # It look like there's nothing to learn in this model, aside from some trivial linear-like fit or cutoff value. def compile_model_mlp(geneparam, input_shape): """Compile a sequential model. Args: geneparam (dict): the parameters of the network Returns: a compiled network. """ # Get our network parameters. nb_layers = geneparam['nb_layers'] nb_neurons = geneparam['nb_neurons'] activation = geneparam['activation'] optimizer = geneparam['optimizer'] dropout = geneparam['dropout'] weight_decay = geneparam['weight_decay'] print("Architecture:%d,%s,%s,%d,%.2f%%,%.2f%%" % (nb_neurons, activation, optimizer, nb_layers, dropout,weight_decay)) logging.info("Architecture:%d,%s,%s,%d,%.2f%%,%.2f%%" % (nb_neurons, activation, optimizer, nb_layers, dropout, weight_decay)) model = Sequential() # Add each layer. for i in range(nb_layers): # Need input shape for first layer. if i == 0: if weight_decay>0: model.add(Dense(nb_neurons, activation=activation, input_dim=input_shape, kernel_regularizer=l2(weight_decay))) else: model.add(Dense(nb_neurons, activation=activation, input_dim=input_shape)) else: if weight_decay > 0: model.add(Dense(nb_neurons, activation=activation, kernel_regularizer=l2(weight_decay))) else: model.add(Dense(nb_neurons, activation=activation)) if dropout > 0: model.add(Dropout(dropout)) # dropout for each layer # Output layer. model.add(Dense(1)) model.compile(loss='mse', optimizer=optimizer, metrics=['mae']) return model def compile_model_cnn(geneparam, nb_classes, input_shape): """Compile a sequential model. Args: geneparam (dict): the parameters of the genome Returns: a compiled network. """ # Get our network parameters. nb_layers = geneparam['nb_layers'] nb_neurons = geneparam['nb_neurons'] activation = geneparam['activation'] optimizer = geneparam['optimizer'] logging.info("Architecture:%d,%s,%s,%d" % (nb_neurons, activation, optimizer, nb_layers)) model = Sequential() # Add each layer. for i in range(0, nb_layers): # Need input shape for first layer. if i == 0: model.add( Conv2D(nb_neurons, kernel_size=(3, 3), activation=activation, padding='same', input_shape=input_shape)) else: model.add(Conv2D(nb_neurons, kernel_size=(3, 3), activation=activation)) if i < 2: # otherwise we hit zero model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.2)) model.add(Flatten()) model.add(Dense(nb_neurons, activation=activation)) model.add(Dropout(0.5)) model.add(Dense(nb_classes, activation='softmax')) # BAYESIAN CONVOLUTIONAL NEURAL NETWORKS WITH BERNOULLI APPROXIMATE VARIATIONAL INFERENCE # need to read this paper model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) return model class LossHistory(Callback): def on_train_begin(self, logs={}): self.losses = [] def on_batch_end(self, batch, logs={}): self.losses.append(logs.get('loss')) def get_data(dataset): markers, pheno = clean_data(dataset.trait, dataset.k) x_train, x_test, y_train, y_test = train_test_split(markers, pheno, test_size=0.33, random_state=42) return markers.shape[1], x_train, x_test, y_train, y_test def train_and_score(geneparam, dataset): """Train the model, return test loss. Args: geneparam (dict): the parameters of the network dataset (str): Dataset to use for training/evaluating """ logging.info("Getting datasets") input_shape, x_train, x_test, y_train, y_test = get_data(dataset) logging.info("Compling Keras model") model = compile_model_mlp(geneparam, input_shape) history = LossHistory() model.fit(x_train, y_train, epochs=1200, # using early stopping so no real limit - don't want to waste time on horrible architectures verbose=1, validation_data =(x_test, y_test), # callbacks=[history]) callbacks=[early_stopper]) score = model.evaluate(x_test, y_test, verbose=0) print('Test mse:', score[0]) print('Test mae:', score[1]) r = pearsonr(model.predict(x_test).ravel(), y_test)[0] print('Test r:', r) logging.info("R: %.3f" % r) K.clear_session() # we do not care about keeping any of this in memory - # we just need to know the final scores and the architecture if r != r: r = -1.0 return r
the-stack_0_11696
# Copyright 2019 Christo Kirov. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utilities for parsing PTB text files.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import os import sys import tensorflow as tf def _read_words(filename): print('Reading %s...' % (filename), file=sys.stderr) with tf.io.gfile.GFile(filename, "r") as f: return f.read().strip().replace("\n", "<eos>").split() def _build_vocab(filename): data = _read_words(filename) data += _read_words(filename + ".out") counter = collections.Counter(data) count_pairs = sorted(counter.items(), key=lambda x: (-x[1], x[0])) words, _ = list(zip(*count_pairs)) word_to_id = dict(zip(words, range(len(words)))) id_to_word = dict(zip(range(len(words)), words)) # Save the vocab to a file, ordered according to the index. with open('labels.txt', 'w', encoding='utf-8') as outfile: for w in words: outfile.write(w + "\n") return word_to_id def _file_to_word_ids(filename, word_to_id): print('Converting %s to IDs' % (filename), file=sys.stderr) data_in = _read_words(filename) data_out = _read_words(filename + ".out") ids_in = [word_to_id[word] for word in data_in if word in word_to_id] ids_out = [word_to_id[word] for word in data_out if word in word_to_id] print(' ', len(ids_in),ids_in[-1],'|', len(ids_out), ids_out[-1], file=sys.stderr) assert(len(ids_in) == len(ids_out)) return [(x,y) for x, y in zip(ids_in, ids_out)] def lm_raw_data(data_path=None): """Load LM raw data from data directory "data_path". Reads LM text files, converts strings to integer ids, and performs mini-batching of the inputs. Args: data_path: string path to the directory where simple-examples.tgz has been extracted. Returns: tuple (train_data, valid_data, test_data, vocabulary) where each of the data objects can be passed to PTBIterator. """ train_path = os.path.join(data_path, "lm.train.txt") valid_path = os.path.join(data_path, "lm.valid.txt") test_path = os.path.join(data_path, "lm.test.txt") word_to_id = _build_vocab(train_path) train_data = _file_to_word_ids(train_path, word_to_id) valid_data = _file_to_word_ids(valid_path, word_to_id) test_data = _file_to_word_ids(test_path, word_to_id) vocabulary = len(word_to_id) return train_data, valid_data, test_data, vocabulary def lm_producer(raw_data, batch_size, num_steps, name=None): """Iterate on the raw PTB data. This chunks up raw_data into batches of examples and returns Tensors that are drawn from these batches. Args: raw_data: one of the raw data outputs from ptb_raw_data. batch_size: int, the batch size. num_steps: int, the number of unrolls. name: the name of this operation (optional). Returns: A pair of Tensors, each shaped [batch_size, num_steps]. The second element of the tuple is the same data time-shifted to the right by one. Raises: tf.errors.InvalidArgumentError: if batch_size or num_steps are too high. """ with tf.name_scope(name, "LMProducer", [raw_data, batch_size, num_steps]): raw_data_in = [cp[0] for cp in raw_data] raw_data_out = [cp[1] for cp in raw_data] raw_data_in = tf.convert_to_tensor(raw_data_in, name="raw_data", dtype=tf.int32) raw_data_out = tf.convert_to_tensor(raw_data_out, name="raw_data", dtype=tf.int32) data_len = tf.size(raw_data_in) batch_len = data_len // batch_size data_in = tf.reshape(raw_data_in[0 : batch_size * batch_len], [batch_size, batch_len]) data_out = tf.reshape(raw_data_out[0 : batch_size * batch_len], [batch_size, batch_len]) epoch_size = (batch_len - 1) // num_steps assertion = tf.compat.v1.assert_positive( epoch_size, message="epoch_size == 0, decrease batch_size or num_steps") with tf.control_dependencies([assertion]): epoch_size = tf.identity(epoch_size, name="epoch_size") i = tf.train.range_input_producer(epoch_size, shuffle=False).dequeue() x = tf.strided_slice(data_in, [0, i * num_steps], [batch_size, (i + 1) * num_steps]) x.set_shape([batch_size, num_steps]) y = tf.strided_slice(data_out, [0, i * num_steps + 1], [batch_size, (i + 1) * num_steps + 1]) y.set_shape([batch_size, num_steps]) return x, y
the-stack_0_11697
import tensorflow as tf class GAINGenerator(object): """This is class to impute missing value with proper values from observed data and missing mask (0/1 flags indicating missing value) """ def __init__(self): pass def generate(self, x, m, z, drop): """Generate candidate values to be imputated. Parameters ---------- x : tf.Tensor of tf.float32 data frame which is target of missing value imputation. m : tf.Tensor of tf.bool mask data indicating missing positions in x. (if True, observed ; same size as x) z : tf.Tensor of tf.float32 data frame each cell of which has random numbers to generate imputed values (same size as x) Returns ------- xbar : tf.Tensor of tf.float32 generated data frame which has candidate values (even in observed cell) """ assert x.shape.as_list() == m.shape.as_list() == z.shape.as_list() assert x.dtype == z.dtype == tf.float32 assert m.dtype == tf.bool mf = tf.cast(m, dtype=tf.float32, name="mask_float") out = tf.concat([x, mf, z], axis=1, name="concat") d = x.shape[1] out = tf.layers.dense(out, d, activation=tf.tanh, name="dense1") out = tf.layers.dropout(out, drop) out = tf.layers.dense(out, int(int(d)/2), activation=tf.tanh, name="dense2") out = tf.layers.dropout(out, drop) out = tf.layers.dense(out, d, activation=tf.sigmoid, name="dense3") xbar = out return xbar def impute(self, x, xbar, m): """Do missing value imputation. This method uses candidate values in xbar (which is generated by generate method) Parameters ---------- x : tf.Tensor of tf.float32 data frame which is target of missing value imputation. xbar : tf.Tensor of tf.float32 data frame which is result of generate method. all of missing value of x are imputed by candidate values. (same size as x) m : tf.Tensor of tf.bool mask data indicating missing positions (if True, observed) Returns ------- xhat : tf.Tensor of tf.float32 result of missing value imputation of x. """ assert x.shape.as_list() == xbar.shape.as_list() == m.shape.as_list() assert x.dtype == xbar.dtype == tf.float32 assert m.dtype == tf.bool xhat = tf.where(m, x, xbar) return xhat def adversarial_loss(self, mhat, m, b): """Calculate adversarial loss. This method compares actual missing mask from output of discriminator, and uses hint (b). Parameters ---------- mhat : tf.Tensor of tf.float32 A prediction result of missing mask of discriminator. It contains probability whether it is observed. m : tf.Tensor of tf.bool actual missing mask (same size as mhat) b : tf.Tensor of tf.bool Hint flag data each row has only one True, which is selected at random. The other cells are False (same size as mhat) Returns ------- loss : tf.Tensor of tf.float32 (no dimension) adversarial loss calculated """ assert mhat.shape.as_list() == m.shape.as_list() == b.shape.as_list() assert mhat.dtype == tf.float32 assert m.dtype == b.dtype == tf.bool eps = 1e-7 log_loss = - tf.where(m, tf.zeros_like(m, dtype=tf.float32), tf.log(mhat + eps)) loss = tf.reduce_sum(tf.where(b, log_loss, tf.zeros_like(b, dtype=tf.float32))) return loss def generate_loss(self, x, xbar, m): """Calculate generate loss. The more x is similar to xbar, the less loss is. Parameters ---------- x : tf.Tensor of tf.float32 data frame which is target of missing value imputation. xbar : tf.Tensor of tf.float32 data frame which is result of generate method. all of missing value of x are imputed by candidate values. (same size as x) m : tf.Tensor of tf.bool mask data indicating missing positions in x by 0/1 flag (0=missing, 1=observed ; same size as x) Returns ------- loss : tf.Tensor of tf.float32 (no dimension) generate loss calculated """ assert x.shape.as_list() == xbar.shape.as_list() == m.shape.as_list() assert x.dtype == xbar.dtype == tf.float32 assert m.dtype == tf.bool mse = tf.square(x - xbar) loss = tf.reduce_sum(tf.where(m, mse, tf.zeros_like(m, dtype=tf.float32))) return loss
the-stack_0_11698
import unittest2 import os import tempfile import shutil import pip from hoplite.client.status_updater import MockStatusUpdater from hoplite.builtin_plugins.constants import InstallPythonPackageJobConstants as KEYS from hoplite.builtin_plugins import install_python_package_job from httmock import urlmatch, response, HTTMock # Monkey patch pip so it doesn't mess with logging. Otherwise, presence of nose xunit logging handlers will cause an # error when pip tries to set logging things def blank_func(blank_arg): pass import pip.basecommand pip.basecommand.__dict__['logging_dictConfig'] = blank_func @urlmatch(path='/reload$') def reload_site_packages(url, request): return response(200) class TestInstallPythonPackage(unittest2.TestCase): def test_install_from_local_path(self): setup_str = "from setuptools import setup, find_packages;setup(name='poopy', version='0.1', packages=find_packages())" tempdir = tempfile.mkdtemp() try: setup_py = open(os.path.join(tempdir, "setup.py"), 'w') setup_py.write(setup_str) setup_py.close() package_path = os.path.join(tempdir, "poopy") os.mkdir(package_path) init_file = open(os.path.join(package_path, "__init__.py"), 'w') init_file.close() config = {KEYS.LOCAL_PATH: tempdir} status = MockStatusUpdater() with HTTMock(reload_site_packages): install_python_package_job.run(config, status) self.assertTrue(status.status["succeeded"]) try: import poopy except ImportError: self.fail("Could not import installed package") finally: pip.main(['uninstall', '-y', "poopy"]) shutil.rmtree(tempdir) def test_install_fails_success_false_stdout_info(self): setup_str = "raise ValueError('I FAILED!')" tempdir = tempfile.mkdtemp() try: setup_py = open(os.path.join(tempdir, "setup.py"), 'w') setup_py.write(setup_str) setup_py.close() config = {KEYS.LOCAL_PATH: tempdir} status = MockStatusUpdater() install_python_package_job.run(config, status) self.assertFalse(status.status["succeeded"]) # Because we monkey patch pip so it doesn't mess up nose xunit logging, the traceback info goes to the # console rather than to status.status.stdout #self.assertRegexpMatches(status.status["stdout"], "Traceback") self.assertIn("Pip returned a non-zero error code", status.status["errors"]) finally: shutil.rmtree(tempdir) def test_missing_local_path_returns_errors(self): config = {} status = MockStatusUpdater() install_python_package_job.run(config, status) self.assertFalse(status.status["succeeded"]) self.assertIn("No local path specified", status.status["errors"])
the-stack_0_11701
from decimal import Decimal as D from oscar.core.loading import get_class from oscar.test import factories Default = get_class('partner.strategy', 'Default') def add_product(basket, price=None, quantity=1, product=None): """ Helper to add a product to the basket. """ has_strategy = False try: has_strategy = hasattr(basket, 'strategy') except RuntimeError: pass if not has_strategy: basket.strategy = Default() if price is None: price = D('1') if product and product.has_stockrecords: record = product.stockrecords.all()[0] else: record = factories.create_stockrecord( product=product, price_excl_tax=price, num_in_stock=quantity + 1) basket.add_product(record.product, quantity) def add_products(basket, args): """ Helper to add a series of products to the passed basket """ for price, quantity in args: add_product(basket, price, quantity)
the-stack_0_11702
import pytest import spacy from spacy.language import Language from timexy.languages.en import en label = "timexy_label" lang = "en" @pytest.fixture() def nlp() -> Language: nlp = spacy.blank(lang) nlp.add_pipe("timexy", config={"label": label}) return nlp test_data = [t for rule in en.rules for t in rule.tests] @pytest.mark.parametrize("text,date_start,date_end", test_data) def test_rule(nlp: Language, text: str, date_start: int, date_end: int) -> None: doc = nlp(text) assert [ e for e in doc.ents if e.start_char == date_start and e.end_char == date_end and e.label_ == label ]
the-stack_0_11703
#AQUÍ irán las pruebas que se realicen sobre GitHub. #Importamos las librerías necesarias. from github import Github from github.GithubException import UnknownObjectException import aux_functions as aux import dataF_functions as d import ci_tools as ci import github_search as ghs # import openpyxl --> esta hay que instalarla en el venv para que funcione el generarEXCEL. # Generamos un github_token para consultar la API de GitHub a través de la librería. user = "jorcontrerasp" token = aux.readFile("tokens/github_token.txt") g = Github(user, token) ciTool = ci.HerramientasCI.CI2 # zhihu/Matisse # EOSIO/eos # AMAI-GmbH/AI-Expert-Roadmap # jwasham/coding-interview-university # gztchan/awesome-design # agalwood/motrix # kr328/clashforandroid # salomonelli/best-resume-ever # facebook/create-react-app # goldbergyoni/nodebestpractices # freecad/freecad # vuejs/core # artf/grapesjs # cocoapods/cocoapods # google/gvisor # adguardteam/adguardhome # playframework/playframework # hackiftekhar/IQKeyboardManager -> ¿etiqueta matrix? # neovim/neovim -> en los jobs, ¿recojo la etiqueta 'env' como steps? repoName = "neovim/neovim" doTest = True doSearchInAllCiTools = True try: repo = g.get_repo(repoName) except UnknownObjectException as e: print("El repositorio " + repoName + " no existe en GitHub: " + str(e)) doTest = False if doTest: filteredRepos = [repo] df = d.makeDataFrame(filteredRepos, True) df2 = d.makeCounterDataFrame() df3 = d.makeEmptyLanguageDataFrame() df6 = d.makeEmptyStageStatisticsDataFrame() if doSearchInAllCiTools: foundList = [] foundList = ghs.searchReposGitHubApi(filteredRepos, df, df2, df3, df6) d.makeEXCEL(df2, "_counting") else: found,df,df3,df6 = ghs.searchLiteralPathFromRoot(repo, ciTool, df, df2, df3, df6) #found,df,df3,df6 = ghs.searchLiteralPathFromRoot_REC(repo, ciTool, [], df, df2, df3, df6, []) df,df2,df4,df5 = d.doAuxWithResultsDF(df, df2, df3, True) d.makeEXCEL(df, "github/_github_results") d.makeEXCEL(df2, "github/_counting") d.makeEXCEL(df3, "github/_github_languages") d.makeEXCEL(df4, "github/_github_language_statistics") d.makeEXCEL(df5, "github/_github_ci_statistics") d.makeEXCEL(df6, "github/_gitlab_stage_statistics") print("Fin de la prueba.")
the-stack_0_11704
# coding=utf-8 # Copyright 2015 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import (absolute_import, division, generators, nested_scopes, print_function, unicode_literals, with_statement) import errno import io import select import socket def safe_select(*args, **kwargs): # N.B. This while loop is purely to facilitate SA_RESTART-like behavior for select(), which is # (apparently) not covered by signal.siginterrupt(signal.SIGINT, False) when a timeout is passed. # This helps avoid an unhandled select.error(4, 'Interrupted system call') on SIGINT. # See https://bugs.python.org/issue12224 for more info. while 1: try: return select.select(*args, **kwargs) except select.error as e: if e[0] != errno.EINTR: raise class RecvBufferedSocket(object): """A socket wrapper that simplifies recv() buffering.""" def __init__(self, socket, chunk_size=io.DEFAULT_BUFFER_SIZE, select_timeout=None): """ :param socket socket: The socket.socket object to wrap. :param int chunk_size: The smallest max read size for calls to recv() in bytes. :param float select_timeout: The select timeout for a socket read in seconds. An integer value effectively makes self.recv non-blocking (default: None, blocking). """ self._socket = socket self._chunk_size = chunk_size self._select_timeout = select_timeout self._buffer = b'' def recv(self, bufsize): """Buffers up to _chunk_size bytes when the internal buffer has less than `bufsize` bytes.""" assert bufsize > 0, 'a positive bufsize is required' if len(self._buffer) < bufsize: readable, _, _ = safe_select([self._socket], [], [], self._select_timeout) if readable: recvd = self._socket.recv(max(self._chunk_size, bufsize)) self._buffer = self._buffer + recvd return_buf, self._buffer = self._buffer[:bufsize], self._buffer[bufsize:] return return_buf def __getattr__(self, attr): return getattr(self._socket, attr)
the-stack_0_11705
from django.test import TestCase from .models import Item class TestModels(TestCase): def test_new_item_defaults_to_done_false(self): item = Item.objects.create(name="Test DoneFalse Item") self.assertFalse(item.done) def test_item_string_method_returns_name(self): item_name = "Test Item StringMethod" item = Item.objects.create(name=item_name) self.assertEqual(str(item), item_name)