filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_0_12448
from lyrebird.mock import context from flask import Response, stream_with_context import json class MockHandler: """ 根据当前设置数据组的匹配条件,查找对应的mock数据。 如果没有找到匹配的数据则交由下一个处理器处理。 """ def handle(self, handler_context): data = context.application.data_manager.router.get_mock_data(handler_context.flow) if data: handler_context.response = self.data2response(data) def data2response(self, data): resp_info = json.loads(data.response.content) code = resp_info['code'] headers = resp_info['headers'] headers['lyrebird'] = 'mock' resp_data = data.response_data.content if resp_data: if type(resp_data) == str: data_len = len(resp_data.encode()) else: data_len = len(resp_data) headers['Content-Length'] = data_len def gen(): yield resp_data return Response(stream_with_context(gen()), status=code, headers=headers)
the-stack_0_12449
from flask import Blueprint from flask_admin.base import MenuLink from flask_admin.consts import ICON_TYPE_IMAGE from ddui.dash_app import app as dash_view from airflow.plugins_manager import AirflowPlugin ml_repo_website = MenuLink( category='DataDriver', name='Git repository', url='https://gitlab.octo.com/dd/ddui.git', icon_type=ICON_TYPE_IMAGE, icon_value='brian/git.png' ) ml_doc = MenuLink( category='DataDriver', name='DataDriver API documentation', url='http://datadriver-doc-ddapi.s3-website-eu-west-1.amazonaws.com/', icon_type=ICON_TYPE_IMAGE, icon_value='brian/sigle.png' ) ml_version = MenuLink( category='DataDriver', name='Version', url='/dash/version', icon_type=ICON_TYPE_IMAGE, icon_value='brian/sigle.png' ) brian_bp = Blueprint( "brian_web", __name__, template_folder='templates', static_folder='static/brian', static_url_path='/static/brian', ) class DataDriverUIPlugin(AirflowPlugin): name = 'DataDriver UI Plugin' operators = [] hooks = [] executors = [] macros = [] admin_views = [dash_view] flask_blueprints = [brian_bp] menu_links = [ml_doc, ml_repo_website, ml_version]
the-stack_0_12451
from threading import Thread, Event from queue import Queue import time import numpy as np import traceback # This code originally used Process not Thread. # Process is much slower to start (Process.start() is ~100 ms, Thread.start() is a few ms) # The process-safe versions of Queue and Event are also significantly slower. # On the other hand, CPU-bound Python threads can't run in parallel ("global interpreter lock"). # The overall problem is not CPU-bound - we should always be limited by tProc execution. # In the worst case where the tProc is running fast, we should actually be waiting for IO a lot (due to the DMA). # So we think it's safe to use threads. # However, this is a complicated problem and we may ultimately need to mess around with sys.setswitchinterval() or go back to Process. # To use Process instead of Thread, use the following import and change WORKERTYPE. #from multiprocessing import Process, Queue, Event class DataStreamer(): """ Uses a separate thread to read data from the average buffers. The class methods define the readout loop and initialization of the worker thread. The QickSoc methods start_readout() and poll_data() are the external interface to the streamer. We don't lock the QickSoc or the IPs. The user is responsible for not disrupting a readout in progress. :param soc: The QickSoc object. :type soc: QickSoc """ #WORKERTYPE = Process WORKERTYPE = Thread def __init__(self, soc): self.soc = soc self.start_worker() def start_worker(self): # Initialize flags and queues. # Passes run commands from the main thread to the worker thread. self.job_queue = Queue() # Passes data from the worker thread to the main thread. self.data_queue = Queue() # Passes exceptions from the worker thread to the main thread. self.error_queue = Queue() # The main thread can use this flag to tell the worker thread to stop. # The main thread clears the flag when starting readout. self.stop_flag = Event() # The worker thread uses this to tell the main thread when it's done. # The main thread clears the flag when starting readout. self.done_flag = Event() self.done_flag.set() # Process object for the streaming readout. # daemon=True means the readout thread will be killed if the parent is killed self.readout_worker = self.WORKERTYPE(target=self._run_readout, daemon=True) self.readout_worker.start() def stop_readout(self): """ Signal the readout loop to break. """ self.stop_flag.set() def readout_running(self): """ Test if the readout loop is running. :return: readout thread status :rtype: bool """ return not self.done_flag.is_set() def data_available(self): """ Test if data is available in the queue. :return: data queue status :rtype: bool """ return not self.data_queue.empty() def _run_readout(self): """ Worker thread for the streaming readout :param total_count: Number of data points expected :type addr: int :param counter_addr: Data memory address for the loop counter :type counter_addr: int :param ch_list: List of readout channels :type addr: list :param reads_per_count: Number of data points to expect per counter increment :type reads_per_count: int """ while True: try: # wait for a job total_count, counter_addr, ch_list, reads_per_count = self.job_queue.get(block=True) #print("streamer loop: start", total_count) count = 0 last_count = 0 # how many measurements to transfer at a time stride = int(0.1 * self.soc.get_avg_max_length(0)) # bigger stride is more efficient, but the transfer size must never exceed AVG_MAX_LENGTH, so the stride should be set with some safety margin # make sure count variable is reset to 0 before starting processor self.soc.tproc.single_write(addr=counter_addr, data=0) stats = [] t_start = time.time() # if the tproc is configured for internal start, this will start the program # for external start, the program will not start until a start pulse is received self.soc.tproc.start() # Keep streaming data until you get all of it while last_count < total_count: if self.stop_flag.is_set(): print("streamer loop: got stop flag") break count = self.soc.tproc.single_read( addr=counter_addr)*reads_per_count # wait until either you've gotten a full stride of measurements or you've finished (so you don't go crazy trying to download every measurement) if count >= min(last_count+stride, total_count): addr = last_count % self.soc.get_avg_max_length(0) length = count-last_count if length >= self.soc.get_avg_max_length(0): raise RuntimeError("Overflowed the averages buffer (%d unread samples >= buffer size %d)." % (length, self.soc.get_avg_max_length(0)) + "\nYou need to slow down the tProc by increasing relax_delay." + "\nIf the TQDM progress bar is enabled, disabling it may help.") # transfers must be of even length; trim the length (instead of padding it) # don't trim if this is the last read of the run if count < last_count: length -= length % 2 # buffer for each channel d_buf = np.zeros((len(ch_list), 2, length)) # for each adc channel get the single shot data and add it to the buffer for iCh, ch in enumerate(ch_list): data = self.soc.get_accumulated( ch=ch, address=addr, length=length) d_buf[iCh] = data last_count += length stats = (time.time()-t_start, count, addr, length) self.data_queue.put((length, (d_buf, stats))) #if last_count==total_count: print("streamer loop: normal completion") except Exception as e: print("streamer loop: got exception") traceback.print_exc() # pass the exception to the main thread self.error_queue.put(e) # put dummy data in the data queue, to trigger a poll_data read self.data_queue.put((0, (None, None))) finally: # we should set the done flag regardless of whether we completed readout, used the stop flag, or errored out self.done_flag.set()
the-stack_0_12452
from django import template register = template.Library() @register.filter def getcount(item, choice): """returns the number of times choice has been selected for item""" return item.userchoices.filter(choice=choice).count() @register.filter def getuniqueitems(userchoices): """return a list of unique items given a bunch of userchoices""" items = [] for userchoice in userchoices: if userchoice.item not in items: items.append(userchoice.item) return items @register.filter def getzerochoiceitems(items, choice): """return a list of unique items where the given choice has been chosen zero times""" returnitems = [] for item in items: if item.userchoices.filter(choice=choice).count()==0: if item not in returnitems: returnitems.append(item) return returnitems
the-stack_0_12454
# Copyright 2018 The Bazel Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Partial implementations for resource processing. Resources are procesed according to type, by a series of methods that deal with the specifics for each resource type. Each of this methods returns a struct, which always have a `files` field containing resource tuples as described in processor.bzl. Optionally, the structs can also have an `infoplists` field containing a list of plists that should be merged into the root Info.plist. """ load( "@build_bazel_rules_apple//apple/bundling:file_actions.bzl", "file_actions", ) load( "@build_bazel_rules_apple//apple/internal/partials/support:resources_support.bzl", "resources_support", ) load( "@build_bazel_rules_apple//apple/internal:intermediates.bzl", "intermediates", ) load( "@build_bazel_rules_apple//apple/internal:outputs.bzl", "outputs", ) load( "@build_bazel_rules_apple//apple/internal:processor.bzl", "processor", ) load( "@build_bazel_rules_apple//apple/internal:resource_actions.bzl", "resource_actions", ) load( "@build_bazel_rules_apple//apple/internal:resources.bzl", "NewAppleResourceInfo", "resources", ) load( "@build_bazel_rules_apple//apple:providers.bzl", "AppleBundleInfo", ) load( "@bazel_skylib//lib:new_sets.bzl", "sets", ) load( "@bazel_skylib//lib:partial.bzl", "partial", ) def _merge_root_infoplists(ctx, infoplists, out_infoplist, **kwargs): """Registers the root Info.plist generation action. Args: ctx: The target's rule context. infoplists: List of plists that should be merged into the root Info.plist. out_infoplist: Reference to the output Info plist. **kwargs: Extra parameters forwarded into the merge_root_infoplists action. Returns: A list of tuples as described in processor.bzl with the Info.plist file reference and the PkgInfo file if required. """ # TODO(b/73349137): Remove this symlink. It's only used so that the file has the proper name # when bundled. plist_symlink = intermediates.file( ctx.actions, ctx.label.name, "Info.plist", ) files = [plist_symlink] file_actions.symlink(ctx, out_infoplist, plist_symlink) out_pkginfo = None if ctx.attr._needs_pkginfo: out_pkginfo = intermediates.file( ctx.actions, ctx.label.name, "PkgInfo", ) files.append(out_pkginfo) resource_actions.merge_root_infoplists( ctx, infoplists, out_infoplist, out_pkginfo, **kwargs ) return [(processor.location.content, None, depset(direct = files))] def _deduplicate(resources_provider, avoid_provider, field): """Deduplicates and returns resources between 2 providers for a given field. Deduplication happens by comparing the target path of a file and the files themselves. If there are 2 resources with the same target path but different contents, the files will not be deduplicated. This approach is naïve in the sense that it deduplicates resources too aggressively. We also need to compare the target that references the resources so that they are not deduplicated if they are referenced within multiple binary-containing bundles. Args: resources_provider: The provider with the resources to be bundled. avoid_provider: The provider with the resources to avoid bundling. field: The field to deduplicate resources on. Returns: A list of tuples with the resources present in avoid_providers removed from resources_providers. """ # Build a dictionary with the file paths under each key for the avoided resources. avoid_dict = {} if avoid_provider and hasattr(avoid_provider, field): for parent_dir, swift_module, files in getattr(avoid_provider, field): key = "%s_%s" % (parent_dir or "root", swift_module or "root") avoid_dict[key] = {x.short_path: None for x in files.to_list()} # Get the resources to keep, compare them to the avoid_dict under the same # key, and remove the duplicated file references. Then recreate the original # tuple with only the remaining files, if any. deduped_tuples = [] for parent_dir, swift_module, files in getattr(resources_provider, field): key = "%s_%s" % (parent_dir or "root", swift_module or "root") # Dictionary used as a set to mark files as processed by short_path to deduplicate generated # files that may appear more than once if multiple architectures are being built. multi_architecture_deduplication_set = {} deduped_files = depset([]) for to_bundle_file in files.to_list(): short_path = to_bundle_file.short_path if short_path in multi_architecture_deduplication_set: continue multi_architecture_deduplication_set[short_path] = None if key in avoid_dict and short_path in avoid_dict[key]: # If the resource file is present in the provider of resources to avoid, we compare # the owners of the resource through the owners dictionaries of the providers. If # there are owners present in resources_provider which are not present in # avoid_provider, it means that there is at least one target that declares usage of # the resource which is not accounted for in avoid_provider. If this is the case, we # add the resource to be bundled in the bundle represented by resource_provider. deduped_owners = [ o for o in resources_provider.owners[short_path] if o not in avoid_provider.owners[short_path] ] if deduped_owners: deduped_files = depset( direct = [to_bundle_file], transitive = [deduped_files], ) else: deduped_files = depset(direct = [to_bundle_file], transitive = [deduped_files]) if deduped_files: deduped_tuples.append((parent_dir, swift_module, deduped_files)) return deduped_tuples def _locales_requested(ctx): """Determines which locales to include when resource actions. If the user has specified "apple.locales_to_include" we use those. Otherwise we don't filter. 'Base' is included by default to any given list of locales to include. Args: ctx: The rule context. Returns: A set of locales to include or None if all should be included. """ requested_locales = ctx.var.get("apple.locales_to_include") if requested_locales != None: return sets.make(["Base"] + [x.strip() for x in requested_locales.split(",")]) else: return None def _locale_for_path(resource_path): """Returns the detected locale for the given resource path.""" if not resource_path: return None loc = resource_path.find(".lproj") if loc == -1: return None # If there was more after '.lproj', then it has to be a directory, otherwise # it was part of some other extension. if (loc + 6) > len(resource_path) and resource_path[loc + 6] != "/": return None locale_start = resource_path.rfind("/", end = loc) if locale_start < 0: return resource_path[0:loc] return resource_path[locale_start + 1:loc] def _validate_processed_locales(locales_requested, locales_included, locales_dropped): """Prints a warning if locales were dropped and none of the requested ones were included.""" if sets.length(locales_dropped): # Display a warning if a locale was dropped and there are unfulfilled locale requests; it # could mean that the user made a mistake in defining the locales they want to keep. if not sets.is_equal(locales_requested, locales_included): unused_locales = sets.difference(locales_requested, locales_included) print("Warning: Did not have resources that matched " + sets.str(unused_locales) + " in locale filter. Please verify apple.locales_to_include is defined" + " properly.") def _resources_partial_impl( ctx, bundle_id, bundle_verification_targets, plist_attrs, targets_to_avoid, top_level_attrs, version_keys_required): """Implementation for the resource processing partial.""" providers = [] if hasattr(ctx.attr, "deps"): providers.extend([ x[NewAppleResourceInfo] for x in ctx.attr.deps if NewAppleResourceInfo in x ]) # TODO(kaipi): Bucket top_level_attrs directly instead of collecting and # splitting. files = resources.collect(ctx.attr, res_attrs = top_level_attrs) if files: providers.append(resources.bucketize(files, owner = str(ctx.label))) if plist_attrs: plists = resources.collect(ctx.attr, res_attrs = plist_attrs) plist_provider = resources.bucketize_typed( plists, owner = str(ctx.label), bucket_type = "infoplists", ) providers.append(plist_provider) avoid_providers = [ x[NewAppleResourceInfo] for x in targets_to_avoid if NewAppleResourceInfo in x ] avoid_provider = None if avoid_providers: # Call merge_providers with validate_all_resources_owned set, to ensure that all the # resources from dependency bundles have an owner. avoid_provider = resources.merge_providers( avoid_providers, validate_all_resources_owned = True, ) final_provider = resources.merge_providers(providers, default_owner = str(ctx.label)) # Map of resource provider fields to a tuple that contains the method to use to process those # resources and a boolean indicating whether the Swift module is required for that processing. provider_field_to_action = { "asset_catalogs": (resources_support.asset_catalogs, False), "datamodels": (resources_support.datamodels, True), "infoplists": (resources_support.infoplists, False), "plists": (resources_support.plists_and_strings, False), "pngs": (resources_support.pngs, False), # TODO(b/113252360): Remove this once we can correctly process Fileset files. "resource_zips": (resources_support.resource_zips, False), "storyboards": (resources_support.storyboards, True), "strings": (resources_support.plists_and_strings, False), "texture_atlases": (resources_support.texture_atlases, False), "unprocessed": (resources_support.noop, False), "xibs": (resources_support.xibs, True), } # List containing all the files that the processor will bundle in their # configured location. bundle_files = [] fields = resources.populated_resource_fields(final_provider) infoplists = [] locales_requested = _locales_requested(ctx) locales_included = sets.make(["Base"]) locales_dropped = sets.make() for field in fields: processing_func, requires_swift_module = provider_field_to_action[field] deduplicated = _deduplicate(final_provider, avoid_provider, field) for parent_dir, swift_module, files in deduplicated: if locales_requested: locale = _locale_for_path(parent_dir) if sets.contains(locales_requested, locale): sets.insert(locales_included, locale) elif locale != None: sets.insert(locales_dropped, locale) continue processing_args = { "ctx": ctx, "parent_dir": parent_dir, "files": files, } # Only pass the Swift module name if the type of resource to process # requires it. if requires_swift_module: processing_args["swift_module"] = swift_module result = processing_func(**processing_args) bundle_files.extend(result.files) if hasattr(result, "infoplists"): infoplists.extend(result.infoplists) if locales_requested: _validate_processed_locales(locales_requested, locales_included, locales_dropped) if bundle_id: # If no bundle ID was given, do not process the root Info.plist and do not validate embedded # bundles. bundle_verification_infoplists = [ b.target[AppleBundleInfo].infoplist for b in bundle_verification_targets ] bundle_verification_required_values = [ ( b.target[AppleBundleInfo].infoplist, [[b.parent_bundle_id_reference, bundle_id]], ) for b in bundle_verification_targets if hasattr(b, "parent_bundle_id_reference") ] out_infoplist = outputs.infoplist(ctx) bundle_files.extend( _merge_root_infoplists( ctx, infoplists, out_infoplist, bundle_id = bundle_id, child_plists = bundle_verification_infoplists, child_required_values = bundle_verification_required_values, version_keys_required = version_keys_required, ), ) return struct(bundle_files = bundle_files, providers = [final_provider]) def resources_partial( bundle_id = None, bundle_verification_targets = [], plist_attrs = [], targets_to_avoid = [], top_level_attrs = [], version_keys_required = True): """Constructor for the resources processing partial. This partial collects and propagates all resources that should be bundled in the target being processed. Args: bundle_id: Optional bundle ID to use when processing resources. If no bundle ID is given, the bundle will not contain a root Info.plist and no embedded bundle verification will occur. bundle_verification_targets: List of structs that reference embedable targets that need to be validated. The structs must have a `target` field with the target containing an Info.plist file that will be validated. The structs may also have a `parent_bundle_id_reference` field that contains the plist path, in list form, to the plist entry that must contain this target's bundle ID. plist_attrs: List of attributes that should be processed as Info plists that should be merged and processed. targets_to_avoid: List of targets containing resources that should be deduplicated from the target being processed. top_level_attrs: List of attributes containing resources that need to be processed from the target being processed. version_keys_required: Whether to validate that the Info.plist version keys are correctly configured. Returns: A partial that returns the bundle location of the resources and the resources provider. """ return partial.make( _resources_partial_impl, bundle_id = bundle_id, bundle_verification_targets = bundle_verification_targets, plist_attrs = plist_attrs, targets_to_avoid = targets_to_avoid, top_level_attrs = top_level_attrs, version_keys_required = version_keys_required, )
the-stack_0_12455
# -*- coding: utf-8 -*- # # Copyright (c) 2015, Alcatel-Lucent Inc, 2017 Nokia # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from .fetchers import NUMetadatasFetcher from .fetchers import NUNetconfSessionsFetcher from .fetchers import NUGlobalMetadatasFetcher from bambou import NURESTObject class NUNetconfManager(NURESTObject): """ Represents a NetconfManager in the VSD Notes: Identifies Netconf Manager communicating with VSD, This can only be created by netconfmgr user """ __rest_name__ = "netconfmanager" __resource_name__ = "netconfmanagers" ## Constants CONST_STATUS_CONNECTED = "CONNECTED" CONST_ENTITY_SCOPE_GLOBAL = "GLOBAL" CONST_STATUS_JMS_DISCONNECTED = "JMS_DISCONNECTED" CONST_ENTITY_SCOPE_ENTERPRISE = "ENTERPRISE" CONST_STATUS_DISCONNECTED = "DISCONNECTED" CONST_STATUS_INIT = "INIT" def __init__(self, **kwargs): """ Initializes a NetconfManager instance Notes: You can specify all parameters while calling this methods. A special argument named `data` will enable you to load the object from a Python dictionary Examples: >>> netconfmanager = NUNetconfManager(id=u'xxxx-xxx-xxx-xxx', name=u'NetconfManager') >>> netconfmanager = NUNetconfManager(data=my_dict) """ super(NUNetconfManager, self).__init__() # Read/Write Attributes self._name = None self._last_updated_by = None self._release = None self._entity_scope = None self._assoc_entity_type = None self._status = None self._external_id = None self.expose_attribute(local_name="name", remote_name="name", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="last_updated_by", remote_name="lastUpdatedBy", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="release", remote_name="release", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="entity_scope", remote_name="entityScope", attribute_type=str, is_required=False, is_unique=False, choices=[u'ENTERPRISE', u'GLOBAL']) self.expose_attribute(local_name="assoc_entity_type", remote_name="assocEntityType", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="status", remote_name="status", attribute_type=str, is_required=False, is_unique=False, choices=[u'CONNECTED', u'DISCONNECTED', u'INIT', u'JMS_DISCONNECTED']) self.expose_attribute(local_name="external_id", remote_name="externalID", attribute_type=str, is_required=False, is_unique=True) # Fetchers self.metadatas = NUMetadatasFetcher.fetcher_with_object(parent_object=self, relationship="child") self.netconf_sessions = NUNetconfSessionsFetcher.fetcher_with_object(parent_object=self, relationship="child") self.global_metadatas = NUGlobalMetadatasFetcher.fetcher_with_object(parent_object=self, relationship="child") self._compute_args(**kwargs) # Properties @property def name(self): """ Get name value. Notes: A unique name of the Netconf Manager entity. """ return self._name @name.setter def name(self, value): """ Set name value. Notes: A unique name of the Netconf Manager entity. """ self._name = value @property def last_updated_by(self): """ Get last_updated_by value. Notes: ID of the user who last updated the object. This attribute is named `lastUpdatedBy` in VSD API. """ return self._last_updated_by @last_updated_by.setter def last_updated_by(self, value): """ Set last_updated_by value. Notes: ID of the user who last updated the object. This attribute is named `lastUpdatedBy` in VSD API. """ self._last_updated_by = value @property def release(self): """ Get release value. Notes: Netconf Manager RPM release version """ return self._release @release.setter def release(self, value): """ Set release value. Notes: Netconf Manager RPM release version """ self._release = value @property def entity_scope(self): """ Get entity_scope value. Notes: Specify if scope of entity is Data center or Enterprise level This attribute is named `entityScope` in VSD API. """ return self._entity_scope @entity_scope.setter def entity_scope(self, value): """ Set entity_scope value. Notes: Specify if scope of entity is Data center or Enterprise level This attribute is named `entityScope` in VSD API. """ self._entity_scope = value @property def assoc_entity_type(self): """ Get assoc_entity_type value. Notes: Type of parent entity This attribute is named `assocEntityType` in VSD API. """ return self._assoc_entity_type @assoc_entity_type.setter def assoc_entity_type(self, value): """ Set assoc_entity_type value. Notes: Type of parent entity This attribute is named `assocEntityType` in VSD API. """ self._assoc_entity_type = value @property def status(self): """ Get status value. Notes: VSD connection status with this Netconf Manager """ return self._status @status.setter def status(self, value): """ Set status value. Notes: VSD connection status with this Netconf Manager """ self._status = value @property def external_id(self): """ Get external_id value. Notes: External object ID. Used for integration with third party systems This attribute is named `externalID` in VSD API. """ return self._external_id @external_id.setter def external_id(self, value): """ Set external_id value. Notes: External object ID. Used for integration with third party systems This attribute is named `externalID` in VSD API. """ self._external_id = value
the-stack_0_12457
import numpy as np import pandas as pd from abc import abstractmethod from gym.spaces import Space, Box from typing import Dict from trades import Trade, TradeType from exchanges import InstrumentExchange from slippage import RandomSlippageModel class SimulatedExchange(InstrumentExchange): """An instrument exchange, in which the price history is based off the supplied data frame and trade execution is largely decided by the designated slippage model. If the `data_frame` parameter is not supplied upon initialization, it must be set before the exchange can be used within a trading environment. """ def __init__(self, data_frame: pd.DataFrame = None, **kwargs): super().__init__(base_instrument=kwargs.get('base_instrument', 'USD'), dtype=kwargs.get('dtype', np.float16)) if data_frame is not None: self._data_frame = data_frame.astype(self._dtype) self._commission_percent = kwargs.get('commission_percent', 0.3) self._base_precision = kwargs.get('base_precision', 2) self._instrument_precision = kwargs.get('instrument_precision', 8) self._initial_balance = kwargs.get('initial_balance', 1E4) self._min_order_amount = kwargs.get('min_order_amount', 1E-3) self._min_trade_price = kwargs.get('min_trade_price', 1E-6) self._max_trade_price = kwargs.get('max_trade_price', 1E6) self._min_trade_amount = kwargs.get('min_trade_amount', 1E-3) self._max_trade_amount = kwargs.get('max_trade_amount', 1E6) max_allowed_slippage_percent = kwargs.get('max_allowed_slippage_percent', 1.0) SlippageModelClass = kwargs.get('slippage_model', RandomSlippageModel) self._slippage_model = SlippageModelClass(max_allowed_slippage_percent) @property def data_frame(self) -> pd.DataFrame: """The underlying data model backing the price and volume simulation.""" return self._data_frame @data_frame.setter def data_frame(self, data_frame: pd.DataFrame): self._data_frame = data_frame @property def initial_balance(self) -> float: return self._initial_balance @property def balance(self) -> float: return self._balance @property def portfolio(self) -> Dict[str, float]: return self._portfolio @property def trades(self) -> pd.DataFrame: return self._trades @property def performance(self) -> pd.DataFrame: return self._performance @property def observation_space(self) -> Space: low = np.array([self._min_trade_price, ] * 4 + [self._min_trade_amount, ]) high = np.array([self._max_trade_price, ] * 4 + [self._max_trade_amount, ]) return Box(low=low, high=high, dtype=self._dtype) @property def has_next_observation(self) -> bool: return self._current_step < len(self._data_frame) - 1 def next_observation(self) -> pd.DataFrame: obs = self._data_frame.iloc[self._current_step] self._current_step += 1 return obs def current_price(self, symbol: str) -> float: if len(self._data_frame) is 0: self.next_observation() return float(self._data_frame['close'].values[self._current_step]) def _is_valid_trade(self, trade: Trade) -> bool: if trade.trade_type is TradeType.MARKET_BUY or trade.trade_type is TradeType.LIMIT_BUY: return trade.amount >= self._min_order_amount and self._balance >= trade.amount * trade.price elif trade.trade_type is TradeType.MARKET_SELL or trade.trade_type is TradeType.LIMIT_SELL: return trade.amount >= self._min_order_amount and self._portfolio.get(trade.symbol, 0) >= trade.amount return True def _update_account(self, trade: Trade): if trade.amount > 0: self._trades = self._trades.append({ 'step': self._current_step, 'symbol': trade.symbol, 'type': trade.trade_type, 'amount': trade.amount, 'price': trade.price }, ignore_index=True) if trade.is_buy: self._balance -= trade.amount * trade.price self._portfolio[trade.symbol] = self._portfolio.get(trade.symbol, 0) + trade.amount elif trade.is_sell: self._balance += trade.amount * trade.price self._portfolio[trade.symbol] = self._portfolio.get(trade.symbol, 0) - trade.amount self._portfolio[self._base_instrument] = self._balance self._performance.append({ 'balance': self.balance, 'net_worth': self.net_worth, }, ignore_index=True) def execute_trade(self, trade: Trade) -> Trade: current_price = self.current_price(symbol=trade.symbol) commission = self._commission_percent / 100 filled_trade = trade.copy() if filled_trade.is_hold or not self._is_valid_trade(filled_trade): filled_trade.amount = 0 elif filled_trade.is_buy: price_adjustment = price_adjustment = (1 + commission) filled_trade.price = round(current_price * price_adjustment, self._base_precision) filled_trade.amount = round( (filled_trade.price * filled_trade.amount) / filled_trade.price, self._instrument_precision) elif filled_trade.is_sell: price_adjustment = (1 - commission) filled_trade.price = round(current_price * price_adjustment, self._base_precision) filled_trade.amount = round(filled_trade.amount, self._instrument_precision) filled_trade = self._slippage_model.fill_order(filled_trade, current_price) self._update_account(filled_trade) return filled_trade def reset(self): self._balance = self._initial_balance self._portfolio = {self._base_instrument: self._balance} self._trades = pd.DataFrame([], columns=['step', 'symbol', 'type', 'amount', 'price']) self._performance = pd.DataFrame([], columns=['balance', 'net_worth']) self._current_step = 0
the-stack_0_12458
#!/usr/bin/env python3 from omxplayer.player import OMXPlayer from pathlib import Path from time import sleep import logging logging.basicConfig(level=logging.INFO) import socket import pdb noCommMode = False if not noCommMode: HOST = '' PORT = 55555 sock = socket.socket(socket.AF_INET,socket.SOCK_STREAM) sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) sock.bind((HOST,PORT)) sock.listen(1) conn,addr = sock.accept() vidPath = "raspi.avi" player_log = logging.getLogger("Player 1") player = OMXPlayer(vidPath, dbus_name='org.mpris.MediaPlayer2.omxplayer1') player.playEvent += lambda _: player_log.info("Play") player.pauseEvent += lambda _: player_log.info("Pause") player.stopEvent += lambda _: player_log.info("Stop") player.set_aspect_mode('stretch') player.set_video_pos(0, 0, 700, int(512*2.14)) sleep(10) if noCommMode: # for debugging player.set_position(120*60) # player.play() # sleep(1) # player.pause() sleep(20) player.set_position(130*60) # player.play() sleep(20) player.set_position(140*60) sleep(20) player.stop() else: while True: data = conn.recv(1024) print('received: '+str(data)) if data=='term': break if '_' in data: cmd = data.split('_')[0] arg = float(data.split('_')[1]) if cmd=='pause': player.set_position(arg) player.play() sleep(10) player.pause() elif cmd=='play': player.set_position(arg) conn.close() player.quit()
the-stack_0_12459
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import mxnet as mx import numpy as np import onnxruntime import pytest import shutil from mxnet import gluon from mxnet.test_utils import assert_almost_equal @pytest.mark.skip(reason='Gluon no long support v1.x models since https://github.com/apache/incubator-mxnet/pull/20262') def test_resnet50_v2(tmp_path): try: ctx = mx.cpu() model = gluon.model_zoo.vision.resnet50_v2(pretrained=True, ctx=ctx) BS = 1 inp = mx.random.uniform(0, 1, (1, 3, 224, 224)) model.hybridize(static_alloc=True) out = model(inp) prefix = "%s/resnet50" % tmp_path model.export(prefix) sym_file = "%s-symbol.json" % prefix params_file = "%s-0000.params" % prefix onnx_file = "%s.onnx" % prefix dynamic_input_shapes = [('batch', 3, 224, 224)] input_shapes = [(1, 3, 224, 224)] input_types = [np.float32] converted_model_path = mx.onnx.export_model(sym_file, params_file, input_shapes, input_types, onnx_file, dynamic=True, dynamic_input_shapes=dynamic_input_shapes) ses_opt = onnxruntime.SessionOptions() ses_opt.log_severity_level = 3 session = onnxruntime.InferenceSession(onnx_file, ses_opt) BS = 10 inp = mx.random.uniform(0, 1, (1, 3, 224, 224)) mx_out = model(inp) onnx_inputs = [inp] input_dict = dict((session.get_inputs()[i].name, onnx_inputs[i].asnumpy()) for i in range(len(onnx_inputs))) on_out = session.run(None, input_dict) assert_almost_equal(mx_out, on_out, rtol=0.001, atol=0.01) finally: shutil.rmtree(tmp_path)
the-stack_0_12461
#!/usr/bin/python3 """Resets the datastore Deletes all sqlite files. This will not reset nifi but reset lhipa and cl model states """ __author__ = "Martin Eigenmann" __license__ = "unlicence" __version__ = "0.0.1" __email__ = "[email protected]" __status__ = "Prototpye" import json import sys import os import sqlite3 for f in os.listdir('/data'): if len(f.split('-')) == 1: db = sqlite3.connect(f'/data/{f}') cursor = db.cursor() cursor.execute('DROP TABLE IF EXISTS et') db.commit() cursor.close() db.close() os.remove(f'/data/{f}') print(json.dumps({ "reset": True }))
the-stack_0_12462
# Copyright (c) OpenMMLab. All rights reserved. import numpy as np import torch from torch import nn as nn from torch.nn import functional as F from mmseg.core import add_prefix from ..builder import (SEGMENTORS, build_backbone, build_head, build_loss, build_neck) from .base import Base3DSegmentor @SEGMENTORS.register_module() class EncoderDecoder3D(Base3DSegmentor): """3D Encoder Decoder segmentors. EncoderDecoder typically consists of backbone, decode_head, auxiliary_head. Note that auxiliary_head is only used for deep supervision during training, which could be thrown during inference. """ def __init__(self, backbone, decode_head, neck=None, auxiliary_head=None, loss_regularization=None, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None): super(EncoderDecoder3D, self).__init__(init_cfg=init_cfg) self.backbone = build_backbone(backbone) if neck is not None: self.neck = build_neck(neck) self._init_decode_head(decode_head) self._init_auxiliary_head(auxiliary_head) self._init_loss_regularization(loss_regularization) self.train_cfg = train_cfg self.test_cfg = test_cfg assert self.with_decode_head, \ '3D EncoderDecoder Segmentor should have a decode_head' def _init_decode_head(self, decode_head): """Initialize ``decode_head``""" self.decode_head = build_head(decode_head) self.num_classes = self.decode_head.num_classes def _init_auxiliary_head(self, auxiliary_head): """Initialize ``auxiliary_head``""" if auxiliary_head is not None: if isinstance(auxiliary_head, list): self.auxiliary_head = nn.ModuleList() for head_cfg in auxiliary_head: self.auxiliary_head.append(build_head(head_cfg)) else: self.auxiliary_head = build_head(auxiliary_head) def _init_loss_regularization(self, loss_regularization): """Initialize ``loss_regularization``""" if loss_regularization is not None: if isinstance(loss_regularization, list): self.loss_regularization = nn.ModuleList() for loss_cfg in loss_regularization: self.loss_regularization.append(build_loss(loss_cfg)) else: self.loss_regularization = build_loss(loss_regularization) def extract_feat(self, points): """Extract features from points.""" x = self.backbone(points) if self.with_neck: x = self.neck(x) return x def encode_decode(self, points, img_metas): """Encode points with backbone and decode into a semantic segmentation map of the same size as input. Args: points (torch.Tensor): Input points of shape [B, N, 3+C]. img_metas (list[dict]): Meta information of each sample. Returns: torch.Tensor: Segmentation logits of shape [B, num_classes, N]. """ x = self.extract_feat(points) out = self._decode_head_forward_test(x, img_metas) return out def _decode_head_forward_train(self, x, img_metas, pts_semantic_mask): """Run forward function and calculate loss for decode head in training.""" losses = dict() loss_decode = self.decode_head.forward_train(x, img_metas, pts_semantic_mask, self.train_cfg) losses.update(add_prefix(loss_decode, 'decode')) return losses def _decode_head_forward_test(self, x, img_metas): """Run forward function and calculate loss for decode head in inference.""" seg_logits = self.decode_head.forward_test(x, img_metas, self.test_cfg) return seg_logits def _auxiliary_head_forward_train(self, x, img_metas, pts_semantic_mask): """Run forward function and calculate loss for auxiliary head in training.""" losses = dict() if isinstance(self.auxiliary_head, nn.ModuleList): for idx, aux_head in enumerate(self.auxiliary_head): loss_aux = aux_head.forward_train(x, img_metas, pts_semantic_mask, self.train_cfg) losses.update(add_prefix(loss_aux, f'aux_{idx}')) else: loss_aux = self.auxiliary_head.forward_train( x, img_metas, pts_semantic_mask, self.train_cfg) losses.update(add_prefix(loss_aux, 'aux')) return losses def _loss_regularization_forward_train(self): """Calculate regularization loss for model weight in training.""" losses = dict() if isinstance(self.loss_regularization, nn.ModuleList): for idx, regularize_loss in enumerate(self.loss_regularization): loss_regularize = dict( loss_regularize=regularize_loss(self.modules())) losses.update(add_prefix(loss_regularize, f'regularize_{idx}')) else: loss_regularize = dict( loss_regularize=self.loss_regularization(self.modules())) losses.update(add_prefix(loss_regularize, 'regularize')) return losses def forward_dummy(self, points): """Dummy forward function.""" seg_logit = self.encode_decode(points, None) return seg_logit def forward_train(self, points, img_metas, pts_semantic_mask): """Forward function for training. Args: points (list[torch.Tensor]): List of points of shape [N, C]. img_metas (list): Image metas. pts_semantic_mask (list[torch.Tensor]): List of point-wise semantic labels of shape [N]. Returns: dict[str, Tensor]: Losses. """ points_cat = torch.stack(points) pts_semantic_mask_cat = torch.stack(pts_semantic_mask) # extract features using backbone x = self.extract_feat(points_cat) losses = dict() loss_decode = self._decode_head_forward_train(x, img_metas, pts_semantic_mask_cat) losses.update(loss_decode) if self.with_auxiliary_head: loss_aux = self._auxiliary_head_forward_train( x, img_metas, pts_semantic_mask_cat) losses.update(loss_aux) if self.with_regularization_loss: loss_regularize = self._loss_regularization_forward_train() losses.update(loss_regularize) return losses @staticmethod def _input_generation(coords, patch_center, coord_max, feats, use_normalized_coord=False): """Generating model input. Generate input by subtracting patch center and adding additional features. Currently support colors and normalized xyz as features. Args: coords (torch.Tensor): Sampled 3D point coordinate of shape [S, 3]. patch_center (torch.Tensor): Center coordinate of the patch. coord_max (torch.Tensor): Max coordinate of all 3D points. feats (torch.Tensor): Features of sampled points of shape [S, C]. use_normalized_coord (bool, optional): Whether to use normalized xyz as additional features. Defaults to False. Returns: torch.Tensor: The generated input data of shape [S, 3+C']. """ # subtract patch center, the z dimension is not centered centered_coords = coords.clone() centered_coords[:, 0] -= patch_center[0] centered_coords[:, 1] -= patch_center[1] # normalized coordinates as extra features if use_normalized_coord: normalized_coord = coords / coord_max feats = torch.cat([feats, normalized_coord], dim=1) points = torch.cat([centered_coords, feats], dim=1) return points def _sliding_patch_generation(self, points, num_points, block_size, sample_rate=0.5, use_normalized_coord=False, eps=1e-3): """Sampling points in a sliding window fashion. First sample patches to cover all the input points. Then sample points in each patch to batch points of a certain number. Args: points (torch.Tensor): Input points of shape [N, 3+C]. num_points (int): Number of points to be sampled in each patch. block_size (float, optional): Size of a patch to sample. sample_rate (float, optional): Stride used in sliding patch. Defaults to 0.5. use_normalized_coord (bool, optional): Whether to use normalized xyz as additional features. Defaults to False. eps (float, optional): A value added to patch boundary to guarantee points coverage. Defaults to 1e-3. Returns: np.ndarray | np.ndarray: - patch_points (torch.Tensor): Points of different patches of shape [K, N, 3+C]. - patch_idxs (torch.Tensor): Index of each point in `patch_points`, of shape [K, N]. """ device = points.device # we assume the first three dims are points' 3D coordinates # and the rest dims are their per-point features coords = points[:, :3] feats = points[:, 3:] coord_max = coords.max(0)[0] coord_min = coords.min(0)[0] stride = block_size * sample_rate num_grid_x = int( torch.ceil((coord_max[0] - coord_min[0] - block_size) / stride).item() + 1) num_grid_y = int( torch.ceil((coord_max[1] - coord_min[1] - block_size) / stride).item() + 1) patch_points, patch_idxs = [], [] for idx_y in range(num_grid_y): s_y = coord_min[1] + idx_y * stride e_y = torch.min(s_y + block_size, coord_max[1]) s_y = e_y - block_size for idx_x in range(num_grid_x): s_x = coord_min[0] + idx_x * stride e_x = torch.min(s_x + block_size, coord_max[0]) s_x = e_x - block_size # extract points within this patch cur_min = torch.tensor([s_x, s_y, coord_min[2]]).to(device) cur_max = torch.tensor([e_x, e_y, coord_max[2]]).to(device) cur_choice = ((coords >= cur_min - eps) & (coords <= cur_max + eps)).all(dim=1) if not cur_choice.any(): # no points in this patch continue # sample points in this patch to multiple batches cur_center = cur_min + block_size / 2.0 point_idxs = torch.nonzero(cur_choice, as_tuple=True)[0] num_batch = int(np.ceil(point_idxs.shape[0] / num_points)) point_size = int(num_batch * num_points) replace = point_size > 2 * point_idxs.shape[0] num_repeat = point_size - point_idxs.shape[0] if replace: # duplicate point_idxs_repeat = point_idxs[torch.randint( 0, point_idxs.shape[0], size=(num_repeat, )).to(device)] else: point_idxs_repeat = point_idxs[torch.randperm( point_idxs.shape[0])[:num_repeat]] choices = torch.cat([point_idxs, point_idxs_repeat], dim=0) choices = choices[torch.randperm(choices.shape[0])] # construct model input point_batches = self._input_generation( coords[choices], cur_center, coord_max, feats[choices], use_normalized_coord=use_normalized_coord) patch_points.append(point_batches) patch_idxs.append(choices) patch_points = torch.cat(patch_points, dim=0) patch_idxs = torch.cat(patch_idxs, dim=0) # make sure all points are sampled at least once assert torch.unique(patch_idxs).shape[0] == points.shape[0], \ 'some points are not sampled in sliding inference' return patch_points, patch_idxs def slide_inference(self, point, img_meta, rescale): """Inference by sliding-window with overlap. Args: point (torch.Tensor): Input points of shape [N, 3+C]. img_meta (dict): Meta information of input sample. rescale (bool): Whether transform to original number of points. Will be used for voxelization based segmentors. Returns: Tensor: The output segmentation map of shape [num_classes, N]. """ num_points = self.test_cfg.num_points block_size = self.test_cfg.block_size sample_rate = self.test_cfg.sample_rate use_normalized_coord = self.test_cfg.use_normalized_coord batch_size = self.test_cfg.batch_size * num_points # patch_points is of shape [K*N, 3+C], patch_idxs is of shape [K*N] patch_points, patch_idxs = self._sliding_patch_generation( point, num_points, block_size, sample_rate, use_normalized_coord) feats_dim = patch_points.shape[1] seg_logits = [] # save patch predictions for batch_idx in range(0, patch_points.shape[0], batch_size): batch_points = patch_points[batch_idx:batch_idx + batch_size] batch_points = batch_points.view(-1, num_points, feats_dim) # batch_seg_logit is of shape [B, num_classes, N] batch_seg_logit = self.encode_decode(batch_points, img_meta) batch_seg_logit = batch_seg_logit.transpose(1, 2).contiguous() seg_logits.append(batch_seg_logit.view(-1, self.num_classes)) # aggregate per-point logits by indexing sum and dividing count seg_logits = torch.cat(seg_logits, dim=0) # [K*N, num_classes] expand_patch_idxs = patch_idxs.unsqueeze(1).repeat(1, self.num_classes) preds = point.new_zeros((point.shape[0], self.num_classes)).\ scatter_add_(dim=0, index=expand_patch_idxs, src=seg_logits) count_mat = torch.bincount(patch_idxs) preds = preds / count_mat[:, None] # TODO: if rescale and voxelization segmentor return preds.transpose(0, 1) # to [num_classes, K*N] def whole_inference(self, points, img_metas, rescale): """Inference with full scene (one forward pass without sliding).""" seg_logit = self.encode_decode(points, img_metas) # TODO: if rescale and voxelization segmentor return seg_logit def inference(self, points, img_metas, rescale): """Inference with slide/whole style. Args: points (torch.Tensor): Input points of shape [B, N, 3+C]. img_metas (list[dict]): Meta information of each sample. rescale (bool): Whether transform to original number of points. Will be used for voxelization based segmentors. Returns: Tensor: The output segmentation map. """ assert self.test_cfg.mode in ['slide', 'whole'] if self.test_cfg.mode == 'slide': seg_logit = torch.stack([ self.slide_inference(point, img_meta, rescale) for point, img_meta in zip(points, img_metas) ], 0) else: seg_logit = self.whole_inference(points, img_metas, rescale) output = F.softmax(seg_logit, dim=1) return output def simple_test(self, points, img_metas, rescale=True): """Simple test with single scene. Args: points (list[torch.Tensor]): List of points of shape [N, 3+C]. img_metas (list[dict]): Meta information of each sample. rescale (bool): Whether transform to original number of points. Will be used for voxelization based segmentors. Defaults to True. Returns: list[dict]: The output prediction result with following keys: - semantic_mask (Tensor): Segmentation mask of shape [N]. """ # 3D segmentation requires per-point prediction, so it's impossible # to use down-sampling to get a batch of scenes with same num_points # therefore, we only support testing one scene every time seg_pred = [] for point, img_meta in zip(points, img_metas): seg_prob = self.inference(point.unsqueeze(0), [img_meta], rescale)[0] seg_map = seg_prob.argmax(0) # [N] # to cpu tensor for consistency with det3d seg_map = seg_map.cpu() seg_pred.append(seg_map) # warp in dict seg_pred = [dict(semantic_mask=seg_map) for seg_map in seg_pred] return seg_pred def aug_test(self, points, img_metas, rescale=True): """Test with augmentations. Args: points (list[torch.Tensor]): List of points of shape [B, N, 3+C]. img_metas (list[list[dict]]): Meta information of each sample. Outer list are different samples while inner is different augs. rescale (bool): Whether transform to original number of points. Will be used for voxelization based segmentors. Defaults to True. Returns: list[dict]: The output prediction result with following keys: - semantic_mask (Tensor): Segmentation mask of shape [N]. """ # in aug_test, one scene going through different augmentations could # have the same number of points and are stacked as a batch # to save memory, we get augmented seg logit inplace seg_pred = [] for point, img_meta in zip(points, img_metas): seg_prob = self.inference(point, img_meta, rescale) seg_prob = seg_prob.mean(0) # [num_classes, N] seg_map = seg_prob.argmax(0) # [N] # to cpu tensor for consistency with det3d seg_map = seg_map.cpu() seg_pred.append(seg_map) # warp in dict seg_pred = [dict(semantic_mask=seg_map) for seg_map in seg_pred] return seg_pred
the-stack_0_12463
# -*- coding: utf-8 -*- # # Copyright (C) 2006-2019 Edgewall Software # All rights reserved. # # This software is licensed as described in the file COPYING, which # you should have received as part of this distribution. The terms # are also available at http://trac.edgewall.org/wiki/TracLicense. # # This software consists of voluntary contributions made by many # individuals. For the exact contribution history, see the revision # history and logs, available at http://trac.edgewall.org/log/. import unittest from trac.mimeview.tests import api, patch, pygments, rst, txtl from trac.mimeview.tests.functional import functionalSuite def test_suite(): suite = unittest.TestSuite() suite.addTest(api.test_suite()) suite.addTest(patch.test_suite()) suite.addTest(pygments.test_suite()) suite.addTest(rst.test_suite()) suite.addTest(txtl.test_suite()) return suite if __name__ == '__main__': unittest.main(defaultTest='test_suite')
the-stack_0_12465
# encoding: utf-8 # For Facebook FACEBOOK_APP_SECRET = '' FACEBOOK_APP_ID = '' TWITTER_CONSUMER_KEY = '' TWITTER_CONSUMER_SECRET = '' MESSAGE_FORMAT = u'''Hi, %(message)s -- %(creator)s''' # set email sender address #default_email_sender = '' # set default address to send messages #default_email_to = '' COMMIT_SCRIPT=''
the-stack_0_12466
# # This file is part of the PyMeasure package. # # Copyright (c) 2013-2021 PyMeasure Developers # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # import logging import os import re import sys from copy import deepcopy from importlib.machinery import SourceFileLoader from datetime import datetime import pandas as pd from .procedure import Procedure, UnknownProcedure from .parameters import Parameter log = logging.getLogger(__name__) log.addHandler(logging.NullHandler()) def unique_filename(directory, prefix='DATA', suffix='', ext='csv', dated_folder=False, index=True, datetimeformat="%Y-%m-%d"): """ Returns a unique filename based on the directory and prefix """ now = datetime.now() directory = os.path.abspath(directory) if dated_folder: directory = os.path.join(directory, now.strftime('%Y-%m-%d')) if not os.path.exists(directory): os.makedirs(directory) if index: i = 1 basename = "%s%s" % (prefix, now.strftime(datetimeformat)) basepath = os.path.join(directory, basename) filename = "%s_%d%s.%s" % (basepath, i, suffix, ext) while os.path.exists(filename): i += 1 filename = "%s_%d%s.%s" % (basepath, i, suffix, ext) else: basename = "%s%s%s.%s" % (prefix, now.strftime(datetimeformat), suffix, ext) filename = os.path.join(directory, basename) return filename class CSVFormatter(logging.Formatter): """ Formatter of data results """ def __init__(self, columns, delimiter=','): """Creates a csv formatter for a given list of columns (=header). :param columns: list of column names. :type columns: list :param delimiter: delimiter between columns. :type delimiter: str """ super().__init__() self.columns = columns self.delimiter = delimiter def format(self, record): """Formats a record as csv. :param record: record to format. :type record: dict :return: a string """ return self.delimiter.join('{}'.format(record[x]) for x in self.columns) def format_header(self): return self.delimiter.join(self.columns) class Results(object): """ The Results class provides a convenient interface to reading and writing data in connection with a :class:`.Procedure` object. :cvar COMMENT: The character used to identify a comment (default: #) :cvar DELIMITER: The character used to delimit the data (default: ,) :cvar LINE_BREAK: The character used for line breaks (default \\n) :cvar CHUNK_SIZE: The length of the data chuck that is read :param procedure: Procedure object :param data_filename: The data filename where the data is or should be stored """ COMMENT = '#' DELIMITER = ',' LINE_BREAK = "\n" CHUNK_SIZE = 1000 def __init__(self, procedure, data_filename): if not isinstance(procedure, Procedure): raise ValueError("Results require a Procedure object") self.procedure = procedure self.procedure_class = procedure.__class__ self.parameters = procedure.parameter_objects() self._header_count = -1 self.formatter = CSVFormatter(columns=self.procedure.DATA_COLUMNS) if isinstance(data_filename, (list, tuple)): data_filenames, data_filename = data_filename, data_filename[0] else: data_filenames = [data_filename] self.data_filename = data_filename self.data_filenames = data_filenames if os.path.exists(data_filename): # Assume header is already written self.reload() self.procedure.status = Procedure.FINISHED # TODO: Correctly store and retrieve status else: for filename in self.data_filenames: with open(filename, 'w') as f: f.write(self.header()) f.write(self.labels()) self._data = None def __getstate__(self): # Get all information needed to reconstruct procedure self._parameters = self.procedure.parameter_values() self._class = self.procedure.__class__.__name__ module = sys.modules[self.procedure.__module__] self._package = module.__package__ self._module = module.__name__ self._file = module.__file__ state = self.__dict__.copy() del state['procedure'] del state['procedure_class'] return state def __setstate__(self, state): self.__dict__.update(state) # Restore the procedure module = SourceFileLoader(self._module, self._file).load_module() cls = getattr(module, self._class) self.procedure = cls() self.procedure.set_parameters(self._parameters) self.procedure.refresh_parameters() self.procedure_class = cls del self._parameters del self._class del self._package del self._module del self._file def header(self): """ Returns a text header to accompany a datafile so that the procedure can be reconstructed """ h = [] procedure = re.search("'(?P<name>[^']+)'", repr(self.procedure_class)).group("name") h.append("Procedure: <%s>" % procedure) h.append("Parameters:") for name, parameter in self.parameters.items(): h.append("\t%s: %s" % (parameter.name, str(parameter).encode("unicode_escape").decode("utf-8"))) h.append("Data:") self._header_count = len(h) h = [Results.COMMENT + l for l in h] # Comment each line return Results.LINE_BREAK.join(h) + Results.LINE_BREAK def labels(self): """ Returns the columns labels as a string to be written to the file """ return self.formatter.format_header() + Results.LINE_BREAK def format(self, data): """ Returns a formatted string containing the data to be written to a file """ return self.formatter.format(data) def parse(self, line): """ Returns a dictionary containing the data from the line """ data = {} items = line.split(Results.DELIMITER) for i, key in enumerate(self.procedure.DATA_COLUMNS): data[key] = items[i] return data @staticmethod def parse_header(header, procedure_class=None): """ Returns a Procedure object with the parameters as defined in the header text. """ if procedure_class is not None: procedure = procedure_class() else: procedure = None header = header.split(Results.LINE_BREAK) procedure_module = None parameters = {} for line in header: if line.startswith(Results.COMMENT): line = line[1:] # Uncomment else: raise ValueError("Parsing a header which contains " "uncommented sections") if line.startswith("Procedure"): regex = r"<(?:(?P<module>[^>]+)\.)?(?P<class>[^.>]+)>" search = re.search(regex, line) procedure_module = search.group("module") procedure_class = search.group("class") elif line.startswith("\t"): separator = ": " partitioned_line = line[1:].partition(separator) if partitioned_line[1] != separator: raise Exception("Error partitioning header line %s." % line) else: parameters[partitioned_line[0]] = partitioned_line[2] if procedure is None: if procedure_class is None: raise ValueError("Header does not contain the Procedure class") try: from importlib import import_module procedure_module = import_module(procedure_module) procedure_class = getattr(procedure_module, procedure_class) procedure = procedure_class() except ImportError: procedure = UnknownProcedure(parameters) log.warning("Unknown Procedure being used") except Exception as e: raise e # Fill the procedure with the parameters found for name, parameter in procedure.parameter_objects().items(): if parameter.name in parameters: value = parameters[parameter.name] setattr(procedure, name, value) else: raise Exception("Missing '%s' parameter when loading '%s' class" % ( parameter.name, procedure_class)) procedure.refresh_parameters() # Enforce update of meta data return procedure @staticmethod def load(data_filename, procedure_class=None): """ Returns a Results object with the associated Procedure object and data """ header = "" header_read = False header_count = 0 with open(data_filename, 'r') as f: while not header_read: line = f.readline() if line.startswith(Results.COMMENT): header += line.strip() + Results.LINE_BREAK header_count += 1 else: header_read = True procedure = Results.parse_header(header[:-1], procedure_class) results = Results(procedure, data_filename) results._header_count = header_count return results @property def data(self): # Need to update header count for correct referencing if self._header_count == -1: self._header_count = len( self.header()[-1].split(Results.LINE_BREAK)) if self._data is None or len(self._data) == 0: # Data has not been read try: self.reload() except Exception: # Empty dataframe self._data = pd.DataFrame(columns=self.procedure.DATA_COLUMNS) else: # Concatenate additional data, if any, to already loaded data skiprows = len(self._data) + self._header_count chunks = pd.read_csv( self.data_filename, comment=Results.COMMENT, header=0, names=self._data.columns, chunksize=Results.CHUNK_SIZE, skiprows=skiprows, iterator=True ) try: tmp_frame = pd.concat(chunks, ignore_index=True) # only append new data if there is any # if no new data, tmp_frame dtype is object, which override's # self._data's original dtype - this can cause problems plotting # (e.g. if trying to plot int data on a log axis) if len(tmp_frame) > 0: self._data = pd.concat([self._data, tmp_frame], ignore_index=True) except Exception: pass # All data is up to date return self._data def reload(self): """ Preforms a full reloading of the file data, neglecting any changes in the comments """ chunks = pd.read_csv( self.data_filename, comment=Results.COMMENT, chunksize=Results.CHUNK_SIZE, iterator=True ) try: self._data = pd.concat(chunks, ignore_index=True) except Exception: self._data = chunks.read() def __repr__(self): return "<{}(filename='{}',procedure={},shape={})>".format( self.__class__.__name__, self.data_filename, self.procedure.__class__.__name__, self.data.shape )
the-stack_0_12467
######################################## # CS/CNS/EE 155 2018 # Problem Set 6 # # Author: Andrew Kang # Description: Set 6 HMM helper ######################################## import re import numpy as np import matplotlib.pyplot as plt from wordcloud import WordCloud from matplotlib import animation from matplotlib.animation import FuncAnimation #################### # WORDCLOUD FUNCTIONS #################### def mask(): # Parameters. r = 128 d = 2 * r + 1 # Get points in a circle. y, x = np.ogrid[-r:d-r, -r:d-r] circle = (x**2 + y**2 <= r**2) # Create mask. mask = 255 * np.ones((d, d), dtype=np.uint8) mask[circle] = 0 return mask def text_to_wordcloud(text, max_words=50, title='', show=True): plt.close('all') # Generate a wordcloud image. wordcloud = WordCloud(random_state=0, max_words=max_words, background_color='white', mask=mask()).generate(text) # Show the image. if show: plt.imshow(wordcloud, interpolation='bilinear') plt.axis('off') plt.title(title, fontsize=24) plt.show() return wordcloud def states_to_wordclouds(hmm, obs_map, max_words=50, show=True): # Initialize. M = 100000 n_states = len(hmm.A) obs_map_r = obs_map_reverser(obs_map) wordclouds = [] # Generate a large emission. emission, states = hmm.generate_emission(M) # For each state, get a list of observations that have been emitted # from that state. obs_count = [] for i in range(n_states): obs_lst = np.array(emission)[np.where(np.array(states) == i)[0]] obs_count.append(obs_lst) # For each state, convert it into a wordcloud. for i in range(n_states): obs_lst = obs_count[i] sentence = [obs_map_r[j] for j in obs_lst] sentence_str = ' '.join(sentence) wordclouds.append(text_to_wordcloud(sentence_str, max_words=max_words, title='State %d' % i, show=show)) return wordclouds #################### # HMM FUNCTIONS #################### def parse_observations(text): # Convert text to dataset. lines = [line.split() for line in text.split('\n') if line.split()] obs_counter = 0 obs = [] obs_map = {} for line in lines: obs_elem = [] for word in line: word = re.sub(r'[^\w]', '', word).lower() if word not in obs_map: # Add unique words to the observations map. obs_map[word] = obs_counter obs_counter += 1 # Add the encoded word. obs_elem.append(obs_map[word]) # Add the encoded sequence. obs.append(obs_elem) return obs, obs_map def obs_map_reverser(obs_map): obs_map_r = {} for key in obs_map: obs_map_r[obs_map[key]] = key return obs_map_r def sample_sentence(hmm, obs_map, n_words=100): # Get reverse map. obs_map_r = obs_map_reverser(obs_map) # Sample and convert sentence. emission, states = hmm.generate_emission(n_words) sentence = [obs_map_r[i] for i in emission] return ' '.join(sentence).capitalize() + '...' #################### # HMM VISUALIZATION FUNCTIONS #################### def visualize_sparsities(hmm, O_max_cols=50, O_vmax=0.1): plt.close('all') plt.set_cmap('viridis') # Visualize sparsity of A. plt.imshow(hmm.A, vmax=1.0) plt.colorbar() plt.title('Sparsity of A matrix') plt.show() # Visualize parsity of O. plt.imshow(np.array(hmm.O)[:, :O_max_cols], vmax=O_vmax, aspect='auto') plt.colorbar() plt.title('Sparsity of O matrix') plt.show() #################### # HMM ANIMATION FUNCTIONS #################### def animate_emission(hmm, obs_map, M=8, height=12, width=12, delay=1): # Parameters. lim = 1200 text_x_offset = 40 text_y_offset = 80 x_offset = 580 y_offset = 520 R = 420 r = 100 arrow_size = 20 arrow_p1 = 0.03 arrow_p2 = 0.02 arrow_p3 = 0.06 # Initialize. n_states = len(hmm.A) obs_map_r = obs_map_reverser(obs_map) wordclouds = states_to_wordclouds(hmm, obs_map, max_words=20, show=False) # Initialize plot. fig, ax = plt.subplots() fig.set_figheight(height) fig.set_figwidth(width) ax.grid('off') plt.axis('off') ax.set_xlim([0, lim]) ax.set_ylim([0, lim]) # Plot each wordcloud. for i, wordcloud in enumerate(wordclouds): x = x_offset + int(R * np.cos(np.pi * 2 * i / n_states)) y = y_offset + int(R * np.sin(np.pi * 2 * i / n_states)) ax.imshow(wordcloud.to_array(), extent=(x - r, x + r, y - r, y + r), aspect='auto', zorder=-1) # Initialize text. text = ax.text(text_x_offset, lim - text_y_offset, '', fontsize=24) # Make the arrows. zorder_mult = n_states ** 2 * 100 arrows = [] for i in range(n_states): row = [] for j in range(n_states): # Arrow coordinates. x_i = x_offset + R * np.cos(np.pi * 2 * i / n_states) y_i = y_offset + R * np.sin(np.pi * 2 * i / n_states) x_j = x_offset + R * np.cos(np.pi * 2 * j / n_states) y_j = y_offset + R * np.sin(np.pi * 2 * j / n_states) dx = x_j - x_i dy = y_j - y_i d = np.sqrt(dx**2 + dy**2) if i != j: arrow = ax.arrow(x_i + (r/d + arrow_p1) * dx + arrow_p2 * dy, y_i + (r/d + arrow_p1) * dy + arrow_p2 * dx, (1 - 2 * r/d - arrow_p3) * dx, (1 - 2 * r/d - arrow_p3) * dy, color=(1 - hmm.A[i][j], ) * 3, head_width=arrow_size, head_length=arrow_size, zorder=int(hmm.A[i][j] * zorder_mult)) else: arrow = ax.arrow(x_i, y_i, 0, 0, color=(1 - hmm.A[i][j], ) * 3, head_width=arrow_size, head_length=arrow_size, zorder=int(hmm.A[i][j] * zorder_mult)) row.append(arrow) arrows.append(row) emission, states = hmm.generate_emission(M) def animate(i): if i >= delay: i -= delay if i == 0: arrows[states[0]][states[0]].set_color('red') elif i == 1: arrows[states[0]][states[0]].set_color((1 - hmm.A[states[0]][states[0]], ) * 3) arrows[states[i - 1]][states[i]].set_color('red') else: arrows[states[i - 2]][states[i - 1]].set_color((1 - hmm.A[states[i - 2]][states[i - 1]], ) * 3) arrows[states[i - 1]][states[i]].set_color('red') # Set text. text.set_text(' '.join([obs_map_r[e] for e in emission][:i+1]).capitalize()) return arrows + [text] # Animate! print('\nAnimating...') anim = FuncAnimation(fig, animate, frames=M+delay, interval=1000) return anim # honestly this function is so jank but who even fuckin cares # i don't even remember how or why i wrote this mess # no one's gonna read this # hey if you see this tho hmu on fb let's be friends
the-stack_0_12468
import concurrent.futures import rasterio from rasterio._example import compute def main(infile, outfile, num_workers=4): with rasterio.Env(): with rasterio.open(infile) as src: profile = src.profile profile.update(blockxsize=128, blockysize=128, tiled=True) with rasterio.open(outfile, "w", **profile) as dst: windows = [window for ij, window in dst.block_windows()] data_gen = (src.get_data(window=window) for window in windows) with concurrent.futures.ThreadPoolExecutor(max_workers=num_workers) as executor: for window, result in zip(windows, executor.map(compute, data_gen)): dst.write(result, window=window, ) in_path = 'test.tif' out_path = 'output.tif' if __name__ == '__main__': main(in_path, out_path)
the-stack_0_12470
# python3 # Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example running ValueDice on the OpenAI Gym.""" import functools from absl import flags import acme from acme import specs from acme.agents.jax import value_dice from absl import app import helpers import jax FLAGS = flags.FLAGS flags.DEFINE_integer('num_steps', 1000000, 'Number of env steps to run training for.') flags.DEFINE_integer('eval_every', 10000, 'How often to run evaluation') flags.DEFINE_string('env_name', 'MountainCarContinuous-v0', 'What environment to run') flags.DEFINE_string('dataset_name', 'd4rl_mujoco_halfcheetah/v0-medium', 'What dataset to use. ' 'See the TFDS catalog for possible values.') flags.DEFINE_integer('num_sgd_steps_per_step', 64, 'Number of SGD steps per learner step().') flags.DEFINE_integer('seed', 0, 'Random seed.') def main(_): # Create an environment, grab the spec, and use it to create networks. environment = helpers.make_environment(task=FLAGS.env_name) environment_spec = specs.make_environment_spec(environment) agent_networks = value_dice.make_networks(environment_spec) # Construct the agent. config = value_dice.ValueDiceConfig( num_sgd_steps_per_step=FLAGS.num_sgd_steps_per_step) agent = value_dice.ValueDice( environment_spec, agent_networks, config=config, make_demonstrations=functools.partial( helpers.make_demonstration_iterator, dataset_name=FLAGS.dataset_name), seed=FLAGS.seed) # Create the environment loop used for training. train_loop = acme.EnvironmentLoop(environment, agent, label='train_loop') # Create the evaluation actor and loop. eval_actor = agent.builder.make_actor( random_key=jax.random.PRNGKey(FLAGS.seed), policy_network=value_dice.apply_policy_and_sample( agent_networks, eval_mode=True), variable_source=agent) eval_env = helpers.make_environment(task=FLAGS.env_name) eval_loop = acme.EnvironmentLoop(eval_env, eval_actor, label='eval_loop') assert FLAGS.num_steps % FLAGS.eval_every == 0 for _ in range(FLAGS.num_steps // FLAGS.eval_every): eval_loop.run(num_episodes=5) train_loop.run(num_steps=FLAGS.eval_every) eval_loop.run(num_episodes=5) if __name__ == '__main__': app.run(main)
the-stack_0_12472
#!/usr/bin/env python __all__ = ['zhanqi_download'] from ..common import * import re def zhanqi_download(url, output_dir = '.', merge = True, info_only = False): html = get_content(url) rtmp_base_patt = r'VideoUrl":"([^"]+)"' rtmp_id_patt = r'VideoID":"([^"]+)"' title_patt = r'<p class="title-name" title="[^"]+">([^<]+)</p>' title_patt_backup = r'<title>([^<]{1,9999})</title>' rtmp_base = match1(html, rtmp_base_patt).replace('\\/','/') rtmp_id = match1(html, rtmp_id_patt).replace('\\/','/') title = match1(html, title_patt) or match1(html, title_patt_backup) title = unescape_html(title) real_url = rtmp_base+'/'+rtmp_id print_info(site_info, title, 'flv', float('inf')) if not info_only: download_rtmp_url(real_url, title, 'flv', {}, output_dir, merge = merge) site_info = "zhanqi.tv" download = zhanqi_download download_playlist = playlist_not_supported('zhanqi')
the-stack_0_12474
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- # Generated file, DO NOT EDIT # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------------------------- from msrest import Serializer, Deserializer from ...vss_client import VssClient from . import models class IdentityClient(VssClient): """Identity :param str base_url: Service URL :param Authentication creds: Authenticated credentials. """ def __init__(self, base_url=None, creds=None): super(IdentityClient, self).__init__(base_url, creds) client_models = {k: v for k, v in models.__dict__.items() if isinstance(v, type)} self._serialize = Serializer(client_models) self._deserialize = Deserializer(client_models) resource_area_identifier = '8a3d49b8-91f0-46ef-b33d-dda338c25db3' def create_or_bind_with_claims(self, source_identity): """CreateOrBindWithClaims. [Preview API] :param :class:`<Identity> <identity.v4_0.models.Identity>` source_identity: :rtype: :class:`<Identity> <identity.v4_0.models.Identity>` """ content = self._serialize.body(source_identity, 'Identity') response = self._send(http_method='PUT', location_id='90ddfe71-171c-446c-bf3b-b597cd562afd', version='4.0-preview.1', content=content) return self._deserialize('Identity', response) def get_descriptor_by_id(self, id, is_master_id=None): """GetDescriptorById. [Preview API] :param str id: :param bool is_master_id: :rtype: :class:`<str> <identity.v4_0.models.str>` """ route_values = {} if id is not None: route_values['id'] = self._serialize.url('id', id, 'str') query_parameters = {} if is_master_id is not None: query_parameters['isMasterId'] = self._serialize.query('is_master_id', is_master_id, 'bool') response = self._send(http_method='GET', location_id='a230389a-94f2-496c-839f-c929787496dd', version='4.0-preview.1', route_values=route_values, query_parameters=query_parameters) return self._deserialize('str', response) def create_groups(self, container): """CreateGroups. :param :class:`<object> <identity.v4_0.models.object>` container: :rtype: [Identity] """ content = self._serialize.body(container, 'object') response = self._send(http_method='POST', location_id='5966283b-4196-4d57-9211-1b68f41ec1c2', version='4.0', content=content, returns_collection=True) return self._deserialize('[Identity]', response) def delete_group(self, group_id): """DeleteGroup. :param str group_id: """ route_values = {} if group_id is not None: route_values['groupId'] = self._serialize.url('group_id', group_id, 'str') self._send(http_method='DELETE', location_id='5966283b-4196-4d57-9211-1b68f41ec1c2', version='4.0', route_values=route_values) def list_groups(self, scope_ids=None, recurse=None, deleted=None, properties=None): """ListGroups. :param str scope_ids: :param bool recurse: :param bool deleted: :param str properties: :rtype: [Identity] """ query_parameters = {} if scope_ids is not None: query_parameters['scopeIds'] = self._serialize.query('scope_ids', scope_ids, 'str') if recurse is not None: query_parameters['recurse'] = self._serialize.query('recurse', recurse, 'bool') if deleted is not None: query_parameters['deleted'] = self._serialize.query('deleted', deleted, 'bool') if properties is not None: query_parameters['properties'] = self._serialize.query('properties', properties, 'str') response = self._send(http_method='GET', location_id='5966283b-4196-4d57-9211-1b68f41ec1c2', version='4.0', query_parameters=query_parameters, returns_collection=True) return self._deserialize('[Identity]', response) def get_identity_changes(self, identity_sequence_id, group_sequence_id, scope_id=None): """GetIdentityChanges. :param int identity_sequence_id: :param int group_sequence_id: :param str scope_id: :rtype: :class:`<ChangedIdentities> <identity.v4_0.models.ChangedIdentities>` """ query_parameters = {} if identity_sequence_id is not None: query_parameters['identitySequenceId'] = self._serialize.query('identity_sequence_id', identity_sequence_id, 'int') if group_sequence_id is not None: query_parameters['groupSequenceId'] = self._serialize.query('group_sequence_id', group_sequence_id, 'int') if scope_id is not None: query_parameters['scopeId'] = self._serialize.query('scope_id', scope_id, 'str') response = self._send(http_method='GET', location_id='28010c54-d0c0-4c89-a5b0-1c9e188b9fb7', version='4.0', query_parameters=query_parameters) return self._deserialize('ChangedIdentities', response) def get_user_identity_ids_by_domain_id(self, domain_id): """GetUserIdentityIdsByDomainId. :param str domain_id: :rtype: [str] """ query_parameters = {} if domain_id is not None: query_parameters['domainId'] = self._serialize.query('domain_id', domain_id, 'str') response = self._send(http_method='GET', location_id='28010c54-d0c0-4c89-a5b0-1c9e188b9fb7', version='4.0', query_parameters=query_parameters, returns_collection=True) return self._deserialize('[str]', response) def read_identities(self, descriptors=None, identity_ids=None, search_filter=None, filter_value=None, query_membership=None, properties=None, include_restricted_visibility=None, options=None): """ReadIdentities. :param str descriptors: :param str identity_ids: :param str search_filter: :param str filter_value: :param str query_membership: :param str properties: :param bool include_restricted_visibility: :param str options: :rtype: [Identity] """ query_parameters = {} if descriptors is not None: query_parameters['descriptors'] = self._serialize.query('descriptors', descriptors, 'str') if identity_ids is not None: query_parameters['identityIds'] = self._serialize.query('identity_ids', identity_ids, 'str') if search_filter is not None: query_parameters['searchFilter'] = self._serialize.query('search_filter', search_filter, 'str') if filter_value is not None: query_parameters['filterValue'] = self._serialize.query('filter_value', filter_value, 'str') if query_membership is not None: query_parameters['queryMembership'] = self._serialize.query('query_membership', query_membership, 'str') if properties is not None: query_parameters['properties'] = self._serialize.query('properties', properties, 'str') if include_restricted_visibility is not None: query_parameters['includeRestrictedVisibility'] = self._serialize.query('include_restricted_visibility', include_restricted_visibility, 'bool') if options is not None: query_parameters['options'] = self._serialize.query('options', options, 'str') response = self._send(http_method='GET', location_id='28010c54-d0c0-4c89-a5b0-1c9e188b9fb7', version='4.0', query_parameters=query_parameters, returns_collection=True) return self._deserialize('[Identity]', response) def read_identities_by_scope(self, scope_id, query_membership=None, properties=None): """ReadIdentitiesByScope. :param str scope_id: :param str query_membership: :param str properties: :rtype: [Identity] """ query_parameters = {} if scope_id is not None: query_parameters['scopeId'] = self._serialize.query('scope_id', scope_id, 'str') if query_membership is not None: query_parameters['queryMembership'] = self._serialize.query('query_membership', query_membership, 'str') if properties is not None: query_parameters['properties'] = self._serialize.query('properties', properties, 'str') response = self._send(http_method='GET', location_id='28010c54-d0c0-4c89-a5b0-1c9e188b9fb7', version='4.0', query_parameters=query_parameters, returns_collection=True) return self._deserialize('[Identity]', response) def read_identity(self, identity_id, query_membership=None, properties=None): """ReadIdentity. :param str identity_id: :param str query_membership: :param str properties: :rtype: :class:`<Identity> <identity.v4_0.models.Identity>` """ route_values = {} if identity_id is not None: route_values['identityId'] = self._serialize.url('identity_id', identity_id, 'str') query_parameters = {} if query_membership is not None: query_parameters['queryMembership'] = self._serialize.query('query_membership', query_membership, 'str') if properties is not None: query_parameters['properties'] = self._serialize.query('properties', properties, 'str') response = self._send(http_method='GET', location_id='28010c54-d0c0-4c89-a5b0-1c9e188b9fb7', version='4.0', route_values=route_values, query_parameters=query_parameters) return self._deserialize('Identity', response) def update_identities(self, identities): """UpdateIdentities. :param :class:`<VssJsonCollectionWrapper> <identity.v4_0.models.VssJsonCollectionWrapper>` identities: :rtype: [IdentityUpdateData] """ content = self._serialize.body(identities, 'VssJsonCollectionWrapper') response = self._send(http_method='PUT', location_id='28010c54-d0c0-4c89-a5b0-1c9e188b9fb7', version='4.0', content=content, returns_collection=True) return self._deserialize('[IdentityUpdateData]', response) def update_identity(self, identity, identity_id): """UpdateIdentity. :param :class:`<Identity> <identity.v4_0.models.Identity>` identity: :param str identity_id: """ route_values = {} if identity_id is not None: route_values['identityId'] = self._serialize.url('identity_id', identity_id, 'str') content = self._serialize.body(identity, 'Identity') self._send(http_method='PUT', location_id='28010c54-d0c0-4c89-a5b0-1c9e188b9fb7', version='4.0', route_values=route_values, content=content) def create_identity(self, framework_identity_info): """CreateIdentity. :param :class:`<FrameworkIdentityInfo> <identity.v4_0.models.FrameworkIdentityInfo>` framework_identity_info: :rtype: :class:`<Identity> <identity.v4_0.models.Identity>` """ content = self._serialize.body(framework_identity_info, 'FrameworkIdentityInfo') response = self._send(http_method='PUT', location_id='dd55f0eb-6ea2-4fe4-9ebe-919e7dd1dfb4', version='4.0', content=content) return self._deserialize('Identity', response) def read_identity_batch(self, batch_info): """ReadIdentityBatch. [Preview API] :param :class:`<IdentityBatchInfo> <identity.v4_0.models.IdentityBatchInfo>` batch_info: :rtype: [Identity] """ content = self._serialize.body(batch_info, 'IdentityBatchInfo') response = self._send(http_method='POST', location_id='299e50df-fe45-4d3a-8b5b-a5836fac74dc', version='4.0-preview.1', content=content, returns_collection=True) return self._deserialize('[Identity]', response) def get_identity_snapshot(self, scope_id): """GetIdentitySnapshot. [Preview API] :param str scope_id: :rtype: :class:`<IdentitySnapshot> <identity.v4_0.models.IdentitySnapshot>` """ route_values = {} if scope_id is not None: route_values['scopeId'] = self._serialize.url('scope_id', scope_id, 'str') response = self._send(http_method='GET', location_id='d56223df-8ccd-45c9-89b4-eddf692400d7', version='4.0-preview.1', route_values=route_values) return self._deserialize('IdentitySnapshot', response) def get_max_sequence_id(self): """GetMaxSequenceId. Read the max sequence id of all the identities. :rtype: long """ response = self._send(http_method='GET', location_id='e4a70778-cb2c-4e85-b7cc-3f3c7ae2d408', version='4.0') return self._deserialize('long', response) def get_self(self): """GetSelf. Read identity of the home tenant request user. :rtype: :class:`<IdentitySelf> <identity.v4_0.models.IdentitySelf>` """ response = self._send(http_method='GET', location_id='4bb02b5b-c120-4be2-b68e-21f7c50a4b82', version='4.0') return self._deserialize('IdentitySelf', response) def add_member(self, container_id, member_id): """AddMember. [Preview API] :param str container_id: :param str member_id: :rtype: bool """ route_values = {} if container_id is not None: route_values['containerId'] = self._serialize.url('container_id', container_id, 'str') if member_id is not None: route_values['memberId'] = self._serialize.url('member_id', member_id, 'str') response = self._send(http_method='PUT', location_id='8ba35978-138e-41f8-8963-7b1ea2c5f775', version='4.0-preview.1', route_values=route_values) return self._deserialize('bool', response) def read_member(self, container_id, member_id, query_membership=None): """ReadMember. [Preview API] :param str container_id: :param str member_id: :param str query_membership: :rtype: :class:`<str> <identity.v4_0.models.str>` """ route_values = {} if container_id is not None: route_values['containerId'] = self._serialize.url('container_id', container_id, 'str') if member_id is not None: route_values['memberId'] = self._serialize.url('member_id', member_id, 'str') query_parameters = {} if query_membership is not None: query_parameters['queryMembership'] = self._serialize.query('query_membership', query_membership, 'str') response = self._send(http_method='GET', location_id='8ba35978-138e-41f8-8963-7b1ea2c5f775', version='4.0-preview.1', route_values=route_values, query_parameters=query_parameters) return self._deserialize('str', response) def read_members(self, container_id, query_membership=None): """ReadMembers. [Preview API] :param str container_id: :param str query_membership: :rtype: [str] """ route_values = {} if container_id is not None: route_values['containerId'] = self._serialize.url('container_id', container_id, 'str') query_parameters = {} if query_membership is not None: query_parameters['queryMembership'] = self._serialize.query('query_membership', query_membership, 'str') response = self._send(http_method='GET', location_id='8ba35978-138e-41f8-8963-7b1ea2c5f775', version='4.0-preview.1', route_values=route_values, query_parameters=query_parameters, returns_collection=True) return self._deserialize('[str]', response) def remove_member(self, container_id, member_id): """RemoveMember. [Preview API] :param str container_id: :param str member_id: :rtype: bool """ route_values = {} if container_id is not None: route_values['containerId'] = self._serialize.url('container_id', container_id, 'str') if member_id is not None: route_values['memberId'] = self._serialize.url('member_id', member_id, 'str') response = self._send(http_method='DELETE', location_id='8ba35978-138e-41f8-8963-7b1ea2c5f775', version='4.0-preview.1', route_values=route_values) return self._deserialize('bool', response) def read_member_of(self, member_id, container_id, query_membership=None): """ReadMemberOf. [Preview API] :param str member_id: :param str container_id: :param str query_membership: :rtype: :class:`<str> <identity.v4_0.models.str>` """ route_values = {} if member_id is not None: route_values['memberId'] = self._serialize.url('member_id', member_id, 'str') if container_id is not None: route_values['containerId'] = self._serialize.url('container_id', container_id, 'str') query_parameters = {} if query_membership is not None: query_parameters['queryMembership'] = self._serialize.query('query_membership', query_membership, 'str') response = self._send(http_method='GET', location_id='22865b02-9e4a-479e-9e18-e35b8803b8a0', version='4.0-preview.1', route_values=route_values, query_parameters=query_parameters) return self._deserialize('str', response) def read_members_of(self, member_id, query_membership=None): """ReadMembersOf. [Preview API] :param str member_id: :param str query_membership: :rtype: [str] """ route_values = {} if member_id is not None: route_values['memberId'] = self._serialize.url('member_id', member_id, 'str') query_parameters = {} if query_membership is not None: query_parameters['queryMembership'] = self._serialize.query('query_membership', query_membership, 'str') response = self._send(http_method='GET', location_id='22865b02-9e4a-479e-9e18-e35b8803b8a0', version='4.0-preview.1', route_values=route_values, query_parameters=query_parameters, returns_collection=True) return self._deserialize('[str]', response) def create_scope(self, info, scope_id): """CreateScope. [Preview API] :param :class:`<CreateScopeInfo> <identity.v4_0.models.CreateScopeInfo>` info: :param str scope_id: :rtype: :class:`<IdentityScope> <identity.v4_0.models.IdentityScope>` """ route_values = {} if scope_id is not None: route_values['scopeId'] = self._serialize.url('scope_id', scope_id, 'str') content = self._serialize.body(info, 'CreateScopeInfo') response = self._send(http_method='PUT', location_id='4e11e2bf-1e79-4eb5-8f34-a6337bd0de38', version='4.0-preview.1', route_values=route_values, content=content) return self._deserialize('IdentityScope', response) def delete_scope(self, scope_id): """DeleteScope. [Preview API] :param str scope_id: """ route_values = {} if scope_id is not None: route_values['scopeId'] = self._serialize.url('scope_id', scope_id, 'str') self._send(http_method='DELETE', location_id='4e11e2bf-1e79-4eb5-8f34-a6337bd0de38', version='4.0-preview.1', route_values=route_values) def get_scope_by_id(self, scope_id): """GetScopeById. [Preview API] :param str scope_id: :rtype: :class:`<IdentityScope> <identity.v4_0.models.IdentityScope>` """ route_values = {} if scope_id is not None: route_values['scopeId'] = self._serialize.url('scope_id', scope_id, 'str') response = self._send(http_method='GET', location_id='4e11e2bf-1e79-4eb5-8f34-a6337bd0de38', version='4.0-preview.1', route_values=route_values) return self._deserialize('IdentityScope', response) def get_scope_by_name(self, scope_name): """GetScopeByName. [Preview API] :param str scope_name: :rtype: :class:`<IdentityScope> <identity.v4_0.models.IdentityScope>` """ query_parameters = {} if scope_name is not None: query_parameters['scopeName'] = self._serialize.query('scope_name', scope_name, 'str') response = self._send(http_method='GET', location_id='4e11e2bf-1e79-4eb5-8f34-a6337bd0de38', version='4.0-preview.1', query_parameters=query_parameters) return self._deserialize('IdentityScope', response) def rename_scope(self, rename_scope, scope_id): """RenameScope. [Preview API] :param :class:`<IdentityScope> <identity.v4_0.models.IdentityScope>` rename_scope: :param str scope_id: """ route_values = {} if scope_id is not None: route_values['scopeId'] = self._serialize.url('scope_id', scope_id, 'str') content = self._serialize.body(rename_scope, 'IdentityScope') self._send(http_method='PATCH', location_id='4e11e2bf-1e79-4eb5-8f34-a6337bd0de38', version='4.0-preview.1', route_values=route_values, content=content) def get_signed_in_token(self): """GetSignedInToken. [Preview API] :rtype: :class:`<AccessTokenResult> <identity.v4_0.models.AccessTokenResult>` """ response = self._send(http_method='GET', location_id='6074ff18-aaad-4abb-a41e-5c75f6178057', version='4.0-preview.1') return self._deserialize('AccessTokenResult', response) def get_signout_token(self): """GetSignoutToken. [Preview API] :rtype: :class:`<AccessTokenResult> <identity.v4_0.models.AccessTokenResult>` """ response = self._send(http_method='GET', location_id='be39e83c-7529-45e9-9c67-0410885880da', version='4.0-preview.1') return self._deserialize('AccessTokenResult', response) def get_tenant(self, tenant_id): """GetTenant. [Preview API] :param str tenant_id: :rtype: :class:`<TenantInfo> <identity.v4_0.models.TenantInfo>` """ route_values = {} if tenant_id is not None: route_values['tenantId'] = self._serialize.url('tenant_id', tenant_id, 'str') response = self._send(http_method='GET', location_id='5f0a1723-2e2c-4c31-8cae-002d01bdd592', version='4.0-preview.1', route_values=route_values) return self._deserialize('TenantInfo', response)
the-stack_0_12476
import os import zipfile from datetime import datetime import numpy as np import spacy import twokenize from nlplingo.common.utils import IntPair from nlplingo.sandbox.misc.train_test import generate_argument_data_feature from nlplingo.sandbox.misc.train_test import generate_trigger_data_feature from nlplingo.sandbox.misc.train_test import get_predicted_positive_triggers from nlplingo.text.text_span import EntityMention from nlplingo.text.text_theory import Document # from pyspark import SparkContext, SparkConf # from ctypes import * global spacy_en global tagger_blog global tagger_tweet global tagger_news global tagger_dw #sys.path.append('/nfs/mercury-04/u40/ychan/spark/ner/crfsuite') #sc.addPyFile('/nfs/mercury-04/u40/ychan/spark/ner/crfsuite/crfsuite.py') #cdll.LoadLibrary('/nfs/mercury-04/u40/ychan/spark/ner/crfsuite/libcrfsuite-0.12.so') #import crfsuite class Token(object): """An individual word token. """ # idx : starting char offset def __init__(self, text, idx, pos_tag=None): self.text = text self.idx = idx self.tag_ = pos_tag class Decoder(object): #sys.path.append('/nfs/mercury-04/u40/ychan/spark/ner/crfsuite') #cdll.LoadLibrary('/nfs/mercury-04/u40/ychan/spark/ner/crfsuite/libcrfsuite-0.12.so') #import crfsuite # python_path: /nfs/mercury-04/u40/ychan/spark/ner/crfsuite # libcrfsuite_so: /nfs/mercury-04/u40/ychan/spark/ner/crfsuite/libcrfsuite-0.12.so # model_file: /nfs/mercury-04/u40/ychan/ner/model/twitter.cv1.model def __init__(self, params): #sys.path.append(python_path) #for library in libcrfsuite_so_libs: # cdll.LoadLibrary(library) #import crfsuite as crfsuite #self.crfsuite = crfsuite import pycrfsuite as pycrfsuite self.pycrfsuite = pycrfsuite self.model_blog = params['crf_models']['blog'] self.model_tweet = params['crf_models']['tweet'] self.model_news = params['crf_models']['news'] self.model_dw = params['crf_models']['dw'] if 'resources.zip' in params: if os.path.isfile(params['resources.zip']) and not os.path.isdir(params['crf_models']['dir']): zip_ref = zipfile.ZipFile(params['resources.zip'], 'r') zip_ref.extractall() zip_ref.close() def instances(self, fi): xseq = [] for line in fi: fields = line.split('\t') item = {} for field in fields[1:]: sfield = field.encode('ascii', 'replace') p = sfield.rfind(':') if p == -1: # Unweighted (weight=1) attribute. item[sfield] = 1.0 elif (p+1) >= len(sfield): item[sfield] = 1.0 else: try: weight = float(sfield[p+1:]) item[sfield[:p]] = weight except ValueError: item[sfield] = 1.0 xseq.append(item) return self.pycrfsuite.ItemSequence(xseq) #def instances(self, fi): # xseq = self.crfsuite.ItemSequence() # # for line in fi: # # Split the line with TAB characters. # fields = line.split('\t') # item = self.crfsuite.Item() # for field in fields[1:]: # #print('field %s' % (field)) # sfield = field.encode('ascii','replace') # #print('sfield %s' % (sfield)) # p = sfield.rfind(':') # if p == -1: # # Unweighted (weight=1) attribute. # #print('field:{} type(field):{}'.format(field, type(field))) # #print(type(field)) # #field_string = field.encode('ascii','replace') # #item.append(self.crfsuite.Attribute(field_string)) # item.append(self.crfsuite.Attribute(sfield)) # elif (p+1) >= len(sfield): # item.append(self.crfsuite.Attribute(sfield)) # else: # try: # weight = float(sfield[p+1:]) # item.append(self.crfsuite.Attribute(sfield[:p], weight)) # except ValueError: # item.append(self.crfsuite.Attribute(sfield)) # #print field # # Weighted attribute # #item.append(self.crfsuite.Attribute(sfield[:p], float(sfield[p+1:]))) # # Append the item to the item sequence. # xseq.append(item) # # return xseq # Blog , Conference , SocialMediaPosting def get_content_tagger(self, xseq, content_type): global tagger_blog global tagger_tweet global tagger_news global tagger_dw if content_type == 'Blog': try: tagger_blog.set(xseq) except: tagger_blog = self.pycrfsuite.Tagger() tagger_blog.open(self.model_blog) print('**** Loaded blog NER model %s' % (self.model_blog)) tagger_blog.set(xseq) return tagger_blog elif content_type == 'SocialMediaPosting': try: tagger_tweet.set(xseq) except: tagger_tweet = self.pycrfsuite.Tagger() tagger_tweet.open(self.model_tweet) print('**** Loaded tweet NER model %s' % (self.model_tweet)) tagger_tweet.set(xseq) return tagger_tweet elif content_type == 'NewsArticle': try: tagger_news.set(xseq) except: tagger_news = self.pycrfsuite.Tagger() tagger_news.open(self.model_news) print('**** Loaded news NER model %s' % (self.model_news)) tagger_news.set(xseq) return tagger_news elif content_type == 'Post': try: tagger_dw.set(xseq) except: tagger_dw = self.pycrfsuite.Tagger() tagger_dw.open(self.model_dw) print('**** Loaded dw NER model %s' % (self.model_dw)) tagger_dw.set(xseq) return tagger_dw def tag_seq(self, xseq, content_type): tagger = self.get_content_tagger(xseq, content_type) return tagger.tag() def collect_predictions(content, predictions, char_offsets): ret = [] i = 0 while i < len(predictions): p = predictions[i] if p.startswith('B-'): label = p[2:] (start, end) = char_offsets[i] while (i+1) < len(predictions) and predictions[i+1] == 'I-'+label: i += 1 end = char_offsets[i][1] # these are when we mix in ACE and Blog annotations. ACE tags 'ORG', Blog tags 'ORGANIZATION' if label == 'ORG': label = 'ORGANIZATION' if label == 'PER': label = 'PERSON' d = {} d['start'] = start d['end'] = end d['label'] = label d['text'] = content[start:end] d['extractor'] = 'nlplingo.ner' ret.append(d) i += 1 return ret # A line could be a paragraph consisting of multiple sentences. # We will get the correct definition of sentences according to whether this is blog, tweet, etc. def get_sentences(line, content_type): global spacy_en if content_type == 'SocialMediaPosting': sentences = [] start_offset = 0 sent = [] for token in twokenize.tokenize(line[:-1]): idx = line.index(token, start_offset) sent.append(Token(token, idx)) start_offset = idx + len(token) sentences.append(sent) return sentences elif content_type == 'Blog' or content_type == 'NewsArticle' or content_type == 'Post': try: spacy_doc = spacy_en(line) except: spacy_en = spacy.load('en') print('**** Loaded spacy en') spacy_doc = spacy_en(line) return spacy_doc.sents def decode_sentence(ner_fea, dec, content, sent, offset, content_type): """ :type ner_fea: ner.ner_feature.NerFeature :type dec: ner.decoder.Decoder :type content: str :type offset: int :type content_type: str sent: spacy sentence Returns: list[dict()] content_type: 'Blog' , 'SocialMediaPosting' , 'NewsArticle' (will decide which NER feature set to use) """ tokens = [t for t in sent if len(t.text) > 0] # a list, 1 element for each word in line # each element is a tab separate features, except the 1st element which is a dummy label word_feas = line_to_features(ner_fea, tokens, content_type) # content_type decides which NER feature set to use word_seq = dec.instances(word_feas) # of type pycrfsuite.ItemSequence predictions = dec.tag_seq(word_seq, content_type) # content_type decides which NER model to load char_offsets = [] for token in tokens: start = token.idx + offset end = start + len(token.text) char_offsets.append((start, end)) assert (len(char_offsets) == len(predictions)), 'len(char_offsets) should match len(predictions)' # returns a dict with keys: start, end, label, text, extractor return collect_predictions(content, predictions, char_offsets) def find(element, json): x = reduce(lambda d, key: d.get(key, {}), element.split("."), json) if any(x) is True: return x return None # line : a json string def line_to_predictions(ner_fea, dec, json_eg, attr, content_type, word_embeddings, trigger_generator, trigger_model, arg_generator, argument_model, event_domain): """ :type word_embeddings: embeddings.word_embeddings.WordEmbedding :type trigger_generator: tasks.event_trigger.EventTriggerExampleGenerator :type trigger_model: model.event_cnn.ExtractionModel :type arg_generator: tasks.event_argument.EventArgumentExampleGenerator :type trigger_model: model.event_cnn.ExtractionModel """ global spacy_en content = find(attr, json_eg) # json_eg.get(attr) print(content_type.encode('ascii', 'ignore')) print(content.encode('ascii', 'ignore')) offset = 0 all_predictions = [] if content is not None: if type(content) is list: content = '\n'.join(content) for line in content.split('\n'): #print(offset) #print('[' + content_type.encode('ascii', 'ignore') + ']') #print('[' + line.encode('ascii', 'ignore') + ']') d['line'] = line all_predictions.append(d) doc_ner_predictions = [] sentences = get_sentences(line, content_type) if sentences is not None: for sent in sentences: sent_predictions = decode_sentence(ner_fea, dec, content, sent, offset, content_type) doc_ner_predictions.extend(sent_predictions) all_predictions.extend(sent_predictions) if content_type == 'Blog': print('*** content_type == Blog ***') print(line.encode('ascii', 'ignore')) doc = Document('dummy', line) for i, p in enumerate(doc_ner_predictions): id = 'em-{}'.format(i) # we need to minus 'offset', because we are splitting the original 'content' into several 'line(s)' # then we pass each 'line' to make a Document object. But p[start], p[end] are with respect to the # 'content', so you need to minus 'offset' in order to make the 2 sets of offsets match doc.add_entity_mention(EntityMention(id, IntPair(int(p['start'])-offset, int(p['end'])-offset), p['text'], p['label'])) doc.annotate_sentences(word_embeddings, spacy_en) print('added {} NER'.format(len(doc_ner_predictions))) (trigger_examples, trigger_data, trigger_data_list, trigger_label) = generate_trigger_data_feature(trigger_generator, [doc]) print('Generated {} trigger_examples, at {}'.format(len(trigger_examples), datetime.now().strftime('%Y-%m-%d %H:%M:%S'))) if len(trigger_examples) > 0: trigger_predictions = trigger_model.predict(trigger_data_list) predicted_positive_triggers_map = get_predicted_positive_triggers(trigger_predictions, trigger_examples, event_domain.get_event_type_index('None'), event_domain) # the above is organized by docid, let's now expand to get the actual eventtrigger examples predicted_positive_triggers = [] """:type list[nlplingo.tasks.event_trigger.EventTriggerExample]""" for docid in predicted_positive_triggers_map.keys(): predicted_positive_triggers.extend(predicted_positive_triggers_map[docid]) print('Predicted {} positive triggers, at {}'.format(len(predicted_positive_triggers), datetime.now().strftime('%Y-%m-%d %H:%M:%S'))) for trigger_eg in predicted_positive_triggers: print('trigger_eg %s (%s,%s) %s' % (trigger_eg.token.text, str(trigger_eg.token.start_char_offset()), str(trigger_eg.token.end_char_offset()), trigger_eg.event_type)) if len(predicted_positive_triggers) > 0: if argument_model is None: for eg in predicted_positive_triggers: d = {} d['docid'] = eg.sentence.docid d['start'] = eg.anchor.start_char_offset() d['end'] = eg.anchor.end_char_offset() d['text'] = eg.anchor.text all_predictions.append(d) else: # generate arguments with predicted triggers (arg_examples_pt, arg_data_pt, arg_data_list_pt, arg_label_pt) = generate_argument_data_feature(arg_generator, [doc], params=None, predicted_triggers=predicted_positive_triggers_map) #print('formed {} tasks eventargument examples'.format(len(arg_examples_pt))) if len(arg_examples_pt) > 0: # decode arguments with predicted triggers argument_predictions_pt = argument_model.predict(arg_data_list_pt) pred_arg_max = np.argmax(argument_predictions_pt, axis=1) #predicted_events = defaultdict(list) # to collate by anchor for i, predicted_label in enumerate(pred_arg_max): if predicted_label != event_domain.get_event_role_index('None'): eg = arg_examples_pt[i] """:type: tasks.event_argument.EventArgumentExample""" predicted_role = event_domain.get_event_role_from_index(predicted_label) # print('{} || {} || {}'.format(predicted_role, eg.anchor.to_string(), eg.eventargument.to_string())) #predicted_events[eg.anchor].append(EventArgument('dummy', eg.eventargument, predicted_role)) #print('argument_eg %s (%s,%s) %s' % (eg.eventargument.text, str(eg.eventargument.start_char_offset()), str(eg.eventargument.end_char_offset()), '{}.{}'.format(eg.anchor.label, predicted_role))) d = {} d['start'] = eg.argument.start_char_offset() + offset d['end'] = eg.argument.end_char_offset() + offset d['label'] = '{}.{}'.format(eg.anchor.label, predicted_role) d['text'] = eg.argument.text d['extractor'] = 'nlplingo.network' all_predictions.append(d) offset += len(line) + 1 # +1 to account for newline # a list of dict, one for each predicted NE mention if len(all_predictions) > 0: if not "extractions" in json_eg: json_eg["extractions"] = {} json_eg['extractions'][attr] = all_predictions return json_eg # for each word in sent, return: label \tab (\tab separated list of features). If a feature is weighted, it will be like (.*):weight def line_to_features(ner_fea, sent, content_type): d = ('', '', '') seq = [d, d] for token in sent: #start = token.idx #print(token.text.encode('ascii', 'ignore')) pos_tag = 'NN' if token.tag_ is None else token.tag_ seq.append((ner_fea.encode(token.text), pos_tag, 'DUMMY-tag')) seq.append(d) seq.append(d) return ner_fea.extract_features(seq, content_type)
the-stack_0_12477
from typing import List, Optional import attr from casexml.apps.case.xform import extract_case_blocks from corehq.form_processor.interfaces.dbaccessors import CaseAccessors from corehq.motech.value_source import CaseTriggerInfo @attr.s class RepeaterResponse: """ Ducktypes an HTTP response for Repeater.handle_response(), RepeatRecord.handle_success() and RepeatRecord.handle_failure() """ status_code = attr.ib() reason = attr.ib() text = attr.ib(default="") retry = attr.ib(default=True) def get_relevant_case_updates_from_form_json( domain: str, form_json: dict, case_types: list, extra_fields: list, form_question_values: Optional[dict] = None, ) -> List[CaseTriggerInfo]: result = [] case_blocks = extract_case_blocks(form_json) case_ids = [case_block['@case_id'] for case_block in case_blocks] cases = CaseAccessors(domain).get_cases(case_ids, ordered=True) db_case_dict = {case.case_id: case for case in cases} for case_block in case_blocks: case = db_case_dict[case_block['@case_id']] if case_types and case.type not in case_types: continue case_create = case_block.get('create') or {} case_update = case_block.get('update') or {} result.append(CaseTriggerInfo( domain=domain, case_id=case_block['@case_id'], type=case.type, name=case.name, owner_id=case.owner_id, modified_by=case.modified_by, updates={**case_create, **case_update}, created='create' in case_block, closed='close' in case_block, extra_fields={f: case.get_case_property(f) for f in extra_fields}, form_question_values=form_question_values or {}, )) return result
the-stack_0_12480
#!/usr/bin/env python import unittest import warnings import numpy as np from pymatgen.core.lattice import Lattice from pymatgen.core.operations import SymmOp from pymatgen.symmetry.groups import PointGroup, SpaceGroup, _get_symm_data __author__ = "Shyue Ping Ong" __copyright__ = "Copyright 2012, The Materials Virtual Lab" __version__ = "0.1" __maintainer__ = "Shyue Ping Ong" __email__ = "[email protected]" __date__ = "4/10/14" class PointGroupTest(unittest.TestCase): def test_order(self): order = {"mmm": 8, "432": 24, "-6m2": 12} for k, v in order.items(): pg = PointGroup(k) self.assertEqual(order[k], len(pg.symmetry_ops)) def test_get_orbit(self): pg = PointGroup("mmm") self.assertEqual(len(pg.get_orbit([0.1, 0.1, 0.1])), 8) self.assertEqual(len(pg.get_orbit([0, 0, 0.1])), 2) self.assertEqual(len(pg.get_orbit([1.2, 1.2, 1])), 8) def test_is_sub_super_group(self): with warnings.catch_warnings() as w: warnings.simplefilter("ignore") pgmmm = PointGroup("mmm") pgmm2 = PointGroup("mm2") pg222 = PointGroup("222") pg4 = PointGroup("4") self.assertTrue(pgmmm.is_supergroup(pgmm2)) self.assertTrue(pgmm2.is_subgroup(pgmmm)) self.assertTrue(pgmmm.is_supergroup(pg222)) self.assertFalse(pgmmm.is_supergroup(pg4)) pgm3m = PointGroup("m-3m") pg6mmm = PointGroup("6/mmm") pg3m = PointGroup("-3m") # TODO: Fix the test below. # self.assertTrue(pg3m.is_subgroup(pgm3m)) self.assertTrue(pg3m.is_subgroup(pg6mmm)) self.assertFalse(pgm3m.is_supergroup(pg6mmm)) class SpaceGroupTest(unittest.TestCase): def test_renamed_e_symbols(self): sg = SpaceGroup.from_int_number(64) assert sg.symbol == "Cmce" for sym, num in ( ("Aem2", 39), ("Aea2", 41), ("Cmce", 64), ("Cmme", 67), ("Ccce", 68), ): assert SpaceGroup(sym).int_number == num def test_abbrev_symbols(self): sg = SpaceGroup("P2/c") self.assertEqual(sg.int_number, 13) sg = SpaceGroup("R-3mH") self.assertEqual(sg.int_number, 166) def test_attr(self): sg = SpaceGroup("Fm-3m") self.assertEqual(sg.full_symbol, "F4/m-32/m") self.assertEqual(sg.point_group, "m-3m") def test_point_group_is_set(self): for i in range(1, 231): sg = SpaceGroup.from_int_number(i) self.assertTrue(hasattr(sg, "point_group")) for symbol in _get_symm_data("space_group_encoding"): sg = SpaceGroup(symbol) self.assertTrue(hasattr(sg, "point_group")) def test_full_symbols(self): sg = SpaceGroup("P2/m2/m2/m") self.assertEqual(sg.symbol, "Pmmm") def test_order_symm_ops(self): for name in SpaceGroup.SG_SYMBOLS: sg = SpaceGroup(name) self.assertEqual(len(sg.symmetry_ops), sg.order) def test_get_settings(self): self.assertEqual({"Fm-3m(a-1/4,b-1/4,c-1/4)", "Fm-3m"}, SpaceGroup.get_settings("Fm-3m")) self.assertEqual( { "Pmmn", "Pmnm:1", "Pnmm:2", "Pmnm:2", "Pnmm", "Pnmm:1", "Pmmn:1", "Pmnm", "Pmmn:2", }, SpaceGroup.get_settings("Pmmn"), ) self.assertEqual( {"Pnmb", "Pman", "Pncm", "Pmna", "Pcnm", "Pbmn"}, SpaceGroup.get_settings("Pmna"), ) def test_crystal_system(self): sg = SpaceGroup("R-3c") self.assertEqual(sg.crystal_system, "trigonal") sg = SpaceGroup("R-3cH") self.assertEqual(sg.crystal_system, "trigonal") def test_get_orbit(self): sg = SpaceGroup("Fm-3m") p = np.random.randint(0, 100 + 1, size=(3,)) / 100 self.assertLessEqual(len(sg.get_orbit(p)), sg.order) def test_is_compatible(self): cubic = Lattice.cubic(1) hexagonal = Lattice.hexagonal(1, 2) rhom = Lattice.rhombohedral(3, 80) tet = Lattice.tetragonal(1, 2) ortho = Lattice.orthorhombic(1, 2, 3) sg = SpaceGroup("Fm-3m") self.assertTrue(sg.is_compatible(cubic)) self.assertFalse(sg.is_compatible(hexagonal)) sg = SpaceGroup("R-3m:H") self.assertFalse(sg.is_compatible(cubic)) self.assertTrue(sg.is_compatible(hexagonal)) sg = SpaceGroup("R-3m:R") self.assertTrue(sg.is_compatible(cubic)) self.assertTrue(sg.is_compatible(rhom)) self.assertFalse(sg.is_compatible(hexagonal)) sg = SpaceGroup("Pnma") self.assertTrue(sg.is_compatible(cubic)) self.assertTrue(sg.is_compatible(tet)) self.assertTrue(sg.is_compatible(ortho)) self.assertFalse(sg.is_compatible(rhom)) self.assertFalse(sg.is_compatible(hexagonal)) sg = SpaceGroup("P12/c1") self.assertTrue(sg.is_compatible(cubic)) self.assertTrue(sg.is_compatible(tet)) self.assertTrue(sg.is_compatible(ortho)) self.assertFalse(sg.is_compatible(rhom)) self.assertFalse(sg.is_compatible(hexagonal)) sg = SpaceGroup("P-1") self.assertTrue(sg.is_compatible(cubic)) self.assertTrue(sg.is_compatible(tet)) self.assertTrue(sg.is_compatible(ortho)) self.assertTrue(sg.is_compatible(rhom)) self.assertTrue(sg.is_compatible(hexagonal)) sg = SpaceGroup("Pmmn:2") self.assertTrue(sg.is_compatible(cubic)) self.assertTrue(sg.is_compatible(tet)) self.assertTrue(sg.is_compatible(ortho)) self.assertFalse(sg.is_compatible(rhom)) self.assertFalse(sg.is_compatible(hexagonal)) sg = SpaceGroup.from_int_number(165) self.assertFalse(sg.is_compatible(cubic)) self.assertFalse(sg.is_compatible(tet)) self.assertFalse(sg.is_compatible(ortho)) self.assertFalse(sg.is_compatible(rhom)) self.assertTrue(sg.is_compatible(hexagonal)) def test_symmops(self): sg = SpaceGroup("Pnma") op = SymmOp.from_rotation_and_translation([[1, 0, 0], [0, -1, 0], [0, 0, -1]], [0.5, 0.5, 0.5]) self.assertIn(op, sg.symmetry_ops) def test_other_settings(self): sg = SpaceGroup("Pbnm") self.assertEqual(sg.int_number, 62) self.assertEqual(sg.order, 8) self.assertRaises(ValueError, SpaceGroup, "hello") def test_subgroup_supergroup(self): with warnings.catch_warnings() as w: warnings.simplefilter("ignore") self.assertTrue(SpaceGroup("Pma2").is_subgroup(SpaceGroup("Pccm"))) self.assertFalse(SpaceGroup.from_int_number(229).is_subgroup(SpaceGroup.from_int_number(230))) def test_hexagonal(self): sgs = [146, 148, 155, 160, 161, 166, 167] for sg in sgs: s = SpaceGroup.from_int_number(sg, hexagonal=False) self.assertTrue(not s.symbol.endswith("H")) def test_string(self): sg = SpaceGroup("R-3c") self.assertEqual(sg.to_latex_string(), "R$\overline{3}$cH") sg = SpaceGroup("P6/mmm") self.assertEqual(sg.to_latex_string(), "P6/mmm") sg = SpaceGroup("P4_1") self.assertEqual(sg.to_unicode_string(), "P4₁") if __name__ == "__main__": unittest.main()
the-stack_0_12481
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # import ast import pkg_resources import threading import argparse import logging import signal import errno import json import stat import os import shutil from contextlib import contextmanager from uuid import uuid4 from yaml import safe_load from ansible_runner import run from ansible_runner import output from ansible_runner.utils import dump_artifact, Bunch from ansible_runner.runner import Runner from ansible_runner.exceptions import AnsibleRunnerException VERSION = pkg_resources.require("ansible_runner")[0].version DEFAULT_ROLES_PATH = os.getenv('ANSIBLE_ROLES_PATH', None) DEFAULT_RUNNER_BINARY = os.getenv('RUNNER_BINARY', None) DEFAULT_RUNNER_PLAYBOOK = os.getenv('RUNNER_PLAYBOOK', None) DEFAULT_RUNNER_ROLE = os.getenv('RUNNER_ROLE', None) DEFAULT_RUNNER_MODULE = os.getenv('RUNNER_MODULE', None) logger = logging.getLogger('ansible-runner') @contextmanager def role_manager(args): if args.role: role = {'name': args.role} if args.role_vars: role_vars = {} for item in args.role_vars.split(): key, value = item.split('=') try: role_vars[key] = ast.literal_eval(value) except Exception: role_vars[key] = value role['vars'] = role_vars kwargs = Bunch(**args.__dict__) kwargs.update(private_data_dir=args.private_data_dir, json_mode=args.json, ignore_logging=False, rotate_artifacts=args.rotate_artifacts) if args.artifact_dir: kwargs.artifact_dir = args.artifact_dir project_path = os.path.join(args.private_data_dir, 'project') project_exists = os.path.exists(project_path) env_path = os.path.join(args.private_data_dir, 'env') env_exists = os.path.exists(env_path) envvars_path = os.path.join(args.private_data_dir, 'env/envvars') envvars_exists = os.path.exists(envvars_path) if args.cmdline: kwargs.cmdline = args.cmdline playbook = None tmpvars = None play = [{'hosts': args.hosts if args.hosts is not None else "all", 'gather_facts': not args.role_skip_facts, 'roles': [role]}] filename = str(uuid4().hex) playbook = dump_artifact(json.dumps(play), project_path, filename) kwargs.playbook = playbook output.debug('using playbook file %s' % playbook) if args.inventory: inventory_file = os.path.join(args.private_data_dir, 'inventory', args.inventory) if not os.path.exists(inventory_file): raise AnsibleRunnerException('location specified by --inventory does not exist') kwargs.inventory = inventory_file output.debug('using inventory file %s' % inventory_file) roles_path = args.roles_path or os.path.join(args.private_data_dir, 'roles') roles_path = os.path.abspath(roles_path) output.debug('setting ANSIBLE_ROLES_PATH to %s' % roles_path) envvars = {} if envvars_exists: with open(envvars_path, 'rb') as f: tmpvars = f.read() new_envvars = safe_load(tmpvars) if new_envvars: envvars = new_envvars envvars['ANSIBLE_ROLES_PATH'] = roles_path kwargs.envvars = envvars else: kwargs = args yield kwargs if args.role: if not project_exists and os.path.exists(project_path): logger.debug('removing dynamically generated project folder') shutil.rmtree(project_path) elif playbook and os.path.isfile(playbook): logger.debug('removing dynamically generated playbook') os.remove(playbook) # if a previous envvars existed in the private_data_dir, # restore the original file contents if tmpvars: with open(envvars_path, 'wb') as f: f.write(tmpvars) elif not envvars_exists and os.path.exists(envvars_path): logger.debug('removing dynamically generated envvars folder') os.remove(envvars_path) # since ansible-runner created the env folder, remove it if not env_exists and os.path.exists(env_path): logger.debug('removing dynamically generated env folder') shutil.rmtree(env_path) def main(sys_args=None): parser = argparse.ArgumentParser(description='manage ansible execution') parser.add_argument('--version', action='version', version=VERSION) parser.add_argument('command', choices=['run', 'start', 'stop', 'is-alive']) parser.add_argument('private_data_dir', help='Base directory containing Runner metadata (project, inventory, etc') group = parser.add_mutually_exclusive_group() group.add_argument("-m", "--module", default=DEFAULT_RUNNER_MODULE, help="Invoke an Ansible module directly without a playbook") group.add_argument("-p", "--playbook", default=DEFAULT_RUNNER_PLAYBOOK, help="The name of the playbook to execute") group.add_argument("-r", "--role", default=DEFAULT_RUNNER_ROLE, help="Invoke an Ansible role directly without a playbook") parser.add_argument("-b", "--binary", default=DEFAULT_RUNNER_BINARY, help="The full path to ansible[-playbook] binary") parser.add_argument("--hosts", help="Define the set of hosts to execute against") parser.add_argument("-i", "--ident", default=uuid4(), help="An identifier that will be used when generating the" "artifacts directory and can be used to uniquely identify a playbook run") parser.add_argument("--rotate-artifacts", default=0, type=int, help="Automatically clean up old artifact directories after a given number has been created, the default is 0 which disables rotation") parser.add_argument("--roles-path", default=DEFAULT_ROLES_PATH, help="Path to the Ansible roles directory") parser.add_argument("--role-vars", help="Variables to pass to the role at runtime") parser.add_argument("--role-skip-facts", action="store_true", default=False, help="Disable fact collection when executing a role directly") parser.add_argument("--artifact-dir", help="Optional Path for the artifact root directory, by default it is located inside the private data dir") parser.add_argument("--inventory", help="Override the default inventory location in private_data_dir") parser.add_argument("-j", "--json", action="store_true", help="Output the json event structure to stdout instead of Ansible output") parser.add_argument("-v", action="count", help="Increase the verbosity with multiple v's (up to 5) of the ansible-playbook output") parser.add_argument("-q", "--quiet", action="store_true", help="Disable all output") parser.add_argument("--cmdline", help="Command line options to pass to ansible-playbook at execution time") parser.add_argument("--debug", action="store_true", help="Enable Runner debug output logging") parser.add_argument("--logfile", help="Log output messages to a file") parser.add_argument("-a", "--args", dest='module_args', help="Module arguments") parser.add_argument("--process-isolation", dest='process_isolation', action="store_true", help="Limits what directories on the filesystem the playbook run has access to, defaults to /tmp") parser.add_argument("--process-isolation-executable", dest='process_isolation_executable', default="bwrap", help="Process isolation executable that will be used. Defaults to bwrap") parser.add_argument("--process-isolation-path", dest='process_isolation_path', default="/tmp", help="Path that an isolated playbook run will use for staging. Defaults to /tmp") parser.add_argument("--process-isolation-hide-paths", dest='process_isolation_hide_paths', help="List of paths on the system that should be hidden from the playbook run") parser.add_argument("--process-isolation-show-paths", dest='process_isolation_show_paths', help="List of paths on the system that should be exposed to the playbook run") parser.add_argument("--process-isolation-ro-paths", dest='process_isolation_ro_paths', help="List of paths on the system that should be exposed to the playbook run as read-only") args = parser.parse_args(sys_args) output.configure() # enable or disable debug mode output.set_debug('enable' if args.debug else 'disable') # set the output logfile if args.logfile: output.set_logfile(args.logfile) output.debug('starting debug logging') # get the absolute path for start since it is a daemon args.private_data_dir = os.path.abspath(args.private_data_dir) pidfile = os.path.join(args.private_data_dir, 'pid') try: os.makedirs(args.private_data_dir) except OSError as exc: if exc.errno == errno.EEXIST and os.path.isdir(args.private_data_dir): pass else: raise if args.command != 'run': stderr_path = os.path.join(args.private_data_dir, 'daemon.log') if not os.path.exists(stderr_path): os.close(os.open(stderr_path, os.O_CREAT, stat.S_IRUSR | stat.S_IWUSR)) stderr = open(stderr_path, 'w+') if args.command in ('start', 'run'): if args.command == 'start': import daemon from daemon.pidfile import TimeoutPIDLockFile context = daemon.DaemonContext( pidfile=TimeoutPIDLockFile(pidfile), stderr=stderr ) else: context = threading.Lock() with context: with role_manager(args) as args: if args.inventory: with open(args.inventory) as f: inventory_data = f.read() else: inventory_data = None run_options = dict(private_data_dir=args.private_data_dir, ident=args.ident, binary=args.binary, playbook=args.playbook, module=args.module, module_args=args.module_args, host_pattern=args.hosts, verbosity=args.v, quiet=args.quiet, rotate_artifacts=args.rotate_artifacts, ignore_logging=False, json_mode=args.json, inventory=inventory_data, roles_path=[args.roles_path] if args.roles_path else None, process_isolation=args.process_isolation, process_isolation_executable=args.process_isolation_executable, process_isolation_path=args.process_isolation_path, process_isolation_hide_paths=args.process_isolation_hide_paths, process_isolation_show_paths=args.process_isolation_show_paths, process_isolation_ro_paths=args.process_isolation_ro_paths) if args.cmdline: run_options['cmdline'] = args.cmdline res = run(**run_options) return(res.rc) try: with open(pidfile, 'r') as f: pid = int(f.readline()) except IOError: return(1) if args.command == 'stop': Runner.handle_termination(pid) return (0) elif args.command == 'is-alive': try: os.kill(pid, signal.SIG_DFL) return(0) except OSError: return(1)
the-stack_0_12482
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (c) 2012-2021 Snowflake Computing Inc. All right reserved. # import decimal import json import logging import os import pickle import time from datetime import date, datetime from typing import TYPE_CHECKING, List, NamedTuple import mock import pytest import pytz import snowflake.connector from snowflake.connector import ( DictCursor, InterfaceError, NotSupportedError, ProgrammingError, constants, errorcode, errors, ) from snowflake.connector.compat import BASE_EXCEPTION_CLASS, IS_WINDOWS from snowflake.connector.cursor import SnowflakeCursor try: from snowflake.connector.cursor import ResultMetadata except ImportError: class ResultMetadata(NamedTuple): name: str type_code: int display_size: int internal_size: int precision: int scale: int is_nullable: bool from snowflake.connector.errorcode import ( ER_FAILED_TO_REWRITE_MULTI_ROW_INSERT, ER_INVALID_VALUE, ER_NOT_POSITIVE_SIZE, ) from snowflake.connector.sqlstate import SQLSTATE_FEATURE_NOT_SUPPORTED from snowflake.connector.telemetry import TelemetryField from ..randomize import random_string try: from snowflake.connector.constants import ( PARAMETER_PYTHON_CONNECTOR_QUERY_RESULT_FORMAT, ) from snowflake.connector.errorcode import ( ER_NO_ARROW_RESULT, ER_NO_PYARROW, ER_NO_PYARROW_SNOWSQL, ) from snowflake.connector.result_batch import ArrowResultBatch, JSONResultBatch except ImportError: PARAMETER_PYTHON_CONNECTOR_QUERY_RESULT_FORMAT = None ER_NO_ARROW_RESULT = None ER_NO_PYARROW = None ER_NO_PYARROW_SNOWSQL = None ArrowResultBatch = JSONResultBatch = None if TYPE_CHECKING: # pragma: no cover from snowflake.connector.result_batch import ResultBatch def _drop_warehouse(conn, db_parameters): conn.cursor().execute( "drop warehouse if exists {}".format(db_parameters["name_wh"]) ) @pytest.fixture() def conn(request, conn_cnx, db_parameters): def fin(): with conn_cnx() as cnx: cnx.cursor().execute( "use {db}.{schema}".format( db=db_parameters["database"], schema=db_parameters["schema"] ) ) cnx.cursor().execute("drop table {name}".format(name=db_parameters["name"])) request.addfinalizer(fin) with conn_cnx() as cnx: cnx.cursor().execute( """ create table {name} ( aa int, dt date, tm time, ts timestamp, tsltz timestamp_ltz, tsntz timestamp_ntz, tstz timestamp_tz, pct float, ratio number(5,2), b binary) """.format( name=db_parameters["name"] ) ) return conn_cnx def _check_results(cursor, results): assert cursor.sfqid, "Snowflake query id is None" assert cursor.rowcount == 3, "the number of records" assert results[0] == 65432, "the first result was wrong" assert results[1] == 98765, "the second result was wrong" assert results[2] == 123456, "the third result was wrong" def test_insert_select(conn, db_parameters): """Inserts and selects integer data.""" with conn() as cnx: c = cnx.cursor() try: c.execute( "insert into {name}(aa) values(123456)," "(98765),(65432)".format(name=db_parameters["name"]) ) cnt = 0 for rec in c: cnt += int(rec[0]) assert cnt == 3, "wrong number of records were inserted" assert c.rowcount == 3, "wrong number of records were inserted" finally: c.close() try: c = cnx.cursor() c.execute( "select aa from {name} order by aa".format(name=db_parameters["name"]) ) results = [] for rec in c: results.append(rec[0]) _check_results(c, results) finally: c.close() with cnx.cursor(snowflake.connector.DictCursor) as c: c.execute( "select aa from {name} order by aa".format(name=db_parameters["name"]) ) results = [] for rec in c: results.append(rec["AA"]) _check_results(c, results) def test_insert_and_select_by_separate_connection(conn, db_parameters): """Inserts a record and select it by a separate connection.""" with conn() as cnx: result = cnx.cursor().execute( "insert into {name}(aa) values({value})".format( name=db_parameters["name"], value="1234" ) ) cnt = 0 for rec in result: cnt += int(rec[0]) assert cnt == 1, "wrong number of records were inserted" assert result.rowcount == 1, "wrong number of records were inserted" cnx2 = snowflake.connector.connect( user=db_parameters["user"], password=db_parameters["password"], host=db_parameters["host"], port=db_parameters["port"], account=db_parameters["account"], database=db_parameters["database"], schema=db_parameters["schema"], protocol=db_parameters["protocol"], timezone="UTC", ) try: c = cnx2.cursor() c.execute("select aa from {name}".format(name=db_parameters["name"])) results = [] for rec in c: results.append(rec[0]) c.close() assert results[0] == 1234, "the first result was wrong" assert result.rowcount == 1, "wrong number of records were selected" finally: cnx2.close() def _total_milliseconds_from_timedelta(td): """Returns the total number of milliseconds contained in the duration object.""" return (td.microseconds + (td.seconds + td.days * 24 * 3600) * 10 ** 6) // 10 ** 3 def _total_seconds_from_timedelta(td): """Returns the total number of seconds contained in the duration object.""" return _total_milliseconds_from_timedelta(td) // 10 ** 3 def test_insert_timestamp_select(conn, db_parameters): """Inserts and gets timestamp, timestamp with tz, date, and time. Notes: Currently the session parameter TIMEZONE is ignored. """ PST_TZ = "America/Los_Angeles" JST_TZ = "Asia/Tokyo" current_timestamp = datetime.utcnow() current_timestamp = current_timestamp.replace(tzinfo=pytz.timezone(PST_TZ)) current_date = current_timestamp.date() current_time = current_timestamp.time() other_timestamp = current_timestamp.replace(tzinfo=pytz.timezone(JST_TZ)) with conn() as cnx: cnx.cursor().execute("alter session set TIMEZONE=%s", (PST_TZ,)) c = cnx.cursor() try: fmt = ( "insert into {name}(aa, tsltz, tstz, tsntz, dt, tm) " "values(%(value)s,%(tsltz)s, %(tstz)s, %(tsntz)s, " "%(dt)s, %(tm)s)" ) c.execute( fmt.format(name=db_parameters["name"]), { "value": 1234, "tsltz": current_timestamp, "tstz": other_timestamp, "tsntz": current_timestamp, "dt": current_date, "tm": current_time, }, ) cnt = 0 for rec in c: cnt += int(rec[0]) assert cnt == 1, "wrong number of records were inserted" assert c.rowcount == 1, "wrong number of records were selected" finally: c.close() cnx2 = snowflake.connector.connect( user=db_parameters["user"], password=db_parameters["password"], host=db_parameters["host"], port=db_parameters["port"], account=db_parameters["account"], database=db_parameters["database"], schema=db_parameters["schema"], protocol=db_parameters["protocol"], timezone="UTC", ) try: c = cnx2.cursor() c.execute( "select aa, tsltz, tstz, tsntz, dt, tm from {name}".format( name=db_parameters["name"] ) ) result_numeric_value = [] result_timestamp_value = [] result_other_timestamp_value = [] result_ntz_timestamp_value = [] result_date_value = [] result_time_value = [] for (aa, ts, tstz, tsntz, dt, tm) in c: result_numeric_value.append(aa) result_timestamp_value.append(ts) result_other_timestamp_value.append(tstz) result_ntz_timestamp_value.append(tsntz) result_date_value.append(dt) result_time_value.append(tm) c.close() assert result_numeric_value[0] == 1234, "the integer result was wrong" td_diff = _total_milliseconds_from_timedelta( current_timestamp - result_timestamp_value[0] ) assert td_diff == 0, "the timestamp result was wrong" td_diff = _total_milliseconds_from_timedelta( other_timestamp - result_other_timestamp_value[0] ) assert td_diff == 0, "the other timestamp result was wrong" td_diff = _total_milliseconds_from_timedelta( current_timestamp.replace(tzinfo=None) - result_ntz_timestamp_value[0] ) assert td_diff == 0, "the other timestamp result was wrong" assert current_date == result_date_value[0], "the date result was wrong" assert current_time == result_time_value[0], "the time result was wrong" desc = c.description assert len(desc) == 6, "invalid number of column meta data" assert desc[0][0].upper() == "AA", "invalid column name" assert desc[1][0].upper() == "TSLTZ", "invalid column name" assert desc[2][0].upper() == "TSTZ", "invalid column name" assert desc[3][0].upper() == "TSNTZ", "invalid column name" assert desc[4][0].upper() == "DT", "invalid column name" assert desc[5][0].upper() == "TM", "invalid column name" assert ( constants.FIELD_ID_TO_NAME[desc[0][1]] == "FIXED" ), "invalid column name: {}".format(constants.FIELD_ID_TO_NAME[desc[0][1]]) assert ( constants.FIELD_ID_TO_NAME[desc[1][1]] == "TIMESTAMP_LTZ" ), "invalid column name" assert ( constants.FIELD_ID_TO_NAME[desc[2][1]] == "TIMESTAMP_TZ" ), "invalid column name" assert ( constants.FIELD_ID_TO_NAME[desc[3][1]] == "TIMESTAMP_NTZ" ), "invalid column name" assert constants.FIELD_ID_TO_NAME[desc[4][1]] == "DATE", "invalid column name" assert constants.FIELD_ID_TO_NAME[desc[5][1]] == "TIME", "invalid column name" finally: cnx2.close() def test_insert_timestamp_ltz(conn, db_parameters): """Inserts and retrieve timestamp ltz.""" tzstr = "America/New_York" # sync with the session parameter with conn() as cnx: cnx.cursor().execute("alter session set timezone='{tzstr}'".format(tzstr=tzstr)) current_time = datetime.now() current_time = current_time.replace(tzinfo=pytz.timezone(tzstr)) c = cnx.cursor() try: fmt = "insert into {name}(aa, tsltz) values(%(value)s,%(ts)s)" c.execute( fmt.format(name=db_parameters["name"]), { "value": 8765, "ts": current_time, }, ) cnt = 0 for rec in c: cnt += int(rec[0]) assert cnt == 1, "wrong number of records were inserted" finally: c.close() try: c = cnx.cursor() c.execute("select aa,tsltz from {name}".format(name=db_parameters["name"])) result_numeric_value = [] result_timestamp_value = [] for (aa, ts) in c: result_numeric_value.append(aa) result_timestamp_value.append(ts) td_diff = _total_milliseconds_from_timedelta( current_time - result_timestamp_value[0] ) assert td_diff == 0, "the first result was wrong" finally: c.close() def test_struct_time(conn, db_parameters): """Binds struct_time object for updating timestamp.""" tzstr = "America/New_York" os.environ["TZ"] = tzstr if not IS_WINDOWS: time.tzset() test_time = time.strptime("30 Sep 01 11:20:30", "%d %b %y %H:%M:%S") with conn() as cnx: c = cnx.cursor() try: fmt = "insert into {name}(aa, tsltz) values(%(value)s,%(ts)s)" c.execute( fmt.format(name=db_parameters["name"]), { "value": 87654, "ts": test_time, }, ) cnt = 0 for rec in c: cnt += int(rec[0]) finally: c.close() os.environ["TZ"] = "UTC" if not IS_WINDOWS: time.tzset() assert cnt == 1, "wrong number of records were inserted" try: result = cnx.cursor().execute( "select aa, tsltz from {name}".format(name=db_parameters["name"]) ) for (_, _tsltz) in result: pass _tsltz -= _tsltz.tzinfo.utcoffset(_tsltz) assert test_time.tm_year == _tsltz.year, "Year didn't match" assert test_time.tm_mon == _tsltz.month, "Month didn't match" assert test_time.tm_mday == _tsltz.day, "Day didn't match" assert test_time.tm_hour == _tsltz.hour, "Hour didn't match" assert test_time.tm_min == _tsltz.minute, "Minute didn't match" assert test_time.tm_sec == _tsltz.second, "Second didn't match" finally: os.environ["TZ"] = "UTC" if not IS_WINDOWS: time.tzset() def test_insert_binary_select(conn, db_parameters): """Inserts and get a binary value.""" value = b"\x00\xFF\xA1\xB2\xC3" with conn() as cnx: c = cnx.cursor() try: fmt = "insert into {name}(b) values(%(b)s)" c.execute(fmt.format(name=db_parameters["name"]), {"b": value}) count = sum(int(rec[0]) for rec in c) assert count == 1, "wrong number of records were inserted" assert c.rowcount == 1, "wrong number of records were selected" finally: c.close() cnx2 = snowflake.connector.connect( user=db_parameters["user"], password=db_parameters["password"], host=db_parameters["host"], port=db_parameters["port"], account=db_parameters["account"], database=db_parameters["database"], schema=db_parameters["schema"], protocol=db_parameters["protocol"], ) try: c = cnx2.cursor() c.execute("select b from {name}".format(name=db_parameters["name"])) results = [b for (b,) in c] assert value == results[0], "the binary result was wrong" desc = c.description assert len(desc) == 1, "invalid number of column meta data" assert desc[0][0].upper() == "B", "invalid column name" assert constants.FIELD_ID_TO_NAME[desc[0][1]] == "BINARY", "invalid column name" finally: cnx2.close() def test_insert_binary_select_with_bytearray(conn, db_parameters): """Inserts and get a binary value using the bytearray type.""" value = bytearray(b"\x00\xFF\xA1\xB2\xC3") with conn() as cnx: c = cnx.cursor() try: fmt = "insert into {name}(b) values(%(b)s)" c.execute(fmt.format(name=db_parameters["name"]), {"b": value}) count = sum(int(rec[0]) for rec in c) assert count == 1, "wrong number of records were inserted" assert c.rowcount == 1, "wrong number of records were selected" finally: c.close() cnx2 = snowflake.connector.connect( user=db_parameters["user"], password=db_parameters["password"], host=db_parameters["host"], port=db_parameters["port"], account=db_parameters["account"], database=db_parameters["database"], schema=db_parameters["schema"], protocol=db_parameters["protocol"], ) try: c = cnx2.cursor() c.execute("select b from {name}".format(name=db_parameters["name"])) results = [b for (b,) in c] assert bytes(value) == results[0], "the binary result was wrong" desc = c.description assert len(desc) == 1, "invalid number of column meta data" assert desc[0][0].upper() == "B", "invalid column name" assert constants.FIELD_ID_TO_NAME[desc[0][1]] == "BINARY", "invalid column name" finally: cnx2.close() def test_variant(conn, db_parameters): """Variant including JSON object.""" name_variant = db_parameters["name"] + "_variant" with conn() as cnx: cnx.cursor().execute( """ create table {name} ( created_at timestamp, data variant) """.format( name=name_variant ) ) try: with conn() as cnx: current_time = datetime.now() c = cnx.cursor() try: fmt = ( "insert into {name}(created_at, data) " "select column1, parse_json(column2) " "from values(%(created_at)s, %(data)s)" ) c.execute( fmt.format(name=name_variant), { "created_at": current_time, "data": ( '{"SESSION-PARAMETERS":{' '"TIMEZONE":"UTC", "SPECIAL_FLAG":true}}' ), }, ) cnt = 0 for rec in c: cnt += int(rec[0]) assert cnt == 1, "wrong number of records were inserted" assert c.rowcount == 1, "wrong number of records were inserted" finally: c.close() result = cnx.cursor().execute( "select created_at, data from {name}".format(name=name_variant) ) _, data = result.fetchone() data = json.loads(data) assert data["SESSION-PARAMETERS"]["SPECIAL_FLAG"], ( "JSON data should be parsed properly. " "Invalid JSON data" ) finally: with conn() as cnx: cnx.cursor().execute("drop table {name}".format(name=name_variant)) def test_callproc(conn_cnx): """Callproc test. Notes: It's a nop as of now. """ with conn_cnx() as cnx: with pytest.raises(errors.NotSupportedError): cnx.cursor().callproc("whatever the stored procedure") def test_invalid_bind_data_type(conn_cnx): """Invalid bind data type.""" with conn_cnx() as cnx: with pytest.raises(errors.ProgrammingError): cnx.cursor().execute("select 1 from dual where 1=%s", ([1, 2, 3],)) def test_timeout_query(conn_cnx): with conn_cnx() as cnx: cnx.cursor().execute("select 1") c = cnx.cursor() try: c.execute( "select seq8() as c1 " "from table(generator(timeLimit => 60))", timeout=5, ) raise Exception("Must be canceled") except BASE_EXCEPTION_CLASS as err: assert isinstance( err, errors.ProgrammingError ), "Programming Error Exception" assert err.errno == 604, "Invalid error code" finally: c.close() def test_executemany(conn, db_parameters): """Executes many statements. Client binding is supported by either dict, or list data types. Notes: The binding data type is dict and tuple, respectively. """ with conn() as cnx: c = cnx.cursor() fmt = "insert into {name}(aa) values(%(value)s)".format( name=db_parameters["name"] ) c.executemany( fmt, [ {"value": "1234"}, {"value": "234"}, {"value": "34"}, {"value": "4"}, ], ) cnt = 0 for rec in c: cnt += int(rec[0]) assert cnt == 4, "number of records" assert c.rowcount == 4, "wrong number of records were inserted" c.close() c = cnx.cursor() fmt = "insert into {name}(aa) values(%s)".format(name=db_parameters["name"]) c.executemany( fmt, [ (12345,), (1234,), (234,), (34,), (4,), ], ) rec = c.fetchone() assert rec[0] == 5, "number of records" assert c.rowcount == 5, "wrong number of records were inserted" c.close() @pytest.mark.skipolddriver def test_executemany_qmark_types(conn, db_parameters): table_name = random_string(5, "date_test_") with conn(paramstyle="qmark") as cnx: with cnx.cursor() as cur: cur.execute(f"create table {table_name} (birth_date date)") insert_qy = f"INSERT INTO {table_name} (birth_date) values (?)" date_1, date_2 = date(1969, 2, 7), date(1969, 1, 1) try: # insert two dates, one in tuple format which specifies # the snowflake type similar to how we support it in this # example: # https://docs.snowflake.com/en/user-guide/python-connector-example.html#using-qmark-or-numeric-binding-with-datetime-objects cur.executemany( insert_qy, [[date_1], [("DATE", date_2)]], ) cur.execute(f"select * from {table_name}") inserted_dates = [row[0] for row in cur.fetchall()] assert date_1 in inserted_dates assert date_2 in inserted_dates finally: cur.execute(f"drop table if exists {table_name}") def test_closed_cursor(conn, db_parameters): """Attempts to use the closed cursor. It should raise errors. Notes: The binding data type is scalar. """ with conn() as cnx: c = cnx.cursor() fmt = "insert into {name}(aa) values(%s)".format(name=db_parameters["name"]) c.executemany( fmt, [ 12345, 1234, 234, 34, 4, ], ) rec = c.fetchone() assert rec[0] == 5, "number of records" assert c.rowcount == 5, "number of records" c.close() fmt = "select aa from {name}".format(name=db_parameters["name"]) try: c.execute(fmt) raise Exception("should fail as the cursor was closed.") except snowflake.connector.Error as err: assert err.errno == errorcode.ER_CURSOR_IS_CLOSED def test_fetchmany(conn, db_parameters): with conn() as cnx: c = cnx.cursor() fmt = "insert into {name}(aa) values(%(value)s)".format( name=db_parameters["name"] ) c.executemany( fmt, [ {"value": "3456789"}, {"value": "234567"}, {"value": "1234"}, {"value": "234"}, {"value": "34"}, {"value": "4"}, ], ) cnt = 0 for rec in c: cnt += int(rec[0]) assert cnt == 6, "number of records" assert c.rowcount == 6, "number of records" c.close() c = cnx.cursor() fmt = "select aa from {name} order by aa desc".format( name=db_parameters["name"] ) c.execute(fmt) rows = c.fetchmany(2) assert len(rows) == 2, "The number of records" assert rows[1][0] == 234567, "The second record" rows = c.fetchmany(1) assert len(rows) == 1, "The number of records" assert rows[0][0] == 1234, "The first record" rows = c.fetchmany(5) assert len(rows) == 3, "The number of records" assert rows[-1][0] == 4, "The last record" rows = c.fetchmany(15) assert len(rows) == 0, "The number of records" c.close() def test_process_params(conn, db_parameters): """Binds variables for insert and other queries.""" with conn() as cnx: c = cnx.cursor() fmt = "insert into {name}(aa) values(%(value)s)".format( name=db_parameters["name"] ) c.executemany( fmt, [ {"value": "3456789"}, {"value": "234567"}, {"value": "1234"}, {"value": "234"}, {"value": "34"}, {"value": "4"}, ], ) cnt = 0 for rec in c: cnt += int(rec[0]) c.close() assert cnt == 6, "number of records" fmt = "select count(aa) from {name} where aa > %(value)s".format( name=db_parameters["name"] ) c = cnx.cursor() c.execute(fmt, {"value": 1233}) for (_cnt,) in c: pass assert _cnt == 3, "the number of records" c.close() fmt = "select count(aa) from {name} where aa > %s".format( name=db_parameters["name"] ) c = cnx.cursor() c.execute(fmt, (1234,)) for (_cnt,) in c: pass assert _cnt == 2, "the number of records" c.close() def test_real_decimal(conn, db_parameters): with conn() as cnx: c = cnx.cursor() fmt = ("insert into {name}(aa, pct, ratio) " "values(%s,%s,%s)").format( name=db_parameters["name"] ) c.execute(fmt, (9876, 12.3, decimal.Decimal("23.4"))) for (_cnt,) in c: pass assert _cnt == 1, "the number of records" c.close() c = cnx.cursor() fmt = "select aa, pct, ratio from {name}".format(name=db_parameters["name"]) c.execute(fmt) for (_aa, _pct, _ratio) in c: pass assert _aa == 9876, "the integer value" assert _pct == 12.3, "the float value" assert _ratio == decimal.Decimal("23.4"), "the decimal value" c.close() with cnx.cursor(snowflake.connector.DictCursor) as c: fmt = "select aa, pct, ratio from {name}".format(name=db_parameters["name"]) c.execute(fmt) rec = c.fetchone() assert rec["AA"] == 9876, "the integer value" assert rec["PCT"] == 12.3, "the float value" assert rec["RATIO"] == decimal.Decimal("23.4"), "the decimal value" def test_none_errorhandler(conn_testaccount): c = conn_testaccount.cursor() with pytest.raises(errors.ProgrammingError): c.errorhandler = None def test_nope_errorhandler(conn_testaccount): def user_errorhandler(connection, cursor, errorclass, errorvalue): pass c = conn_testaccount.cursor() c.errorhandler = user_errorhandler c.execute("select * foooooo never_exists_table") c.execute("select * barrrrr never_exists_table") c.execute("select * daaaaaa never_exists_table") assert c.messages[0][0] == errors.ProgrammingError, "One error was recorded" assert len(c.messages) == 1, "should be one error" @pytest.mark.internal def test_binding_negative(negative_conn_cnx, db_parameters): with negative_conn_cnx() as cnx: with pytest.raises(TypeError): cnx.cursor().execute( "INSERT INTO {name}(aa) VALUES(%s)".format(name=db_parameters["name"]), (1, 2, 3), ) with pytest.raises(errors.ProgrammingError): cnx.cursor().execute( "INSERT INTO {name}(aa) VALUES(%s)".format(name=db_parameters["name"]), (), ) with pytest.raises(errors.ProgrammingError): cnx.cursor().execute( "INSERT INTO {name}(aa) VALUES(%s)".format(name=db_parameters["name"]), (["a"],), ) def test_execute_after_close(conn_testaccount): """SNOW-13588: Raises an error if executing after the connection is closed.""" cursor = conn_testaccount.cursor() conn_testaccount.close() with pytest.raises(errors.Error): cursor.execute("show tables") def test_multi_table_insert(conn, db_parameters): try: with conn() as cnx: cur = cnx.cursor() cur.execute( """ INSERT INTO {name}(aa) VALUES(1234),(9876),(2345) """.format( name=db_parameters["name"] ) ) assert cur.rowcount == 3, "the number of records" cur.execute( """ CREATE OR REPLACE TABLE {name}_foo (aa_foo int) """.format( name=db_parameters["name"] ) ) cur.execute( """ CREATE OR REPLACE TABLE {name}_bar (aa_bar int) """.format( name=db_parameters["name"] ) ) cur.execute( """ INSERT ALL INTO {name}_foo(aa_foo) VALUES(aa) INTO {name}_bar(aa_bar) VALUES(aa) SELECT aa FROM {name} """.format( name=db_parameters["name"] ) ) assert cur.rowcount == 6 finally: with conn() as cnx: cnx.cursor().execute( """ DROP TABLE IF EXISTS {name}_foo """.format( name=db_parameters["name"] ) ) cnx.cursor().execute( """ DROP TABLE IF EXISTS {name}_bar """.format( name=db_parameters["name"] ) ) @pytest.mark.skipif( True, reason=""" Negative test case. """, ) def test_fetch_before_execute(conn_testaccount): """SNOW-13574: Fetch before execute.""" cursor = conn_testaccount.cursor() with pytest.raises(errors.DataError): cursor.fetchone() def test_close_twice(conn_testaccount): conn_testaccount.close() conn_testaccount.close() @pytest.mark.parametrize("result_format", ("arrow", "json")) def test_fetch_out_of_range_timestamp_value(conn, result_format): with conn() as cnx: cur = cnx.cursor() cur.execute( f"alter session set python_connector_query_result_format='{result_format}'" ) cur.execute("select '12345-01-02'::timestamp_ntz") with pytest.raises(errors.InterfaceError): cur.fetchone() @pytest.mark.parametrize("sql", (None, ""), ids=["None", "empty"]) def test_empty_execution(conn, sql): """Checks whether executing an empty string, or nothing behaves as expected.""" with conn() as cnx: with cnx.cursor() as cur: if sql is not None: cur.execute(sql) assert cur._result is None with pytest.raises( TypeError, match="'NoneType' object is not( an)? itera(tor|ble)" ): cur.fetchone() with pytest.raises( TypeError, match="'NoneType' object is not( an)? itera(tor|ble)" ): cur.fetchall() @pytest.mark.parametrize( "reuse_results", (False, pytest.param(True, marks=pytest.mark.skipolddriver)) ) def test_reset_fetch(conn, reuse_results): """Tests behavior after resetting the cursor.""" with conn(reuse_results=reuse_results) as cnx: with cnx.cursor() as cur: cur.execute("select 1") cur.reset() if reuse_results: assert cur.fetchone() == (1,) else: assert cur.fetchone() is None assert len(cur.fetchall()) == 0 def test_rownumber(conn): """Checks whether rownumber is returned as expected.""" with conn() as cnx: with cnx.cursor() as cur: assert cur.execute("select * from values (1), (2)") assert cur.rownumber is None assert cur.fetchone() == (1,) assert cur.rownumber == 0 assert cur.fetchone() == (2,) assert cur.rownumber == 1 def test_values_set(conn): """Checks whether a bunch of properties start as Nones, but get set to something else when a query was executed.""" properties = [ "timestamp_output_format", "timestamp_ltz_output_format", "timestamp_tz_output_format", "timestamp_ntz_output_format", "date_output_format", "timezone", "time_output_format", "binary_output_format", ] with conn() as cnx: with cnx.cursor() as cur: for property in properties: assert getattr(cur, property) is None assert cur.execute("select 1").fetchone() == (1,) # The default values might change in future, so let's just check that they aren't None anymore for property in properties: assert getattr(cur, property) is not None def test_execute_helper_params_error(conn_testaccount): """Tests whether calling _execute_helper with a non-dict statement params is handled correctly.""" with conn_testaccount.cursor() as cur: with pytest.raises( ProgrammingError, match=r"The data type of statement params is invalid. It must be dict.$", ): cur._execute_helper("select %()s", statement_params="1") def test_desc_rewrite(conn, caplog): """Tests whether describe queries are rewritten as expected and this action is logged.""" with conn() as cnx: with cnx.cursor() as cur: table_name = random_string(5, "test_desc_rewrite_") try: cur.execute("create or replace table {} (a int)".format(table_name)) caplog.set_level(logging.DEBUG, "snowflake.connector") cur.execute("desc {}".format(table_name)) assert ( "snowflake.connector.cursor", 20, "query was rewritten: org=desc {table_name}, new=describe table {table_name}".format( table_name=table_name ), ) in caplog.record_tuples finally: cur.execute("drop table {}".format(table_name)) @pytest.mark.skipolddriver @pytest.mark.parametrize("result_format", [False, None, "json"]) def test_execute_helper_cannot_use_arrow(conn_cnx, caplog, result_format): """Tests whether cannot use arrow is handled correctly inside of _execute_helper.""" with conn_cnx() as cnx: with cnx.cursor() as cur: with mock.patch( "snowflake.connector.cursor.CAN_USE_ARROW_RESULT_FORMAT", False ): if result_format is False: result_format = None else: result_format = { PARAMETER_PYTHON_CONNECTOR_QUERY_RESULT_FORMAT: result_format } caplog.set_level(logging.DEBUG, "snowflake.connector") cur.execute("select 1", _statement_params=result_format) assert ( "snowflake.connector.cursor", logging.DEBUG, "Cannot use arrow result format, fallback to json format", ) in caplog.record_tuples assert cur.fetchone() == (1,) @pytest.mark.skipolddriver def test_execute_helper_cannot_use_arrow_exception(conn_cnx): """Like test_execute_helper_cannot_use_arrow but when we are trying to force arrow an Exception should be raised.""" with conn_cnx() as cnx: with cnx.cursor() as cur: with mock.patch( "snowflake.connector.cursor.CAN_USE_ARROW_RESULT_FORMAT", False ): with pytest.raises( ProgrammingError, match="The result set in Apache Arrow format is not supported for the platform.", ): cur.execute( "select 1", _statement_params={ PARAMETER_PYTHON_CONNECTOR_QUERY_RESULT_FORMAT: "arrow" }, ) @pytest.mark.skipolddriver def test_check_can_use_arrow_resultset(conn_cnx, caplog): """Tests check_can_use_arrow_resultset has no effect when we can use arrow.""" with conn_cnx() as cnx: with cnx.cursor() as cur: with mock.patch( "snowflake.connector.cursor.CAN_USE_ARROW_RESULT_FORMAT", True ): caplog.set_level(logging.DEBUG, "snowflake.connector") cur.check_can_use_arrow_resultset() assert "Arrow" not in caplog.text @pytest.mark.skipolddriver @pytest.mark.parametrize("snowsql", [True, False]) def test_check_cannot_use_arrow_resultset(conn_cnx, caplog, snowsql): """Tests check_can_use_arrow_resultset expected outcomes.""" config = {} if snowsql: config["application"] = "SnowSQL" with conn_cnx(**config) as cnx: with cnx.cursor() as cur: with mock.patch( "snowflake.connector.cursor.CAN_USE_ARROW_RESULT_FORMAT", False ): with pytest.raises( ProgrammingError, match="Currently SnowSQL doesn't support the result set in Apache Arrow format." if snowsql else "The result set in Apache Arrow format is not supported for the platform.", ) as pe: cur.check_can_use_arrow_resultset() assert pe.errno == ( ER_NO_PYARROW_SNOWSQL if snowsql else ER_NO_ARROW_RESULT ) @pytest.mark.skipolddriver def test_check_can_use_pandas(conn_cnx): """Tests check_can_use_arrow_resultset has no effect when we can import pandas.""" with conn_cnx() as cnx: with cnx.cursor() as cur: with mock.patch("snowflake.connector.cursor.installed_pandas", True): cur.check_can_use_pandas() @pytest.mark.skipolddriver def test_check_cannot_use_pandas(conn_cnx): """Tests check_can_use_arrow_resultset has expected outcomes.""" with conn_cnx() as cnx: with cnx.cursor() as cur: with mock.patch("snowflake.connector.cursor.installed_pandas", False): with pytest.raises( ProgrammingError, match=r"Optional dependency: 'pyarrow' is not installed, please see the " "following link for install instructions: https:.*", ) as pe: cur.check_can_use_pandas() assert pe.errno == ER_NO_PYARROW @pytest.mark.skipolddriver def test_not_supported_pandas(conn_cnx): """Check that fetch_pandas functions return expected error when arrow results are not available.""" result_format = {PARAMETER_PYTHON_CONNECTOR_QUERY_RESULT_FORMAT: "json"} with conn_cnx() as cnx: with cnx.cursor() as cur: cur.execute("select 1", _statement_params=result_format) with mock.patch("snowflake.connector.cursor.installed_pandas", True): with pytest.raises(NotSupportedError): cur.fetch_pandas_all() with pytest.raises(NotSupportedError): list(cur.fetch_pandas_batches()) def test_query_cancellation(conn_cnx): """Tests whether query_cancellation works.""" with conn_cnx() as cnx: with cnx.cursor() as cur: cur.execute( "select max(seq8()) from table(generator(timeLimit=>30));", _no_results=True, ) sf_qid = cur.sfqid cur.abort_query(sf_qid) def test_executemany_error(conn_cnx): """Tests calling executemany without many things.""" with conn_cnx() as con: with con.cursor() as cur: with pytest.raises( InterfaceError, match="No parameters are specified for the command: select 1", ) as ie: cur.executemany("select 1", []) assert ie.errno == ER_INVALID_VALUE def test_executemany_insert_rewrite(conn_cnx): """Tests calling executemany with a non rewritable pyformat insert query.""" with conn_cnx() as con: with con.cursor() as cur: with pytest.raises( InterfaceError, match="Failed to rewrite multi-row insert" ) as ie: cur.executemany("insert into numbers (select 1)", [1, 2]) assert ie.errno == ER_FAILED_TO_REWRITE_MULTI_ROW_INSERT def test_executemany_bulk_insert_size_mismatch(conn_cnx): """Tests bulk insert error with variable length of arguments.""" with conn_cnx(paramstyle="qmark") as con: with con.cursor() as cur: with pytest.raises( InterfaceError, match="Bulk data size don't match. expected: 1, got: 2" ) as ie: cur.executemany("insert into numbers values (?,?)", [[1], [1, 2]]) assert ie.errno == ER_FAILED_TO_REWRITE_MULTI_ROW_INSERT def test_fetchmany_size_error(conn_cnx): """Tests retrieving a negative number of results.""" with conn_cnx() as con: with con.cursor() as cur: cur.execute("select 1") with pytest.raises( ProgrammingError, match="The number of rows is not zero or positive number: -1", ) as ie: cur.fetchmany(-1) assert ie.errno == ER_NOT_POSITIVE_SIZE def test_nextset(conn_cnx, caplog): """Tests no op function nextset.""" caplog.set_level(logging.DEBUG, "snowflake.connector") with conn_cnx() as con: with con.cursor() as cur: caplog.set_level(logging.DEBUG, "snowflake.connector") assert cur.nextset() is None assert ("snowflake.connector.cursor", logging.DEBUG, "nop") in caplog.record_tuples def test_scroll(conn_cnx): """Tests if scroll returns a NotSupported exception.""" with conn_cnx() as con: with con.cursor() as cur: with pytest.raises( NotSupportedError, match="scroll is not supported." ) as nse: cur.scroll(2) assert nse.errno == SQLSTATE_FEATURE_NOT_SUPPORTED def test__log_telemetry_job_data(conn_cnx, caplog): """Tests whether we handle missing connection object correctly while logging a telemetry event.""" with conn_cnx() as con: with con.cursor() as cur: with mock.patch.object(cur, "_connection", None): caplog.set_level(logging.DEBUG, "snowflake.connector") cur._log_telemetry_job_data("test", True) assert ( "snowflake.connector.cursor", logging.WARNING, "Cursor failed to log to telemetry. Connection object may be None.", ) in caplog.record_tuples @pytest.mark.skipolddriver(reason="new feature in v2.5.0") @pytest.mark.parametrize( "result_format,expected_chunk_type", ( ("json", JSONResultBatch), ("arrow", ArrowResultBatch), ), ) def test_resultbatch( conn_cnx, result_format, expected_chunk_type, capture_sf_telemetry, ): """This test checks the following things: 1. After executing a query can we pickle the result batches 2. When we get the batches, do we emit a telemetry log 3. Whether we can iterate through ResultBatches multiple times 4. Whether the results make sense 5. See whether getter functions are working """ rowcount = 100000 with conn_cnx( session_parameters={ "python_connector_query_result_format": result_format, } ) as con: with capture_sf_telemetry.patch_connection(con) as telemetry_data: with con.cursor() as cur: cur.execute( f"select seq4() from table(generator(rowcount => {rowcount}));" ) assert cur._result_set.total_row_index() == rowcount pre_pickle_partitions = cur.get_result_batches() assert len(pre_pickle_partitions) > 1 assert pre_pickle_partitions is not None assert all( isinstance(p, expected_chunk_type) for p in pre_pickle_partitions ) pickle_str = pickle.dumps(pre_pickle_partitions) assert any( t.message["type"] == TelemetryField.GET_PARTITIONS_USED for t in telemetry_data.records ) post_pickle_partitions: List["ResultBatch"] = pickle.loads(pickle_str) total_rows = 0 # Make sure the batches can be iterated over individually for i, partition in enumerate(post_pickle_partitions): # Tests whether the getter functions are working if i == 0: assert partition.compressed_size is None assert partition.uncompressed_size is None else: assert partition.compressed_size is not None assert partition.uncompressed_size is not None for row in partition: col1 = row[0] assert col1 == total_rows total_rows += 1 assert total_rows == rowcount total_rows = 0 # Make sure the batches can be iterated over again for partition in post_pickle_partitions: for row in partition: col1 = row[0] assert col1 == total_rows total_rows += 1 assert total_rows == rowcount @pytest.mark.skipolddriver(reason="new feature in v2.5.0") @pytest.mark.parametrize( "result_format,patch_path", ( ("json", "snowflake.connector.result_batch.JSONResultBatch.create_iter"), ("arrow", "snowflake.connector.result_batch.ArrowResultBatch.create_iter"), ), ) def test_resultbatch_lazy_fetching_and_schemas(conn_cnx, result_format, patch_path): """Tests whether pre-fetching results chunks fetches the right amount of them.""" rowcount = 1000000 # We need at least 5 chunks for this test with conn_cnx( session_parameters={ "python_connector_query_result_format": result_format, } ) as con: with con.cursor() as cur: # Dummy return value necessary to not iterate through every batch with # first fetchone call downloads = [iter([(i,)]) for i in range(10)] with mock.patch( patch_path, side_effect=downloads, ) as patched_download: cur.execute( f"select seq4() as c1, randstr(1,random()) as c2 " f"from table(generator(rowcount => {rowcount}));" ) result_batches = cur.get_result_batches() batch_schemas = [batch.schema for batch in result_batches] for schema in batch_schemas: # all batches should have the same schema assert schema == [ ResultMetadata("C1", 0, None, None, 10, 0, False), ResultMetadata("C2", 2, None, 16777216, None, None, False), ] assert patched_download.call_count == 0 assert len(result_batches) > 5 assert result_batches[0]._local # Sanity check first chunk being local cur.fetchone() # Trigger pre-fetching # While the first chunk is local we still call _download on it, which # short circuits and just parses (for JSON batches) and then returns # an iterator through that data, so we expect the call count to be 5. # (0 local and 1, 2, 3, 4 pre-fetched) = 5 total start_time = time.time() while time.time() < start_time + 1: if patched_download.call_count == 5: break else: assert patched_download.call_count == 5 @pytest.mark.skipolddriver(reason="new feature in v2.5.0") @pytest.mark.parametrize("result_format", ["json", "arrow"]) def test_resultbatch_schema_exists_when_zero_rows(conn_cnx, result_format): with conn_cnx( session_parameters={"python_connector_query_result_format": result_format} ) as con: with con.cursor() as cur: cur.execute( "select seq4() as c1, randstr(1,random()) as c2 from table(generator(rowcount => 1)) where 1=0" ) result_batches = cur.get_result_batches() # verify there is 1 batch and 0 rows in that batch assert len(result_batches) == 1 assert result_batches[0].rowcount == 0 # verify that the schema is correct schema = result_batches[0].schema assert schema == [ ResultMetadata("C1", 0, None, None, 10, 0, False), ResultMetadata("C2", 2, None, 16777216, None, None, False), ] def test_optional_telemetry(conn_cnx, capture_sf_telemetry): """Make sure that we do not fail when _first_chunk_time is not present in cursor.""" with conn_cnx() as con: with con.cursor() as cur: with capture_sf_telemetry.patch_connection(con, False) as telemetry: cur.execute("select 1;") cur._first_chunk_time = None assert cur.fetchall() == [ (1,), ] assert not any( r.message.get("type", "") == TelemetryField.TIME_CONSUME_LAST_RESULT for r in telemetry.records ) @pytest.mark.parametrize("result_format", ("json", "arrow")) @pytest.mark.parametrize("cursor_type", (SnowflakeCursor, DictCursor)) @pytest.mark.parametrize("fetch_method", ("__next__", "fetchone")) def test_out_of_range_year(conn_cnx, result_format, cursor_type, fetch_method): """Tests whether the year 10000 is out of range exception is raised as expected.""" with conn_cnx( session_parameters={ PARAMETER_PYTHON_CONNECTOR_QUERY_RESULT_FORMAT: result_format } ) as con: with con.cursor(cursor_type) as cur: cur.execute( "select * from VALUES (1, TO_TIMESTAMP('9999-01-01 00:00:00')), (2, TO_TIMESTAMP('10000-01-01 00:00:00'))" ) iterate_obj = cur if fetch_method == "fetchone" else iter(cur) fetch_next_fn = getattr(iterate_obj, fetch_method) # first fetch doesn't raise error fetch_next_fn() with pytest.raises( InterfaceError, match="date value out of range" if IS_WINDOWS else "year 10000 is out of range", ): fetch_next_fn() @pytest.mark.skipolddriver def test_describe(conn_cnx): with conn_cnx() as con: with con.cursor() as cur: table_name = random_string(5, "test_describe_") # test select description = cur.describe( "select * from VALUES(1, 3.1415926, 'snow', TO_TIMESTAMP('2021-01-01 00:00:00'))" ) assert description is not None column_types = [column[1] for column in description] assert constants.FIELD_ID_TO_NAME[column_types[0]] == "FIXED" assert constants.FIELD_ID_TO_NAME[column_types[1]] == "FIXED" assert constants.FIELD_ID_TO_NAME[column_types[2]] == "TEXT" assert "TIMESTAMP" in constants.FIELD_ID_TO_NAME[column_types[3]] assert len(cur.fetchall()) == 0 # test insert cur.execute(f"create table {table_name} (aa int)") try: description = cur.describe( "insert into {name}(aa) values({value})".format( name=table_name, value="1234" ) ) assert description[0][0] == "number of rows inserted" assert cur.rowcount is None finally: cur.execute(f"drop table if exists {table_name}") @pytest.mark.skipolddriver def test_fetch_batches_with_sessions(conn_cnx): rowcount = 250_000 with conn_cnx() as con: with con.cursor() as cur: cur.execute( f"select seq4() as foo from table(generator(rowcount=>{rowcount}))" ) num_batches = len(cur.get_result_batches()) with mock.patch( "snowflake.connector.network.SnowflakeRestful._use_requests_session", side_effect=con._rest._use_requests_session, ) as get_session_mock: result = cur.fetchall() # all but one batch is downloaded using a session assert get_session_mock.call_count == num_batches - 1 assert len(result) == rowcount
the-stack_0_12484
from PyQt5.QtWidgets import * from PyQt5.QtCore import * import os import sqlite3 import random from panel import Ui_quiz # Questions Database conn = sqlite3.connect('questions.db') c = conn.cursor() # User information Database conn2 = sqlite3.connect('info_user.db') c2 = conn2.cursor() c2.execute('''CREATE TABLE IF NOT EXISTS level( level text )''') conn2.commit() # default time question time = 8 # answer question variable answer_question = 0 check_answer = True # Page status variable (question page/other page) status_question = False # level variable level = 0 # check buy time and wrong option status_buy_time = True status_buy_option = True class Root(QMainWindow): def __init__(self): global level QMainWindow.__init__(self) self.ui = Ui_quiz() self.ui.setupUi(self) self.oldPos = [] self.show() # set timer self.timer = QTimer(self) self.timer.timeout.connect(self.timer_func) self.timer.start(1000) # set info user self.ui.username.setText(os.getlogin()) self.ui.profile.setText(str(os.getlogin())[0].lower()) self.ui.username2.setText(os.getlogin()) # Set level try: c2.execute('SELECT * FROM level') level = c2.fetchone()[0] self.ui.level.setText(level) self.ui.level2.setText(level) except: c2.execute('INSERT INTO level VALUES(1)') conn2.commit() # Set Button self.ui.letsgo.clicked.connect(lambda: self.ui.pages.setCurrentWidget(self.ui.select)) self.ui.tech.clicked.connect(self.tech) self.ui.sport.clicked.connect(self.sport) self.ui.info.clicked.connect(self.info) self.ui.cinema.clicked.connect(self.cinema) self.ui.math.clicked.connect(self.math) self.ui.nature.clicked.connect(self.nature) # set option self.ui.one.clicked.connect(self.one) self.ui.two.clicked.connect(self.two) self.ui.three.clicked.connect(self.three) self.ui.four.clicked.connect(self.four) # set Button end question self.ui.end.clicked.connect(lambda: self.ui.pages.setCurrentWidget(self.ui.select)) self.ui.end.clicked.connect(self.end_question) self.ui.end2.clicked.connect(lambda: self.ui.pages.setCurrentWidget(self.ui.select)) self.ui.end2.clicked.connect(self.end_question) # help user self.ui.buy_option.clicked.connect(self.wrong_option) self.ui.buy_time.clicked.connect(self.buy_time) def mousePressEvent(self, evt): self.oldPos = evt.globalPos() def mouseMoveEvent(self, evt): delta = QPoint(evt.globalPos() - self.oldPos) self.move(self.x() + delta.x(), self.y() + delta.y()) self.oldPos = evt.globalPos() # Technology category def tech(self): global conn global c global time global check_answer global status_question self.ui.next.clicked.connect(self.tech) self.ui.next2.clicked.connect(self.tech) self.ui.pages.setCurrentWidget(self.ui.question) c.execute('SELECT * FROM tech') questions = c.fetchall() tedad = len(questions) ran = random.randrange(0, tedad) questions = questions[ran] self.set_qu(questions[0], questions[1], questions[2], questions[3], questions[4], questions[5]) check_answer = True status_question = True time = 8 # Sports category def sport(self): global conn global c global time global check_answer global status_question self.ui.next.clicked.connect(self.sport) self.ui.next2.clicked.connect(self.sport) self.ui.pages.setCurrentWidget(self.ui.question) c.execute('SELECT * FROM Football') questions = c.fetchall() tedad = len(questions) ran = random.randrange(0, tedad) questions = questions[ran] self.set_qu(questions[0], questions[1], questions[2], questions[3], questions[4], questions[5]) check_answer = True status_question = True time = 8 def info(self): global conn global c global time global check_answer global status_question self.ui.next.clicked.connect(self.info) self.ui.next2.clicked.connect(self.info) self.ui.pages.setCurrentWidget(self.ui.question) c.execute('SELECT * FROM information') questions = c.fetchall() tedad = len(questions) ran = random.randrange(0, tedad) questions = questions[ran] self.set_qu(questions[0], questions[1], questions[2], questions[3], questions[4], questions[5]) check_answer = True status_question = True time = 8 def cinema(self): global conn global c global time global check_answer global status_question self.ui.next.clicked.connect(self.cinema) self.ui.next2.clicked.connect(self.cinema) self.ui.pages.setCurrentWidget(self.ui.question) c.execute('SELECT * FROM cinema') questions = c.fetchall() tedad = len(questions) ran = random.randrange(0, tedad) questions = questions[ran] self.set_qu(questions[0], questions[1], questions[2], questions[3], questions[4], questions[5]) check_answer = True status_question = True time = 8 def math(self): global conn global c global time global check_answer global status_question self.ui.next.clicked.connect(self.math) self.ui.next2.clicked.connect(self.math) self.ui.pages.setCurrentWidget(self.ui.question) c.execute('SELECT * FROM math') questions = c.fetchall() tedad = len(questions) ran = random.randrange(0, tedad) questions = questions[ran] self.set_qu(questions[0], questions[1], questions[2], questions[3], questions[4], questions[5]) check_answer = True status_question = True time = 8 def nature(self): global conn global c global time global check_answer global status_question self.ui.next.clicked.connect(self.nature) self.ui.next2.clicked.connect(self.nature) self.ui.pages.setCurrentWidget(self.ui.question) c.execute('SELECT * FROM nature') questions = c.fetchall() tedad = len(questions) ran = random.randrange(0, tedad) questions = questions[ran] self.set_qu(questions[0], questions[1], questions[2], questions[3], questions[4], questions[5]) check_answer = True status_question = True time = 8 # Set option questions def set_qu(self, question, one, two, three, four, answer): global answer_question global check_answer global status_buy_option global status_buy_time # clear Ui self.ui.quest.clear() self.ui.quest_2.clear() status_buy_time = True status_buy_option = True self.ui.line1.hide() self.ui.line2.hide() self.ui.line3.hide() self.ui.line4.hide() if len(question) <= 45: self.ui.quest.setText(question) self.ui.quest_2.clear() else: self.ui.quest.setText(question[:40]) self.ui.quest_2.setText(question[40:]) self.ui.quest_win.setText(question) self.ui.quest_lost.setText(question) self.ui.one.setText(one) self.ui.two.setText(two) self.ui.three.setText(three) self.ui.four.setText(four) answer_question = answer if answer == 1: self.ui.answer_win.setText(one) self.ui.answer_lost.setText(one) elif answer == 2: self.ui.answer_win.setText(two) self.ui.answer_lost.setText(two) elif answer == 3: self.ui.answer_win.setText(three) self.ui.answer_lost.setText(three) else: self.ui.answer_win.setText(four) self.ui.answer_lost.setText(four) # One second timer def timer_func(self): global time global status_question global level if status_question: # timer time -= 1 if len(str(time)) == 2: self.ui.time.setText('00:'+str(time)) else: self.ui.time.setText('00:0' + str(time)) if time == 0 and check_answer: self.ui.pages.setCurrentWidget(self.ui.False_answer) status_question = False c2.execute('SELECT * FROM level') level = c2.fetchone()[0] self.ui.level.setText(level) self.ui.level2.setText(level) # Option one to four def one(self): self.check(1) def two(self): self.check(2) def three(self): self.check(3) def four(self): self.check(4) # Check user answer def check(self, user_answer): global check_answer global answer_question global level if user_answer == answer_question: check_answer = False self.ui.pages.setCurrentWidget(self.ui.True_answer) new_level = float(level) + 1 sql_update_query = f"""Update level set level = {new_level} where level = {level}""" c2.execute(sql_update_query) conn2.commit() else: self.ui.pages.setCurrentWidget(self.ui.False_answer) # help user (show wrong option) def wrong_option(self): global answer_question global level global status_buy_option if status_buy_option: status_buy_option = False if answer_question != 1: self.ui.line1.show() elif answer_question != 2: self.ui.line2.show() elif answer_question != 3: self.ui.line3.show() elif answer_question != 4: self.ui.line4.show() new_level = float(level) - 0.5 sql_update_query = f"""Update level set level = {new_level} where level = {level}""" c2.execute(sql_update_query) conn2.commit() # buy time @staticmethod def buy_time(): global time global level global status_buy_time if status_buy_time: time += 5 status_buy_time = False new_level = float(level) - 0.5 sql_update_query = f"""Update level set level = {new_level} where level = {level}""" c2.execute(sql_update_query) conn2.commit() # end question @staticmethod def end_question(): global status_question status_question = False if __name__ == '__main__': import sys app = QApplication(sys.argv) root = Root() sys.exit(app.exec_())
the-stack_0_12485
import cv2 import numpy as np def rgb2gray(rgb): return np.dot(rgb[..., :3], [0.299, 0.587, 0.114]) def convert_2d_to_3d(u, v, z, K): v0 = K[1][2] u0 = K[0][2] fy = K[1][1] fx = K[0][0] x = (u - u0) * z / fx y = (v - v0) * z / fy return (x, y, z) def feature_match(img1, img2): r''' Find features on both images and match them pairwise ''' max_n_features = 1000 # max_n_features = 500 use_flann = False # better not use flann detector = cv2.xfeatures2d.SIFT_create(max_n_features) # find the keypoints and descriptors with SIFT kp1, des1 = detector.detectAndCompute(img1, None) kp2, des2 = detector.detectAndCompute(img2, None) if (des1 is None) or (des2 is None): return [], [] des1 = des1.astype(np.float32) des2 = des2.astype(np.float32) if use_flann: # FLANN parameters FLANN_INDEX_KDTREE = 0 index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5) search_params = dict(checks=50) flann = cv2.FlannBasedMatcher(index_params, search_params) matches = flann.knnMatch(des1, des2, k=2) else: matcher = cv2.DescriptorMatcher().create('BruteForce') matches = matcher.knnMatch(des1, des2, k=2) good = [] pts1 = [] pts2 = [] # ratio test as per Lowe's paper for i, (m, n) in enumerate(matches): if m.distance < 0.8 * n.distance: good.append(m) pts2.append(kp2[m.trainIdx].pt) pts1.append(kp1[m.queryIdx].pt) pts1 = np.int32(pts1) pts2 = np.int32(pts2) return pts1, pts2 def get_pose_pnp(rgb_curr, rgb_near, depth_curr, K): gray_curr = rgb2gray(rgb_curr).astype(np.uint8) gray_near = rgb2gray(rgb_near).astype(np.uint8) height, width = gray_curr.shape pts2d_curr, pts2d_near = feature_match(gray_curr, gray_near) # feature matching # dilation of depth kernel = np.ones((4, 4), np.uint8) depth_curr_dilated = cv2.dilate(depth_curr, kernel) # extract 3d pts pts3d_curr = [] pts2d_near_filtered = [ ] # keep only feature points with depth in the current frame for i, pt2d in enumerate(pts2d_curr): # print(pt2d) u, v = pt2d[0], pt2d[1] z = depth_curr_dilated[v, u] if z > 0: xyz_curr = convert_2d_to_3d(u, v, z, K) pts3d_curr.append(xyz_curr) pts2d_near_filtered.append(pts2d_near[i]) # the minimal number of points accepted by solvePnP is 4: if len(pts3d_curr) >= 4 and len(pts2d_near_filtered) >= 4: pts3d_curr = np.expand_dims(np.array(pts3d_curr).astype(np.float32), axis=1) pts2d_near_filtered = np.expand_dims( np.array(pts2d_near_filtered).astype(np.float32), axis=1) # ransac ret = cv2.solvePnPRansac(pts3d_curr, pts2d_near_filtered, np.asarray(K), distCoeffs=None) success = ret[0] rotation_vector = ret[1] translation_vector = ret[2] return (success, rotation_vector, translation_vector) else: return (0, None, None)
the-stack_0_12488
''' Various classes and functions for handling Regier and colleagues' communicative cost model. ''' import numpy as np from scipy.spatial.distance import pdist, squareform class Partition: ''' A partition object represents a partition of an n-dimensional space. To create a partition, pass a list like [[0,0,1,1], [0,0,1,1]], where the structure of the lists represents the space (here 2x4), and the numbers represent the categories (here category 0 and 1). Passing a tuple like (2,4) creates a trivial partition of given dimensionality. Various iteration methods are available for traversing the partition. ''' @property def shape(self): return self._partition.shape @property def size(self): return self._partition.size def __init__(self, partition): if isinstance(partition, tuple): self._partition = np.zeros(partition, dtype=int) else: self._partition = np.array(partition, dtype=int) self._boolean_matrix = None def __repr__(self): ''' Provides textual description of the partition object. ''' if len(self.shape) == 1: return 'Partition[length=%i, n_categories=%i]' % (self.shape[0], self.__len__()) return 'Partition[shape=%s, n_categories=%i]' % ('x'.join(map(str, self.shape)), self.__len__()) def __str__(self): ''' Provides printable representation of the partition object. ''' return self._partition.__str__() def __len__(self): ''' The length of a partition is the number of categories it contains. ''' return np.unique(self._partition).size def __getitem__(self, key): ''' Pass a tuple to get the category memebership of a point. Pass an integer to get a list of points that belong to a category. ''' if isinstance(key, tuple): return self._partition[key] return list(map(tuple, np.transpose(np.where(self._partition==key)))) def __setitem__(self, key, value): ''' Change the category membership of a particular point. ''' if not isinstance(key, tuple): raise ValueError('Index must be tuple. For 1D spaces, include a trailing comma in the index.') self._boolean_matrix = None self._partition[key] = value def __iter__(self): ''' Default iterator. Each iteration returns a point in the space along with its associated category. ''' for point, category in np.ndenumerate(self._partition): yield point, category def iter_categories(self): ''' Iterate over categories in the partition. Each iteration returns an integer. ''' for category in np.unique(self._partition): yield category def iter_points(self): ''' Iterate over points in the space. Each iteration returns a tuple. ''' for point in np.ndindex(self.shape): yield point def boolean_matrix(self): ''' Returns a 2D Boolean matrix, where rows correspond to meanings and columns correspond to categories. True indicates that the ith meaning belongs to the jth category. This Boolean matrix representation is used by the communicative_cost method in the Space object for fast computation using a similarity matrix. ''' if self._boolean_matrix: return self._boolean_matrix self._boolean_matrix = convert_to_bool_matrix(self._partition) return self._boolean_matrix def spawn_speaker(self): ''' Creates a Speaker with perfect speaker certainty. ''' return Speaker(self.shape) def spawn_listener(self, gamma, mu=2): ''' Creates a Listener who represents the partition according to the specified gamma and mu parameters. gamma may be set to 'uniform' to create a uniform listener. ''' return Listener(self.shape, self.listener_distributions(gamma, mu)) def listener_distributions(self, gamma, mu=2): ''' Returns a dictionary mapping categories to distributions created under the specified gamma and mu parameters. gamma may be set to 'uniform' to create uniform category distributions. ''' if gamma == 'uniform': return {category:self.uniform_distribution(category) for category in self.iter_categories()} else: return {category:self.gaussian_distribution(category, gamma, mu) for category in self.iter_categories()} def uniform_distribution(self, category): ''' Returns the uniform distribution for a particular category. ''' category_members = self[category] uniform_probability = 1.0 / len(category_members) distribution = np.zeros(self.shape, dtype=float) for point in category_members: distribution[point] = uniform_probability return Distribution(distribution, normalize=False) def gaussian_distribution(self, category, gamma=1, mu=2): ''' Returns the Gaussian distribution for a particular category under the specified gamma and mu parameters. ''' distribution = np.zeros(self.shape, dtype=float) for point in self.iter_points(): distribution[point] = self._category_similarity(point, category, gamma, mu) return Distribution(distribution, normalize=True) def _category_similarity(self, point, category, gamma, mu): ''' Returns the sum similarity between a point and all members of a category under the specified gamma and mu parameters. ''' return sum(self._similarity(point, member, gamma, mu) for member in self[category]) def _similarity(self, x, y, gamma, mu): ''' Returns the similarity between two points under the specified gamma and mu parameters. ''' if not ((isinstance(gamma, int) or isinstance(gamma, float)) and gamma >= 0): raise ValueError('Gamma parameter must be positive number.') return np.exp(-gamma * self._distance(x, y, mu)**2) def _distance(self, x, y, mu): ''' Returns the Minkowski distance between two points for some mu. mu = 1: Manhattan distance mu = 2: Euclidean distance ''' if not ((isinstance(mu, int) or isinstance(mu, float)) and mu > 0): if mu == 'circle_euclidean': return self._circle_euclidean(x, y) raise ValueError('Mu parameter must be positive number.') return sum(abs(x - y)**mu for x, y in zip(x, y))**(1.0/mu) def _circle_euclidean(self, x, y): ''' Returns the Euclidean distance between two points on a line which wraps back around on itself (the shorter distance in either direction is returned). ''' sigma = 0.0 for dim in range(len(self.shape)): d1 = abs(x[dim] - y[dim]) d2 = abs(d1 - self.shape[dim]) if d1 < d2: sigma += d1**2 else: sigma += d2**2 return sigma**0.5 ######################################################################## class Distribution: ''' A Distribution object represents a probability distribution. An error is raised if the passed probabilities do not sum to 1; to correct this, set normalize to True, which will automatically normalize the distribution. ''' @property def shape(self): return self.probabilities.shape def __init__(self, distribution, normalize=False): distribution = np.array(distribution, dtype=float) if distribution.ndim == 0: raise ValueError('Distribution must have at least one dimension') if normalize is True: self.probabilities = distribution / distribution.sum() elif np.isclose(distribution.sum(), 1.0): self.probabilities = distribution else: raise ValueError('Probabilities do not sum to 1: Use normalize=True') def __repr__(self): ''' Provides textual description of the distribution. ''' dims = len(self.shape) start = '['*dims + str(self.probabilities[(0,)*dims]) end = str(self.probabilities[(-1,)*dims]) + ']'*dims return 'Distribution%s ... %s' % (start, end) def __str__(self): ''' Provides printable representation of the distribution. ''' return self.probabilities.__str__() def __getitem__(self, key): ''' Pass an int (1D) or tuple (ND) to get the probability of that point on the distribution. ''' return self.probabilities[key] def __iter__(self): ''' Default iterator. Each iteration returns a point in the distribution along with its associated probability. ''' for point, probability in np.ndenumerate(self.probabilities): yield point, probability def __mul__(self, operand): return self.probabilities * operand.probabilities def smooth(self, alpha): ''' Returns a smoothed copy of the Distribution using convex combination smoothing. alpha=0: no smoothing; alpha=1: smooth to a uniform distribution. ''' if alpha: if not isinstance(alpha, (int, float)) and (alpha < 0 or alpha > 1): raise ValueError('Alpha must be number between 0 and 1.') uniform = np.full(self.shape, 1.0 / np.product(self.shape), dtype=float) return Distribution(uniform*alpha + self.probabilities*(1.0 - alpha), False) return self ######################################################################## class Need(Distribution): ''' A Need object represents the probability with which each point in an n-dimensional space will need to be expressed. To create a Need object, pass a list like [[2,2,4,5], [3,1,6,8]], where the structure of the lists represents the space (here 2x4), and the numbers represent the frequency or probability of each point. Frequencies will automatically be converted to probabilities. Passing a tuple like (2,4) creates a Need object of given dimensionality with uniform need probabilities. ''' def __init__(self, need_frequencies): if isinstance(need_frequencies, tuple): self.probabilities = np.full(need_frequencies, 1.0 / np.product(need_frequencies), dtype=float) else: need_frequencies = np.array(need_frequencies, dtype=float) if need_frequencies.ndim == 0: raise ValueError('Distribution must be at least one dimensional') self.probabilities = need_frequencies / need_frequencies.sum() ######################################################################## class Speaker: ''' Collection of distributions - one for each point in the space. ''' @property def shape(self): return self._shape def __init__(self, shape, speaker_distributions=None): if not isinstance(shape, tuple): raise ValueError('Shape must be tuple') self._shape = shape self._distributions = {} if speaker_distributions: if not isinstance(speaker_distributions, dict): raise ValueError('Speaker distributions shoud be passed as dictionary: point:distribution') else: points = list(np.ndindex(self._shape)) for point in points: if point not in speaker_distributions: raise ValueError('Speaker distributions must be provided for every point') for point, speaker_distribution in speaker_distributions.items(): if point not in points: raise ValueError('Invalid point contained in passed speaker distributions') self[point] = speaker_distribution else: # Assume speaker certainty and create point distributions for point in np.ndindex(self._shape): point_distribution = np.zeros(self._shape, dtype=float) point_distribution[point] = 1.0 self._distributions[point] = Distribution(point_distribution) def __getitem__(self, key): ''' Pass a tuple to get the category memebership of a point. Pass an integer to get a list of points that belong to a category. ''' if key not in self._distributions: raise ValueError('Invalid point.') return self._distributions[key] def __setitem__(self, key, value): ''' Change the category membership of a particular point. ''' if not self._valid_key(key): raise ValueError('Invalid point.') if not isinstance(value, Distribution): value = Distribution(value) if value.shape != self._shape: raise ValueError('Distribution shape does not match the shape of the speaker.') self._distributions[key] = value def __iter__(self): ''' Default iterator. Each iteration returns a point in the distribution along with its associated probability. ''' for point in np.ndindex(self._shape): yield (point, self[point]) def _valid_key(self, key): if not isinstance(key, tuple): return False if len(key) != len(self.shape): return False for dim in range(len(key)): if key[dim] >= self._shape[dim]: return False return True ######################################################################## class Listener: ''' Collection of distributions - one for each category ''' @property def shape(self): return self._shape def __init__(self, shape, listener_distributions): if not isinstance(shape, tuple): raise ValueError('Shape must be tuple') if not isinstance(listener_distributions, dict): raise ValueError('Listener distributions shoud be passed as dictionary: category:Distribution') self._shape = shape self._distributions = {} for category, listener_distribution in listener_distributions.items(): self[category] = listener_distribution def __getitem__(self, key): ''' Pass an integer to get the distribution for that category. ''' if key not in self._distributions: raise ValueError('Invalid category.') return self._distributions[key] def __setitem__(self, key, value): ''' Change the distribution for a particular category ''' if not isinstance(value, Distribution): value = Distribution(value) if value.shape != self._shape: raise ValueError('Distribution shape does not match the shape of the listener.') self._distributions[key] = value def __iter__(self): ''' Default iterator. Each iteration returns a point in the distribution along with its associated probability. ''' for category in sorted(list(self._distributions.keys())): yield (category, self[category]) def smooth(self, alpha): if alpha: smoothed_distributions = {} for category, distribution in self._distributions.items(): smoothed_distributions[category] = distribution.smooth(alpha) return Listener(self.shape, smoothed_distributions) return self ######################################################################## class Space: ''' A Space object represents an n-dimensional universe. To create a space object of certain dimensionality, pass a tuple like (2,4). Optionally, you can pass a need object specifying, a gamma setting (default: 1), a mu setting (default: 2 (Euclidean), 1 = Manhattan), If no need object is passed, a uniform need object will be created. ''' @property def shape(self): return self._shape def __init__(self, shape, need=None, gamma=1, mu=2): if not isinstance(shape, tuple): raise ValueError('The shape of the space must be a tuple.') self._shape = shape if need: if not isinstance(need, Need): raise ValueError('Invalid need object. Pass a need object or set to None for uniform need probabilities.') self._need = need else: # Need unspecified, so create a uniform need object self._need = Need(self._shape) if not ((isinstance(gamma, int) or isinstance(gamma, float)) and gamma >= 0): raise ValueError('Gamma parameter must be positive number.') self._gamma = gamma if not ((isinstance(mu, int) or isinstance(mu, float)) and mu > 0): raise ValueError('Mu parameter must be positive number.') self._mu = mu pairwise_distances = pdist(list(np.ndindex(self._shape)), 'minkowski', self._mu) distance_matrix = squareform(pairwise_distances) self._similarity_matrix = np.exp(-self._gamma * distance_matrix**2) def __repr__(self): ''' Provides textual description of the space object. ''' if len(self._shape) == 1: return 'Space[length=%i, gamma=%i, mu=%s]' % (self._shape[0], self._gamma, self._mu) return 'Space[dimensionality=%s, gamma=%i, mu=%s]' % ('x'.join(map(str, self._shape)), self._gamma, self._mu) def communicative_cost(self, partition, need=None): ''' Returns the communicative cost for a given partition and need probabilities. If no need object is passed, the need probabilities will be inherited from the space's own need object. ''' if not isinstance(partition, Partition): raise ValueError('Invalid Partition object.') if partition.shape != self._shape: raise ValueError('Partition object does not match the dimensions of the space. Should be %s.' % 'x'.join(map(str, self._shape))) if need: if not isinstance(need, Need): raise ValueError('Invalid Need object. Pass a Need object or set to None to inherit need probabilities from the space.') if need.shape != self._shape: raise ValueError('Need object does not match the dimensions of the space. Should be %s.' % 'x'.join(map(str, self._shape))) else: need = self._need boolean_matrix = partition.boolean_matrix() listener_distributions = np.dot(self._similarity_matrix, boolean_matrix) norm_listener_distributions = listener_distributions * boolean_matrix / listener_distributions.sum(axis=0) neg_log_listener_distributions = -np.log2(norm_listener_distributions.sum(axis=1)) return (need.probabilities * neg_log_listener_distributions.reshape(self._shape)).sum() def cost(self, language_array): ''' Returns the communicative cost of a language passed as a simple numpy array under the assumption of uniform need probabilities. Essentially does the same as the communicative_cost method above without the need to first convert the numpy array to a Partition object. ''' if not isinstance(language_array, np.ndarray): raise ValueError('language_array should be Numpy array') if language_array.shape != self._shape: raise ValueError('Partition object does not match the dimensions of the space. Should be %s.' % 'x'.join(map(str, self._shape))) boolean_matrix = convert_to_bool_matrix(language_array) listener_distributions = np.dot(self._similarity_matrix, boolean_matrix) norm_listener_distributions = listener_distributions * boolean_matrix / listener_distributions.sum(axis=0) neg_log_listener_distributions = -np.log2(norm_listener_distributions.sum(axis=1)) return (self._need.probabilities * neg_log_listener_distributions.reshape(self._shape)).sum() ######################################################################## def convert_to_bool_matrix(partition): ''' Returns a 2D Boolean matrix, where rows correspond to meanings and columns correspond to categories. True indicates that the ith meaning belongs to the jth category. This Boolean matrix representation is used by the communicative_cost method in the Space object for fast computation using a similarity matrix. ''' n_points = partition.size # determines number of rows n_categories = len(np.unique(partition)) # determines number of columns cat_to_col = {cat:col for col, cat in enumerate(np.unique(partition))} # maps categories to columns boolean_matrix = np.zeros((n_points, n_categories), dtype=bool) for row, point in enumerate(np.ndindex(partition.shape)): column = cat_to_col[partition[point]] boolean_matrix[row, column] = True return boolean_matrix ######################################################################## def KL_divergence(s, l): ''' Returns the KL divergence between a speaker and listener distribution. ''' if s.shape != l.shape: raise ValueError('Speaker and listener distributions do not have the same shape') D_KL = 0.0 for point in np.ndindex(s.shape): if s[point] == 0: continue if l[point] == 0: raise ValueError('Cannot compute KL divergence because l=0 where s>0 at point %s. Try smoothing.'%str(point)) D_KL += s[point] * np.log2(s[point] / (l[point])) return D_KL def cost(partition, need, speaker, listener, alpha=None): ''' Returns the communicative cost given partition, need, speaker, and listener objects. ''' if not isinstance(partition, Partition): raise ValueError('Invalid Partition object') if not isinstance(need, Need) or partition.shape != need.shape: raise ValueError('Invalid Need object') if not isinstance(speaker, Speaker) or partition.shape != speaker.shape: raise ValueError('Invalid Speaker object') if not isinstance(listener, Listener) or partition.shape != listener.shape: raise ValueError('Invalid Listener object') if alpha: listener = listener.smooth(alpha) return sum(need[target] * KL_divergence(speaker[target], listener[category]) for target, category in partition) ######################################################################## def random_partition(shape, n_categories, convex=False, seeds=None): ''' Returns a randomly generated partition object with specified shape, number of categories, and convexity. ''' space = np.full(shape, -1, dtype=int) n_items = np.product(shape) points = list(np.ndindex(shape)) if seeds is None: seeds = [points[p] for p in np.random.choice(n_items, n_categories, False)] for category in range(n_categories): space[seeds[category]] = category for point in points: if space[point] == -1: if convex: distances = [dist(point, seed, 2) for seed in seeds] min_distance = min(distances) category = np.random.choice([c for c in range(n_categories) if distances[c] == min_distance]) else: category = np.random.choice(n_categories) space[point] = category return seeds, space def iter_partitions(collection): if len(collection) == 1: yield [ collection ] return first = collection[0] for smaller in iter_partitions(collection[1:]): for n, subset in enumerate(smaller): yield smaller[:n] + [[ first ] + subset] + smaller[n+1:] yield [ [ first ] ] + smaller def all_partitions(shape): ''' Returns all partitions of a space ''' space = np.zeros(shape, dtype=int) for partition in iter_partitions(list(np.ndindex(shape))): for category, points in enumerate(partition): for point in points: space[point] = category yield Partition(space) def dist(x, y, mu): return sum(abs(x - y)**mu for x, y in zip(x, y))**(1.0/mu)
the-stack_0_12489
import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import logging def conv3x3(in_channels, out_channels, stride=1): return nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) class ResidualBlock(nn.Module): def __init__(self, in_channels, out_channels, stride=1, apply_activation=False): super(ResidualBlock, self).__init__() self.conv1 = conv3x3(in_channels, out_channels, stride) self.bn1 = nn.BatchNorm2d(out_channels) self.conv2 = conv3x3(out_channels, out_channels) self.bn2 = nn.BatchNorm2d(out_channels) self.conv3 = conv3x3(out_channels, out_channels) self.bn3 = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU(inplace=True) self.apply_activation = apply_activation def forward(self, x): """Output size is same as input size""" residual = x out = self.conv1(x) out = self.bn1(out) out += residual residual = out out = self.conv2(out) out = self.bn2(out) out += residual residual = out out = self.conv3(out) out = self.bn3(out) out += residual if self.apply_activation: out = self.relu(out) return out
the-stack_0_12491
#!/bin/python3 import math import os import random import re import sys # Complete the pairs function below. def pairs(k, arr): res = 0 memo = dict() for el in arr: if el-k in memo: res += 1 if el+k in memo: res += 1 memo[el] = True return res if __name__ == '__main__': fptr = open(os.environ['OUTPUT_PATH'], 'w') nk = input().split() n = int(nk[0]) k = int(nk[1]) arr = list(map(int, input().rstrip().split())) result = pairs(k, arr) fptr.write(str(result) + '\n') fptr.close()
the-stack_0_12494
import torch from torch import nn def normalize(x, axis=-1): """Normalizing to unit length along the specified dimension. Args: x: pytorch Variable Returns: x: pytorch Variable, same shape as input """ x = 1. * x / (torch.norm(x, 2, axis, keepdim=True).expand_as(x) + 1e-12) return x def euclidean_dist(x, y): """ Args: x: pytorch Variable, with shape [m, d] y: pytorch Variable, with shape [n, d] Returns: dist: pytorch Variable, with shape [m, n] """ m, n = x.size(0), y.size(0) xx = torch.pow(x, 2).sum(1, keepdim=True).expand(m, n) yy = torch.pow(y, 2).sum(1, keepdim=True).expand(n, m).t() dist = xx + yy dist.addmm_(1, -2, x, y.t()) dist = dist.clamp(min=1e-12).sqrt() # for numerical stability return dist def hard_example_mining(dist_mat, labels, return_inds=False): """For each anchor, find the hardest positive and negative sample. Args: dist_mat: pytorch Variable, pair wise distance between samples, shape [N, N] labels: pytorch LongTensor, with shape [N] return_inds: whether to return the indices. Save time if `False`(?) Returns: dist_ap: pytorch Variable, distance(anchor, positive); shape [N] dist_an: pytorch Variable, distance(anchor, negative); shape [N] p_inds: pytorch LongTensor, with shape [N]; indices of selected hard positive samples; 0 <= p_inds[i] <= N - 1 n_inds: pytorch LongTensor, with shape [N]; indices of selected hard negative samples; 0 <= n_inds[i] <= N - 1 NOTE: Only consider the case in which all labels have same num of samples, thus we can cope with all anchors in parallel. """ assert len(dist_mat.size()) == 2 assert dist_mat.size(0) == dist_mat.size(1) N = dist_mat.size(0) # shape [N, N] is_pos = labels.expand(N, N).eq(labels.expand(N, N).t()) is_neg = labels.expand(N, N).ne(labels.expand(N, N).t()) ap_mat = dist_mat.mul(is_pos.float()) an_mat = dist_mat.mul(is_neg.float()) dist_ap, relative_p_inds = torch.max(ap_mat, 1, keepdim=True) max_dist_an, _ = torch.max(an_mat, 1, keepdim=True) max_an_mat = dist_mat + max_dist_an * (is_pos.float()) dist_an, relative_n_inds = torch.min(max_an_mat, 1, keepdim=True) dist_ap = dist_ap.squeeze(1) dist_an = dist_an.squeeze(1) if return_inds: # shape [N, N] ind = (labels.new().resize_as_(labels) .copy_(torch.arange(0, N).long()) .unsqueeze(0).expand(N, N)) # shape [N, 1] p_inds = torch.gather( ind, 1, relative_p_inds.data) n_inds = torch.gather( ind, 1, relative_n_inds.data) # shape [N] p_inds = p_inds.squeeze(1) n_inds = n_inds.squeeze(1) return dist_ap, dist_an, p_inds, n_inds return dist_ap, dist_an class TripletLoss(object): """Modified from Tong Xiao's open-reid (https://github.com/Cysu/open-reid). Related Triplet Loss theory can be found in paper 'In Defense of the Triplet Loss for Person Re-Identification'.""" def __init__(self, margin=None): self.margin = margin if margin is not None: self.ranking_loss = nn.MarginRankingLoss(margin=margin) else: self.ranking_loss = nn.SoftMarginLoss() def __call__(self, global_feat, labels, normalize_feature=False): if normalize_feature: global_feat = normalize(global_feat, axis=-1) dist_mat = euclidean_dist(global_feat, global_feat) dist_ap, dist_an = hard_example_mining( dist_mat, labels) y = dist_an.new().resize_as_(dist_an).fill_(1) if self.margin is not None: loss = self.ranking_loss(dist_an, dist_ap, y) else: loss = self.ranking_loss(dist_an - dist_ap, y) return loss, dist_ap, dist_an class CrossEntropyLabelSmooth(nn.Module): """Cross entropy loss with label smoothing regularizer. Reference: Szegedy et al. Rethinking the Inception Architecture for Computer Vision. CVPR 2016. Equation: y = (1 - epsilon) * y + epsilon / K. Args: num_classes (int): number of classes. epsilon (float): weight. """ def __init__(self, num_classes, epsilon=0.1, use_gpu=True): super(CrossEntropyLabelSmooth, self).__init__() self.num_classes = num_classes self.epsilon = epsilon self.use_gpu = use_gpu self.logsoftmax = nn.LogSoftmax(dim=1) def forward(self, inputs, targets): """ Args: inputs: prediction matrix (before softmax) with shape (batch_size, num_classes) targets: ground truth labels with shape (num_classes) """ log_probs = self.logsoftmax(inputs) targets = torch.zeros(log_probs.size()).scatter_(1, targets.unsqueeze(1).data.cpu(), 1) if self.use_gpu: targets = targets.cuda() targets = (1 - self.epsilon) * targets + self.epsilon / self.num_classes loss = (- targets * log_probs).mean(0).sum() return loss
the-stack_0_12495
# -*- coding: utf-8 -*- ########################################################################### # Copyright (c), The AiiDA team. All rights reserved. # # This file is part of the AiiDA code. # # # # The code is hosted on GitHub at https://github.com/aiidateam/aiida_core # # For further information on the license, see the LICENSE.txt file # # For further information please visit http://www.aiida.net # ########################################################################### """Miscellaneous generic utility functions and classes.""" from __future__ import division from __future__ import print_function from __future__ import absolute_import import filecmp import inspect import os import re import sys import six from six.moves import range from six.moves import cStringIO as StringIO from .lang import classproperty def get_new_uuid(): """ Return a new UUID (typically to be used for new nodes). It uses the UUID version specified in aiida.backends.settings.AIIDANODES_UUID_VERSION """ import uuid return six.text_type(uuid.uuid4()) # To speed up the process (os.path.abspath calls are slow) _repository_folder_cache = {} # pylint: disable=invalid-name def get_repository_folder(subfolder=None): """ Return the top folder of the local repository. """ try: return _repository_folder_cache[subfolder] except KeyError: from aiida.manage.configuration import get_profile repository_path = get_profile().repository_path if not os.path.isdir(repository_path): raise ImportError if subfolder is None: retval = os.path.abspath(repository_path) elif subfolder == "sandbox": retval = os.path.abspath(os.path.join(repository_path, 'sandbox')) elif subfolder == "repository": retval = os.path.abspath(os.path.join(repository_path, 'repository')) else: raise ValueError("Invalid 'subfolder' passed to get_repository_folder: {}".format(subfolder)) _repository_folder_cache[subfolder] = retval return retval def validate_list_of_string_tuples(val, tuple_length): """ Check that: 1. ``val`` is a list or tuple 2. each element of the list: a. is a list or tuple b. is of length equal to the parameter tuple_length c. each of the two elements is a string Return if valid, raise ValidationError if invalid """ from aiida.common.exceptions import ValidationError err_msg = ("the value must be a list (or tuple) " "of length-N list (or tuples), whose elements are strings; " "N={}".format(tuple_length)) if not isinstance(val, (list, tuple)): raise ValidationError(err_msg) for element in val: if (not isinstance(element, (list, tuple)) or (len(element) != tuple_length) or not all(isinstance(s, six.string_types) for s in element)): raise ValidationError(err_msg) return True def get_unique_filename(filename, list_of_filenames): """ Return a unique filename that can be added to the list_of_filenames. If filename is not in list_of_filenames, it simply returns the filename string itself. Otherwise, it appends a integer number to the filename (before the extension) until it finds a unique filename. :param filename: the filename to add :param list_of_filenames: the list of filenames to which filename should be added, without name duplicates :returns: Either filename or its modification, with a number appended between the name and the extension. """ if filename not in list_of_filenames: return filename basename, ext = os.path.splitext(filename) # Not optimized, but for the moment this should be fast enough append_int = 1 while True: new_filename = "{:s}-{:d}{:s}".format(basename, append_int, ext) if new_filename not in list_of_filenames: break append_int += 1 return new_filename def str_timedelta(dt, max_num_fields=3, short=False, negative_to_zero=False): # pylint: disable=invalid-name """ Given a dt in seconds, return it in a HH:MM:SS format. :param dt: a TimeDelta object :param max_num_fields: maximum number of non-zero fields to show (for instance if the number of days is non-zero, shows only days, hours and minutes, but not seconds) :param short: if False, print always ``max_num_fields`` fields, even if they are zero. If True, do not print the first fields, if they are zero. :param negative_to_zero: if True, set dt = 0 if dt < 0. """ if max_num_fields <= 0: raise ValueError("max_num_fields must be > 0") s_tot = dt.total_seconds() # Important to get more than 1 day, and for # negative values. dt.seconds would give # wrong results in these cases, see # http://docs.python.org/2/library/datetime.html s_tot = int(s_tot) if negative_to_zero: if s_tot < 0: s_tot = 0 negative = (s_tot < 0) s_tot = abs(s_tot) negative_string = " in the future" if negative else " ago" # For the moment stay away from months and years, difficult to get days, remainder = divmod(s_tot, 3600 * 24) hours, remainder = divmod(remainder, 3600) minutes, seconds = divmod(remainder, 60) all_fields = [(days, 'D'), (hours, 'h'), (minutes, 'm'), (seconds, 's')] fields = [] start_insert = False counter = 0 for idx, field in enumerate(all_fields): if field[0] != 0: start_insert = True if (len(all_fields) - idx) <= max_num_fields: start_insert = True if start_insert: if counter >= max_num_fields: break fields.append(field) counter += 1 if short: while len(fields) > 1: # at least one element has to remain if fields[0][0] != 0: break fields.pop(0) # remove first element # Join the fields raw_string = ":".join(["{:02d}{}".format(*f) for f in fields]) if raw_string.startswith('0'): raw_string = raw_string[1:] # Return the resulting string, appending a suitable string if the time # is negative return "{}{}".format(raw_string, negative_string) def get_class_string(obj): """ Return the string identifying the class of the object (module + object name, joined by dots). It works both for classes and for class instances. """ if inspect.isclass(obj): return "{}.{}".format(obj.__module__, obj.__name__) return "{}.{}".format(obj.__module__, obj.__class__.__name__) def get_object_from_string(class_string): """ Given a string identifying an object (as returned by the get_class_string method) load and return the actual object. """ import importlib the_module, _, the_name = class_string.rpartition('.') return getattr(importlib.import_module(the_module), the_name) def export_shard_uuid(uuid): """ Sharding of the UUID for the import/export """ return os.path.join(uuid[:2], uuid[2:4], uuid[4:]) def grouper(n, iterable): # pylint: disable=invalid-name """ Given an iterable, returns an iterable that returns tuples of groups of elements from iterable of length n, except the last one that has the required length to exaust iterable (i.e., there is no filling applied). :param n: length of each tuple (except the last one,that will have length <= n :param iterable: the iterable to divide in groups """ import itertools iterator = iter(iterable) while True: chunk = tuple(itertools.islice(iterator, n)) if not chunk: return yield chunk class ArrayCounter(object): # pylint: disable=useless-object-inheritance """ A counter & a method that increments it and returns its value. It is used in various tests. """ seq = None def __init__(self): self.seq = -1 def array_counter(self): self.seq += 1 return self.seq def are_dir_trees_equal(dir1, dir2): """ Compare two directories recursively. Files in each directory are assumed to be equal if their names and contents are equal. @param dir1: First directory path @param dir2: Second directory path @return: True if the directory trees are the same and there were no errors while accessing the directories or files, False otherwise. """ # Directory comparison dirs_cmp = filecmp.dircmp(dir1, dir2) if dirs_cmp.left_only or dirs_cmp.right_only or dirs_cmp.funny_files: return (False, "Left directory: {}, right directory: {}, files only " "in left directory: {}, files only in right directory: " "{}, not comparable files: {}".format(dir1, dir2, dirs_cmp.left_only, dirs_cmp.right_only, dirs_cmp.funny_files)) # If the directories contain the same files, compare the common files (_, mismatch, errors) = filecmp.cmpfiles(dir1, dir2, dirs_cmp.common_files, shallow=False) if mismatch: return (False, "The following files in the directories {} and {} " "don't match: {}".format(dir1, dir2, mismatch)) if errors: return (False, "The following files in the directories {} and {} " "aren't regular: {}".format(dir1, dir2, errors)) for common_dir in dirs_cmp.common_dirs: new_dir1 = os.path.join(dir1, common_dir) new_dir2 = os.path.join(dir2, common_dir) res, msg = are_dir_trees_equal(new_dir1, new_dir2) if not res: return False, msg return True, "The given directories ({} and {}) are equal".format(dir1, dir2) class Prettifier(object): # pylint: disable=useless-object-inheritance """ Class to manage prettifiers (typically for labels of kpoints in band plots) """ @classmethod def _prettify_label_pass(cls, label): """ No-op prettifier, simply returns the same label :param label: a string to prettify """ return label @classmethod def _prettify_label_agr(cls, label): """ Prettifier for XMGrace :param label: a string to prettify """ label = ( label .replace('GAMMA', r'\xG\f{}') .replace('DELTA', r'\xD\f{}') .replace('LAMBDA', r'\xL\f{}') .replace('SIGMA', r'\xS\f{}') ) # yapf:disable return re.sub(r'_(.?)', r'\\s\1\\N', label) @classmethod def _prettify_label_agr_simple(cls, label): """ Prettifier for XMGrace (for old label names) :param label: a string to prettify """ if label == 'G': return r'\xG' return re.sub(r'(\d+)', r'\\s\1\\N', label) @classmethod def _prettify_label_gnuplot(cls, label): """ Prettifier for Gnuplot :note: uses unicode, returns unicode strings (potentially, if needed) :param label: a string to prettify """ label = ( label .replace(u'GAMMA', u'Γ') .replace(u'DELTA', u'Δ') .replace(u'LAMBDA', u'Λ') .replace(u'SIGMA', u'Σ') ) # yapf:disable return re.sub(r'_(.?)', r'_{\1}', label) @classmethod def _prettify_label_gnuplot_simple(cls, label): """ Prettifier for Gnuplot (for old label names) :note: uses unicode, returns unicode strings (potentially, if needed) :param label: a string to prettify """ if label == 'G': return u'Γ' return re.sub(r'(\d+)', r'_{\1}', label) @classmethod def _prettify_label_latex(cls, label): """ Prettifier for matplotlib, using LaTeX syntax :param label: a string to prettify """ label = ( label .replace('GAMMA', r'$\Gamma$') .replace('DELTA', r'$\Delta$') .replace('LAMBDA', r'$\Lambda$') .replace('SIGMA', r'$\Sigma$') ) # yapf:disable label = re.sub(r'_(.?)', r'$_{\1}$', label) # label += r"$_{\vphantom{0}}$" return label @classmethod def _prettify_label_latex_simple(cls, label): """ Prettifier for matplotlib, using LaTeX syntax (for old label names) :param label: a string to prettify """ if label == 'G': return r'$\Gamma$' return re.sub(r'(\d+)', r'$_{\1}$', label) @classproperty def prettifiers(cls): # pylint: disable=no-self-argument """ Property that returns a dictionary that for each string associates the function to prettify a label :return: a dictionary where keys are strings and values are functions """ return { 'agr_seekpath': cls._prettify_label_agr, 'agr_simple': cls._prettify_label_agr_simple, 'latex_simple': cls._prettify_label_latex_simple, 'latex_seekpath': cls._prettify_label_latex, 'gnuplot_simple': cls._prettify_label_gnuplot_simple, 'gnuplot_seekpath': cls._prettify_label_gnuplot, 'pass': cls._prettify_label_pass, } @classmethod def get_prettifiers(cls): """ Return a list of valid prettifier strings :return: a list of strings """ return sorted(cls.prettifiers.keys()) # pylint: disable=no-member def __init__(self, format): # pylint: disable=redefined-builtin """ Create a class to pretttify strings of a given format :param format: a string with the format to use to prettify. Valid formats are obtained from self.prettifiers """ if format is None: format = 'pass' try: self._prettifier_f = self.prettifiers[format] # pylint: disable=unsubscriptable-object except KeyError: raise ValueError("Unknown prettifier format {}; valid formats: {}".format( format, ", ".join(self.get_prettifiers()))) def prettify(self, label): """ Prettify a label using the format passed in the initializer :param label: the string to prettify :return: a prettified string """ return self._prettifier_f(label) def prettify_labels(labels, format=None): # pylint: disable=redefined-builtin """ Prettify label for typesetting in various formats :param labels: a list of length-2 tuples, in the format(position, label) :param format: a string with the format for the prettifier (e.g. 'agr', 'matplotlib', ...) :return: the same list as labels, but with the second value possibly replaced with a prettified version that typesets nicely in the selected format """ prettifier = Prettifier(format) return [(pos, prettifier.prettify(label)) for pos, label in labels] def join_labels(labels, join_symbol="|", threshold=1.e-6): """ Join labels with a joining symbol when they are very close :param labels: a list of length-2 tuples, in the format(position, label) :param join_symbol: the string to use to join different paths. By default, a pipe :param threshold: the threshold to decide if two float values are the same and should be joined :return: the same list as labels, but with the second value possibly replaced with strings joined when close enough """ if labels: new_labels = [list(labels[0])] # modify labels when in overlapping position j = 0 for i in range(1, len(labels)): if abs(labels[i][0] - labels[i - 1][0]) < threshold: new_labels[j][1] += join_symbol + labels[i][1] else: new_labels.append(list(labels[i])) j += 1 else: new_labels = [] return new_labels def strip_prefix(full_string, prefix): """ Strip the prefix from the given string and return it. If the prefix is not present the original string will be returned unaltered :param full_string: the string from which to remove the prefix :param prefix: the prefix to remove :return: the string with prefix removed """ if full_string.startswith(prefix): return full_string.rsplit(prefix)[1] return full_string class Capturing(object): # pylint: disable=useless-object-inheritance """ This class captures stdout and returns it (as a list, split by lines). Note: if you raise a SystemExit, you have to catch it outside. E.g., in our tests, this works:: import sys with self.assertRaises(SystemExit): with Capturing() as output: sys.exit() But out of the testing environment, the code instead just exits. To use it, access the obj.stdout_lines, or just iterate over the object :param capture_stderr: if True, also captures sys.stderr. To access the lines, use obj.stderr_lines. If False, obj.stderr_lines is None. """ # pylint: disable=attribute-defined-outside-init def __init__(self, capture_stderr=False): self.stdout_lines = list() super(Capturing, self).__init__() self._capture_stderr = capture_stderr if self._capture_stderr: self.stderr_lines = list() else: self.stderr_lines = None def __enter__(self): """Enter the context where all output is captured.""" self._stdout = sys.stdout self._stringioout = StringIO() sys.stdout = self._stringioout if self._capture_stderr: self._stderr = sys.stderr self._stringioerr = StringIO() sys.stderr = self._stringioerr return self def __exit__(self, *args): """Exit the context where all output is captured.""" self.stdout_lines.extend(self._stringioout.getvalue().splitlines()) sys.stdout = self._stdout del self._stringioout # free up some memory if self._capture_stderr: self.stderr_lines.extend(self._stringioerr.getvalue().splitlines()) sys.stderr = self._stderr del self._stringioerr # free up some memory def __str__(self): return str(self.stdout_lines) def __iter__(self): return iter(self.stdout_lines) class ErrorAccumulator(object): # pylint: disable=useless-object-inheritance """ Allows to run a number of functions and collect all the errors they raise This allows to validate multiple things and tell the user about all the errors encountered at once. Works best if the individual functions do not depend on each other. Does not allow to trace the stack of each error, therefore do not use for debugging, but for semantical checking with user friendly error messages. """ def __init__(self, *error_cls): self.error_cls = error_cls self.errors = {k: [] for k in self.error_cls} def run(self, function, *args, **kwargs): try: function(*args, **kwargs) except self.error_cls as err: self.errors[err.__class__].append(err) def success(self): return bool(not any(self.errors.values())) def result(self, raise_error=Exception): if raise_error: self.raise_errors(raise_error) return self.success(), self.errors def raise_errors(self, raise_cls): if not self.success(): raise raise_cls('The following errors were encountered: {}'.format(self.errors))
the-stack_0_12502
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import collections import datetime import decimal import itertools import math import re import hypothesis as h import numpy as np import pytz import pytest from pyarrow.pandas_compat import _pandas_api # noqa import pyarrow as pa import pyarrow.tests.strategies as past int_type_pairs = [ (np.int8, pa.int8()), (np.int16, pa.int16()), (np.int32, pa.int32()), (np.int64, pa.int64()), (np.uint8, pa.uint8()), (np.uint16, pa.uint16()), (np.uint32, pa.uint32()), (np.uint64, pa.uint64())] np_int_types, pa_int_types = zip(*int_type_pairs) class StrangeIterable: def __init__(self, lst): self.lst = lst def __iter__(self): return self.lst.__iter__() class MyInt: def __init__(self, value): self.value = value def __int__(self): return self.value class MyBrokenInt: def __int__(self): 1/0 # MARKER def check_struct_type(ty, expected): """ Check a struct type is as expected, but not taking order into account. """ assert pa.types.is_struct(ty) assert set(ty) == set(expected) def test_iterable_types(): arr1 = pa.array(StrangeIterable([0, 1, 2, 3])) arr2 = pa.array((0, 1, 2, 3)) assert arr1.equals(arr2) def test_empty_iterable(): arr = pa.array(StrangeIterable([])) assert len(arr) == 0 assert arr.null_count == 0 assert arr.type == pa.null() assert arr.to_pylist() == [] def test_limited_iterator_types(): arr1 = pa.array(iter(range(3)), type=pa.int64(), size=3) arr2 = pa.array((0, 1, 2)) assert arr1.equals(arr2) def test_limited_iterator_size_overflow(): arr1 = pa.array(iter(range(3)), type=pa.int64(), size=2) arr2 = pa.array((0, 1)) assert arr1.equals(arr2) def test_limited_iterator_size_underflow(): arr1 = pa.array(iter(range(3)), type=pa.int64(), size=10) arr2 = pa.array((0, 1, 2)) assert arr1.equals(arr2) def test_iterator_without_size(): expected = pa.array((0, 1, 2)) arr1 = pa.array(iter(range(3))) assert arr1.equals(expected) # Same with explicit type arr1 = pa.array(iter(range(3)), type=pa.int64()) assert arr1.equals(expected) def test_infinite_iterator(): expected = pa.array((0, 1, 2)) arr1 = pa.array(itertools.count(0), size=3) assert arr1.equals(expected) # Same with explicit type arr1 = pa.array(itertools.count(0), type=pa.int64(), size=3) assert arr1.equals(expected) def _as_list(xs): return xs def _as_tuple(xs): return tuple(xs) def _as_deque(xs): # deque is a sequence while neither tuple nor list return collections.deque(xs) def _as_dict_values(xs): # a dict values object is not a sequence, just a regular iterable dct = {k: v for k, v in enumerate(xs)} return dct.values() def _as_numpy_array(xs): arr = np.empty(len(xs), dtype=object) arr[:] = xs return arr parametrize_with_iterable_types = pytest.mark.parametrize( "seq", [_as_list, _as_tuple, _as_deque, _as_dict_values, _as_numpy_array]) @parametrize_with_iterable_types def test_sequence_types(seq): arr1 = pa.array(seq([1, 2, 3])) arr2 = pa.array([1, 2, 3]) assert arr1.equals(arr2) @parametrize_with_iterable_types def test_sequence_boolean(seq): expected = [True, None, False, None] arr = pa.array(seq(expected)) assert len(arr) == 4 assert arr.null_count == 2 assert arr.type == pa.bool_() assert arr.to_pylist() == expected @parametrize_with_iterable_types def test_sequence_numpy_boolean(seq): expected = [np.bool_(True), None, np.bool_(False), None] arr = pa.array(seq(expected)) assert arr.type == pa.bool_() assert arr.to_pylist() == [True, None, False, None] @parametrize_with_iterable_types def test_sequence_mixed_numpy_python_bools(seq): values = np.array([True, False]) arr = pa.array(seq([values[0], None, values[1], True, False])) assert arr.type == pa.bool_() assert arr.to_pylist() == [True, None, False, True, False] @parametrize_with_iterable_types def test_empty_list(seq): arr = pa.array(seq([])) assert len(arr) == 0 assert arr.null_count == 0 assert arr.type == pa.null() assert arr.to_pylist() == [] @parametrize_with_iterable_types def test_nested_lists(seq): data = [[], [1, 2], None] arr = pa.array(seq(data)) assert len(arr) == 3 assert arr.null_count == 1 assert arr.type == pa.list_(pa.int64()) assert arr.to_pylist() == data # With explicit type arr = pa.array(seq(data), type=pa.list_(pa.int32())) assert len(arr) == 3 assert arr.null_count == 1 assert arr.type == pa.list_(pa.int32()) assert arr.to_pylist() == data @parametrize_with_iterable_types def test_nested_large_lists(seq): data = [[], [1, 2], None] arr = pa.array(seq(data), type=pa.large_list(pa.int16())) assert len(arr) == 3 assert arr.null_count == 1 assert arr.type == pa.large_list(pa.int16()) assert arr.to_pylist() == data @parametrize_with_iterable_types def test_list_with_non_list(seq): # List types don't accept non-sequences with pytest.raises(TypeError): pa.array(seq([[], [1, 2], 3]), type=pa.list_(pa.int64())) with pytest.raises(TypeError): pa.array(seq([[], [1, 2], 3]), type=pa.large_list(pa.int64())) @parametrize_with_iterable_types def test_nested_arrays(seq): arr = pa.array(seq([np.array([], dtype=np.int64), np.array([1, 2], dtype=np.int64), None])) assert len(arr) == 3 assert arr.null_count == 1 assert arr.type == pa.list_(pa.int64()) assert arr.to_pylist() == [[], [1, 2], None] @parametrize_with_iterable_types def test_nested_fixed_size_list(seq): # sequence of lists data = [[1, 2], [3, None], None] arr = pa.array(seq(data), type=pa.list_(pa.int64(), 2)) assert len(arr) == 3 assert arr.null_count == 1 assert arr.type == pa.list_(pa.int64(), 2) assert arr.to_pylist() == data # sequence of numpy arrays data = [np.array([1, 2], dtype='int64'), np.array([3, 4], dtype='int64'), None] arr = pa.array(seq(data), type=pa.list_(pa.int64(), 2)) assert len(arr) == 3 assert arr.null_count == 1 assert arr.type == pa.list_(pa.int64(), 2) assert arr.to_pylist() == [[1, 2], [3, 4], None] # incorrect length of the lists or arrays data = [[1, 2, 4], [3, None], None] for data in [[[1, 2, 3]], [np.array([1, 2, 4], dtype='int64')]]: with pytest.raises( ValueError, match="Length of item not correct: expected 2"): pa.array(seq(data), type=pa.list_(pa.int64(), 2)) # with list size of 0 data = [[], [], None] arr = pa.array(seq(data), type=pa.list_(pa.int64(), 0)) assert len(arr) == 3 assert arr.null_count == 1 assert arr.type == pa.list_(pa.int64(), 0) assert arr.to_pylist() == [[], [], None] @parametrize_with_iterable_types def test_sequence_all_none(seq): arr = pa.array(seq([None, None])) assert len(arr) == 2 assert arr.null_count == 2 assert arr.type == pa.null() assert arr.to_pylist() == [None, None] @parametrize_with_iterable_types @pytest.mark.parametrize("np_scalar_pa_type", int_type_pairs) def test_sequence_integer(seq, np_scalar_pa_type): np_scalar, pa_type = np_scalar_pa_type expected = [1, None, 3, None, np.iinfo(np_scalar).min, np.iinfo(np_scalar).max] arr = pa.array(seq(expected), type=pa_type) assert len(arr) == 6 assert arr.null_count == 2 assert arr.type == pa_type assert arr.to_pylist() == expected @parametrize_with_iterable_types @pytest.mark.parametrize("np_scalar_pa_type", int_type_pairs) def test_sequence_integer_np_nan(seq, np_scalar_pa_type): # ARROW-2806: numpy.nan is a double value and thus should produce # a double array. _, pa_type = np_scalar_pa_type with pytest.raises(ValueError): pa.array(seq([np.nan]), type=pa_type, from_pandas=False) arr = pa.array(seq([np.nan]), type=pa_type, from_pandas=True) expected = [None] assert len(arr) == 1 assert arr.null_count == 1 assert arr.type == pa_type assert arr.to_pylist() == expected @parametrize_with_iterable_types @pytest.mark.parametrize("np_scalar_pa_type", int_type_pairs) def test_sequence_integer_nested_np_nan(seq, np_scalar_pa_type): # ARROW-2806: numpy.nan is a double value and thus should produce # a double array. _, pa_type = np_scalar_pa_type with pytest.raises(ValueError): pa.array(seq([[np.nan]]), type=pa.list_(pa_type), from_pandas=False) arr = pa.array(seq([[np.nan]]), type=pa.list_(pa_type), from_pandas=True) expected = [[None]] assert len(arr) == 1 assert arr.null_count == 0 assert arr.type == pa.list_(pa_type) assert arr.to_pylist() == expected @parametrize_with_iterable_types def test_sequence_integer_inferred(seq): expected = [1, None, 3, None] arr = pa.array(seq(expected)) assert len(arr) == 4 assert arr.null_count == 2 assert arr.type == pa.int64() assert arr.to_pylist() == expected @parametrize_with_iterable_types @pytest.mark.parametrize("np_scalar_pa_type", int_type_pairs) def test_sequence_numpy_integer(seq, np_scalar_pa_type): np_scalar, pa_type = np_scalar_pa_type expected = [np_scalar(1), None, np_scalar(3), None, np_scalar(np.iinfo(np_scalar).min), np_scalar(np.iinfo(np_scalar).max)] arr = pa.array(seq(expected), type=pa_type) assert len(arr) == 6 assert arr.null_count == 2 assert arr.type == pa_type assert arr.to_pylist() == expected @parametrize_with_iterable_types @pytest.mark.parametrize("np_scalar_pa_type", int_type_pairs) def test_sequence_numpy_integer_inferred(seq, np_scalar_pa_type): np_scalar, pa_type = np_scalar_pa_type expected = [np_scalar(1), None, np_scalar(3), None] expected += [np_scalar(np.iinfo(np_scalar).min), np_scalar(np.iinfo(np_scalar).max)] arr = pa.array(seq(expected)) assert len(arr) == 6 assert arr.null_count == 2 assert arr.type == pa_type assert arr.to_pylist() == expected @parametrize_with_iterable_types def test_sequence_custom_integers(seq): expected = [0, 42, 2**33 + 1, -2**63] data = list(map(MyInt, expected)) arr = pa.array(seq(data), type=pa.int64()) assert arr.to_pylist() == expected @parametrize_with_iterable_types def test_broken_integers(seq): data = [MyBrokenInt()] with pytest.raises(pa.ArrowInvalid, match="tried to convert to int"): pa.array(seq(data), type=pa.int64()) def test_numpy_scalars_mixed_type(): # ARROW-4324 data = [np.int32(10), np.float32(0.5)] arr = pa.array(data) expected = pa.array([10, 0.5], type="float64") assert arr.equals(expected) # ARROW-9490 data = [np.int8(10), np.float32(0.5)] arr = pa.array(data) expected = pa.array([10, 0.5], type="float32") assert arr.equals(expected) @pytest.mark.xfail(reason="Type inference for uint64 not implemented", raises=OverflowError) def test_uint64_max_convert(): data = [0, np.iinfo(np.uint64).max] arr = pa.array(data, type=pa.uint64()) expected = pa.array(np.array(data, dtype='uint64')) assert arr.equals(expected) arr_inferred = pa.array(data) assert arr_inferred.equals(expected) @pytest.mark.parametrize("bits", [8, 16, 32, 64]) def test_signed_integer_overflow(bits): ty = getattr(pa, "int%d" % bits)() # XXX ideally would always raise OverflowError with pytest.raises((OverflowError, pa.ArrowInvalid)): pa.array([2 ** (bits - 1)], ty) with pytest.raises((OverflowError, pa.ArrowInvalid)): pa.array([-2 ** (bits - 1) - 1], ty) @pytest.mark.parametrize("bits", [8, 16, 32, 64]) def test_unsigned_integer_overflow(bits): ty = getattr(pa, "uint%d" % bits)() # XXX ideally would always raise OverflowError with pytest.raises((OverflowError, pa.ArrowInvalid)): pa.array([2 ** bits], ty) with pytest.raises((OverflowError, pa.ArrowInvalid)): pa.array([-1], ty) @parametrize_with_iterable_types @pytest.mark.parametrize("typ", pa_int_types) def test_integer_from_string_error(seq, typ): # ARROW-9451: pa.array(['1'], type=pa.uint32()) should not succeed with pytest.raises(pa.ArrowInvalid): pa.array(seq(['1']), type=typ) def test_convert_with_mask(): data = [1, 2, 3, 4, 5] mask = np.array([False, True, False, False, True]) result = pa.array(data, mask=mask) expected = pa.array([1, None, 3, 4, None]) assert result.equals(expected) # Mask wrong length with pytest.raises(ValueError): pa.array(data, mask=mask[1:]) def test_garbage_collection(): import gc # Force the cyclic garbage collector to run gc.collect() bytes_before = pa.total_allocated_bytes() pa.array([1, None, 3, None]) gc.collect() assert pa.total_allocated_bytes() == bytes_before def test_sequence_double(): data = [1.5, 1., None, 2.5, None, None] arr = pa.array(data) assert len(arr) == 6 assert arr.null_count == 3 assert arr.type == pa.float64() assert arr.to_pylist() == data def test_double_auto_coerce_from_integer(): # Done as part of ARROW-2814 data = [1.5, 1., None, 2.5, None, None] arr = pa.array(data) data2 = [1.5, 1, None, 2.5, None, None] arr2 = pa.array(data2) assert arr.equals(arr2) data3 = [1, 1.5, None, 2.5, None, None] arr3 = pa.array(data3) data4 = [1., 1.5, None, 2.5, None, None] arr4 = pa.array(data4) assert arr3.equals(arr4) def test_double_integer_coerce_representable_range(): valid_values = [1.5, 1, 2, None, 1 << 53, -(1 << 53)] invalid_values = [1.5, 1, 2, None, (1 << 53) + 1] invalid_values2 = [1.5, 1, 2, None, -((1 << 53) + 1)] # it works pa.array(valid_values) # it fails with pytest.raises(ValueError): pa.array(invalid_values) with pytest.raises(ValueError): pa.array(invalid_values2) def test_float32_integer_coerce_representable_range(): f32 = np.float32 valid_values = [f32(1.5), 1 << 24, -(1 << 24)] invalid_values = [f32(1.5), (1 << 24) + 1] invalid_values2 = [f32(1.5), -((1 << 24) + 1)] # it works pa.array(valid_values, type=pa.float32()) # it fails with pytest.raises(ValueError): pa.array(invalid_values, type=pa.float32()) with pytest.raises(ValueError): pa.array(invalid_values2, type=pa.float32()) def test_mixed_sequence_errors(): with pytest.raises(ValueError, match="tried to convert to boolean"): pa.array([True, 'foo'], type=pa.bool_()) with pytest.raises(ValueError, match="tried to convert to float32"): pa.array([1.5, 'foo'], type=pa.float32()) with pytest.raises(ValueError, match="tried to convert to double"): pa.array([1.5, 'foo']) @parametrize_with_iterable_types @pytest.mark.parametrize("np_scalar,pa_type", [ (np.float16, pa.float16()), (np.float32, pa.float32()), (np.float64, pa.float64()) ]) @pytest.mark.parametrize("from_pandas", [True, False]) def test_sequence_numpy_double(seq, np_scalar, pa_type, from_pandas): data = [np_scalar(1.5), np_scalar(1), None, np_scalar(2.5), None, np.nan] arr = pa.array(seq(data), from_pandas=from_pandas) assert len(arr) == 6 if from_pandas: assert arr.null_count == 3 else: assert arr.null_count == 2 if from_pandas: # The NaN is skipped in type inference, otherwise it forces a # float64 promotion assert arr.type == pa_type else: assert arr.type == pa.float64() assert arr.to_pylist()[:4] == data[:4] if from_pandas: assert arr.to_pylist()[5] is None else: assert np.isnan(arr.to_pylist()[5]) @pytest.mark.parametrize("from_pandas", [True, False]) @pytest.mark.parametrize("inner_seq", [np.array, list]) def test_ndarray_nested_numpy_double(from_pandas, inner_seq): # ARROW-2806 data = np.array([ inner_seq([1., 2.]), inner_seq([1., 2., 3.]), inner_seq([np.nan]), None ], dtype=object) arr = pa.array(data, from_pandas=from_pandas) assert len(arr) == 4 assert arr.null_count == 1 assert arr.type == pa.list_(pa.float64()) if from_pandas: assert arr.to_pylist() == [[1.0, 2.0], [1.0, 2.0, 3.0], [None], None] else: np.testing.assert_equal(arr.to_pylist(), [[1., 2.], [1., 2., 3.], [np.nan], None]) def test_nested_ndarray_in_object_array(): # ARROW-4350 arr = np.empty(2, dtype=object) arr[:] = [np.array([1, 2], dtype=np.int64), np.array([2, 3], dtype=np.int64)] arr2 = np.empty(2, dtype=object) arr2[0] = [3, 4] arr2[1] = [5, 6] expected_type = pa.list_(pa.list_(pa.int64())) assert pa.infer_type([arr]) == expected_type result = pa.array([arr, arr2]) expected = pa.array([[[1, 2], [2, 3]], [[3, 4], [5, 6]]], type=expected_type) assert result.equals(expected) # test case for len-1 arrays to ensure they are interpreted as # sublists and not scalars arr = np.empty(2, dtype=object) arr[:] = [np.array([1]), np.array([2])] result = pa.array([arr, arr]) assert result.to_pylist() == [[[1], [2]], [[1], [2]]] @pytest.mark.xfail(reason=("Type inference for multidimensional ndarray " "not yet implemented"), raises=AssertionError) def test_multidimensional_ndarray_as_nested_list(): # TODO(wesm): see ARROW-5645 arr = np.array([[1, 2], [2, 3]], dtype=np.int64) arr2 = np.array([[3, 4], [5, 6]], dtype=np.int64) expected_type = pa.list_(pa.list_(pa.int64())) assert pa.infer_type([arr]) == expected_type result = pa.array([arr, arr2]) expected = pa.array([[[1, 2], [2, 3]], [[3, 4], [5, 6]]], type=expected_type) assert result.equals(expected) @pytest.mark.parametrize(('data', 'value_type'), [ ([True, False], pa.bool_()), ([None, None], pa.null()), ([1, 2, None], pa.int8()), ([1, 2., 3., None], pa.float32()), ([datetime.date.today(), None], pa.date32()), ([None, datetime.date.today()], pa.date64()), ([datetime.time(1, 1, 1), None], pa.time32('s')), ([None, datetime.time(2, 2, 2)], pa.time64('us')), ([datetime.datetime.now(), None], pa.timestamp('us')), ([datetime.timedelta(seconds=10)], pa.duration('s')), ([b"a", b"b"], pa.binary()), ([b"aaa", b"bbb", b"ccc"], pa.binary(3)), ([b"a", b"b", b"c"], pa.large_binary()), (["a", "b", "c"], pa.string()), (["a", "b", "c"], pa.large_string()), ( [{"a": 1, "b": 2}, None, {"a": 5, "b": None}], pa.struct([('a', pa.int8()), ('b', pa.int16())]) ) ]) def test_list_array_from_object_ndarray(data, value_type): ty = pa.list_(value_type) ndarray = np.array(data, dtype=object) arr = pa.array([ndarray], type=ty) assert arr.type.equals(ty) assert arr.to_pylist() == [data] @pytest.mark.parametrize(('data', 'value_type'), [ ([[1, 2], [3]], pa.list_(pa.int64())), ([[1, 2], [3, 4]], pa.list_(pa.int64(), 2)), ([[1], [2, 3]], pa.large_list(pa.int64())) ]) def test_nested_list_array_from_object_ndarray(data, value_type): ndarray = np.empty(len(data), dtype=object) ndarray[:] = [np.array(item, dtype=object) for item in data] ty = pa.list_(value_type) arr = pa.array([ndarray], type=ty) assert arr.type.equals(ty) assert arr.to_pylist() == [data] def test_array_ignore_nan_from_pandas(): # See ARROW-4324, this reverts logic that was introduced in # ARROW-2240 with pytest.raises(ValueError): pa.array([np.nan, 'str']) arr = pa.array([np.nan, 'str'], from_pandas=True) expected = pa.array([None, 'str']) assert arr.equals(expected) def test_nested_ndarray_different_dtypes(): data = [ np.array([1, 2, 3], dtype='int64'), None, np.array([4, 5, 6], dtype='uint32') ] arr = pa.array(data) expected = pa.array([[1, 2, 3], None, [4, 5, 6]], type=pa.list_(pa.int64())) assert arr.equals(expected) t2 = pa.list_(pa.uint32()) arr2 = pa.array(data, type=t2) expected2 = expected.cast(t2) assert arr2.equals(expected2) def test_sequence_unicode(): data = ['foo', 'bar', None, 'mañana'] arr = pa.array(data) assert len(arr) == 4 assert arr.null_count == 1 assert arr.type == pa.string() assert arr.to_pylist() == data def check_array_mixed_unicode_bytes(binary_type, string_type): values = ['qux', b'foo', bytearray(b'barz')] b_values = [b'qux', b'foo', b'barz'] u_values = ['qux', 'foo', 'barz'] arr = pa.array(values) expected = pa.array(b_values, type=pa.binary()) assert arr.type == pa.binary() assert arr.equals(expected) arr = pa.array(values, type=binary_type) expected = pa.array(b_values, type=binary_type) assert arr.type == binary_type assert arr.equals(expected) arr = pa.array(values, type=string_type) expected = pa.array(u_values, type=string_type) assert arr.type == string_type assert arr.equals(expected) def test_array_mixed_unicode_bytes(): check_array_mixed_unicode_bytes(pa.binary(), pa.string()) check_array_mixed_unicode_bytes(pa.large_binary(), pa.large_string()) @pytest.mark.large_memory @pytest.mark.parametrize("ty", [pa.large_binary(), pa.large_string()]) def test_large_binary_array(ty): # Construct a large binary array with more than 4GB of data s = b"0123456789abcdefghijklmnopqrstuvwxyz" * 10 nrepeats = math.ceil((2**32 + 5) / len(s)) data = [s] * nrepeats arr = pa.array(data, type=ty) assert isinstance(arr, pa.Array) assert arr.type == ty assert len(arr) == nrepeats @pytest.mark.slow @pytest.mark.large_memory @pytest.mark.parametrize("ty", [pa.large_binary(), pa.large_string()]) def test_large_binary_value(ty): # Construct a large binary array with a single value larger than 4GB s = b"0123456789abcdefghijklmnopqrstuvwxyz" nrepeats = math.ceil((2**32 + 5) / len(s)) arr = pa.array([b"foo", s * nrepeats, None, b"bar"], type=ty) assert isinstance(arr, pa.Array) assert arr.type == ty assert len(arr) == 4 buf = arr[1].as_buffer() assert len(buf) == len(s) * nrepeats @pytest.mark.large_memory @pytest.mark.parametrize("ty", [pa.binary(), pa.string()]) def test_string_too_large(ty): # Construct a binary array with a single value larger than 4GB s = b"0123456789abcdefghijklmnopqrstuvwxyz" nrepeats = math.ceil((2**32 + 5) / len(s)) with pytest.raises(pa.ArrowCapacityError): pa.array([b"foo", s * nrepeats, None, b"bar"], type=ty) def test_sequence_bytes(): u1 = b'ma\xc3\xb1ana' data = [b'foo', memoryview(b'dada'), memoryview(b'd-a-t-a')[::2], # non-contiguous is made contiguous u1.decode('utf-8'), # unicode gets encoded, bytearray(b'bar'), None] for ty in [None, pa.binary(), pa.large_binary()]: arr = pa.array(data, type=ty) assert len(arr) == 6 assert arr.null_count == 1 assert arr.type == ty or pa.binary() assert arr.to_pylist() == [b'foo', b'dada', b'data', u1, b'bar', None] @pytest.mark.parametrize("ty", [pa.string(), pa.large_string()]) def test_sequence_utf8_to_unicode(ty): # ARROW-1225 data = [b'foo', None, b'bar'] arr = pa.array(data, type=ty) assert arr.type == ty assert arr[0].as_py() == 'foo' # test a non-utf8 unicode string val = ('mañana').encode('utf-16-le') with pytest.raises(pa.ArrowInvalid): pa.array([val], type=ty) def test_sequence_fixed_size_bytes(): data = [b'foof', None, bytearray(b'barb'), b'2346'] arr = pa.array(data, type=pa.binary(4)) assert len(arr) == 4 assert arr.null_count == 1 assert arr.type == pa.binary(4) assert arr.to_pylist() == [b'foof', None, b'barb', b'2346'] def test_fixed_size_bytes_does_not_accept_varying_lengths(): data = [b'foo', None, b'barb', b'2346'] with pytest.raises(pa.ArrowInvalid): pa.array(data, type=pa.binary(4)) def test_fixed_size_binary_length_check(): # ARROW-10193 data = [b'\x19h\r\x9e\x00\x00\x00\x00\x01\x9b\x9fA'] assert len(data[0]) == 12 ty = pa.binary(12) arr = pa.array(data, type=ty) assert arr.to_pylist() == data def test_sequence_date(): data = [datetime.date(2000, 1, 1), None, datetime.date(1970, 1, 1), datetime.date(2040, 2, 26)] arr = pa.array(data) assert len(arr) == 4 assert arr.type == pa.date32() assert arr.null_count == 1 assert arr[0].as_py() == datetime.date(2000, 1, 1) assert arr[1].as_py() is None assert arr[2].as_py() == datetime.date(1970, 1, 1) assert arr[3].as_py() == datetime.date(2040, 2, 26) @pytest.mark.parametrize('input', [(pa.date32(), [10957, None]), (pa.date64(), [10957 * 86400000, None])]) def test_sequence_explicit_types(input): t, ex_values = input data = [datetime.date(2000, 1, 1), None] arr = pa.array(data, type=t) arr2 = pa.array(ex_values, type=t) for x in [arr, arr2]: assert len(x) == 2 assert x.type == t assert x.null_count == 1 assert x[0].as_py() == datetime.date(2000, 1, 1) assert x[1].as_py() is None def test_date32_overflow(): # Overflow data3 = [2**32, None] with pytest.raises((OverflowError, pa.ArrowException)): pa.array(data3, type=pa.date32()) @pytest.mark.parametrize(('time_type', 'unit', 'int_type'), [ (pa.time32, 's', 'int32'), (pa.time32, 'ms', 'int32'), (pa.time64, 'us', 'int64'), (pa.time64, 'ns', 'int64'), ]) def test_sequence_time_with_timezone(time_type, unit, int_type): def expected_integer_value(t): # only use with utc time object because it doesn't adjust with the # offset units = ['s', 'ms', 'us', 'ns'] multiplier = 10**(units.index(unit) * 3) if t is None: return None seconds = ( t.hour * 3600 + t.minute * 60 + t.second + t.microsecond * 10**-6 ) return int(seconds * multiplier) def expected_time_value(t): # only use with utc time object because it doesn't adjust with the # time objects tzdata if unit == 's': return t.replace(microsecond=0) elif unit == 'ms': return t.replace(microsecond=(t.microsecond // 1000) * 1000) else: return t # only timezone naive times are supported in arrow data = [ datetime.time(8, 23, 34, 123456), datetime.time(5, 0, 0, 1000), None, datetime.time(1, 11, 56, 432539), datetime.time(23, 10, 0, 437699) ] ty = time_type(unit) arr = pa.array(data, type=ty) assert len(arr) == 5 assert arr.type == ty assert arr.null_count == 1 # test that the underlying integers are UTC values values = arr.cast(int_type) expected = list(map(expected_integer_value, data)) assert values.to_pylist() == expected # test that the scalars are datetime.time objects with UTC timezone assert arr[0].as_py() == expected_time_value(data[0]) assert arr[1].as_py() == expected_time_value(data[1]) assert arr[2].as_py() is None assert arr[3].as_py() == expected_time_value(data[3]) assert arr[4].as_py() == expected_time_value(data[4]) def tz(hours, minutes=0): offset = datetime.timedelta(hours=hours, minutes=minutes) return datetime.timezone(offset) def test_sequence_timestamp(): data = [ datetime.datetime(2007, 7, 13, 1, 23, 34, 123456), None, datetime.datetime(2006, 1, 13, 12, 34, 56, 432539), datetime.datetime(2010, 8, 13, 5, 46, 57, 437699) ] arr = pa.array(data) assert len(arr) == 4 assert arr.type == pa.timestamp('us') assert arr.null_count == 1 assert arr[0].as_py() == datetime.datetime(2007, 7, 13, 1, 23, 34, 123456) assert arr[1].as_py() is None assert arr[2].as_py() == datetime.datetime(2006, 1, 13, 12, 34, 56, 432539) assert arr[3].as_py() == datetime.datetime(2010, 8, 13, 5, 46, 57, 437699) @pytest.mark.parametrize('timezone', [ None, 'UTC', 'Etc/GMT-1', 'Europe/Budapest', ]) @pytest.mark.parametrize('unit', [ 's', 'ms', 'us', 'ns' ]) def test_sequence_timestamp_with_timezone(timezone, unit): def expected_integer_value(dt): units = ['s', 'ms', 'us', 'ns'] multiplier = 10**(units.index(unit) * 3) if dt is None: return None else: # avoid float precision issues ts = decimal.Decimal(str(dt.timestamp())) return int(ts * multiplier) def expected_datetime_value(dt): if dt is None: return None if unit == 's': dt = dt.replace(microsecond=0) elif unit == 'ms': dt = dt.replace(microsecond=(dt.microsecond // 1000) * 1000) # adjust the timezone if timezone is None: # make datetime timezone unaware return dt.replace(tzinfo=None) else: # convert to the expected timezone return dt.astimezone(pytz.timezone(timezone)) data = [ datetime.datetime(2007, 7, 13, 8, 23, 34, 123456), # naive pytz.utc.localize( datetime.datetime(2008, 1, 5, 5, 0, 0, 1000) ), None, pytz.timezone('US/Eastern').localize( datetime.datetime(2006, 1, 13, 12, 34, 56, 432539) ), pytz.timezone('Europe/Moscow').localize( datetime.datetime(2010, 8, 13, 5, 0, 0, 437699) ), ] utcdata = [ pytz.utc.localize(data[0]), data[1], None, data[3].astimezone(pytz.utc), data[4].astimezone(pytz.utc), ] ty = pa.timestamp(unit, tz=timezone) arr = pa.array(data, type=ty) assert len(arr) == 5 assert arr.type == ty assert arr.null_count == 1 # test that the underlying integers are UTC values values = arr.cast('int64') expected = list(map(expected_integer_value, utcdata)) assert values.to_pylist() == expected # test that the scalars are datetimes with the correct timezone for i in range(len(arr)): assert arr[i].as_py() == expected_datetime_value(utcdata[i]) @pytest.mark.parametrize('timezone', [ None, 'UTC', 'Etc/GMT-1', 'Europe/Budapest', ]) def test_pyarrow_ignore_timezone_environment_variable(monkeypatch, timezone): # note that any non-empty value will evaluate to true monkeypatch.setenv("PYARROW_IGNORE_TIMEZONE", "1") data = [ datetime.datetime(2007, 7, 13, 8, 23, 34, 123456), # naive pytz.utc.localize( datetime.datetime(2008, 1, 5, 5, 0, 0, 1000) ), pytz.timezone('US/Eastern').localize( datetime.datetime(2006, 1, 13, 12, 34, 56, 432539) ), pytz.timezone('Europe/Moscow').localize( datetime.datetime(2010, 8, 13, 5, 0, 0, 437699) ), ] expected = [dt.replace(tzinfo=None) for dt in data] if timezone is not None: tzinfo = pytz.timezone(timezone) expected = [tzinfo.fromutc(dt) for dt in expected] ty = pa.timestamp('us', tz=timezone) arr = pa.array(data, type=ty) assert arr.to_pylist() == expected def test_sequence_timestamp_with_timezone_inference(): data = [ datetime.datetime(2007, 7, 13, 8, 23, 34, 123456), # naive pytz.utc.localize( datetime.datetime(2008, 1, 5, 5, 0, 0, 1000) ), None, pytz.timezone('US/Eastern').localize( datetime.datetime(2006, 1, 13, 12, 34, 56, 432539) ), pytz.timezone('Europe/Moscow').localize( datetime.datetime(2010, 8, 13, 5, 0, 0, 437699) ), ] expected = [ pa.timestamp('us', tz=None), pa.timestamp('us', tz='UTC'), pa.timestamp('us', tz=None), pa.timestamp('us', tz='US/Eastern'), pa.timestamp('us', tz='Europe/Moscow') ] for dt, expected_type in zip(data, expected): prepended = [dt] + data arr = pa.array(prepended) assert arr.type == expected_type @pytest.mark.pandas def test_sequence_timestamp_from_mixed_builtin_and_pandas_datetimes(): import pandas as pd data = [ pd.Timestamp(1184307814123456123, tz=pytz.timezone('US/Eastern'), unit='ns'), datetime.datetime(2007, 7, 13, 8, 23, 34, 123456), # naive pytz.utc.localize( datetime.datetime(2008, 1, 5, 5, 0, 0, 1000) ), None, ] utcdata = [ data[0].astimezone(pytz.utc), pytz.utc.localize(data[1]), data[2].astimezone(pytz.utc), None, ] arr = pa.array(data) assert arr.type == pa.timestamp('us', tz='US/Eastern') values = arr.cast('int64') expected = [int(dt.timestamp() * 10**6) if dt else None for dt in utcdata] assert values.to_pylist() == expected def test_sequence_timestamp_out_of_bounds_nanosecond(): # https://issues.apache.org/jira/browse/ARROW-9768 # datetime outside of range supported for nanosecond resolution data = [datetime.datetime(2262, 4, 12)] with pytest.raises(ValueError, match="out of bounds"): pa.array(data, type=pa.timestamp('ns')) # with microsecond resolution it works fine arr = pa.array(data, type=pa.timestamp('us')) assert arr.to_pylist() == data # case where the naive is within bounds, but converted to UTC not tz = datetime.timezone(datetime.timedelta(hours=-1)) data = [datetime.datetime(2262, 4, 11, 23, tzinfo=tz)] with pytest.raises(ValueError, match="out of bounds"): pa.array(data, type=pa.timestamp('ns')) arr = pa.array(data, type=pa.timestamp('us')) assert arr.to_pylist()[0] == datetime.datetime(2262, 4, 12) def test_sequence_numpy_timestamp(): data = [ np.datetime64(datetime.datetime(2007, 7, 13, 1, 23, 34, 123456)), None, np.datetime64(datetime.datetime(2006, 1, 13, 12, 34, 56, 432539)), np.datetime64(datetime.datetime(2010, 8, 13, 5, 46, 57, 437699)) ] arr = pa.array(data) assert len(arr) == 4 assert arr.type == pa.timestamp('us') assert arr.null_count == 1 assert arr[0].as_py() == datetime.datetime(2007, 7, 13, 1, 23, 34, 123456) assert arr[1].as_py() is None assert arr[2].as_py() == datetime.datetime(2006, 1, 13, 12, 34, 56, 432539) assert arr[3].as_py() == datetime.datetime(2010, 8, 13, 5, 46, 57, 437699) class MyDate(datetime.date): pass class MyDatetime(datetime.datetime): pass class MyTimedelta(datetime.timedelta): pass def test_datetime_subclassing(): data = [ MyDate(2007, 7, 13), ] date_type = pa.date32() arr_date = pa.array(data, type=date_type) assert len(arr_date) == 1 assert arr_date.type == date_type assert arr_date[0].as_py() == datetime.date(2007, 7, 13) data = [ MyDatetime(2007, 7, 13, 1, 23, 34, 123456), ] s = pa.timestamp('s') ms = pa.timestamp('ms') us = pa.timestamp('us') arr_s = pa.array(data, type=s) assert len(arr_s) == 1 assert arr_s.type == s assert arr_s[0].as_py() == datetime.datetime(2007, 7, 13, 1, 23, 34, 0) arr_ms = pa.array(data, type=ms) assert len(arr_ms) == 1 assert arr_ms.type == ms assert arr_ms[0].as_py() == datetime.datetime(2007, 7, 13, 1, 23, 34, 123000) arr_us = pa.array(data, type=us) assert len(arr_us) == 1 assert arr_us.type == us assert arr_us[0].as_py() == datetime.datetime(2007, 7, 13, 1, 23, 34, 123456) data = [ MyTimedelta(123, 456, 1002), ] s = pa.duration('s') ms = pa.duration('ms') us = pa.duration('us') arr_s = pa.array(data) assert len(arr_s) == 1 assert arr_s.type == us assert arr_s[0].as_py() == datetime.timedelta(123, 456, 1002) arr_s = pa.array(data, type=s) assert len(arr_s) == 1 assert arr_s.type == s assert arr_s[0].as_py() == datetime.timedelta(123, 456) arr_ms = pa.array(data, type=ms) assert len(arr_ms) == 1 assert arr_ms.type == ms assert arr_ms[0].as_py() == datetime.timedelta(123, 456, 1000) arr_us = pa.array(data, type=us) assert len(arr_us) == 1 assert arr_us.type == us assert arr_us[0].as_py() == datetime.timedelta(123, 456, 1002) @pytest.mark.xfail(not _pandas_api.have_pandas, reason="pandas required for nanosecond conversion") def test_sequence_timestamp_nanoseconds(): inputs = [ [datetime.datetime(2007, 7, 13, 1, 23, 34, 123456)], [MyDatetime(2007, 7, 13, 1, 23, 34, 123456)] ] for data in inputs: ns = pa.timestamp('ns') arr_ns = pa.array(data, type=ns) assert len(arr_ns) == 1 assert arr_ns.type == ns assert arr_ns[0].as_py() == datetime.datetime(2007, 7, 13, 1, 23, 34, 123456) @pytest.mark.pandas def test_sequence_timestamp_from_int_with_unit(): # TODO(wesm): This test might be rewritten to assert the actual behavior # when pandas is not installed data = [1] s = pa.timestamp('s') ms = pa.timestamp('ms') us = pa.timestamp('us') ns = pa.timestamp('ns') arr_s = pa.array(data, type=s) assert len(arr_s) == 1 assert arr_s.type == s assert repr(arr_s[0]) == ( "<pyarrow.TimestampScalar: datetime.datetime(1970, 1, 1, 0, 0, 1)>" ) assert str(arr_s[0]) == "1970-01-01 00:00:01" arr_ms = pa.array(data, type=ms) assert len(arr_ms) == 1 assert arr_ms.type == ms assert repr(arr_ms[0].as_py()) == ( "datetime.datetime(1970, 1, 1, 0, 0, 0, 1000)" ) assert str(arr_ms[0]) == "1970-01-01 00:00:00.001000" arr_us = pa.array(data, type=us) assert len(arr_us) == 1 assert arr_us.type == us assert repr(arr_us[0].as_py()) == ( "datetime.datetime(1970, 1, 1, 0, 0, 0, 1)" ) assert str(arr_us[0]) == "1970-01-01 00:00:00.000001" arr_ns = pa.array(data, type=ns) assert len(arr_ns) == 1 assert arr_ns.type == ns assert repr(arr_ns[0].as_py()) == ( "Timestamp('1970-01-01 00:00:00.000000001')" ) assert str(arr_ns[0]) == "1970-01-01 00:00:00.000000001" expected_exc = TypeError class CustomClass(): pass for ty in [ns, pa.date32(), pa.date64()]: with pytest.raises(expected_exc): pa.array([1, CustomClass()], type=ty) @pytest.mark.parametrize('np_scalar', [True, False]) def test_sequence_duration(np_scalar): td1 = datetime.timedelta(2, 3601, 1) td2 = datetime.timedelta(1, 100, 1000) if np_scalar: data = [np.timedelta64(td1), None, np.timedelta64(td2)] else: data = [td1, None, td2] arr = pa.array(data) assert len(arr) == 3 assert arr.type == pa.duration('us') assert arr.null_count == 1 assert arr[0].as_py() == td1 assert arr[1].as_py() is None assert arr[2].as_py() == td2 @pytest.mark.parametrize('unit', ['s', 'ms', 'us', 'ns']) def test_sequence_duration_with_unit(unit): data = [ datetime.timedelta(3, 22, 1001), ] expected = {'s': datetime.timedelta(3, 22), 'ms': datetime.timedelta(3, 22, 1000), 'us': datetime.timedelta(3, 22, 1001), 'ns': datetime.timedelta(3, 22, 1001)} ty = pa.duration(unit) arr_s = pa.array(data, type=ty) assert len(arr_s) == 1 assert arr_s.type == ty assert arr_s[0].as_py() == expected[unit] @pytest.mark.parametrize('unit', ['s', 'ms', 'us', 'ns']) def test_sequence_duration_from_int_with_unit(unit): data = [5] ty = pa.duration(unit) arr = pa.array(data, type=ty) assert len(arr) == 1 assert arr.type == ty assert arr[0].value == 5 def test_sequence_duration_nested_lists(): td1 = datetime.timedelta(1, 1, 1000) td2 = datetime.timedelta(1, 100) data = [[td1, None], [td1, td2]] arr = pa.array(data) assert len(arr) == 2 assert arr.type == pa.list_(pa.duration('us')) assert arr.to_pylist() == data arr = pa.array(data, type=pa.list_(pa.duration('ms'))) assert len(arr) == 2 assert arr.type == pa.list_(pa.duration('ms')) assert arr.to_pylist() == data def test_sequence_duration_nested_lists_numpy(): td1 = datetime.timedelta(1, 1, 1000) td2 = datetime.timedelta(1, 100) data = [[np.timedelta64(td1), None], [np.timedelta64(td1), np.timedelta64(td2)]] arr = pa.array(data) assert len(arr) == 2 assert arr.type == pa.list_(pa.duration('us')) assert arr.to_pylist() == [[td1, None], [td1, td2]] data = [np.array([np.timedelta64(td1), None], dtype='timedelta64[us]'), np.array([np.timedelta64(td1), np.timedelta64(td2)])] arr = pa.array(data) assert len(arr) == 2 assert arr.type == pa.list_(pa.duration('us')) assert arr.to_pylist() == [[td1, None], [td1, td2]] def test_sequence_nesting_levels(): data = [1, 2, None] arr = pa.array(data) assert arr.type == pa.int64() assert arr.to_pylist() == data data = [[1], [2], None] arr = pa.array(data) assert arr.type == pa.list_(pa.int64()) assert arr.to_pylist() == data data = [[1], [2, 3, 4], [None]] arr = pa.array(data) assert arr.type == pa.list_(pa.int64()) assert arr.to_pylist() == data data = [None, [[None, 1]], [[2, 3, 4], None], [None]] arr = pa.array(data) assert arr.type == pa.list_(pa.list_(pa.int64())) assert arr.to_pylist() == data exceptions = (pa.ArrowInvalid, pa.ArrowTypeError) # Mixed nesting levels are rejected with pytest.raises(exceptions): pa.array([1, 2, [1]]) with pytest.raises(exceptions): pa.array([1, 2, []]) with pytest.raises(exceptions): pa.array([[1], [2], [None, [1]]]) def test_sequence_mixed_types_fails(): data = ['a', 1, 2.0] with pytest.raises(pa.ArrowTypeError): pa.array(data) def test_sequence_mixed_types_with_specified_type_fails(): data = ['-10', '-5', {'a': 1}, '0', '5', '10'] type = pa.string() with pytest.raises(TypeError): pa.array(data, type=type) def test_sequence_decimal(): data = [decimal.Decimal('1234.183'), decimal.Decimal('8094.234')] for type in [pa.decimal128, pa.decimal256]: arr = pa.array(data, type=type(precision=7, scale=3)) assert arr.to_pylist() == data def test_sequence_decimal_different_precisions(): data = [ decimal.Decimal('1234234983.183'), decimal.Decimal('80943244.234') ] for type in [pa.decimal128, pa.decimal256]: arr = pa.array(data, type=type(precision=13, scale=3)) assert arr.to_pylist() == data def test_sequence_decimal_no_scale(): data = [decimal.Decimal('1234234983'), decimal.Decimal('8094324')] for type in [pa.decimal128, pa.decimal256]: arr = pa.array(data, type=type(precision=10)) assert arr.to_pylist() == data def test_sequence_decimal_negative(): data = [decimal.Decimal('-1234.234983'), decimal.Decimal('-8.094324')] for type in [pa.decimal128, pa.decimal256]: arr = pa.array(data, type=type(precision=10, scale=6)) assert arr.to_pylist() == data def test_sequence_decimal_no_whole_part(): data = [decimal.Decimal('-.4234983'), decimal.Decimal('.0103943')] for type in [pa.decimal128, pa.decimal256]: arr = pa.array(data, type=type(precision=7, scale=7)) assert arr.to_pylist() == data def test_sequence_decimal_large_integer(): data = [decimal.Decimal('-394029506937548693.42983'), decimal.Decimal('32358695912932.01033')] for type in [pa.decimal128, pa.decimal256]: arr = pa.array(data, type=type(precision=23, scale=5)) assert arr.to_pylist() == data def test_sequence_decimal_from_integers(): data = [0, 1, -39402950693754869342983] expected = [decimal.Decimal(x) for x in data] for type in [pa.decimal128, pa.decimal256]: arr = pa.array(data, type=type(precision=28, scale=5)) assert arr.to_pylist() == expected def test_sequence_decimal_too_high_precision(): # ARROW-6989 python decimal has too high precision with pytest.raises(ValueError, match="precision out of range"): pa.array([decimal.Decimal('1' * 80)]) def test_sequence_decimal_infer(): for data, typ in [ # simple case (decimal.Decimal('1.234'), pa.decimal128(4, 3)), # trailing zeros (decimal.Decimal('12300'), pa.decimal128(5, 0)), (decimal.Decimal('12300.0'), pa.decimal128(6, 1)), # scientific power notation (decimal.Decimal('1.23E+4'), pa.decimal128(5, 0)), (decimal.Decimal('123E+2'), pa.decimal128(5, 0)), (decimal.Decimal('123E+4'), pa.decimal128(7, 0)), # leading zeros (decimal.Decimal('0.0123'), pa.decimal128(4, 4)), (decimal.Decimal('0.01230'), pa.decimal128(5, 5)), (decimal.Decimal('1.230E-2'), pa.decimal128(5, 5)), ]: assert pa.infer_type([data]) == typ arr = pa.array([data]) assert arr.type == typ assert arr.to_pylist()[0] == data def test_sequence_decimal_infer_mixed(): # ARROW-12150 - ensure mixed precision gets correctly inferred to # common type that can hold all input values cases = [ ([decimal.Decimal('1.234'), decimal.Decimal('3.456')], pa.decimal128(4, 3)), ([decimal.Decimal('1.234'), decimal.Decimal('456.7')], pa.decimal128(6, 3)), ([decimal.Decimal('123.4'), decimal.Decimal('4.567')], pa.decimal128(6, 3)), ([decimal.Decimal('123e2'), decimal.Decimal('4567e3')], pa.decimal128(7, 0)), ([decimal.Decimal('123e4'), decimal.Decimal('4567e2')], pa.decimal128(7, 0)), ([decimal.Decimal('0.123'), decimal.Decimal('0.04567')], pa.decimal128(5, 5)), ([decimal.Decimal('0.001'), decimal.Decimal('1.01E5')], pa.decimal128(9, 3)), ] for data, typ in cases: assert pa.infer_type(data) == typ arr = pa.array(data) assert arr.type == typ assert arr.to_pylist() == data def test_sequence_decimal_given_type(): for data, typs, wrong_typs in [ # simple case ( decimal.Decimal('1.234'), [pa.decimal128(4, 3), pa.decimal128(5, 3), pa.decimal128(5, 4)], [pa.decimal128(4, 2), pa.decimal128(4, 4)] ), # trailing zeros ( decimal.Decimal('12300'), [pa.decimal128(5, 0), pa.decimal128(6, 0), pa.decimal128(3, -2)], [pa.decimal128(4, 0), pa.decimal128(3, -3)] ), # scientific power notation ( decimal.Decimal('1.23E+4'), [pa.decimal128(5, 0), pa.decimal128(6, 0), pa.decimal128(3, -2)], [pa.decimal128(4, 0), pa.decimal128(3, -3)] ), ]: for typ in typs: arr = pa.array([data], type=typ) assert arr.type == typ assert arr.to_pylist()[0] == data for typ in wrong_typs: with pytest.raises(ValueError): pa.array([data], type=typ) def test_range_types(): arr1 = pa.array(range(3)) arr2 = pa.array((0, 1, 2)) assert arr1.equals(arr2) def test_empty_range(): arr = pa.array(range(0)) assert len(arr) == 0 assert arr.null_count == 0 assert arr.type == pa.null() assert arr.to_pylist() == [] def test_structarray(): arr = pa.StructArray.from_arrays([], names=[]) assert arr.type == pa.struct([]) assert len(arr) == 0 assert arr.to_pylist() == [] ints = pa.array([None, 2, 3], type=pa.int64()) strs = pa.array(['a', None, 'c'], type=pa.string()) bools = pa.array([True, False, None], type=pa.bool_()) arr = pa.StructArray.from_arrays( [ints, strs, bools], ['ints', 'strs', 'bools']) expected = [ {'ints': None, 'strs': 'a', 'bools': True}, {'ints': 2, 'strs': None, 'bools': False}, {'ints': 3, 'strs': 'c', 'bools': None}, ] pylist = arr.to_pylist() assert pylist == expected, (pylist, expected) # len(names) != len(arrays) with pytest.raises(ValueError): pa.StructArray.from_arrays([ints], ['ints', 'strs']) def test_struct_from_dicts(): ty = pa.struct([pa.field('a', pa.int32()), pa.field('b', pa.string()), pa.field('c', pa.bool_())]) arr = pa.array([], type=ty) assert arr.to_pylist() == [] data = [{'a': 5, 'b': 'foo', 'c': True}, {'a': 6, 'b': 'bar', 'c': False}] arr = pa.array(data, type=ty) assert arr.to_pylist() == data # With omitted values data = [{'a': 5, 'c': True}, None, {}, {'a': None, 'b': 'bar'}] arr = pa.array(data, type=ty) expected = [{'a': 5, 'b': None, 'c': True}, None, {'a': None, 'b': None, 'c': None}, {'a': None, 'b': 'bar', 'c': None}] assert arr.to_pylist() == expected def test_struct_from_dicts_bytes_keys(): # ARROW-6878 ty = pa.struct([pa.field('a', pa.int32()), pa.field('b', pa.string()), pa.field('c', pa.bool_())]) arr = pa.array([], type=ty) assert arr.to_pylist() == [] data = [{b'a': 5, b'b': 'foo'}, {b'a': 6, b'c': False}] arr = pa.array(data, type=ty) assert arr.to_pylist() == [ {'a': 5, 'b': 'foo', 'c': None}, {'a': 6, 'b': None, 'c': False}, ] def test_struct_from_tuples(): ty = pa.struct([pa.field('a', pa.int32()), pa.field('b', pa.string()), pa.field('c', pa.bool_())]) data = [(5, 'foo', True), (6, 'bar', False)] expected = [{'a': 5, 'b': 'foo', 'c': True}, {'a': 6, 'b': 'bar', 'c': False}] arr = pa.array(data, type=ty) data_as_ndarray = np.empty(len(data), dtype=object) data_as_ndarray[:] = data arr2 = pa.array(data_as_ndarray, type=ty) assert arr.to_pylist() == expected assert arr.equals(arr2) # With omitted values data = [(5, 'foo', None), None, (6, None, False)] expected = [{'a': 5, 'b': 'foo', 'c': None}, None, {'a': 6, 'b': None, 'c': False}] arr = pa.array(data, type=ty) assert arr.to_pylist() == expected # Invalid tuple size for tup in [(5, 'foo'), (), ('5', 'foo', True, None)]: with pytest.raises(ValueError, match="(?i)tuple size"): pa.array([tup], type=ty) def test_struct_from_list_of_pairs(): ty = pa.struct([ pa.field('a', pa.int32()), pa.field('b', pa.string()), pa.field('c', pa.bool_()) ]) data = [ [('a', 5), ('b', 'foo'), ('c', True)], [('a', 6), ('b', 'bar'), ('c', False)], None ] arr = pa.array(data, type=ty) assert arr.to_pylist() == [ {'a': 5, 'b': 'foo', 'c': True}, {'a': 6, 'b': 'bar', 'c': False}, None ] # test with duplicated field names ty = pa.struct([ pa.field('a', pa.int32()), pa.field('a', pa.string()), pa.field('b', pa.bool_()) ]) data = [ [('a', 5), ('a', 'foo'), ('b', True)], [('a', 6), ('a', 'bar'), ('b', False)], ] arr = pa.array(data, type=ty) with pytest.raises(KeyError): # TODO(kszucs): ARROW-9997 arr.to_pylist() # test with empty elements ty = pa.struct([ pa.field('a', pa.int32()), pa.field('b', pa.string()), pa.field('c', pa.bool_()) ]) data = [ [], [('a', 5), ('b', 'foo'), ('c', True)], [('a', 2), ('b', 'baz')], [('a', 1), ('b', 'bar'), ('c', False), ('d', 'julia')], ] expected = [ {'a': None, 'b': None, 'c': None}, {'a': 5, 'b': 'foo', 'c': True}, {'a': 2, 'b': 'baz', 'c': None}, {'a': 1, 'b': 'bar', 'c': False}, ] arr = pa.array(data, type=ty) assert arr.to_pylist() == expected def test_struct_from_list_of_pairs_errors(): ty = pa.struct([ pa.field('a', pa.int32()), pa.field('b', pa.string()), pa.field('c', pa.bool_()) ]) # test that it raises if the key doesn't match the expected field name data = [ [], [('a', 5), ('c', True), ('b', None)], ] msg = "The expected field name is `b` but `c` was given" with pytest.raises(ValueError, match=msg): pa.array(data, type=ty) # test various errors both at the first position and after because of key # type inference template = ( r"Could not convert {} with type {}: was expecting tuple of " r"(key, value) pair" ) cases = [ tuple(), # empty key-value pair tuple('a',), # missing value tuple('unknown-key',), # not known field name 'string', # not a tuple ] for key_value_pair in cases: msg = re.escape(template.format( repr(key_value_pair), type(key_value_pair).__name__ )) with pytest.raises(TypeError, match=msg): pa.array([ [key_value_pair], [('a', 5), ('b', 'foo'), ('c', None)], ], type=ty) with pytest.raises(TypeError, match=msg): pa.array([ [('a', 5), ('b', 'foo'), ('c', None)], [key_value_pair], ], type=ty) def test_struct_from_mixed_sequence(): # It is forbidden to mix dicts and tuples when initializing a struct array ty = pa.struct([pa.field('a', pa.int32()), pa.field('b', pa.string()), pa.field('c', pa.bool_())]) data = [(5, 'foo', True), {'a': 6, 'b': 'bar', 'c': False}] with pytest.raises(TypeError): pa.array(data, type=ty) def test_struct_from_dicts_inference(): expected_type = pa.struct([pa.field('a', pa.int64()), pa.field('b', pa.string()), pa.field('c', pa.bool_())]) data = [{'a': 5, 'b': 'foo', 'c': True}, {'a': 6, 'b': 'bar', 'c': False}] arr = pa.array(data) check_struct_type(arr.type, expected_type) assert arr.to_pylist() == data # With omitted values data = [{'a': 5, 'c': True}, None, {}, {'a': None, 'b': 'bar'}] expected = [{'a': 5, 'b': None, 'c': True}, None, {'a': None, 'b': None, 'c': None}, {'a': None, 'b': 'bar', 'c': None}] arr = pa.array(data) data_as_ndarray = np.empty(len(data), dtype=object) data_as_ndarray[:] = data arr2 = pa.array(data) check_struct_type(arr.type, expected_type) assert arr.to_pylist() == expected assert arr.equals(arr2) # Nested expected_type = pa.struct([ pa.field('a', pa.struct([pa.field('aa', pa.list_(pa.int64())), pa.field('ab', pa.bool_())])), pa.field('b', pa.string())]) data = [{'a': {'aa': [5, 6], 'ab': True}, 'b': 'foo'}, {'a': {'aa': None, 'ab': False}, 'b': None}, {'a': None, 'b': 'bar'}] arr = pa.array(data) assert arr.to_pylist() == data # Edge cases arr = pa.array([{}]) assert arr.type == pa.struct([]) assert arr.to_pylist() == [{}] # Mixing structs and scalars is rejected with pytest.raises((pa.ArrowInvalid, pa.ArrowTypeError)): pa.array([1, {'a': 2}]) def test_structarray_from_arrays_coerce(): # ARROW-1706 ints = [None, 2, 3] strs = ['a', None, 'c'] bools = [True, False, None] ints_nonnull = [1, 2, 3] arrays = [ints, strs, bools, ints_nonnull] result = pa.StructArray.from_arrays(arrays, ['ints', 'strs', 'bools', 'int_nonnull']) expected = pa.StructArray.from_arrays( [pa.array(ints, type='int64'), pa.array(strs, type='utf8'), pa.array(bools), pa.array(ints_nonnull, type='int64')], ['ints', 'strs', 'bools', 'int_nonnull']) with pytest.raises(ValueError): pa.StructArray.from_arrays(arrays) assert result.equals(expected) def test_decimal_array_with_none_and_nan(): values = [decimal.Decimal('1.234'), None, np.nan, decimal.Decimal('nan')] with pytest.raises(TypeError): # ARROW-6227: Without from_pandas=True, NaN is considered a float array = pa.array(values) array = pa.array(values, from_pandas=True) assert array.type == pa.decimal128(4, 3) assert array.to_pylist() == values[:2] + [None, None] array = pa.array(values, type=pa.decimal128(10, 4), from_pandas=True) assert array.to_pylist() == [decimal.Decimal('1.2340'), None, None, None] def test_map_from_dicts(): data = [[{'key': b'a', 'value': 1}, {'key': b'b', 'value': 2}], [{'key': b'c', 'value': 3}], [{'key': b'd', 'value': 4}, {'key': b'e', 'value': 5}, {'key': b'f', 'value': None}], [{'key': b'g', 'value': 7}]] expected = [[(d['key'], d['value']) for d in entry] for entry in data] arr = pa.array(expected, type=pa.map_(pa.binary(), pa.int32())) assert arr.to_pylist() == expected # With omitted values data[1] = None expected[1] = None arr = pa.array(expected, type=pa.map_(pa.binary(), pa.int32())) assert arr.to_pylist() == expected # Invalid dictionary for entry in [[{'value': 5}], [{}], [{'k': 1, 'v': 2}]]: with pytest.raises(ValueError, match="Invalid Map"): pa.array([entry], type=pa.map_('i4', 'i4')) # Invalid dictionary types for entry in [[{'key': '1', 'value': 5}], [{'key': {'value': 2}}]]: with pytest.raises(pa.ArrowInvalid, match="tried to convert to int"): pa.array([entry], type=pa.map_('i4', 'i4')) def test_map_from_tuples(): expected = [[(b'a', 1), (b'b', 2)], [(b'c', 3)], [(b'd', 4), (b'e', 5), (b'f', None)], [(b'g', 7)]] arr = pa.array(expected, type=pa.map_(pa.binary(), pa.int32())) assert arr.to_pylist() == expected # With omitted values expected[1] = None arr = pa.array(expected, type=pa.map_(pa.binary(), pa.int32())) assert arr.to_pylist() == expected # Invalid tuple size for entry in [[(5,)], [()], [('5', 'foo', True)]]: with pytest.raises(ValueError, match="(?i)tuple size"): pa.array([entry], type=pa.map_('i4', 'i4')) def test_dictionary_from_boolean(): typ = pa.dictionary(pa.int8(), value_type=pa.bool_()) a = pa.array([False, False, True, False, True], type=typ) assert isinstance(a.type, pa.DictionaryType) assert a.type.equals(typ) expected_indices = pa.array([0, 0, 1, 0, 1], type=pa.int8()) expected_dictionary = pa.array([False, True], type=pa.bool_()) assert a.indices.equals(expected_indices) assert a.dictionary.equals(expected_dictionary) @pytest.mark.parametrize('value_type', [ pa.int8(), pa.int16(), pa.int32(), pa.int64(), pa.uint8(), pa.uint16(), pa.uint32(), pa.uint64(), pa.float32(), pa.float64(), ]) def test_dictionary_from_integers(value_type): typ = pa.dictionary(pa.int8(), value_type=value_type) a = pa.array([1, 2, 1, 1, 2, 3], type=typ) assert isinstance(a.type, pa.DictionaryType) assert a.type.equals(typ) expected_indices = pa.array([0, 1, 0, 0, 1, 2], type=pa.int8()) expected_dictionary = pa.array([1, 2, 3], type=value_type) assert a.indices.equals(expected_indices) assert a.dictionary.equals(expected_dictionary) @pytest.mark.parametrize('input_index_type', [ pa.int8(), pa.int16(), pa.int32(), pa.int64() ]) def test_dictionary_index_type(input_index_type): # dictionary array is constructed using adaptive index type builder, # but the input index type is considered as the minimal width type to use typ = pa.dictionary(input_index_type, value_type=pa.int64()) arr = pa.array(range(10), type=typ) assert arr.type.equals(typ) def test_dictionary_is_always_adaptive(): # dictionary array is constructed using adaptive index type builder, # meaning that the output index type may be wider than the given index type # since it depends on the input data typ = pa.dictionary(pa.int8(), value_type=pa.int64()) a = pa.array(range(2**7), type=typ) expected = pa.dictionary(pa.int8(), pa.int64()) assert a.type.equals(expected) a = pa.array(range(2**7 + 1), type=typ) expected = pa.dictionary(pa.int16(), pa.int64()) assert a.type.equals(expected) def test_dictionary_from_strings(): for value_type in [pa.binary(), pa.string()]: typ = pa.dictionary(pa.int8(), value_type) a = pa.array(["", "a", "bb", "a", "bb", "ccc"], type=typ) assert isinstance(a.type, pa.DictionaryType) expected_indices = pa.array([0, 1, 2, 1, 2, 3], type=pa.int8()) expected_dictionary = pa.array(["", "a", "bb", "ccc"], type=value_type) assert a.indices.equals(expected_indices) assert a.dictionary.equals(expected_dictionary) # fixed size binary type typ = pa.dictionary(pa.int8(), pa.binary(3)) a = pa.array(["aaa", "aaa", "bbb", "ccc", "bbb"], type=typ) assert isinstance(a.type, pa.DictionaryType) expected_indices = pa.array([0, 0, 1, 2, 1], type=pa.int8()) expected_dictionary = pa.array(["aaa", "bbb", "ccc"], type=pa.binary(3)) assert a.indices.equals(expected_indices) assert a.dictionary.equals(expected_dictionary) @pytest.mark.parametrize(('unit', 'expected'), [ ('s', datetime.timedelta(seconds=-2147483000)), ('ms', datetime.timedelta(milliseconds=-2147483000)), ('us', datetime.timedelta(microseconds=-2147483000)), ('ns', datetime.timedelta(microseconds=-2147483)) ]) def test_duration_array_roundtrip_corner_cases(unit, expected): # Corner case discovered by hypothesis: there were implicit conversions to # unsigned values resulting wrong values with wrong signs. ty = pa.duration(unit) arr = pa.array([-2147483000], type=ty) restored = pa.array(arr.to_pylist(), type=ty) assert arr.equals(restored) expected_list = [expected] if unit == 'ns': # if pandas is available then a pandas Timedelta is returned try: import pandas as pd except ImportError: pass else: expected_list = [pd.Timedelta(-2147483000, unit='ns')] assert restored.to_pylist() == expected_list @pytest.mark.pandas def test_roundtrip_nanosecond_resolution_pandas_temporal_objects(): # corner case discovered by hypothesis: preserving the nanoseconds on # conversion from a list of Timedelta and Timestamp objects import pandas as pd ty = pa.duration('ns') arr = pa.array([9223371273709551616], type=ty) data = arr.to_pylist() assert isinstance(data[0], pd.Timedelta) restored = pa.array(data, type=ty) assert arr.equals(restored) assert restored.to_pylist() == [ pd.Timedelta(9223371273709551616, unit='ns') ] ty = pa.timestamp('ns') arr = pa.array([9223371273709551616], type=ty) data = arr.to_pylist() assert isinstance(data[0], pd.Timestamp) restored = pa.array(data, type=ty) assert arr.equals(restored) assert restored.to_pylist() == [ pd.Timestamp(9223371273709551616, unit='ns') ] ty = pa.timestamp('ns', tz='US/Eastern') value = 1604119893000000000 arr = pa.array([value], type=ty) data = arr.to_pylist() assert isinstance(data[0], pd.Timestamp) restored = pa.array(data, type=ty) assert arr.equals(restored) assert restored.to_pylist() == [ pd.Timestamp(value, unit='ns').tz_localize( "UTC").tz_convert('US/Eastern') ] @h.given(past.all_arrays) def test_array_to_pylist_roundtrip(arr): seq = arr.to_pylist() restored = pa.array(seq, type=arr.type) assert restored.equals(arr) @pytest.mark.large_memory def test_auto_chunking_binary_like(): # single chunk v1 = b'x' * 100000000 v2 = b'x' * 147483646 # single chunk one_chunk_data = [v1] * 20 + [b'', None, v2] arr = pa.array(one_chunk_data, type=pa.binary()) assert isinstance(arr, pa.Array) assert len(arr) == 23 assert arr[20].as_py() == b'' assert arr[21].as_py() is None assert arr[22].as_py() == v2 # two chunks two_chunk_data = one_chunk_data + [b'two'] arr = pa.array(two_chunk_data, type=pa.binary()) assert isinstance(arr, pa.ChunkedArray) assert arr.num_chunks == 2 assert len(arr.chunk(0)) == 23 assert len(arr.chunk(1)) == 1 assert arr.chunk(0)[20].as_py() == b'' assert arr.chunk(0)[21].as_py() is None assert arr.chunk(0)[22].as_py() == v2 assert arr.chunk(1).to_pylist() == [b'two'] # three chunks three_chunk_data = one_chunk_data * 2 + [b'three', b'three'] arr = pa.array(three_chunk_data, type=pa.binary()) assert isinstance(arr, pa.ChunkedArray) assert arr.num_chunks == 3 assert len(arr.chunk(0)) == 23 assert len(arr.chunk(1)) == 23 assert len(arr.chunk(2)) == 2 for i in range(2): assert arr.chunk(i)[20].as_py() == b'' assert arr.chunk(i)[21].as_py() is None assert arr.chunk(i)[22].as_py() == v2 assert arr.chunk(2).to_pylist() == [b'three', b'three'] @pytest.mark.large_memory def test_auto_chunking_list_of_binary(): # ARROW-6281 vals = [['x' * 1024]] * ((2 << 20) + 1) arr = pa.array(vals) assert isinstance(arr, pa.ChunkedArray) assert arr.num_chunks == 2 assert len(arr.chunk(0)) == 2**21 - 1 assert len(arr.chunk(1)) == 2 assert arr.chunk(1).to_pylist() == [['x' * 1024]] * 2 @pytest.mark.large_memory def test_auto_chunking_list_like(): item = np.ones((2**28,), dtype='uint8') data = [item] * (2**3 - 1) arr = pa.array(data, type=pa.list_(pa.uint8())) assert isinstance(arr, pa.Array) assert len(arr) == 7 item = np.ones((2**28,), dtype='uint8') data = [item] * 2**3 arr = pa.array(data, type=pa.list_(pa.uint8())) assert isinstance(arr, pa.ChunkedArray) assert arr.num_chunks == 2 assert len(arr.chunk(0)) == 7 assert len(arr.chunk(1)) == 1 chunk = arr.chunk(1) scalar = chunk[0] assert isinstance(scalar, pa.ListScalar) expected = pa.array(item, type=pa.uint8()) assert scalar.values == expected @pytest.mark.slow @pytest.mark.large_memory def test_auto_chunking_map_type(): # takes ~20 minutes locally ty = pa.map_(pa.int8(), pa.int8()) item = [(1, 1)] * 2**28 data = [item] * 2**3 arr = pa.array(data, type=ty) assert isinstance(arr, pa.ChunkedArray) assert len(arr.chunk(0)) == 7 assert len(arr.chunk(1)) == 1 @pytest.mark.large_memory @pytest.mark.parametrize(('ty', 'char'), [ (pa.string(), 'x'), (pa.binary(), b'x'), ]) def test_nested_auto_chunking(ty, char): v1 = char * 100000000 v2 = char * 147483646 struct_type = pa.struct([ pa.field('bool', pa.bool_()), pa.field('integer', pa.int64()), pa.field('string-like', ty), ]) data = [{'bool': True, 'integer': 1, 'string-like': v1}] * 20 data.append({'bool': True, 'integer': 1, 'string-like': v2}) arr = pa.array(data, type=struct_type) assert isinstance(arr, pa.Array) data.append({'bool': True, 'integer': 1, 'string-like': char}) arr = pa.array(data, type=struct_type) assert isinstance(arr, pa.ChunkedArray) assert arr.num_chunks == 2 assert len(arr.chunk(0)) == 21 assert len(arr.chunk(1)) == 1 assert arr.chunk(1)[0].as_py() == { 'bool': True, 'integer': 1, 'string-like': char } @pytest.mark.large_memory def test_array_from_pylist_data_overflow(): # Regression test for ARROW-12983 # Data buffer overflow - should result in chunked array items = [b'a' * 4096] * (2 ** 19) arr = pa.array(items, type=pa.string()) assert isinstance(arr, pa.ChunkedArray) assert len(arr) == 2**19 assert len(arr.chunks) > 1 mask = np.zeros(2**19, bool) arr = pa.array(items, mask=mask, type=pa.string()) assert isinstance(arr, pa.ChunkedArray) assert len(arr) == 2**19 assert len(arr.chunks) > 1 arr = pa.array(items, type=pa.binary()) assert isinstance(arr, pa.ChunkedArray) assert len(arr) == 2**19 assert len(arr.chunks) > 1 @pytest.mark.slow @pytest.mark.large_memory def test_array_from_pylist_offset_overflow(): # Regression test for ARROW-12983 # Offset buffer overflow - should result in chunked array # Note this doesn't apply to primitive arrays items = [b'a'] * (2 ** 31) arr = pa.array(items, type=pa.string()) assert isinstance(arr, pa.ChunkedArray) assert len(arr) == 2**31 assert len(arr.chunks) > 1 mask = np.zeros(2**31, bool) arr = pa.array(items, mask=mask, type=pa.string()) assert isinstance(arr, pa.ChunkedArray) assert len(arr) == 2**31 assert len(arr.chunks) > 1 arr = pa.array(items, type=pa.binary()) assert isinstance(arr, pa.ChunkedArray) assert len(arr) == 2**31 assert len(arr.chunks) > 1
the-stack_0_12508
#!/usr/bin/env python """ .. Workspace sub-command .. codeauthor:: Rich Plevin <[email protected]> .. Copyright (c) 2016 Richard Plevin See the https://opensource.org/licenses/MIT for license details. """ from __future__ import print_function from ..subcommand import SubcommandABC, clean_help def driver(args, tool): # lazy imports to avoid loading anything that's not used by gcamtool import os import subprocess from ..config import getParam, pathjoin from ..error import CommandlineError from ..scenarioSetup import createSandbox from ..log import getLogger from ..utils import removeTreeSafely _logger = getLogger(__name__) project = args.projectName or getParam('GCAM.DefaultProject') if not project: raise CommandlineError("sandbox: must specify project name or set config parameter GCAM.DefaultProject") if not (args.scenario or args.groupDir): raise CommandlineError("sandbox: must specify scenario and/or group name") sandboxProjectDir = getParam('GCAM.SandboxProjectDir') sandbox = pathjoin(sandboxProjectDir, args.groupDir, args.scenario) # handle ~ in pathname sandbox = pathjoin(sandbox, expanduser=True, abspath=True, normpath=True) if args.path: print(sandbox) execute = not args.noExecute if args.recreate: args.delete = args.create = True if args.delete: _logger.info('Removing ' + sandbox) try: if execute: if os.path.islink(sandbox): os.remove(sandbox) else: removeTreeSafely(sandbox) else: print("Would remove", sandbox) except Exception as e: _logger.warn("Can't remove '%s': %s" % (sandbox, e)) if args.create: if execute: _logger.info('Creating ' + sandbox) createSandbox(sandbox) else: print("Would create", sandbox) if args.run: cmdStr = 'cd ' + sandbox + '; ' + args.run if execute: _logger.info(cmdStr) os.chdir(sandbox) subprocess.call(args.run, shell=True) else: print("Would run:", cmdStr) class SandboxCommand(SubcommandABC): def __init__(self, subparsers): kwargs = {'help' : '''Perform operations on a sandbox.'''} super(SandboxCommand, self).__init__('sandbox', subparsers, kwargs, group='utils') def addArgs(self, parser): parser.add_argument('--create', action='store_true', help=clean_help('''Create the identified sandbox. If used with --delete, the deletion occurs first.''')) parser.add_argument('--delete', action='store_true', help=clean_help('''Delete the identified sandbox' If used with --create, the deletion occurs first.''')) parser.add_argument('--recreate', action='store_true', help=clean_help('''Recreate the identified sandbox. Equivalent to using the --delete and --create options together.''')) parser.add_argument('-g', '--groupDir', default='', metavar='NAME', help=clean_help('''The name of the scenario group subdir''')) parser.add_argument('-n', '--noExecute', action='store_true', help=clean_help('''Print the command that would be executed by --run, but don't execute it.''')) parser.add_argument('-p', '--path', action='store_true', help=clean_help('''Print the absolute path to the identified sandbox.''')) parser.add_argument('-r', '--run', metavar='CMD', help=clean_help('''Run the given command in the identified sandbox.''')) parser.add_argument('-s', '--scenario', default='', help=clean_help('''The scenario for the computed sandbox root.''')) return parser # for auto-doc generation def run(self, args, tool): driver(args, tool)
the-stack_0_12509
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (C) 2007-2011 Edgewall Software # All rights reserved. # # This software is licensed as described in the file COPYING, which # you should have received as part of this distribution. The terms # are also available at http://babel.edgewall.org/wiki/License. # # This software consists of voluntary contributions made by many # individuals. For the exact contribution history, see the revision # history and logs, available at http://babel.edgewall.org/log/. from __future__ import unicode_literals from optparse import OptionParser import os import re import sys from xml.etree import ElementTree # Make sure we're using Babel source, and not some previously installed version sys.path.insert(0, os.path.join(os.path.dirname(sys.argv[0]), '..')) from babel import dates, numbers from babel.compat import pickle, text_type from babel.plural import PluralRule from babel.localedata import Alias parse = ElementTree.parse weekdays = {'mon': 0, 'tue': 1, 'wed': 2, 'thu': 3, 'fri': 4, 'sat': 5, 'sun': 6} def _text(elem): buf = [elem.text or ''] for child in elem: buf.append(_text(child)) buf.append(elem.tail or '') return ''.join([_f for _f in buf if _f]).strip() NAME_RE = re.compile(r"^\w+$") TYPE_ATTR_RE = re.compile(r"^\w+\[@type='(.*?)'\]$") NAME_MAP = { 'dateFormats': 'date_formats', 'dateTimeFormats': 'datetime_formats', 'eraAbbr': 'abbreviated', 'eraNames': 'wide', 'eraNarrow': 'narrow', 'timeFormats': 'time_formats' } def _translate_alias(ctxt, path): parts = path.split('/') keys = ctxt[:] for part in parts: if part == '..': keys.pop() else: match = TYPE_ATTR_RE.match(part) if match: keys.append(match.group(1)) else: assert NAME_RE.match(part) keys.append(NAME_MAP.get(part, part)) return keys def main(): parser = OptionParser(usage='%prog path/to/cldr') options, args = parser.parse_args() if len(args) != 1: parser.error('incorrect number of arguments') srcdir = args[0] destdir = os.path.join(os.path.dirname(os.path.abspath(sys.argv[0])), '..', 'babel') sup = parse(os.path.join(srcdir, 'supplemental', 'supplementalData.xml')) # Import global data from the supplemental files global_data = {} territory_zones = global_data.setdefault('territory_zones', {}) zone_aliases = global_data.setdefault('zone_aliases', {}) zone_territories = global_data.setdefault('zone_territories', {}) for elem in sup.findall('.//timezoneData/zoneFormatting/zoneItem'): tzid = elem.attrib['type'] territory_zones.setdefault(elem.attrib['territory'], []).append(tzid) zone_territories[tzid] = elem.attrib['territory'] if 'aliases' in elem.attrib: for alias in elem.attrib['aliases'].split(): zone_aliases[alias] = tzid # Import Metazone mapping meta_zones = global_data.setdefault('meta_zones', {}) tzsup = parse(os.path.join(srcdir, 'supplemental', 'metazoneInfo.xml')) for elem in tzsup.findall('.//timezone'): for child in elem.findall('usesMetazone'): if 'to' not in child.attrib: # FIXME: support old mappings meta_zones[elem.attrib['type']] = child.attrib['mzone'] outfile = open(os.path.join(destdir, 'global.dat'), 'wb') try: pickle.dump(global_data, outfile, 2) finally: outfile.close() # build a territory containment mapping for inheritance regions = {} for elem in sup.findall('.//territoryContainment/group'): regions[elem.attrib['type']] = elem.attrib['contains'].split() # Resolve territory containment territory_containment = {} region_items = sorted(regions.items()) for group, territory_list in region_items: for territory in territory_list: containers = territory_containment.setdefault(territory, set([])) if group in territory_containment: containers |= territory_containment[group] containers.add(group) # prepare the per-locale plural rules definitions plural_rules = {} prsup = parse(os.path.join(srcdir, 'supplemental', 'plurals.xml')) for elem in prsup.findall('.//plurals/pluralRules'): rules = [] for rule in elem.findall('pluralRule'): rules.append((rule.attrib['count'], text_type(rule.text))) pr = PluralRule(rules) for locale in elem.attrib['locales'].split(): plural_rules[locale] = pr filenames = os.listdir(os.path.join(srcdir, 'main')) filenames.remove('root.xml') filenames.sort(key=lambda a: len(a)) filenames.insert(0, 'root.xml') for filename in filenames: stem, ext = os.path.splitext(filename) if ext != '.xml': continue sys.stderr.write('Processing input file %r\n' % filename) tree = parse(os.path.join(srcdir, 'main', filename)) data = {} language = None elem = tree.find('.//identity/language') if elem is not None: language = elem.attrib['type'] sys.stderr.write(' Language: %r\n' % language) territory = None elem = tree.find('.//identity/territory') if elem is not None: territory = elem.attrib['type'] else: territory = '001' # world sys.stderr.write(' Territory: %r\n' % territory) regions = territory_containment.get(territory, []) sys.stderr.write(' Regions: %r\n' % regions) # plural rules locale_id = '_'.join([_f for _f in [ language, territory != '001' and territory or None ] if _f]) if locale_id in plural_rules: data['plural_form'] = plural_rules[locale_id] # <localeDisplayNames> territories = data.setdefault('territories', {}) for elem in tree.findall('.//territories/territory'): if ('draft' in elem.attrib or 'alt' in elem.attrib) \ and elem.attrib['type'] in territories: continue territories[elem.attrib['type']] = _text(elem) languages = data.setdefault('languages', {}) for elem in tree.findall('.//languages/language'): if ('draft' in elem.attrib or 'alt' in elem.attrib) \ and elem.attrib['type'] in languages: continue languages[elem.attrib['type']] = _text(elem) variants = data.setdefault('variants', {}) for elem in tree.findall('.//variants/variant'): if ('draft' in elem.attrib or 'alt' in elem.attrib) \ and elem.attrib['type'] in variants: continue variants[elem.attrib['type']] = _text(elem) scripts = data.setdefault('scripts', {}) for elem in tree.findall('.//scripts/script'): if ('draft' in elem.attrib or 'alt' in elem.attrib) \ and elem.attrib['type'] in scripts: continue scripts[elem.attrib['type']] = _text(elem) # <dates> week_data = data.setdefault('week_data', {}) supelem = sup.find('.//weekData') for elem in supelem.findall('minDays'): territories = elem.attrib['territories'].split() if territory in territories or any([r in territories for r in regions]): week_data['min_days'] = int(elem.attrib['count']) for elem in supelem.findall('firstDay'): if 'alt' not in elem.attrib: # ignore alternatives territories = elem.attrib['territories'].split() if territory in territories or any([r in territories for r in regions]): week_data['first_day'] = weekdays[elem.attrib['day']] for elem in supelem.findall('weekendStart'): territories = elem.attrib['territories'].split() if territory in territories or any([r in territories for r in regions]): week_data['weekend_start'] = weekdays[elem.attrib['day']] for elem in supelem.findall('weekendEnd'): territories = elem.attrib['territories'].split() if territory in territories or any([r in territories for r in regions]): week_data['weekend_end'] = weekdays[elem.attrib['day']] zone_formats = data.setdefault('zone_formats', {}) for elem in tree.findall('.//timeZoneNames/gmtFormat'): if 'draft' not in elem.attrib and 'alt' not in elem.attrib: zone_formats['gmt'] = text_type(elem.text).replace('{0}', '%s') break for elem in tree.findall('.//timeZoneNames/regionFormat'): if 'draft' not in elem.attrib and 'alt' not in elem.attrib: zone_formats['region'] = text_type(elem.text).replace('{0}', '%s') break for elem in tree.findall('.//timeZoneNames/fallbackFormat'): if 'draft' not in elem.attrib and 'alt' not in elem.attrib: zone_formats['fallback'] = text_type(elem.text) \ .replace('{0}', '%(0)s').replace('{1}', '%(1)s') break time_zones = data.setdefault('time_zones', {}) for elem in tree.findall('.//timeZoneNames/zone'): info = {} city = elem.findtext('exemplarCity') if city: info['city'] = text_type(city) for child in elem.findall('long/*'): info.setdefault('long', {})[child.tag] = text_type(child.text) for child in elem.findall('short/*'): info.setdefault('short', {})[child.tag] = text_type(child.text) time_zones[elem.attrib['type']] = info meta_zones = data.setdefault('meta_zones', {}) for elem in tree.findall('.//timeZoneNames/metazone'): info = {} city = elem.findtext('exemplarCity') if city: info['city'] = text_type(city) for child in elem.findall('long/*'): info.setdefault('long', {})[child.tag] = text_type(child.text) for child in elem.findall('short/*'): info.setdefault('short', {})[child.tag] = text_type(child.text) info['common'] = elem.findtext('commonlyUsed') == 'true' meta_zones[elem.attrib['type']] = info for calendar in tree.findall('.//calendars/calendar'): if calendar.attrib['type'] != 'gregorian': # TODO: support other calendar types continue months = data.setdefault('months', {}) for ctxt in calendar.findall('months/monthContext'): ctxt_type = ctxt.attrib['type'] ctxts = months.setdefault(ctxt_type, {}) for width in ctxt.findall('monthWidth'): width_type = width.attrib['type'] widths = ctxts.setdefault(width_type, {}) for elem in width.getiterator(): if elem.tag == 'month': if ('draft' in elem.attrib or 'alt' in elem.attrib) \ and int(elem.attrib['type']) in widths: continue widths[int(elem.attrib.get('type'))] = text_type(elem.text) elif elem.tag == 'alias': ctxts[width_type] = Alias( _translate_alias(['months', ctxt_type, width_type], elem.attrib['path']) ) days = data.setdefault('days', {}) for ctxt in calendar.findall('days/dayContext'): ctxt_type = ctxt.attrib['type'] ctxts = days.setdefault(ctxt_type, {}) for width in ctxt.findall('dayWidth'): width_type = width.attrib['type'] widths = ctxts.setdefault(width_type, {}) for elem in width.getiterator(): if elem.tag == 'day': dtype = weekdays[elem.attrib['type']] if ('draft' in elem.attrib or 'alt' not in elem.attrib) \ and dtype in widths: continue widths[dtype] = text_type(elem.text) elif elem.tag == 'alias': ctxts[width_type] = Alias( _translate_alias(['days', ctxt_type, width_type], elem.attrib['path']) ) quarters = data.setdefault('quarters', {}) for ctxt in calendar.findall('quarters/quarterContext'): ctxt_type = ctxt.attrib['type'] ctxts = quarters.setdefault(ctxt.attrib['type'], {}) for width in ctxt.findall('quarterWidth'): width_type = width.attrib['type'] widths = ctxts.setdefault(width_type, {}) for elem in width.getiterator(): if elem.tag == 'quarter': if ('draft' in elem.attrib or 'alt' in elem.attrib) \ and int(elem.attrib['type']) in widths: continue widths[int(elem.attrib['type'])] = text_type(elem.text) elif elem.tag == 'alias': ctxts[width_type] = Alias( _translate_alias(['quarters', ctxt_type, width_type], elem.attrib['path']) ) eras = data.setdefault('eras', {}) for width in calendar.findall('eras/*'): width_type = NAME_MAP[width.tag] widths = eras.setdefault(width_type, {}) for elem in width.getiterator(): if elem.tag == 'era': if ('draft' in elem.attrib or 'alt' in elem.attrib) \ and int(elem.attrib['type']) in widths: continue widths[int(elem.attrib.get('type'))] = text_type(elem.text) elif elem.tag == 'alias': eras[width_type] = Alias( _translate_alias(['eras', width_type], elem.attrib['path']) ) # AM/PM periods = data.setdefault('periods', {}) for elem in calendar.findall('am'): if ('draft' in elem.attrib or 'alt' in elem.attrib) \ and elem.tag in periods: continue periods[elem.tag] = text_type(elem.text) for elem in calendar.findall('pm'): if ('draft' in elem.attrib or 'alt' in elem.attrib) \ and elem.tag in periods: continue periods[elem.tag] = text_type(elem.text) date_formats = data.setdefault('date_formats', {}) for format in calendar.findall('dateFormats'): for elem in format.getiterator(): if elem.tag == 'dateFormatLength': if 'draft' in elem.attrib and \ elem.attrib.get('type') in date_formats: continue try: date_formats[elem.attrib.get('type')] = \ dates.parse_pattern(text_type(elem.findtext('dateFormat/pattern'))) except ValueError: sys.stderr.write('ERROR: %s\n' % sys.exc_info()[1]) elif elem.tag == 'alias': date_formats = Alias(_translate_alias( ['date_formats'], elem.attrib['path']) ) time_formats = data.setdefault('time_formats', {}) for format in calendar.findall('timeFormats'): for elem in format.getiterator(): if elem.tag == 'timeFormatLength': if ('draft' in elem.attrib or 'alt' in elem.attrib) \ and elem.attrib.get('type') in time_formats: continue try: time_formats[elem.attrib.get('type')] = \ dates.parse_pattern(text_type(elem.findtext('timeFormat/pattern'))) except ValueError: sys.stderr.write('ERROR: %s\n' % sys.exc_info()[1]) elif elem.tag == 'alias': time_formats = Alias(_translate_alias( ['time_formats'], elem.attrib['path']) ) datetime_formats = data.setdefault('datetime_formats', {}) for format in calendar.findall('dateTimeFormats'): for elem in format.getiterator(): if elem.tag == 'dateTimeFormatLength': if ('draft' in elem.attrib or 'alt' in elem.attrib) \ and elem.attrib.get('type') in datetime_formats: continue try: datetime_formats[elem.attrib.get('type')] = \ text_type(elem.findtext('dateTimeFormat/pattern')) except ValueError: sys.stderr.write('ERROR: %s\n' % sys.exc_info()[1]) elif elem.tag == 'alias': datetime_formats = Alias(_translate_alias( ['datetime_formats'], elem.attrib['path']) ) # <numbers> number_symbols = data.setdefault('number_symbols', {}) for elem in tree.findall('.//numbers/symbols/*'): if ('draft' in elem.attrib or 'alt' in elem.attrib): continue number_symbols[elem.tag] = text_type(elem.text) decimal_formats = data.setdefault('decimal_formats', {}) for elem in tree.findall('.//decimalFormats/decimalFormatLength'): if ('draft' in elem.attrib or 'alt' in elem.attrib) \ and elem.attrib.get('type') in decimal_formats: continue pattern = text_type(elem.findtext('decimalFormat/pattern')) decimal_formats[elem.attrib.get('type')] = numbers.parse_pattern(pattern) scientific_formats = data.setdefault('scientific_formats', {}) for elem in tree.findall('.//scientificFormats/scientificFormatLength'): if ('draft' in elem.attrib or 'alt' in elem.attrib) \ and elem.attrib.get('type') in scientific_formats: continue pattern = text_type(elem.findtext('scientificFormat/pattern')) scientific_formats[elem.attrib.get('type')] = numbers.parse_pattern(pattern) currency_formats = data.setdefault('currency_formats', {}) for elem in tree.findall('.//currencyFormats/currencyFormatLength'): if ('draft' in elem.attrib or 'alt' in elem.attrib) \ and elem.attrib.get('type') in currency_formats: continue pattern = text_type(elem.findtext('currencyFormat/pattern')) currency_formats[elem.attrib.get('type')] = numbers.parse_pattern(pattern) percent_formats = data.setdefault('percent_formats', {}) for elem in tree.findall('.//percentFormats/percentFormatLength'): if ('draft' in elem.attrib or 'alt' in elem.attrib) \ and elem.attrib.get('type') in percent_formats: continue pattern = text_type(elem.findtext('percentFormat/pattern')) percent_formats[elem.attrib.get('type')] = numbers.parse_pattern(pattern) currency_names = data.setdefault('currency_names', {}) currency_symbols = data.setdefault('currency_symbols', {}) for elem in tree.findall('.//currencies/currency'): code = elem.attrib['type'] # TODO: support plural rules for currency name selection for name in elem.findall('displayName'): if ('draft' in name.attrib or 'count' in name.attrib) \ and code in currency_names: continue currency_names[code] = text_type(name.text) # TODO: support choice patterns for currency symbol selection symbol = elem.find('symbol') if symbol is not None and 'draft' not in symbol.attrib \ and 'choice' not in symbol.attrib: currency_symbols[code] = text_type(symbol.text) # <units> unit_patterns = data.setdefault('unit_patterns', {}) for elem in tree.findall('.//units/unit'): unit_type = elem.attrib['type'] unit_pattern = unit_patterns.setdefault(unit_type, {}) for pattern in elem.findall('unitPattern'): unit_patterns[unit_type][pattern.attrib['count']] = \ text_type(pattern.text) outfile = open(os.path.join(destdir, 'localedata', stem + '.dat'), 'wb') try: pickle.dump(data, outfile, 2) finally: outfile.close() if __name__ == '__main__': main()
the-stack_0_12510
#!/usr/bin/env python3 """Script for Tkinter GUI chat client.""" from socket import AF_INET, socket, SOCK_STREAM from threading import Thread import tkinter # crypto imports # import nacl, nacl.secret, nacl.utils # from nacl.public import PrivateKey, SealedBox def receive(): """Handles receiving of messages.""" while True: try: msg = client_socket.recv(BUFSIZ).decode("utf8") msg_list.insert(tkinter.END, msg) except OSError: # Possibly client has left the chat. break def send(event=None): # event is passed by binders. """Handles sending of messages.""" msg = my_msg.get() my_msg.set("") # Clears input field. client_socket.send(bytes(msg, "utf8")) if msg == "{quit}": client_socket.close() top.quit() def on_closing(event=None): """This function is to be called when the window is closed.""" my_msg.set("{quit}") send() top = tkinter.Tk() top.title("Encrypted chat") messages_frame = tkinter.Frame(top) my_msg = tkinter.StringVar() # For the messages to be sent. my_msg.set("") scrollbar = tkinter.Scrollbar(messages_frame) # To navigate through past messages. # Following will contain the messages. msg_list = tkinter.Listbox(messages_frame, height=15, width=50, yscrollcommand=scrollbar.set) scrollbar.pack(side=tkinter.RIGHT, fill=tkinter.Y) msg_list.pack(side=tkinter.LEFT, fill=tkinter.BOTH) msg_list.pack() messages_frame.pack() entry_field = tkinter.Entry(top, textvariable=my_msg) entry_field.bind("<Return>", send) entry_field.pack() send_button = tkinter.Button(top, text="Send", command=send) send_button.pack() top.protocol("WM_DELETE_WINDOW", on_closing) #----Now comes the sockets part---- HOST = input('Enter host: ') PORT = input('Enter port: ') if not PORT: PORT = 33000 else: PORT = int(PORT) BUFSIZ = 1024 ADDR = (HOST, PORT) client_socket = socket(AF_INET, SOCK_STREAM) client_socket.connect(ADDR) receive_thread = Thread(target=receive) receive_thread.start() tkinter.mainloop() # Starts GUI execution.
the-stack_0_12511
"""Regresssion tests for urllib""" import urllib.parse import urllib.request import urllib.error import http.client import email.message import io import unittest from unittest.mock import patch from test import support import os import sys import tempfile from nturl2path import url2pathname, pathname2url from base64 import b64encode import collections def hexescape(char): """Escape char as RFC 2396 specifies""" hex_repr = hex(ord(char))[2:].upper() if len(hex_repr) == 1: hex_repr = "0%s" % hex_repr return "%" + hex_repr # Shortcut for testing FancyURLopener _urlopener = None def urlopen(url, data=None, proxies=None): """urlopen(url [, data]) -> open file-like object""" global _urlopener if proxies is not None: opener = urllib.request.FancyURLopener(proxies=proxies) elif not _urlopener: with support.check_warnings( ('FancyURLopener style of invoking requests is deprecated.', DeprecationWarning)): opener = urllib.request.FancyURLopener() _urlopener = opener else: opener = _urlopener if data is None: return opener.open(url) else: return opener.open(url, data) class FakeHTTPMixin(object): def fakehttp(self, fakedata): class FakeSocket(io.BytesIO): io_refs = 1 def sendall(self, data): FakeHTTPConnection.buf = data def makefile(self, *args, **kwds): self.io_refs += 1 return self def read(self, amt=None): if self.closed: return b"" return io.BytesIO.read(self, amt) def readline(self, length=None): if self.closed: return b"" return io.BytesIO.readline(self, length) def close(self): self.io_refs -= 1 if self.io_refs == 0: io.BytesIO.close(self) class FakeHTTPConnection(http.client.HTTPConnection): # buffer to store data for verification in urlopen tests. buf = None def connect(self): self.sock = FakeSocket(fakedata) self._connection_class = http.client.HTTPConnection http.client.HTTPConnection = FakeHTTPConnection def unfakehttp(self): http.client.HTTPConnection = self._connection_class class FakeFTPMixin(object): def fakeftp(self): class FakeFtpWrapper(object): def __init__(self, user, passwd, host, port, dirs, timeout=None, persistent=True): pass def retrfile(self, file, type): return io.BytesIO(), 0 def close(self): pass self._ftpwrapper_class = urllib.request.ftpwrapper urllib.request.ftpwrapper = FakeFtpWrapper def unfakeftp(self): urllib.request.ftpwrapper = self._ftpwrapper_class class urlopen_FileTests(unittest.TestCase): """Test urlopen() opening a temporary file. Try to test as much functionality as possible so as to cut down on reliance on connecting to the Net for testing. """ def setUp(self): # Create a temp file to use for testing self.text = bytes("test_urllib: %s\n" % self.__class__.__name__, "ascii") f = open(support.TESTFN, 'wb') try: f.write(self.text) finally: f.close() self.pathname = support.TESTFN self.returned_obj = urlopen("file:%s" % self.pathname) def tearDown(self): """Shut down the open object""" self.returned_obj.close() os.remove(support.TESTFN) def test_interface(self): # Make sure object returned by urlopen() has the specified methods for attr in ("read", "readline", "readlines", "fileno", "close", "info", "geturl", "getcode", "__iter__"): self.assertTrue(hasattr(self.returned_obj, attr), "object returned by urlopen() lacks %s attribute" % attr) def test_read(self): self.assertEqual(self.text, self.returned_obj.read()) def test_readline(self): self.assertEqual(self.text, self.returned_obj.readline()) self.assertEqual(b'', self.returned_obj.readline(), "calling readline() after exhausting the file did not" " return an empty string") def test_readlines(self): lines_list = self.returned_obj.readlines() self.assertEqual(len(lines_list), 1, "readlines() returned the wrong number of lines") self.assertEqual(lines_list[0], self.text, "readlines() returned improper text") def test_fileno(self): file_num = self.returned_obj.fileno() self.assertIsInstance(file_num, int, "fileno() did not return an int") self.assertEqual(os.read(file_num, len(self.text)), self.text, "Reading on the file descriptor returned by fileno() " "did not return the expected text") def test_close(self): # Test close() by calling it here and then having it be called again # by the tearDown() method for the test self.returned_obj.close() def test_info(self): self.assertIsInstance(self.returned_obj.info(), email.message.Message) def test_geturl(self): self.assertEqual(self.returned_obj.geturl(), self.pathname) def test_getcode(self): self.assertIsNone(self.returned_obj.getcode()) def test_iter(self): # Test iterator # Don't need to count number of iterations since test would fail the # instant it returned anything beyond the first line from the # comparison. # Use the iterator in the usual implicit way to test for ticket #4608. for line in self.returned_obj: self.assertEqual(line, self.text) def test_relativelocalfile(self): self.assertRaises(ValueError,urllib.request.urlopen,'./' + self.pathname) class ProxyTests(unittest.TestCase): def setUp(self): # Records changes to env vars self.env = support.EnvironmentVarGuard() # Delete all proxy related env vars for k in list(os.environ): if 'proxy' in k.lower(): self.env.unset(k) def tearDown(self): # Restore all proxy related env vars self.env.__exit__() del self.env def test_getproxies_environment_keep_no_proxies(self): self.env.set('NO_PROXY', 'localhost') proxies = urllib.request.getproxies_environment() # getproxies_environment use lowered case truncated (no '_proxy') keys self.assertEqual('localhost', proxies['no']) # List of no_proxies with space. self.env.set('NO_PROXY', 'localhost, anotherdomain.com, newdomain.com') self.assertTrue(urllib.request.proxy_bypass_environment('anotherdomain.com')) class urlopen_HttpTests(unittest.TestCase, FakeHTTPMixin, FakeFTPMixin): """Test urlopen() opening a fake http connection.""" def check_read(self, ver): self.fakehttp(b"HTTP/" + ver + b" 200 OK\r\n\r\nHello!") try: fp = urlopen("http://python.org/") self.assertEqual(fp.readline(), b"Hello!") self.assertEqual(fp.readline(), b"") self.assertEqual(fp.geturl(), 'http://python.org/') self.assertEqual(fp.getcode(), 200) finally: self.unfakehttp() def test_url_fragment(self): # Issue #11703: geturl() omits fragments in the original URL. url = 'http://docs.python.org/library/urllib.html#OK' self.fakehttp(b"HTTP/1.1 200 OK\r\n\r\nHello!") try: fp = urllib.request.urlopen(url) self.assertEqual(fp.geturl(), url) finally: self.unfakehttp() def test_willclose(self): self.fakehttp(b"HTTP/1.1 200 OK\r\n\r\nHello!") try: resp = urlopen("http://www.python.org") self.assertTrue(resp.fp.will_close) finally: self.unfakehttp() def test_read_0_9(self): # "0.9" response accepted (but not "simple responses" without # a status line) self.check_read(b"0.9") def test_read_1_0(self): self.check_read(b"1.0") def test_read_1_1(self): self.check_read(b"1.1") def test_read_bogus(self): # urlopen() should raise OSError for many error codes. self.fakehttp(b'''HTTP/1.1 401 Authentication Required Date: Wed, 02 Jan 2008 03:03:54 GMT Server: Apache/1.3.33 (Debian GNU/Linux) mod_ssl/2.8.22 OpenSSL/0.9.7e Connection: close Content-Type: text/html; charset=iso-8859-1 ''') try: self.assertRaises(OSError, urlopen, "http://python.org/") finally: self.unfakehttp() def test_invalid_redirect(self): # urlopen() should raise OSError for many error codes. self.fakehttp(b'''HTTP/1.1 302 Found Date: Wed, 02 Jan 2008 03:03:54 GMT Server: Apache/1.3.33 (Debian GNU/Linux) mod_ssl/2.8.22 OpenSSL/0.9.7e Location: file://guidocomputer.athome.com:/python/license Connection: close Content-Type: text/html; charset=iso-8859-1 ''') try: self.assertRaises(urllib.error.HTTPError, urlopen, "http://python.org/") finally: self.unfakehttp() def test_empty_socket(self): # urlopen() raises OSError if the underlying socket does not send any # data. (#1680230) self.fakehttp(b'') try: self.assertRaises(OSError, urlopen, "http://something") finally: self.unfakehttp() def test_missing_localfile(self): # Test for #10836 with self.assertRaises(urllib.error.URLError) as e: urlopen('file://localhost/a/file/which/doesnot/exists.py') self.assertTrue(e.exception.filename) self.assertTrue(e.exception.reason) def test_file_notexists(self): fd, tmp_file = tempfile.mkstemp() tmp_fileurl = 'file://localhost/' + tmp_file.replace(os.path.sep, '/') try: self.assertTrue(os.path.exists(tmp_file)) with urlopen(tmp_fileurl) as fobj: self.assertTrue(fobj) finally: os.close(fd) os.unlink(tmp_file) self.assertFalse(os.path.exists(tmp_file)) with self.assertRaises(urllib.error.URLError): urlopen(tmp_fileurl) def test_ftp_nohost(self): test_ftp_url = 'ftp:///path' with self.assertRaises(urllib.error.URLError) as e: urlopen(test_ftp_url) self.assertFalse(e.exception.filename) self.assertTrue(e.exception.reason) def test_ftp_nonexisting(self): with self.assertRaises(urllib.error.URLError) as e: urlopen('ftp://localhost/a/file/which/doesnot/exists.py') self.assertFalse(e.exception.filename) self.assertTrue(e.exception.reason) @patch.object(urllib.request, 'MAXFTPCACHE', 0) def test_ftp_cache_pruning(self): self.fakeftp() try: urllib.request.ftpcache['test'] = urllib.request.ftpwrapper('user', 'pass', 'localhost', 21, []) urlopen('ftp://localhost') finally: self.unfakeftp() def test_userpass_inurl(self): self.fakehttp(b"HTTP/1.0 200 OK\r\n\r\nHello!") try: fp = urlopen("http://user:[email protected]/") self.assertEqual(fp.readline(), b"Hello!") self.assertEqual(fp.readline(), b"") self.assertEqual(fp.geturl(), 'http://user:[email protected]/') self.assertEqual(fp.getcode(), 200) finally: self.unfakehttp() def test_userpass_inurl_w_spaces(self): self.fakehttp(b"HTTP/1.0 200 OK\r\n\r\nHello!") try: userpass = "a b:c d" url = "http://{}@python.org/".format(userpass) fakehttp_wrapper = http.client.HTTPConnection authorization = ("Authorization: Basic %s\r\n" % b64encode(userpass.encode("ASCII")).decode("ASCII")) fp = urlopen(url) # The authorization header must be in place self.assertIn(authorization, fakehttp_wrapper.buf.decode("UTF-8")) self.assertEqual(fp.readline(), b"Hello!") self.assertEqual(fp.readline(), b"") # the spaces are quoted in URL so no match self.assertNotEqual(fp.geturl(), url) self.assertEqual(fp.getcode(), 200) finally: self.unfakehttp() def test_URLopener_deprecation(self): with support.check_warnings(('',DeprecationWarning)): urllib.request.URLopener() class urlopen_DataTests(unittest.TestCase): """Test urlopen() opening a data URL.""" def setUp(self): # text containing URL special- and unicode-characters self.text = "test data URLs :;,%=& \u00f6 \u00c4 " # 2x1 pixel RGB PNG image with one black and one white pixel self.image = ( b'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x02\x00\x00\x00' b'\x01\x08\x02\x00\x00\x00{@\xe8\xdd\x00\x00\x00\x01sRGB\x00\xae' b'\xce\x1c\xe9\x00\x00\x00\x0fIDAT\x08\xd7c```\xf8\xff\xff?\x00' b'\x06\x01\x02\xfe\no/\x1e\x00\x00\x00\x00IEND\xaeB`\x82') self.text_url = ( "data:text/plain;charset=UTF-8,test%20data%20URLs%20%3A%3B%2C%25%3" "D%26%20%C3%B6%20%C3%84%20") self.text_url_base64 = ( "data:text/plain;charset=ISO-8859-1;base64,dGVzdCBkYXRhIFVSTHMgOjs" "sJT0mIPYgxCA%3D") # base64 encoded data URL that contains ignorable spaces, # such as "\n", " ", "%0A", and "%20". self.image_url = ( "\n" "QOjdAAAAAXNSR0IArs4c6QAAAA9JREFUCNdj%0AYGBg%2BP//PwAGAQL%2BCm8 " "vHgAAAABJRU5ErkJggg%3D%3D%0A%20") self.text_url_resp = urllib.request.urlopen(self.text_url) self.text_url_base64_resp = urllib.request.urlopen( self.text_url_base64) self.image_url_resp = urllib.request.urlopen(self.image_url) def test_interface(self): # Make sure object returned by urlopen() has the specified methods for attr in ("read", "readline", "readlines", "close", "info", "geturl", "getcode", "__iter__"): self.assertTrue(hasattr(self.text_url_resp, attr), "object returned by urlopen() lacks %s attribute" % attr) def test_info(self): self.assertIsInstance(self.text_url_resp.info(), email.message.Message) self.assertEqual(self.text_url_base64_resp.info().get_params(), [('text/plain', ''), ('charset', 'ISO-8859-1')]) self.assertEqual(self.image_url_resp.info()['content-length'], str(len(self.image))) self.assertEqual(urllib.request.urlopen("data:,").info().get_params(), [('text/plain', ''), ('charset', 'US-ASCII')]) def test_geturl(self): self.assertEqual(self.text_url_resp.geturl(), self.text_url) self.assertEqual(self.text_url_base64_resp.geturl(), self.text_url_base64) self.assertEqual(self.image_url_resp.geturl(), self.image_url) def test_read_text(self): self.assertEqual(self.text_url_resp.read().decode( dict(self.text_url_resp.info().get_params())['charset']), self.text) def test_read_text_base64(self): self.assertEqual(self.text_url_base64_resp.read().decode( dict(self.text_url_base64_resp.info().get_params())['charset']), self.text) def test_read_image(self): self.assertEqual(self.image_url_resp.read(), self.image) def test_missing_comma(self): self.assertRaises(ValueError,urllib.request.urlopen,'data:text/plain') def test_invalid_base64_data(self): # missing padding character self.assertRaises(ValueError,urllib.request.urlopen,'data:;base64,Cg=') class urlretrieve_FileTests(unittest.TestCase): """Test urllib.urlretrieve() on local files""" def setUp(self): # Create a list of temporary files. Each item in the list is a file # name (absolute path or relative to the current working directory). # All files in this list will be deleted in the tearDown method. Note, # this only helps to makes sure temporary files get deleted, but it # does nothing about trying to close files that may still be open. It # is the responsibility of the developer to properly close files even # when exceptional conditions occur. self.tempFiles = [] # Create a temporary file. self.registerFileForCleanUp(support.TESTFN) self.text = b'testing urllib.urlretrieve' try: FILE = open(support.TESTFN, 'wb') FILE.write(self.text) FILE.close() finally: try: FILE.close() except: pass def tearDown(self): # Delete the temporary files. for each in self.tempFiles: try: os.remove(each) except: pass def constructLocalFileUrl(self, filePath): filePath = os.path.abspath(filePath) try: filePath.encode("utf-8") except UnicodeEncodeError: raise unittest.SkipTest("filePath is not encodable to utf8") return "file://%s" % urllib.request.pathname2url(filePath) def createNewTempFile(self, data=b""): """Creates a new temporary file containing the specified data, registers the file for deletion during the test fixture tear down, and returns the absolute path of the file.""" newFd, newFilePath = tempfile.mkstemp() try: self.registerFileForCleanUp(newFilePath) newFile = os.fdopen(newFd, "wb") newFile.write(data) newFile.close() finally: try: newFile.close() except: pass return newFilePath def registerFileForCleanUp(self, fileName): self.tempFiles.append(fileName) def test_basic(self): # Make sure that a local file just gets its own location returned and # a headers value is returned. result = urllib.request.urlretrieve("file:%s" % support.TESTFN) self.assertEqual(result[0], support.TESTFN) self.assertIsInstance(result[1], email.message.Message, "did not get a email.message.Message instance " "as second returned value") def test_copy(self): # Test that setting the filename argument works. second_temp = "%s.2" % support.TESTFN self.registerFileForCleanUp(second_temp) result = urllib.request.urlretrieve(self.constructLocalFileUrl( support.TESTFN), second_temp) self.assertEqual(second_temp, result[0]) self.assertTrue(os.path.exists(second_temp), "copy of the file was not " "made") FILE = open(second_temp, 'rb') try: text = FILE.read() FILE.close() finally: try: FILE.close() except: pass self.assertEqual(self.text, text) def test_reporthook(self): # Make sure that the reporthook works. def hooktester(block_count, block_read_size, file_size, count_holder=[0]): self.assertIsInstance(block_count, int) self.assertIsInstance(block_read_size, int) self.assertIsInstance(file_size, int) self.assertEqual(block_count, count_holder[0]) count_holder[0] = count_holder[0] + 1 second_temp = "%s.2" % support.TESTFN self.registerFileForCleanUp(second_temp) urllib.request.urlretrieve( self.constructLocalFileUrl(support.TESTFN), second_temp, hooktester) def test_reporthook_0_bytes(self): # Test on zero length file. Should call reporthook only 1 time. report = [] def hooktester(block_count, block_read_size, file_size, _report=report): _report.append((block_count, block_read_size, file_size)) srcFileName = self.createNewTempFile() urllib.request.urlretrieve(self.constructLocalFileUrl(srcFileName), support.TESTFN, hooktester) self.assertEqual(len(report), 1) self.assertEqual(report[0][2], 0) def test_reporthook_5_bytes(self): # Test on 5 byte file. Should call reporthook only 2 times (once when # the "network connection" is established and once when the block is # read). report = [] def hooktester(block_count, block_read_size, file_size, _report=report): _report.append((block_count, block_read_size, file_size)) srcFileName = self.createNewTempFile(b"x" * 5) urllib.request.urlretrieve(self.constructLocalFileUrl(srcFileName), support.TESTFN, hooktester) self.assertEqual(len(report), 2) self.assertEqual(report[0][2], 5) self.assertEqual(report[1][2], 5) def test_reporthook_8193_bytes(self): # Test on 8193 byte file. Should call reporthook only 3 times (once # when the "network connection" is established, once for the next 8192 # bytes, and once for the last byte). report = [] def hooktester(block_count, block_read_size, file_size, _report=report): _report.append((block_count, block_read_size, file_size)) srcFileName = self.createNewTempFile(b"x" * 8193) urllib.request.urlretrieve(self.constructLocalFileUrl(srcFileName), support.TESTFN, hooktester) self.assertEqual(len(report), 3) self.assertEqual(report[0][2], 8193) self.assertEqual(report[0][1], 8192) self.assertEqual(report[1][1], 8192) self.assertEqual(report[2][1], 8192) class urlretrieve_HttpTests(unittest.TestCase, FakeHTTPMixin): """Test urllib.urlretrieve() using fake http connections""" def test_short_content_raises_ContentTooShortError(self): self.fakehttp(b'''HTTP/1.1 200 OK Date: Wed, 02 Jan 2008 03:03:54 GMT Server: Apache/1.3.33 (Debian GNU/Linux) mod_ssl/2.8.22 OpenSSL/0.9.7e Connection: close Content-Length: 100 Content-Type: text/html; charset=iso-8859-1 FF ''') def _reporthook(par1, par2, par3): pass with self.assertRaises(urllib.error.ContentTooShortError): try: urllib.request.urlretrieve('http://example.com/', reporthook=_reporthook) finally: self.unfakehttp() def test_short_content_raises_ContentTooShortError_without_reporthook(self): self.fakehttp(b'''HTTP/1.1 200 OK Date: Wed, 02 Jan 2008 03:03:54 GMT Server: Apache/1.3.33 (Debian GNU/Linux) mod_ssl/2.8.22 OpenSSL/0.9.7e Connection: close Content-Length: 100 Content-Type: text/html; charset=iso-8859-1 FF ''') with self.assertRaises(urllib.error.ContentTooShortError): try: urllib.request.urlretrieve('http://example.com/') finally: self.unfakehttp() class QuotingTests(unittest.TestCase): """Tests for urllib.quote() and urllib.quote_plus() According to RFC 2396 (Uniform Resource Identifiers), to escape a character you write it as '%' + <2 character US-ASCII hex value>. The Python code of ``'%' + hex(ord(<character>))[2:]`` escapes a character properly. Case does not matter on the hex letters. The various character sets specified are: Reserved characters : ";/?:@&=+$," Have special meaning in URIs and must be escaped if not being used for their special meaning Data characters : letters, digits, and "-_.!~*'()" Unreserved and do not need to be escaped; can be, though, if desired Control characters : 0x00 - 0x1F, 0x7F Have no use in URIs so must be escaped space : 0x20 Must be escaped Delimiters : '<>#%"' Must be escaped Unwise : "{}|\^[]`" Must be escaped """ def test_never_quote(self): # Make sure quote() does not quote letters, digits, and "_,.-" do_not_quote = '' .join(["ABCDEFGHIJKLMNOPQRSTUVWXYZ", "abcdefghijklmnopqrstuvwxyz", "0123456789", "_.-"]) result = urllib.parse.quote(do_not_quote) self.assertEqual(do_not_quote, result, "using quote(): %r != %r" % (do_not_quote, result)) result = urllib.parse.quote_plus(do_not_quote) self.assertEqual(do_not_quote, result, "using quote_plus(): %r != %r" % (do_not_quote, result)) def test_default_safe(self): # Test '/' is default value for 'safe' parameter self.assertEqual(urllib.parse.quote.__defaults__[0], '/') def test_safe(self): # Test setting 'safe' parameter does what it should do quote_by_default = "<>" result = urllib.parse.quote(quote_by_default, safe=quote_by_default) self.assertEqual(quote_by_default, result, "using quote(): %r != %r" % (quote_by_default, result)) result = urllib.parse.quote_plus(quote_by_default, safe=quote_by_default) self.assertEqual(quote_by_default, result, "using quote_plus(): %r != %r" % (quote_by_default, result)) # Safe expressed as bytes rather than str result = urllib.parse.quote(quote_by_default, safe=b"<>") self.assertEqual(quote_by_default, result, "using quote(): %r != %r" % (quote_by_default, result)) # "Safe" non-ASCII characters should have no effect # (Since URIs are not allowed to have non-ASCII characters) result = urllib.parse.quote("a\xfcb", encoding="latin-1", safe="\xfc") expect = urllib.parse.quote("a\xfcb", encoding="latin-1", safe="") self.assertEqual(expect, result, "using quote(): %r != %r" % (expect, result)) # Same as above, but using a bytes rather than str result = urllib.parse.quote("a\xfcb", encoding="latin-1", safe=b"\xfc") expect = urllib.parse.quote("a\xfcb", encoding="latin-1", safe="") self.assertEqual(expect, result, "using quote(): %r != %r" % (expect, result)) def test_default_quoting(self): # Make sure all characters that should be quoted are by default sans # space (separate test for that). should_quote = [chr(num) for num in range(32)] # For 0x00 - 0x1F should_quote.append('<>#%"{}|\^[]`') should_quote.append(chr(127)) # For 0x7F should_quote = ''.join(should_quote) for char in should_quote: result = urllib.parse.quote(char) self.assertEqual(hexescape(char), result, "using quote(): " "%s should be escaped to %s, not %s" % (char, hexescape(char), result)) result = urllib.parse.quote_plus(char) self.assertEqual(hexescape(char), result, "using quote_plus(): " "%s should be escapes to %s, not %s" % (char, hexescape(char), result)) del should_quote partial_quote = "ab[]cd" expected = "ab%5B%5Dcd" result = urllib.parse.quote(partial_quote) self.assertEqual(expected, result, "using quote(): %r != %r" % (expected, result)) result = urllib.parse.quote_plus(partial_quote) self.assertEqual(expected, result, "using quote_plus(): %r != %r" % (expected, result)) def test_quoting_space(self): # Make sure quote() and quote_plus() handle spaces as specified in # their unique way result = urllib.parse.quote(' ') self.assertEqual(result, hexescape(' '), "using quote(): %r != %r" % (result, hexescape(' '))) result = urllib.parse.quote_plus(' ') self.assertEqual(result, '+', "using quote_plus(): %r != +" % result) given = "a b cd e f" expect = given.replace(' ', hexescape(' ')) result = urllib.parse.quote(given) self.assertEqual(expect, result, "using quote(): %r != %r" % (expect, result)) expect = given.replace(' ', '+') result = urllib.parse.quote_plus(given) self.assertEqual(expect, result, "using quote_plus(): %r != %r" % (expect, result)) def test_quoting_plus(self): self.assertEqual(urllib.parse.quote_plus('alpha+beta gamma'), 'alpha%2Bbeta+gamma') self.assertEqual(urllib.parse.quote_plus('alpha+beta gamma', '+'), 'alpha+beta+gamma') # Test with bytes self.assertEqual(urllib.parse.quote_plus(b'alpha+beta gamma'), 'alpha%2Bbeta+gamma') # Test with safe bytes self.assertEqual(urllib.parse.quote_plus('alpha+beta gamma', b'+'), 'alpha+beta+gamma') def test_quote_bytes(self): # Bytes should quote directly to percent-encoded values given = b"\xa2\xd8ab\xff" expect = "%A2%D8ab%FF" result = urllib.parse.quote(given) self.assertEqual(expect, result, "using quote(): %r != %r" % (expect, result)) # Encoding argument should raise type error on bytes input self.assertRaises(TypeError, urllib.parse.quote, given, encoding="latin-1") # quote_from_bytes should work the same result = urllib.parse.quote_from_bytes(given) self.assertEqual(expect, result, "using quote_from_bytes(): %r != %r" % (expect, result)) def test_quote_with_unicode(self): # Characters in Latin-1 range, encoded by default in UTF-8 given = "\xa2\xd8ab\xff" expect = "%C2%A2%C3%98ab%C3%BF" result = urllib.parse.quote(given) self.assertEqual(expect, result, "using quote(): %r != %r" % (expect, result)) # Characters in Latin-1 range, encoded by with None (default) result = urllib.parse.quote(given, encoding=None, errors=None) self.assertEqual(expect, result, "using quote(): %r != %r" % (expect, result)) # Characters in Latin-1 range, encoded with Latin-1 given = "\xa2\xd8ab\xff" expect = "%A2%D8ab%FF" result = urllib.parse.quote(given, encoding="latin-1") self.assertEqual(expect, result, "using quote(): %r != %r" % (expect, result)) # Characters in BMP, encoded by default in UTF-8 given = "\u6f22\u5b57" # "Kanji" expect = "%E6%BC%A2%E5%AD%97" result = urllib.parse.quote(given) self.assertEqual(expect, result, "using quote(): %r != %r" % (expect, result)) # Characters in BMP, encoded with Latin-1 given = "\u6f22\u5b57" self.assertRaises(UnicodeEncodeError, urllib.parse.quote, given, encoding="latin-1") # Characters in BMP, encoded with Latin-1, with replace error handling given = "\u6f22\u5b57" expect = "%3F%3F" # "??" result = urllib.parse.quote(given, encoding="latin-1", errors="replace") self.assertEqual(expect, result, "using quote(): %r != %r" % (expect, result)) # Characters in BMP, Latin-1, with xmlcharref error handling given = "\u6f22\u5b57" expect = "%26%2328450%3B%26%2323383%3B" # "&#28450;&#23383;" result = urllib.parse.quote(given, encoding="latin-1", errors="xmlcharrefreplace") self.assertEqual(expect, result, "using quote(): %r != %r" % (expect, result)) def test_quote_plus_with_unicode(self): # Encoding (latin-1) test for quote_plus given = "\xa2\xd8 \xff" expect = "%A2%D8+%FF" result = urllib.parse.quote_plus(given, encoding="latin-1") self.assertEqual(expect, result, "using quote_plus(): %r != %r" % (expect, result)) # Errors test for quote_plus given = "ab\u6f22\u5b57 cd" expect = "ab%3F%3F+cd" result = urllib.parse.quote_plus(given, encoding="latin-1", errors="replace") self.assertEqual(expect, result, "using quote_plus(): %r != %r" % (expect, result)) class UnquotingTests(unittest.TestCase): """Tests for unquote() and unquote_plus() See the doc string for quoting_Tests for details on quoting and such. """ def test_unquoting(self): # Make sure unquoting of all ASCII values works escape_list = [] for num in range(128): given = hexescape(chr(num)) expect = chr(num) result = urllib.parse.unquote(given) self.assertEqual(expect, result, "using unquote(): %r != %r" % (expect, result)) result = urllib.parse.unquote_plus(given) self.assertEqual(expect, result, "using unquote_plus(): %r != %r" % (expect, result)) escape_list.append(given) escape_string = ''.join(escape_list) del escape_list result = urllib.parse.unquote(escape_string) self.assertEqual(result.count('%'), 1, "using unquote(): not all characters escaped: " "%s" % result) self.assertRaises((TypeError, AttributeError), urllib.parse.unquote, None) self.assertRaises((TypeError, AttributeError), urllib.parse.unquote, ()) with support.check_warnings(('', BytesWarning), quiet=True): self.assertRaises((TypeError, AttributeError), urllib.parse.unquote, b'') def test_unquoting_badpercent(self): # Test unquoting on bad percent-escapes given = '%xab' expect = given result = urllib.parse.unquote(given) self.assertEqual(expect, result, "using unquote(): %r != %r" % (expect, result)) given = '%x' expect = given result = urllib.parse.unquote(given) self.assertEqual(expect, result, "using unquote(): %r != %r" % (expect, result)) given = '%' expect = given result = urllib.parse.unquote(given) self.assertEqual(expect, result, "using unquote(): %r != %r" % (expect, result)) # unquote_to_bytes given = '%xab' expect = bytes(given, 'ascii') result = urllib.parse.unquote_to_bytes(given) self.assertEqual(expect, result, "using unquote_to_bytes(): %r != %r" % (expect, result)) given = '%x' expect = bytes(given, 'ascii') result = urllib.parse.unquote_to_bytes(given) self.assertEqual(expect, result, "using unquote_to_bytes(): %r != %r" % (expect, result)) given = '%' expect = bytes(given, 'ascii') result = urllib.parse.unquote_to_bytes(given) self.assertEqual(expect, result, "using unquote_to_bytes(): %r != %r" % (expect, result)) self.assertRaises((TypeError, AttributeError), urllib.parse.unquote_to_bytes, None) self.assertRaises((TypeError, AttributeError), urllib.parse.unquote_to_bytes, ()) def test_unquoting_mixed_case(self): # Test unquoting on mixed-case hex digits in the percent-escapes given = '%Ab%eA' expect = b'\xab\xea' result = urllib.parse.unquote_to_bytes(given) self.assertEqual(expect, result, "using unquote_to_bytes(): %r != %r" % (expect, result)) def test_unquoting_parts(self): # Make sure unquoting works when have non-quoted characters # interspersed given = 'ab%sd' % hexescape('c') expect = "abcd" result = urllib.parse.unquote(given) self.assertEqual(expect, result, "using quote(): %r != %r" % (expect, result)) result = urllib.parse.unquote_plus(given) self.assertEqual(expect, result, "using unquote_plus(): %r != %r" % (expect, result)) def test_unquoting_plus(self): # Test difference between unquote() and unquote_plus() given = "are+there+spaces..." expect = given result = urllib.parse.unquote(given) self.assertEqual(expect, result, "using unquote(): %r != %r" % (expect, result)) expect = given.replace('+', ' ') result = urllib.parse.unquote_plus(given) self.assertEqual(expect, result, "using unquote_plus(): %r != %r" % (expect, result)) def test_unquote_to_bytes(self): given = 'br%C3%BCckner_sapporo_20050930.doc' expect = b'br\xc3\xbcckner_sapporo_20050930.doc' result = urllib.parse.unquote_to_bytes(given) self.assertEqual(expect, result, "using unquote_to_bytes(): %r != %r" % (expect, result)) # Test on a string with unescaped non-ASCII characters # (Technically an invalid URI; expect those characters to be UTF-8 # encoded). result = urllib.parse.unquote_to_bytes("\u6f22%C3%BC") expect = b'\xe6\xbc\xa2\xc3\xbc' # UTF-8 for "\u6f22\u00fc" self.assertEqual(expect, result, "using unquote_to_bytes(): %r != %r" % (expect, result)) # Test with a bytes as input given = b'%A2%D8ab%FF' expect = b'\xa2\xd8ab\xff' result = urllib.parse.unquote_to_bytes(given) self.assertEqual(expect, result, "using unquote_to_bytes(): %r != %r" % (expect, result)) # Test with a bytes as input, with unescaped non-ASCII bytes # (Technically an invalid URI; expect those bytes to be preserved) given = b'%A2\xd8ab%FF' expect = b'\xa2\xd8ab\xff' result = urllib.parse.unquote_to_bytes(given) self.assertEqual(expect, result, "using unquote_to_bytes(): %r != %r" % (expect, result)) def test_unquote_with_unicode(self): # Characters in the Latin-1 range, encoded with UTF-8 given = 'br%C3%BCckner_sapporo_20050930.doc' expect = 'br\u00fcckner_sapporo_20050930.doc' result = urllib.parse.unquote(given) self.assertEqual(expect, result, "using unquote(): %r != %r" % (expect, result)) # Characters in the Latin-1 range, encoded with None (default) result = urllib.parse.unquote(given, encoding=None, errors=None) self.assertEqual(expect, result, "using unquote(): %r != %r" % (expect, result)) # Characters in the Latin-1 range, encoded with Latin-1 result = urllib.parse.unquote('br%FCckner_sapporo_20050930.doc', encoding="latin-1") expect = 'br\u00fcckner_sapporo_20050930.doc' self.assertEqual(expect, result, "using unquote(): %r != %r" % (expect, result)) # Characters in BMP, encoded with UTF-8 given = "%E6%BC%A2%E5%AD%97" expect = "\u6f22\u5b57" # "Kanji" result = urllib.parse.unquote(given) self.assertEqual(expect, result, "using unquote(): %r != %r" % (expect, result)) # Decode with UTF-8, invalid sequence given = "%F3%B1" expect = "\ufffd" # Replacement character result = urllib.parse.unquote(given) self.assertEqual(expect, result, "using unquote(): %r != %r" % (expect, result)) # Decode with UTF-8, invalid sequence, replace errors result = urllib.parse.unquote(given, errors="replace") self.assertEqual(expect, result, "using unquote(): %r != %r" % (expect, result)) # Decode with UTF-8, invalid sequence, ignoring errors given = "%F3%B1" expect = "" result = urllib.parse.unquote(given, errors="ignore") self.assertEqual(expect, result, "using unquote(): %r != %r" % (expect, result)) # A mix of non-ASCII and percent-encoded characters, UTF-8 result = urllib.parse.unquote("\u6f22%C3%BC") expect = '\u6f22\u00fc' self.assertEqual(expect, result, "using unquote(): %r != %r" % (expect, result)) # A mix of non-ASCII and percent-encoded characters, Latin-1 # (Note, the string contains non-Latin-1-representable characters) result = urllib.parse.unquote("\u6f22%FC", encoding="latin-1") expect = '\u6f22\u00fc' self.assertEqual(expect, result, "using unquote(): %r != %r" % (expect, result)) class urlencode_Tests(unittest.TestCase): """Tests for urlencode()""" def help_inputtype(self, given, test_type): """Helper method for testing different input types. 'given' must lead to only the pairs: * 1st, 1 * 2nd, 2 * 3rd, 3 Test cannot assume anything about order. Docs make no guarantee and have possible dictionary input. """ expect_somewhere = ["1st=1", "2nd=2", "3rd=3"] result = urllib.parse.urlencode(given) for expected in expect_somewhere: self.assertIn(expected, result, "testing %s: %s not found in %s" % (test_type, expected, result)) self.assertEqual(result.count('&'), 2, "testing %s: expected 2 '&'s; got %s" % (test_type, result.count('&'))) amp_location = result.index('&') on_amp_left = result[amp_location - 1] on_amp_right = result[amp_location + 1] self.assertTrue(on_amp_left.isdigit() and on_amp_right.isdigit(), "testing %s: '&' not located in proper place in %s" % (test_type, result)) self.assertEqual(len(result), (5 * 3) + 2, #5 chars per thing and amps "testing %s: " "unexpected number of characters: %s != %s" % (test_type, len(result), (5 * 3) + 2)) def test_using_mapping(self): # Test passing in a mapping object as an argument. self.help_inputtype({"1st":'1', "2nd":'2', "3rd":'3'}, "using dict as input type") def test_using_sequence(self): # Test passing in a sequence of two-item sequences as an argument. self.help_inputtype([('1st', '1'), ('2nd', '2'), ('3rd', '3')], "using sequence of two-item tuples as input") def test_quoting(self): # Make sure keys and values are quoted using quote_plus() given = {"&":"="} expect = "%s=%s" % (hexescape('&'), hexescape('=')) result = urllib.parse.urlencode(given) self.assertEqual(expect, result) given = {"key name":"A bunch of pluses"} expect = "key+name=A+bunch+of+pluses" result = urllib.parse.urlencode(given) self.assertEqual(expect, result) def test_doseq(self): # Test that passing True for 'doseq' parameter works correctly given = {'sequence':['1', '2', '3']} expect = "sequence=%s" % urllib.parse.quote_plus(str(['1', '2', '3'])) result = urllib.parse.urlencode(given) self.assertEqual(expect, result) result = urllib.parse.urlencode(given, True) for value in given["sequence"]: expect = "sequence=%s" % value self.assertIn(expect, result) self.assertEqual(result.count('&'), 2, "Expected 2 '&'s, got %s" % result.count('&')) def test_empty_sequence(self): self.assertEqual("", urllib.parse.urlencode({})) self.assertEqual("", urllib.parse.urlencode([])) def test_nonstring_values(self): self.assertEqual("a=1", urllib.parse.urlencode({"a": 1})) self.assertEqual("a=None", urllib.parse.urlencode({"a": None})) def test_nonstring_seq_values(self): self.assertEqual("a=1&a=2", urllib.parse.urlencode({"a": [1, 2]}, True)) self.assertEqual("a=None&a=a", urllib.parse.urlencode({"a": [None, "a"]}, True)) data = collections.OrderedDict([("a", 1), ("b", 1)]) self.assertEqual("a=a&a=b", urllib.parse.urlencode({"a": data}, True)) def test_urlencode_encoding(self): # ASCII encoding. Expect %3F with errors="replace' given = (('\u00a0', '\u00c1'),) expect = '%3F=%3F' result = urllib.parse.urlencode(given, encoding="ASCII", errors="replace") self.assertEqual(expect, result) # Default is UTF-8 encoding. given = (('\u00a0', '\u00c1'),) expect = '%C2%A0=%C3%81' result = urllib.parse.urlencode(given) self.assertEqual(expect, result) # Latin-1 encoding. given = (('\u00a0', '\u00c1'),) expect = '%A0=%C1' result = urllib.parse.urlencode(given, encoding="latin-1") self.assertEqual(expect, result) def test_urlencode_encoding_doseq(self): # ASCII Encoding. Expect %3F with errors="replace' given = (('\u00a0', '\u00c1'),) expect = '%3F=%3F' result = urllib.parse.urlencode(given, doseq=True, encoding="ASCII", errors="replace") self.assertEqual(expect, result) # ASCII Encoding. On a sequence of values. given = (("\u00a0", (1, "\u00c1")),) expect = '%3F=1&%3F=%3F' result = urllib.parse.urlencode(given, True, encoding="ASCII", errors="replace") self.assertEqual(expect, result) # Utf-8 given = (("\u00a0", "\u00c1"),) expect = '%C2%A0=%C3%81' result = urllib.parse.urlencode(given, True) self.assertEqual(expect, result) given = (("\u00a0", (42, "\u00c1")),) expect = '%C2%A0=42&%C2%A0=%C3%81' result = urllib.parse.urlencode(given, True) self.assertEqual(expect, result) # latin-1 given = (("\u00a0", "\u00c1"),) expect = '%A0=%C1' result = urllib.parse.urlencode(given, True, encoding="latin-1") self.assertEqual(expect, result) given = (("\u00a0", (42, "\u00c1")),) expect = '%A0=42&%A0=%C1' result = urllib.parse.urlencode(given, True, encoding="latin-1") self.assertEqual(expect, result) def test_urlencode_bytes(self): given = ((b'\xa0\x24', b'\xc1\x24'),) expect = '%A0%24=%C1%24' result = urllib.parse.urlencode(given) self.assertEqual(expect, result) result = urllib.parse.urlencode(given, True) self.assertEqual(expect, result) # Sequence of values given = ((b'\xa0\x24', (42, b'\xc1\x24')),) expect = '%A0%24=42&%A0%24=%C1%24' result = urllib.parse.urlencode(given, True) self.assertEqual(expect, result) def test_urlencode_encoding_safe_parameter(self): # Send '$' (\x24) as safe character # Default utf-8 encoding given = ((b'\xa0\x24', b'\xc1\x24'),) result = urllib.parse.urlencode(given, safe=":$") expect = '%A0$=%C1$' self.assertEqual(expect, result) given = ((b'\xa0\x24', b'\xc1\x24'),) result = urllib.parse.urlencode(given, doseq=True, safe=":$") expect = '%A0$=%C1$' self.assertEqual(expect, result) # Safe parameter in sequence given = ((b'\xa0\x24', (b'\xc1\x24', 0xd, 42)),) expect = '%A0$=%C1$&%A0$=13&%A0$=42' result = urllib.parse.urlencode(given, True, safe=":$") self.assertEqual(expect, result) # Test all above in latin-1 encoding given = ((b'\xa0\x24', b'\xc1\x24'),) result = urllib.parse.urlencode(given, safe=":$", encoding="latin-1") expect = '%A0$=%C1$' self.assertEqual(expect, result) given = ((b'\xa0\x24', b'\xc1\x24'),) expect = '%A0$=%C1$' result = urllib.parse.urlencode(given, doseq=True, safe=":$", encoding="latin-1") given = ((b'\xa0\x24', (b'\xc1\x24', 0xd, 42)),) expect = '%A0$=%C1$&%A0$=13&%A0$=42' result = urllib.parse.urlencode(given, True, safe=":$", encoding="latin-1") self.assertEqual(expect, result) class Pathname_Tests(unittest.TestCase): """Test pathname2url() and url2pathname()""" def test_basic(self): # Make sure simple tests pass expected_path = os.path.join("parts", "of", "a", "path") expected_url = "parts/of/a/path" result = urllib.request.pathname2url(expected_path) self.assertEqual(expected_url, result, "pathname2url() failed; %s != %s" % (result, expected_url)) result = urllib.request.url2pathname(expected_url) self.assertEqual(expected_path, result, "url2pathame() failed; %s != %s" % (result, expected_path)) def test_quoting(self): # Test automatic quoting and unquoting works for pathnam2url() and # url2pathname() respectively given = os.path.join("needs", "quot=ing", "here") expect = "needs/%s/here" % urllib.parse.quote("quot=ing") result = urllib.request.pathname2url(given) self.assertEqual(expect, result, "pathname2url() failed; %s != %s" % (expect, result)) expect = given result = urllib.request.url2pathname(result) self.assertEqual(expect, result, "url2pathname() failed; %s != %s" % (expect, result)) given = os.path.join("make sure", "using_quote") expect = "%s/using_quote" % urllib.parse.quote("make sure") result = urllib.request.pathname2url(given) self.assertEqual(expect, result, "pathname2url() failed; %s != %s" % (expect, result)) given = "make+sure/using_unquote" expect = os.path.join("make+sure", "using_unquote") result = urllib.request.url2pathname(given) self.assertEqual(expect, result, "url2pathname() failed; %s != %s" % (expect, result)) @unittest.skipUnless(sys.platform == 'win32', 'test specific to the urllib.url2path function.') def test_ntpath(self): given = ('/C:/', '///C:/', '/C|//') expect = 'C:\\' for url in given: result = urllib.request.url2pathname(url) self.assertEqual(expect, result, 'urllib.request..url2pathname() failed; %s != %s' % (expect, result)) given = '///C|/path' expect = 'C:\\path' result = urllib.request.url2pathname(given) self.assertEqual(expect, result, 'urllib.request.url2pathname() failed; %s != %s' % (expect, result)) class Utility_Tests(unittest.TestCase): """Testcase to test the various utility functions in the urllib.""" def test_splitpasswd(self): """Some of password examples are not sensible, but it is added to confirming to RFC2617 and addressing issue4675. """ self.assertEqual(('user', 'ab'),urllib.parse.splitpasswd('user:ab')) self.assertEqual(('user', 'a\nb'),urllib.parse.splitpasswd('user:a\nb')) self.assertEqual(('user', 'a\tb'),urllib.parse.splitpasswd('user:a\tb')) self.assertEqual(('user', 'a\rb'),urllib.parse.splitpasswd('user:a\rb')) self.assertEqual(('user', 'a\fb'),urllib.parse.splitpasswd('user:a\fb')) self.assertEqual(('user', 'a\vb'),urllib.parse.splitpasswd('user:a\vb')) self.assertEqual(('user', 'a:b'),urllib.parse.splitpasswd('user:a:b')) self.assertEqual(('user', 'a b'),urllib.parse.splitpasswd('user:a b')) self.assertEqual(('user 2', 'ab'),urllib.parse.splitpasswd('user 2:ab')) self.assertEqual(('user+1', 'a+b'),urllib.parse.splitpasswd('user+1:a+b')) def test_thishost(self): """Test the urllib.request.thishost utility function returns a tuple""" self.assertIsInstance(urllib.request.thishost(), tuple) class URLopener_Tests(unittest.TestCase): """Testcase to test the open method of URLopener class.""" def test_quoted_open(self): class DummyURLopener(urllib.request.URLopener): def open_spam(self, url): return url with support.check_warnings( ('DummyURLopener style of invoking requests is deprecated.', DeprecationWarning)): self.assertEqual(DummyURLopener().open( 'spam://example/ /'),'//example/%20/') # test the safe characters are not quoted by urlopen self.assertEqual(DummyURLopener().open( "spam://c:|windows%/:=&?~#+!$,;'@()*[]|/path/"), "//c:|windows%/:=&?~#+!$,;'@()*[]|/path/") # Just commented them out. # Can't really tell why keep failing in windows and sparc. # Everywhere else they work ok, but on those machines, sometimes # fail in one of the tests, sometimes in other. I have a linux, and # the tests go ok. # If anybody has one of the problematic environments, please help! # . Facundo # # def server(evt): # import socket, time # serv = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # serv.settimeout(3) # serv.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) # serv.bind(("", 9093)) # serv.listen(5) # try: # conn, addr = serv.accept() # conn.send("1 Hola mundo\n") # cantdata = 0 # while cantdata < 13: # data = conn.recv(13-cantdata) # cantdata += len(data) # time.sleep(.3) # conn.send("2 No more lines\n") # conn.close() # except socket.timeout: # pass # finally: # serv.close() # evt.set() # # class FTPWrapperTests(unittest.TestCase): # # def setUp(self): # import ftplib, time, threading # ftplib.FTP.port = 9093 # self.evt = threading.Event() # threading.Thread(target=server, args=(self.evt,)).start() # time.sleep(.1) # # def tearDown(self): # self.evt.wait() # # def testBasic(self): # # connects # ftp = urllib.ftpwrapper("myuser", "mypass", "localhost", 9093, []) # ftp.close() # # def testTimeoutNone(self): # # global default timeout is ignored # import socket # self.assertIsNone(socket.getdefaulttimeout()) # socket.setdefaulttimeout(30) # try: # ftp = urllib.ftpwrapper("myuser", "mypass", "localhost", 9093, []) # finally: # socket.setdefaulttimeout(None) # self.assertEqual(ftp.ftp.sock.gettimeout(), 30) # ftp.close() # # def testTimeoutDefault(self): # # global default timeout is used # import socket # self.assertIsNone(socket.getdefaulttimeout()) # socket.setdefaulttimeout(30) # try: # ftp = urllib.ftpwrapper("myuser", "mypass", "localhost", 9093, []) # finally: # socket.setdefaulttimeout(None) # self.assertEqual(ftp.ftp.sock.gettimeout(), 30) # ftp.close() # # def testTimeoutValue(self): # ftp = urllib.ftpwrapper("myuser", "mypass", "localhost", 9093, [], # timeout=30) # self.assertEqual(ftp.ftp.sock.gettimeout(), 30) # ftp.close() class RequestTests(unittest.TestCase): """Unit tests for urllib.request.Request.""" def test_default_values(self): Request = urllib.request.Request request = Request("http://www.python.org") self.assertEqual(request.get_method(), 'GET') request = Request("http://www.python.org", {}) self.assertEqual(request.get_method(), 'POST') def test_with_method_arg(self): Request = urllib.request.Request request = Request("http://www.python.org", method='HEAD') self.assertEqual(request.method, 'HEAD') self.assertEqual(request.get_method(), 'HEAD') request = Request("http://www.python.org", {}, method='HEAD') self.assertEqual(request.method, 'HEAD') self.assertEqual(request.get_method(), 'HEAD') request = Request("http://www.python.org", method='GET') self.assertEqual(request.get_method(), 'GET') request.method = 'HEAD' self.assertEqual(request.get_method(), 'HEAD') class URL2PathNameTests(unittest.TestCase): def test_converting_drive_letter(self): self.assertEqual(url2pathname("///C|"), 'C:') self.assertEqual(url2pathname("///C:"), 'C:') self.assertEqual(url2pathname("///C|/"), 'C:\\') def test_converting_when_no_drive_letter(self): # cannot end a raw string in \ self.assertEqual(url2pathname("///C/test/"), r'\\\C\test' '\\') self.assertEqual(url2pathname("////C/test/"), r'\\C\test' '\\') def test_simple_compare(self): self.assertEqual(url2pathname("///C|/foo/bar/spam.foo"), r'C:\foo\bar\spam.foo') def test_non_ascii_drive_letter(self): self.assertRaises(IOError, url2pathname, "///\u00e8|/") def test_roundtrip_url2pathname(self): list_of_paths = ['C:', r'\\\C\test\\', r'C:\foo\bar\spam.foo' ] for path in list_of_paths: self.assertEqual(url2pathname(pathname2url(path)), path) class PathName2URLTests(unittest.TestCase): def test_converting_drive_letter(self): self.assertEqual(pathname2url("C:"), '///C:') self.assertEqual(pathname2url("C:\\"), '///C:') def test_converting_when_no_drive_letter(self): self.assertEqual(pathname2url(r"\\\folder\test" "\\"), '/////folder/test/') self.assertEqual(pathname2url(r"\\folder\test" "\\"), '////folder/test/') self.assertEqual(pathname2url(r"\folder\test" "\\"), '/folder/test/') def test_simple_compare(self): self.assertEqual(pathname2url(r'C:\foo\bar\spam.foo'), "///C:/foo/bar/spam.foo" ) def test_long_drive_letter(self): self.assertRaises(IOError, pathname2url, "XX:\\") def test_roundtrip_pathname2url(self): list_of_paths = ['///C:', '/////folder/test/', '///C:/foo/bar/spam.foo'] for path in list_of_paths: self.assertEqual(pathname2url(url2pathname(path)), path) if __name__ == '__main__': unittest.main()
the-stack_0_12513
from gtts import * from playsound import playsound import random import os r1 = random.randint(1,10000000) r2 = random.randint(1,10000000) f=open("C:\\Python\\myfile.txt","w") f.write(input()) f.close() f=open("C:\\Python\\myfile.txt","r") x=f.read() language='en' audio=gTTS(text=x,lang=language,slow=False) filename = str(r2)+"randomtext"+str(r1) +".mp3" audio.save(filename) os.system(filename) playsound(filename) os.remove(filename)
the-stack_0_12514
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from .resource import Resource class ExpressRouteCircuit(Resource): """ExpressRouteCircuit resource. Variables are only populated by the server, and will be ignored when sending a request. :param id: Resource ID. :type id: str :ivar name: Resource name. :vartype name: str :ivar type: Resource type. :vartype type: str :param location: Resource location. :type location: str :param tags: Resource tags. :type tags: dict[str, str] :param sku: The SKU. :type sku: ~azure.mgmt.network.v2016_12_01.models.ExpressRouteCircuitSku :param allow_classic_operations: Allow classic operations :type allow_classic_operations: bool :param circuit_provisioning_state: The CircuitProvisioningState state of the resource. :type circuit_provisioning_state: str :param service_provider_provisioning_state: The ServiceProviderProvisioningState state of the resource. Possible values are 'NotProvisioned', 'Provisioning', 'Provisioned', and 'Deprovisioning'. Possible values include: 'NotProvisioned', 'Provisioning', 'Provisioned', 'Deprovisioning' :type service_provider_provisioning_state: str or ~azure.mgmt.network.v2016_12_01.models.ServiceProviderProvisioningState :param authorizations: The list of authorizations. :type authorizations: list[~azure.mgmt.network.v2016_12_01.models.ExpressRouteCircuitAuthorization] :param peerings: The list of peerings. :type peerings: list[~azure.mgmt.network.v2016_12_01.models.ExpressRouteCircuitPeering] :param service_key: The ServiceKey. :type service_key: str :param service_provider_notes: The ServiceProviderNotes. :type service_provider_notes: str :param service_provider_properties: The ServiceProviderProperties. :type service_provider_properties: ~azure.mgmt.network.v2016_12_01.models.ExpressRouteCircuitServiceProviderProperties :param provisioning_state: Gets the provisioning state of the public IP resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. :type provisioning_state: str :param gateway_manager_etag: The GatewayManager Etag. :type gateway_manager_etag: str :ivar etag: Gets a unique read-only string that changes whenever the resource is updated. :vartype etag: str """ _validation = { 'name': {'readonly': True}, 'type': {'readonly': True}, 'etag': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'location': {'key': 'location', 'type': 'str'}, 'tags': {'key': 'tags', 'type': '{str}'}, 'sku': {'key': 'sku', 'type': 'ExpressRouteCircuitSku'}, 'allow_classic_operations': {'key': 'properties.allowClassicOperations', 'type': 'bool'}, 'circuit_provisioning_state': {'key': 'properties.circuitProvisioningState', 'type': 'str'}, 'service_provider_provisioning_state': {'key': 'properties.serviceProviderProvisioningState', 'type': 'str'}, 'authorizations': {'key': 'properties.authorizations', 'type': '[ExpressRouteCircuitAuthorization]'}, 'peerings': {'key': 'properties.peerings', 'type': '[ExpressRouteCircuitPeering]'}, 'service_key': {'key': 'properties.serviceKey', 'type': 'str'}, 'service_provider_notes': {'key': 'properties.serviceProviderNotes', 'type': 'str'}, 'service_provider_properties': {'key': 'properties.serviceProviderProperties', 'type': 'ExpressRouteCircuitServiceProviderProperties'}, 'provisioning_state': {'key': 'properties.provisioningState', 'type': 'str'}, 'gateway_manager_etag': {'key': 'properties.gatewayManagerEtag', 'type': 'str'}, 'etag': {'key': 'etag', 'type': 'str'}, } def __init__(self, *, id: str=None, location: str=None, tags=None, sku=None, allow_classic_operations: bool=None, circuit_provisioning_state: str=None, service_provider_provisioning_state=None, authorizations=None, peerings=None, service_key: str=None, service_provider_notes: str=None, service_provider_properties=None, provisioning_state: str=None, gateway_manager_etag: str=None, **kwargs) -> None: super(ExpressRouteCircuit, self).__init__(id=id, location=location, tags=tags, **kwargs) self.sku = sku self.allow_classic_operations = allow_classic_operations self.circuit_provisioning_state = circuit_provisioning_state self.service_provider_provisioning_state = service_provider_provisioning_state self.authorizations = authorizations self.peerings = peerings self.service_key = service_key self.service_provider_notes = service_provider_notes self.service_provider_properties = service_provider_properties self.provisioning_state = provisioning_state self.gateway_manager_etag = gateway_manager_etag self.etag = None
the-stack_0_12515
import torch.nn as nn from src.models.layers import ConvBnAct from .utils import FeatureHooks class BackboneBase(nn.Module): def create_hooks(self): self.stage_names = [i['module'] for i in self.feature_info] self.encoder_channels = [i['num_chs'] for i in self.feature_info] hooks = [dict(module=name, type='forward') for name in self.stage_names] self.feature_hooks = FeatureHooks(hooks, self.named_modules()) def create_neck(self, set_neck): self.set_neck = set_neck if set_neck: # Neck (Self-Distillation) modules = [] for in_c, out_c in zip(self.encoder_channels[:-1], self.encoder_channels[1:]): modules.append(ConvBnAct(in_c, out_c, kernel_size=3, stride=2)) self.neck = nn.ModuleList(modules) else: self.neck = nn.Identity() def forward_features(self, x): raise NotImplementedError def forward_neck(self, x): if self.set_neck: for i, module in enumerate(self.neck): if x.size(1) == self.encoder_channels[i]: x = module(x) return x def forward(self, x): # Return features for classification. y = self.forward_features(x) y = self.forward_neck(y) return y def forward_backbone_features(self, x): # Return intermediate features (for down-stream tasks). last_features = self.forward_features(x) backbone_features = self.feature_hooks.get_output(x.device) backbone_features = list(backbone_features.values()) backbone_features = [x] + backbone_features return last_features, backbone_features def forward_stage_features(self, x): # Return intermediate features (for self-distillation). x = self.forward_features(x) return list(self.feature_hooks.get_output(x.device).values()) def init_weights(self): # #------- init weights -------- for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.constant_(m.bias, 0)
the-stack_0_12517
# # (c) 2016 Red Hat Inc. # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. # from __future__ import (absolute_import, division, print_function) __metaclass__ = type import sys import copy from ansible import constants as C from ansible.module_utils._text import to_text from ansible.module_utils.connection import Connection from ansible.plugins.action.normal import ActionModule as _ActionModule from ansible.module_utils.network.common.utils import load_provider from ansible.module_utils.network.ios.ios import ios_provider_spec try: from __main__ import display except ImportError: from ansible.utils.display import Display display = Display() class ActionModule(_ActionModule): def run(self, tmp=None, task_vars=None): del tmp # tmp no longer has any effect socket_path = None if self._play_context.connection == 'network_cli': provider = self._task.args.get('provider', {}) if any(provider.values()): display.warning('provider is unnecessary when using network_cli and will be ignored') del self._task.args['provider'] elif self._play_context.connection == 'local': provider = load_provider(ios_provider_spec, self._task.args) pc = copy.deepcopy(self._play_context) pc.connection = 'network_cli' pc.network_os = 'ios' pc.remote_addr = provider['host'] or self._play_context.remote_addr pc.port = int(provider['port'] or self._play_context.port or 22) pc.remote_user = provider['username'] or self._play_context.connection_user pc.password = provider['password'] or self._play_context.password pc.private_key_file = provider['ssh_keyfile'] or self._play_context.private_key_file pc.timeout = int(provider['timeout'] or C.PERSISTENT_COMMAND_TIMEOUT) pc.become = provider['authorize'] or False if pc.become: pc.become_method = 'enable' pc.become_pass = provider['auth_pass'] display.vvv('using connection plugin %s (was local)' % pc.connection, pc.remote_addr) connection = self._shared_loader_obj.connection_loader.get('persistent', pc, sys.stdin) socket_path = connection.run() display.vvvv('socket_path: %s' % socket_path, pc.remote_addr) if not socket_path: return {'failed': True, 'msg': 'unable to open shell. Please see: ' + 'https://docs.ansible.com/ansible/network_debug_troubleshooting.html#unable-to-open-shell'} task_vars['ansible_socket'] = socket_path else: return {'failed': True, 'msg': 'Connection type %s is not valid for this module' % self._play_context.connection} # make sure we are in the right cli context which should be # enable mode and not config module if socket_path is None: socket_path = self._connection.socket_path conn = Connection(socket_path) out = conn.get_prompt() while to_text(out, errors='surrogate_then_replace').strip().endswith(')#'): display.vvvv('wrong context, sending exit to device', self._play_context.remote_addr) conn.send_command('exit') out = conn.get_prompt() result = super(ActionModule, self).run(task_vars=task_vars) return result
the-stack_0_12518
#Railway API - http://railwayapi.com/api/ from flask import Flask from flask_ask import Ask, statement, question, session import json import requests import time import unidecode import datetime app = Flask(__name__) ask = Ask(app, "/train_route") api_key = '6dg3lgmg' def date_convert(date): year1 = datetime.datetime.strptime(date, '%Y-%m-%d').year month1 = datetime.datetime.strptime(date, '%Y-%m-%d').month day1 = datetime.datetime.strptime(date, '%Y-%m-%d').day newdata1 = " " if (month1<10): newdate1 = retstr = "{}0{}{}".format(year1, month1, day1) else: newdata1 = "{}{}{}".format(year1, month1, day1) return newdate1 def get_live_train_status(trainnumber, doj): r = requests.get("http://api.railwayapi.com/live/train/{}/doj/{}/apikey/{}/".format(trainnumber,doj,api_key)) try: data = json.loads(r.content.decode('utf-8')) if (data['response_code']==200): return data['position'] elif (data['response_code']==510): return "Train not scheduled to run on the given date" elif (data['response_code']==204): return "Empty response. Not able to fetch required data" else: return "Sorry, services not available at this moment" except Exception: return "Servers are busy" def get_train_route(trainnumber): cities = [] r = requests.get('http://api.railwayapi.com/route/train/{}/apikey/{}/'.format(trainnumber, api_key)) try: data = json.loads(r.content.decode('utf-8')) if (data['response_code']==200): for listing in data['route']: cities.append(listing['fullname']) cities = "...then...".join(l for l in cities) cities = "The train goes through..." + cities return cities elif (data['response_code']==204): return "Empty response. Not able to fetch required data" else: return "Sorry, services not available at this moment" except Exception: return "Servers are busy" def get_train_number(trainname): r = requests.get("http://api.railwayapi.com/name_number/train/{}/apikey/{}/".format(trainname, api_key)) try: data = json.loads(r.content.decode('utf-8')) if (data['response_code']==200): info1 = "Train number for..." + data['name'] + "...is..." + data['number'] return info1 elif (data['response_code']==204): return "Empty response. Not able to fetch required data" else: return "Sorry, services not available at this moment" except Exception: return "Servers are busy" @app.route('/') def homepage(): return 'Hello World' @ask.launch def start_skill(): welcome = 'Welcome to Indian Railways Information Services...You can know about train routes and live train status...For live train status, say train status for train number followed by number on followed by date of journey...For train route, say check route for train number followed by number...For getting train number for a train name, say get train number for followed by train name...' return question(welcome) @ask.intent("LiveTrainStatusIntent") def share_live_train_status(trainnumber,doj): return statement(get_live_train_status(trainnumber, date_convert(doj))) @ask.intent("TrainRouteIntent") def share_train_route(trainnumber): return statement(get_train_route(trainnumber)) @ask.intent("GetTrainNumberIntent") def share_train_number(trainname): return statement(get_train_number(trainname)) @ask.intent('AMAZON.HelpIntent') def help(): help_text = render_template('For live train status, say train status for train number followed by number on followed by date of journey...For train route, say check route for train number followed by number...For getting train number for a train name, say get train number for followed by train name...') return question(help_text).reprompt(help_text) @ask.intent('AMAZON.StopIntent') def stop(): bye_text = render_template('bye') return statement(bye_text) @ask.intent('AMAZON.CancelIntent') def cancel(): bye_text = render_template('bye') return statement(bye_text) if __name__ == '__main__': app.run(debug=True)
the-stack_0_12519
# Copyright 2016-2018, Pulumi Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Support for automatic stack components. """ import asyncio import collections from inspect import isawaitable from typing import Callable, Any, Dict, List from ..resource import ComponentResource, Resource, ResourceTransformation from .settings import get_project, get_stack, get_root_resource, is_dry_run, set_root_resource from .rpc_manager import RPC_MANAGER from .sync_await import _all_tasks, _get_current_task from .. import log from . import known_types from ..output import Output async def run_pulumi_func(func: Callable): try: func() finally: log.debug("Waiting for outstanding RPCs to complete") # Pump the event loop, giving all of the RPCs that we just queued up time to fully execute. # The asyncio scheduler does not expose a "yield" primitive, so this will have to do. # # Note that "asyncio.sleep(0)" is the blessed way to do this: # https://github.com/python/asyncio/issues/284#issuecomment-154180935 # # We await each RPC in turn so that this loop will actually block rather than busy-wait. while True: await asyncio.sleep(0) if len(RPC_MANAGER.rpcs) == 0: break log.debug(f"waiting for quiescence; {len(RPC_MANAGER.rpcs)} RPCs outstanding") await RPC_MANAGER.rpcs.pop() # Asyncio event loops require that all outstanding tasks be completed by the time that the # event loop closes. If we're at this point and there are no outstanding RPCs, we should # just cancel all outstanding tasks. # # We will occasionally start tasks deliberately that we know will never complete. We must # cancel them before shutting down the event loop. log.debug("Canceling all outstanding tasks") for task in _all_tasks(): # Don't kill ourselves, that would be silly. if task == _get_current_task(): continue task.cancel() # Pump the event loop again. Task.cancel is delivered asynchronously to all running tasks # and each task needs to get scheduled in order to acknowledge the cancel and exit. await asyncio.sleep(0) # Once we get scheduled again, all tasks have exited and we're good to go. log.debug("run_pulumi_func completed") if RPC_MANAGER.unhandled_exception is not None: raise RPC_MANAGER.unhandled_exception.with_traceback(RPC_MANAGER.exception_traceback) async def run_in_stack(func: Callable): """ Run the given function inside of a new stack resource. This ensures that any stack export calls will end up as output properties on the resulting stack component in the checkpoint file. This is meant for internal runtime use only and is used by the Python SDK entrypoint program. """ await run_pulumi_func(lambda: Stack(func)) @known_types.stack class Stack(ComponentResource): """ A synthetic stack component that automatically parents resources as the program runs. """ outputs: Dict[str, Any] def __init__(self, func: Callable) -> None: # Ensure we don't already have a stack registered. if get_root_resource() is not None: raise Exception('Only one root Pulumi Stack may be active at once') # Now invoke the registration to begin creating this resource. name = '%s-%s' % (get_project(), get_stack()) super(Stack, self).__init__('pulumi:pulumi:Stack', name, None, None) # Invoke the function while this stack is active and then register its outputs. self.outputs = dict() set_root_resource(self) try: func() finally: self.register_outputs(massage(self.outputs, [])) # Intentionally leave this resource installed in case subsequent async work uses it. def output(self, name: str, value: Any): """ Export a stack output with a given name and value. """ self.outputs[name] = value # Note: we use a List here instead of a set as many objects are unhashable. This is inefficient, # but python seems to offer no alternative. def massage(attr: Any, seen: List[Any]): """ massage takes an arbitrary python value and attempts to *deeply* convert it into plain-old-python-value that can registered as an output. In general, this means leaving alone things like strings, ints, bools. However, it does mean trying to make other values into either lists or dictionaries as appropriate. In general, iterable things are turned into lists, and dictionary-like things are turned into dictionaries. """ # Basic primitive types (numbers, booleans, strings, etc.) don't need any special handling. if is_primitive(attr): return attr # from this point on, we have complex objects. If we see them again, we don't want to emit them # again fully or else we'd loop infinitely. if reference_contains(attr, seen): # Note: for Resources we hit again, emit their urn so cycles can be easily understood in # the popo objects. if isinstance(attr, Resource): return attr.urn # otherwise just emit as nothing to stop the looping. return None seen.append(attr) # first check if the value is an actual dictionary. If so, massage the values of it to deeply # make sure this is a popo. if isinstance(attr, dict): result = {} for key, value in attr.items(): # ignore private keys if not key.startswith("_"): result[key] = massage(value, seen) return result if isinstance(attr, Output): return attr.apply(lambda v: massage(v, seen)) if isawaitable(attr): return Output.from_input(attr).apply(lambda v: massage(v, seen)) if isinstance(attr, Resource): result = massage(attr.__dict__, seen) # In preview only, we mark the result with "@isPulumiResource" to indicate that it is derived # from a resource. This allows the engine to perform resource-specific filtering of unknowns # from output diffs during a preview. This filtering is not necessary during an update because # all property values are known. if is_dry_run(): result["@isPulumiResource"] = True return result if hasattr(attr, "__dict__"): # recurse on the dictionary itself. It will be handled above. return massage(attr.__dict__, seen) # finally, recurse through iterables, converting into a list of massaged values. return [massage(a, seen) for a in attr] def reference_contains(val1: Any, seen: List[Any]) -> bool: for val2 in seen: if val1 is val2: return True return False def is_primitive(attr: Any) -> bool: if attr is None: return True if isinstance(attr, str): return True # dictionaries, lists and dictionary-like things are not primitive. if isinstance(attr, dict): return False if hasattr(attr, "__dict__"): return False try: iter(attr) return False except TypeError: pass return True def register_stack_transformation(t: ResourceTransformation): """ Add a transformation to all future resources constructed in this Pulumi stack. """ root_resource = get_root_resource() if root_resource is None: raise Exception("The root stack resource was referenced before it was initialized.") if root_resource._transformations is None: root_resource._transformations = [t] else: root_resource._transformations = root_resource._transformations + [t]
the-stack_0_12520
def addupto(n): # 1 assignmnet total = 0 # loop runs n times for i in range(1, n+1): # 1 assignment total += i return total # runs 1 times print(addupto(int(input("Enter value of n: ")))) # Each statement outside a loop will have 1 time complexity. # And time complexity of statements inside a loop is n. where n is no. of times a loop runs. # Big O upper bounds the time complexity. # wich means an algo can have Big O or less complexity. # total complexity is n + 2 but in Big O we look into big picture. # And we neglect all constants. # So complexity is O(n). # O(n^2 + 2n) in this case we neglect 2n because it's lot less then compared to n^2 for bigger input.
the-stack_0_12523
import csv import sys from sklearn.metrics import confusion_matrix from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier TEST_SIZE = 0.4 def main(): # Check command-line arguments if len(sys.argv) != 2: sys.exit("Usage: python shopping.py data") # Load data from spreadsheet and split into train and test sets evidence, labels = load_data(sys.argv[1]) X_train, X_test, y_train, y_test = train_test_split( evidence, labels, test_size=TEST_SIZE ) # Train model and make predictions model = train_model(X_train, y_train) predictions = model.predict(X_test) sensitivity, specificity = evaluate(y_test, predictions) # Print results print(f"Correct: {(y_test == predictions).sum()}") print(f"Incorrect: {(y_test != predictions).sum()}") print(f"True Positive Rate: {100 * sensitivity:.2f}%") print(f"True Negative Rate: {100 * specificity:.2f}%") def load_data(filename): """ Load shopping data from a CSV file `filename` and convert into a list of evidence lists and a list of labels. Return a tuple (evidence, labels). evidence should be a list of lists, where each list contains the following values, in order: - Administrative, an integer - Administrative_Duration, a floating point number - Informational, an integer - Informational_Duration, a floating point number - ProductRelated, an integer - ProductRelated_Duration, a floating point number - BounceRates, a floating point number - ExitRates, a floating point number - PageValues, a floating point number - SpecialDay, a floating point number - Month, an index from 0 (January) to 11 (December) - OperatingSystems, an integer - Browser, an integer - Region, an integer - TrafficType, an integer - VisitorType, an integer 0 (not returning) or 1 (returning) - Weekend, an integer 0 (if false) or 1 (if true) labels should be the corresponding list of labels, where each label is 1 if Revenue is true, and 0 otherwise. """ with open("shopping.csv") as f: reader = csv.reader(f) next(reader) months = ["Jan", "Feb", "Mar", "Apr", "May", "June", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"] data = [] for row in reader: data.append({ "evidence": [int(row[0]), float(row[1]), int(row[2]), float(row[3]), int(row[4]), float(row[5]), float(row[6]), float(row[7]), float(row[8]), float(row[9]), months.index(row[10]), int(row[11]), int(row[12]), int(row[13]), int(row[14]), 0 if row[15] == "New_Visitor" else 1, 0 if row[16] == "FALSE" else 1], "label": 0 if row[17] == "FALSE" else 1 }) evidence = [row["evidence"] for row in data] labels = [row["label"] for row in data] return (evidence, labels) def train_model(evidence, labels): """ Given a list of evidence lists and a list of labels, return a fitted k-nearest neighbor model (k=1) trained on the data. """ model = KNeighborsClassifier(n_neighbors=1) model.fit(evidence, labels) return model def evaluate(labels, predictions): """ Given a list of actual labels and a list of predicted labels, return a tuple (sensitivity, specificty). Assume each label is either a 1 (positive) or 0 (negative). `sensitivity` should be a floating-point value from 0 to 1 representing the "true positive rate": the proportion of actual positive labels that were accurately identified. `specificity` should be a floating-point value from 0 to 1 representing the "true negative rate": the proportion of actual negative labels that were accurately identified. """ cm = confusion_matrix(labels, predictions) tp = cm[1][1] tn = cm[0][0] actual_positive = cm[1][1] + cm[1][0] actual_negative = cm[0][0] + cm[0][1] return (tp / actual_positive, tn / actual_negative) if __name__ == "__main__": main()
the-stack_0_12524
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from base_test import BaseTest from classroom_snippets import ClassroomSnippets class SnippetsTest(BaseTest): @classmethod def setUpClass(cls): super(SnippetsTest, cls).setUpClass() cls.snippets = ClassroomSnippets(cls.service) def test_create_course(self): course = self.snippets.create_course() self.assertIsNotNone(course) self.delete_course_on_cleanup(course.get('id')) if __name__ == '__main__': unittest.main()
the-stack_0_12525
from typing import List, Optional, Union from achi.consensus.block_record import BlockRecord from achi.consensus.blockchain_interface import BlockchainInterface from achi.consensus.constants import ConsensusConstants from achi.consensus.deficit import calculate_deficit from achi.consensus.difficulty_adjustment import get_next_sub_slot_iters_and_difficulty from achi.consensus.make_sub_epoch_summary import make_sub_epoch_summary from achi.consensus.pot_iterations import is_overflow_block from achi.types.blockchain_format.classgroup import ClassgroupElement from achi.types.blockchain_format.sized_bytes import bytes32 from achi.types.blockchain_format.slots import ChallengeBlockInfo from achi.types.blockchain_format.sub_epoch_summary import SubEpochSummary from achi.types.full_block import FullBlock from achi.types.header_block import HeaderBlock from achi.util.ints import uint8, uint32, uint64 def block_to_block_record( constants: ConsensusConstants, blocks: BlockchainInterface, required_iters: uint64, full_block: Optional[Union[FullBlock, HeaderBlock]], header_block: Optional[HeaderBlock], ) -> BlockRecord: if full_block is None: assert header_block is not None block: Union[HeaderBlock, FullBlock] = header_block else: block = full_block prev_b = blocks.try_block_record(block.prev_header_hash) if block.height > 0: assert prev_b is not None sub_slot_iters, _ = get_next_sub_slot_iters_and_difficulty( constants, len(block.finished_sub_slots) > 0, prev_b, blocks ) overflow = is_overflow_block(constants, block.reward_chain_block.signage_point_index) deficit = calculate_deficit( constants, block.height, prev_b, overflow, len(block.finished_sub_slots), ) found_ses_hash: Optional[bytes32] = None ses: Optional[SubEpochSummary] = None if len(block.finished_sub_slots) > 0: for sub_slot in block.finished_sub_slots: if sub_slot.challenge_chain.subepoch_summary_hash is not None: found_ses_hash = sub_slot.challenge_chain.subepoch_summary_hash if found_ses_hash: assert prev_b is not None assert len(block.finished_sub_slots) > 0 ses = make_sub_epoch_summary( constants, blocks, block.height, blocks.block_record(prev_b.prev_hash), block.finished_sub_slots[0].challenge_chain.new_difficulty, block.finished_sub_slots[0].challenge_chain.new_sub_slot_iters, ) assert ses.get_hash() == found_ses_hash prev_transaction_block_height = uint32(0) curr: Optional[BlockRecord] = blocks.try_block_record(block.prev_header_hash) while curr is not None and not curr.is_transaction_block: curr = blocks.try_block_record(curr.prev_hash) if curr is not None and curr.is_transaction_block: prev_transaction_block_height = curr.height return header_block_to_sub_block_record( constants, required_iters, block, sub_slot_iters, overflow, deficit, prev_transaction_block_height, ses, ) def header_block_to_sub_block_record( constants: ConsensusConstants, required_iters: uint64, block: Union[FullBlock, HeaderBlock], sub_slot_iters: uint64, overflow: bool, deficit: uint8, prev_transaction_block_height: uint32, ses: Optional[SubEpochSummary], ) -> BlockRecord: reward_claims_incorporated = ( block.transactions_info.reward_claims_incorporated if block.transactions_info is not None else None ) cbi = ChallengeBlockInfo( block.reward_chain_block.proof_of_space, block.reward_chain_block.challenge_chain_sp_vdf, block.reward_chain_block.challenge_chain_sp_signature, block.reward_chain_block.challenge_chain_ip_vdf, ) if block.reward_chain_block.infused_challenge_chain_ip_vdf is not None: icc_output: Optional[ClassgroupElement] = block.reward_chain_block.infused_challenge_chain_ip_vdf.output else: icc_output = None if len(block.finished_sub_slots) > 0: finished_challenge_slot_hashes: Optional[List[bytes32]] = [ sub_slot.challenge_chain.get_hash() for sub_slot in block.finished_sub_slots ] finished_reward_slot_hashes: Optional[List[bytes32]] = [ sub_slot.reward_chain.get_hash() for sub_slot in block.finished_sub_slots ] finished_infused_challenge_slot_hashes: Optional[List[bytes32]] = [ sub_slot.infused_challenge_chain.get_hash() for sub_slot in block.finished_sub_slots if sub_slot.infused_challenge_chain is not None ] elif block.height == 0: finished_challenge_slot_hashes = [constants.GENESIS_CHALLENGE] finished_reward_slot_hashes = [constants.GENESIS_CHALLENGE] finished_infused_challenge_slot_hashes = None else: finished_challenge_slot_hashes = None finished_reward_slot_hashes = None finished_infused_challenge_slot_hashes = None prev_transaction_block_hash = ( block.foliage_transaction_block.prev_transaction_block_hash if block.foliage_transaction_block is not None else None ) timestamp = block.foliage_transaction_block.timestamp if block.foliage_transaction_block is not None else None fees = block.transactions_info.fees if block.transactions_info is not None else None return BlockRecord( block.header_hash, block.prev_header_hash, block.height, block.weight, block.total_iters, block.reward_chain_block.signage_point_index, block.reward_chain_block.challenge_chain_ip_vdf.output, icc_output, block.reward_chain_block.get_hash(), cbi.get_hash(), sub_slot_iters, block.foliage.foliage_block_data.pool_target.puzzle_hash, block.foliage.foliage_block_data.farmer_reward_puzzle_hash, block.foliage.foliage_block_data.timelord_reward_puzzle_hash, required_iters, deficit, overflow, prev_transaction_block_height, timestamp, prev_transaction_block_hash, fees, reward_claims_incorporated, finished_challenge_slot_hashes, finished_infused_challenge_slot_hashes, finished_reward_slot_hashes, ses, )
the-stack_0_12526
from pathlib import Path from invoke import task from nox.virtualenv import VirtualEnv # Configuration values. DUMP_DIR = '.dump' VENV = 'venv' project_name = 'scrapd' docker_org = 'scrapd' docker_repo = f'{docker_org}/{project_name}' @task def build_docker(c): """Build a docker image.""" tag = c.run('git describe', hide=True) docker_img = f'{docker_repo}:{tag.stdout.strip()}' c.run(f'docker build -t {docker_img} .') @task def clean(c): """Remove unwanted files and artifacts in this project (!DESTRUCTIVE!).""" clean_docker(c) clean_repo(c) @task def clean_docker(c): """Remove all docker images built for this project (!DESTRUCTIVE!).""" c.run(f'docker image rm -f $(docker image ls --filter reference={docker_repo} -q) || true') @task def clean_repo(c): """Remove unwanted files in project (!DESTRUCTIVE!).""" c.run('git clean -ffdx') c.run('git reset --hard') @task def dump_json(c): """Dump errors and create JSON data set.""" c.run(f'mkdir -p {DUMP_DIR}') c.run('scrapd -vvv --dump 1>.dump/dump.json 2>.dump/dump.json.log') @task def dump_csv(c): """Dump errors and create CSV data set.""" c.run(f'mkdir -p {DUMP_DIR}') c.run('scrapd -vvv --dump --format csv 1>.dump/dump.csv 2>.dump/dump.csv.log') @task def flame_graph(c): """Create an interactive CPU flame graph.""" _, venv_bin, _ = get_venv(VENV) pyspy = venv_bin / 'py-spy' c.run( f'sudo {pyspy.resolve()} record -i -F -o profile.svg -- {(venv_bin /project_name ).resolve()} -v --pages 5 --format count' ) @task def nox(c, s=''): """Wrapper for the nox tasks (`inv nox list` for details).""" if not s: c.run('nox --list') else: c.run(f'nox -s {s}') @task def profile(c): """Create an interactive CPU flame graph.""" _, venv_bin, _ = get_venv(VENV) pyinstrument = venv_bin / 'pyinstrument' c.run(f'{pyinstrument.resolve()} --renderer html {(venv_bin /project_name ).resolve()} -v --format count --pages 5', pty=True) @task def publish(c): """Publish the documentation.""" c.run('./.circleci/publish.sh') @task(default=True) def setup(c): """Setup the developper environment.""" c.run('nox --envdir .') def get_venv(venv): """ Return `Path` objects from the venv. :param str venv: venv name :return: the venv `Path`, the `bin` folder `Path` within the venv, and if specified, the `Path` object of the activate script within the venv. :rtype: a tuple of 3 `Path` objects. """ location = Path(venv) venv = VirtualEnv(location.resolve()) venv_bin = Path(venv.bin) activate = venv_bin / 'activate' return venv, venv_bin, activate
the-stack_0_12527
from save_exp import save_experiment_info, save_acc import argparse import os import torch import time from networks.nonlinear_nets import NonlinearNet from utils import get_hms, TrainingObject from optim import get_optim from tensorboardX import SummaryWriter import py3nvml from math import ceil # Training settings parser = argparse.ArgumentParser(description='Nonlinear example') parser.add_argument('outdir', type=str, help='experiment directory') parser.add_argument('--type', default=None, type=str, nargs='+') parser.add_argument('-C', type=int, default=96, help='number channels') parser.add_argument('--seed', type=int, default=None, metavar='S', help='random seed (default: None)') parser.add_argument('--batch-size', type=int, default=128) parser.add_argument('--smoke-test', action="store_true", help="Finish quickly for testing") parser.add_argument('--datadir', type=str, default='/scratch/share/cifar', help='Default location for the dataset') parser.add_argument('--dataset', default='cifar100', type=str, help='which dataset to use', choices=['cifar10', 'cifar100', 'tiny_imagenet']) parser.add_argument('--resume', action='store_true', help='Rerun from a checkpoint') parser.add_argument('--no-comment', action='store_true', help='Turns off prompt to enter comments about run.') parser.add_argument('--nsamples', type=int, default=0, help='The number of runs to test.') parser.add_argument('--exist-ok', action='store_true', help='If true, is ok if output directory already exists') parser.add_argument('--epochs', default=120, type=int, help='num epochs') parser.add_argument('--cpu', action='store_true', help='Do not run on gpus') parser.add_argument('--num-gpus', type=float, default=0.5) parser.add_argument('--no-scheduler', action='store_true') # Optimizer hyperparameters parser.add_argument('--lr', default=0.5, type=float, help='learning rate') parser.add_argument('--lr1', default=None, type=float, help='learning rate for wavelet domain') parser.add_argument('--mom', default=0.85, type=float, help='momentum') parser.add_argument('--mom1', default=None, type=float, help='momentum for wavelet domain') parser.add_argument('--wd', default=1e-4, type=float, help='weight decay') parser.add_argument('--wd1', default=1e-5, type=float, help='l1 weight decay') parser.add_argument('--reg', default='l2', type=str, help='regularization term') parser.add_argument('--steps', default=[60,80,100], type=int, nargs='+') parser.add_argument('--gamma', default=0.2, type=float, help='Lr decay') # Network hyperparameters parser.add_argument('--pixel-k', default=5, type=int, help='pixel kernel spatial support. typically 3 or 5') parser.add_argument('--lp-k', default=3, type=int, help='lowpass kernel spatial support. typically 1, 3 or 5') parser.add_argument('--bp-ks', default=(1,), type=int, nargs='+', help='bandpass kernel spatial support. typically 1 or 3') parser.add_argument('--pixel-nl', default='relu', type=str, choices=['none', 'relu'], help='pixel nonlinearity') parser.add_argument('--lp-nl', default='none', type=str, choices=['none', 'relu', 'relu2', 'softshrink'], help='lowpass nonlinearity') parser.add_argument('--bp-nl', default='none', type=str, choices=['none', 'relu', 'relu2', 'softshrink'], help='bandpass nonlinearity') if __name__ == "__main__": args = parser.parse_args() # Create reporting objects args.verbose = True outdir = os.path.join(os.environ['HOME'], 'gainlayer_results', args.outdir) tr_writer = SummaryWriter(os.path.join(outdir, 'train')) val_writer = SummaryWriter(os.path.join(outdir, 'val')) if not os.path.exists(outdir): os.mkdir(outdir) if args.type is None: type = 'ref' else: type = args.type[0] py3nvml.grab_gpus(ceil(args.num_gpus)) model = NonlinearNet(args.dataset, type, num_channels=args.C, wd=args.wd, wd1=args.wd1, pixel_k=args.pixel_k, lp_k=args.lp_k, bp_ks=args.bp_ks, pixel_nl=args.pixel_nl, lp_nl=args.lp_nl, bp_nl=args.bp_nl) # ###################################################################### # Build the optimizer - use separate parameter groups for the gain # and convolutional layers default_params = model.parameters() wave_params = model.wave_parameters() optim, sched = get_optim( 'sgd', default_params, init_lr=args.lr, steps=args.steps, wd=0, gamma=args.gamma, momentum=args.mom, max_epochs=args.epochs) if len(wave_params) > 0: if args.lr1 is None: args.lr1 = args.lr if args.mom1 is None: args.mom1 = args.mom optim2, sched2 = get_optim( 'sgd', wave_params, init_lr=args.lr1, steps=args.steps, wd=0, gamma=args.gamma, momentum=args.mom1, max_epochs=args.epochs) else: optim2, sched2 = None, None trn = TrainingObject(model, args.dataset, args.datadir, optim, sched, optim2, sched2, args.batch_size, args.seed, args.num_gpus, args.verbose) trn._final_epoch = args.epochs # Copy this source file to the output directory for record keeping if args.resume: trn._restore(os.path.join(outdir, 'model_last.pth')) else: save_experiment_info(outdir, args.seed, args.no_comment, trn.model) if args.seed is not None and trn.use_cuda: torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # Train for set number of epochs elapsed_time = 0 best_acc = 0 trn.step_lr() for epoch in range(trn.last_epoch, trn.final_epoch): print("\n| Training Epoch #{}".format(epoch)) print('| Learning rate: {}'.format( trn.optimizer.param_groups[0]['lr'])) print('| Momentum : {}'.format( trn.optimizer.param_groups[0]['momentum'])) start_time = time.time() # Train for one iteration and update trn_results = trn._train_iteration() tr_writer.add_scalar('loss', trn_results['mean_loss'], epoch) tr_writer.add_scalar('acc', trn_results['mean_accuracy'], epoch) tr_writer.add_scalar('acc5', trn_results['acc5'], epoch) # Validate val_results = trn._test() val_writer.add_scalar('loss', val_results['mean_loss'], epoch) val_writer.add_scalar('acc', val_results['mean_accuracy'], epoch) val_writer.add_scalar('acc5', val_results['acc5'], epoch) acc = val_results['mean_accuracy'] if acc > best_acc: print('| Saving Best model...\t\t\tTop1 = {:.2f}%'.format(acc)) trn._save(outdir, 'model_best.pth') best_acc = acc trn._save(outdir, name='model_last.pth') epoch_time = time.time() - start_time elapsed_time += epoch_time print('| Elapsed time : %d:%02d:%02d\t Epoch time: %.1fs' % ( get_hms(elapsed_time) + (epoch_time,))) # Update the scheduler trn.step_lr() save_acc(outdir, best_acc, acc)
the-stack_0_12528
from gzip import GzipFile from StringIO import StringIO from django.conf import settings import mock from olympia.amo.tests import TestCase, addon_factory, reverse_ns from olympia.api.middleware import ( GZipMiddlewareForAPIOnly, IdentifyAPIRequestMiddleware) class TestIdentifyAPIRequestMiddleware(TestCase): def test_api_identified(self): request = mock.Mock() request.path_info = '/api/v3/lol/' IdentifyAPIRequestMiddleware().process_request(request) assert request.is_api def test_disabled_for_the_rest(self): """Test that we don't tag the request as API on "regular" pages.""" request = mock.Mock() request.path_info = '/' IdentifyAPIRequestMiddleware().process_request(request) assert not request.is_api request.path = '/en-US/firefox/' IdentifyAPIRequestMiddleware().process_request(request) assert not request.is_api class TestGzipMiddleware(TestCase): @mock.patch('django.middleware.gzip.GZipMiddleware.process_response') def test_enabled_for_api(self, django_gzip_middleware): """Test that we call the gzip middleware for API pages.""" request = mock.Mock() request.is_api = True GZipMiddlewareForAPIOnly().process_response(request, mock.Mock()) assert django_gzip_middleware.call_count == 1 @mock.patch('django.middleware.gzip.GZipMiddleware.process_response') def test_disabled_for_the_rest(self, django_gzip_middleware): """Test that we don't call gzip middleware for "regular" pages.""" request = mock.Mock() request.is_api = False GZipMiddlewareForAPIOnly().process_response(request, mock.Mock()) assert django_gzip_middleware.call_count == 0 def test_settings(self): """Test that gzip middleware is near the top of the settings list.""" # Gzip middleware should be near the top of the list, so that it runs # last in the process_response phase, in case the response body has # been modified by another middleware. # Sadly, raven inserts 2 middlewares before, but luckily the ones it # automatically inserts not modify the response. assert ( settings.MIDDLEWARE[3] == 'olympia.api.middleware.GZipMiddlewareForAPIOnly') def test_api_endpoint_gzipped(self): """Test a simple API endpoint to make sure gzip is active there.""" addon = addon_factory() url = reverse_ns('addon-detail', kwargs={'pk': addon.pk}) response = self.client.get(url) assert response.status_code == 200 assert response.content assert 'Content-Encoding' not in response response_gzipped = self.client.get( url, HTTP_ACCEPT_ENCODING='gzip', # Pretend that this happened over https, to test that this is still # enabled even for https. **{'wsgi.url_scheme': 'https'}) assert response_gzipped.status_code == 200 assert response_gzipped.content assert response_gzipped['Content-Encoding'] == 'gzip' assert len(response_gzipped.content) < len(response.content) ungzipped_content = GzipFile( '', 'r', 0, StringIO(response_gzipped.content)).read() assert ungzipped_content == response.content
the-stack_0_12529
from django import forms from django.contrib.auth.forms import UserCreationForm from .models import * from .entities import * from django.db import transaction from django.utils.translation import ugettext_lazy as _ class FarmerCreationForm(UserCreationForm): class Meta(UserCreationForm): model = Farmer fields = ('username', 'email') @transaction.atomic def save(self): user = super().save(commit=False) user.is_farmer = True user.save() farmer = farmer.objects.create(user=user) farmer.email.add(*self.cleaned_data.get('email')) return user class SalesOutletCreationForm(UserCreationForm): class Meta(UserCreationForm): model = SalesOutlet fields = ('username', 'email') @transaction.atomic def save(self): user = super().save(commit=False) user.is_sales = True user.save() sales = sales.objects.create(user=user) sales.email.add(*self.cleaned_data.get('email')) sales.username.add(*self.cleaned_data.get('username')) return user class QA_LabCreationForm(UserCreationForm): class Meta(UserCreationForm): model = QA_Lab fields = ('username', 'email', 'license_no', 'license_exp_date', 'current_station_of_work') @transaction.atomic def save(self): user = super().save(commit=False) user.is_lab = True user.save() lab = lab.objects.create(user=user) lab.email.add(*self.cleaned_data.get('email')) lab.license_no.add(*self.cleaned_data.get('license_no')) lab.license_exp_date.add(*self.cleaned_data.get('license_exp_date')) lab.current_station_of_work.add(*self.cleaned_data.get('current_station_of_work')) return user class VetMedicineDistributerCreationForm(UserCreationForm): class Meta(UserCreationForm): model = VetMedicineDistributer fields = ('username', 'email', 'license_no', 'license_exp_date', 'current_station_of_work') @transaction.atomic def save(self): user = super().save(commit=False) user.is_vmd = True user.save() vmd = vmd.objects.create(user=user) vmd.email.add(*self.cleaned_data.get('email')) vmd.license_no.add(*self.cleaned_data.get('license_no')) vmd.license_exp_date.add(*self.cleaned_data.get('license_exp_date')) vmd.current_station_of_work.add(*self.cleaned_data.get('current_station_of_work')) return user
the-stack_0_12530
"""Defines an object which manages resources defined from packages.""" from rpg.data import resource as r import typing if typing.TYPE_CHECKING: from rpg.data.resource import Resource, ResourceType from typing import Dict, List, Optional _fmtReplaceError = "cannot replace {} {}; master {} not in allowed list {}" class ResourceAlreadyDefinedError(KeyError): def __init__(self, resource_id: str, name: str) -> None: KeyError("resource '{}' already defined in {} collection".format( resource_id, name )) class Resources(object): """Collection which manages resources loaded from packages, as well as looking resources up by unique id and type. """ def __init__(self) -> None: """Initialize this Resources collection. This function creates ResourceType.COUNT dictionaries in a list which may be indexed by a ResourceType value to get the dictionary of that type of resource. """ self._map: 'List[Dict[str, Resource]]' = [ dict() for _ in range(r.ResourceType.COUNT) ] self._package_name: 'Optional[str]' = None def add(self, item: 'r.Resource') -> None: """Add a resource to the current collection of resources. :param item: The resource to add """ type_id = item.type_id() resource_id = item.resource_id() collection = self._map[type_id] if resource_id in collection: raise ResourceAlreadyDefinedError(resource_id, type_id.name) collection[resource_id] = item def get(self, type_id: 'r.ResourceType', resource_id: str) -> 'Optional[r.Resource]': """Get a resource of the given type with the given resource_id. :param type_id: The ResourceType of the resource to look up :param resource_id: The string id of the resource to get :return: The resource if found, otherwise None """ return self._map[type_id].get(resource_id, None) def set_package(self, package_name: str): """Set the name of the controlling package on this resources collection. :param package_name: The name of the package for which """ self._package_name = package_name for sub_map in self._map: for key, value in sub_map.items(): value._package = package_name def enumerate(self, resource_type: 'Optional[ResourceType]' = None): """Create a generator which returns each item in this collection. :return: A tuple of (ResourceType, str, Resource) for each item in this collection. """ if resource_type is not None: for key, value in self._map[resource_type].items(): yield value.type_id(), key, value else: for collection in self._map: for key, value in collection.items(): yield value.type_id(), key, value def count(self, t_id: 'Optional[ResourceType]' = None) -> int: """Get the count of the given resource type in this collection. If the t_id parameter is None (the default), this method will return the total count of all resource types in this collection. :param t_id: The ResourceType to count, or None for every ResourceType :return: The number of the given resource type in this collection """ if t_id is None: total = 0 for collection in self._map: total += len(collection) return total else: return len(self._map[t_id]) def merge(self, other: 'Resources', masters: 'Optional[List[str]]' = None) -> 'Optional[str]': """Add all resources defined in the other Resources collection to this collection. :param other: The other Resources collection to take all objects from :param masters: A list of master packages from which resources may be replaced :return: None if no errors happen during the merge, otherwise a string with a description of the errors """ if masters is None: masters = list() # type: List[str] _error_str = "" for t_id, key, value in other.enumerate(): old_obj = self._map[t_id].get(key, None) if old_obj is not None: old_pkg = old_obj.package() if old_pkg in masters: self._map[t_id][key] = value else: _error_str += _fmtReplaceError.format( t_id.name, key, old_pkg, masters ) else: self._map[t_id][key] = value _error_str = _error_str.strip() return _error_str if _error_str != "" else None def clear(self): """Remove all resources from this collection.""" for collection in self._map: collection.clear()
the-stack_0_12532
""" Ridge regression """ # Author: Mathieu Blondel <[email protected]> # Reuben Fletcher-Costin <[email protected]> # Fabian Pedregosa <[email protected]> # Michael Eickenberg <[email protected]> # License: BSD 3 clause from abc import ABCMeta, abstractmethod import warnings import numpy as np from scipy import linalg from scipy import sparse from scipy import optimize from scipy.sparse import linalg as sp_linalg from ._base import LinearClassifierMixin, LinearModel from ._base import _deprecate_normalize, _rescale_data from ._sag import sag_solver from ..base import MultiOutputMixin, RegressorMixin, is_classifier from ..utils.extmath import safe_sparse_dot from ..utils.extmath import row_norms from ..utils import check_array from ..utils import check_consistent_length from ..utils import compute_sample_weight from ..utils import column_or_1d from ..utils.validation import check_is_fitted from ..utils.validation import _check_sample_weight from ..preprocessing import LabelBinarizer from ..model_selection import GridSearchCV from ..metrics import check_scoring from ..exceptions import ConvergenceWarning from ..utils.sparsefuncs import mean_variance_axis def _solve_sparse_cg( X, y, alpha, max_iter=None, tol=1e-3, verbose=0, X_offset=None, X_scale=None ): def _get_rescaled_operator(X): X_offset_scale = X_offset / X_scale def matvec(b): return X.dot(b) - b.dot(X_offset_scale) def rmatvec(b): return X.T.dot(b) - X_offset_scale * np.sum(b) X1 = sparse.linalg.LinearOperator(shape=X.shape, matvec=matvec, rmatvec=rmatvec) return X1 n_samples, n_features = X.shape if X_offset is None or X_scale is None: X1 = sp_linalg.aslinearoperator(X) else: X1 = _get_rescaled_operator(X) coefs = np.empty((y.shape[1], n_features), dtype=X.dtype) if n_features > n_samples: def create_mv(curr_alpha): def _mv(x): return X1.matvec(X1.rmatvec(x)) + curr_alpha * x return _mv else: def create_mv(curr_alpha): def _mv(x): return X1.rmatvec(X1.matvec(x)) + curr_alpha * x return _mv for i in range(y.shape[1]): y_column = y[:, i] mv = create_mv(alpha[i]) if n_features > n_samples: # kernel ridge # w = X.T * inv(X X^t + alpha*Id) y C = sp_linalg.LinearOperator( (n_samples, n_samples), matvec=mv, dtype=X.dtype ) # FIXME atol try: coef, info = sp_linalg.cg(C, y_column, tol=tol, atol="legacy") except TypeError: # old scipy coef, info = sp_linalg.cg(C, y_column, tol=tol) coefs[i] = X1.rmatvec(coef) else: # linear ridge # w = inv(X^t X + alpha*Id) * X.T y y_column = X1.rmatvec(y_column) C = sp_linalg.LinearOperator( (n_features, n_features), matvec=mv, dtype=X.dtype ) # FIXME atol try: coefs[i], info = sp_linalg.cg( C, y_column, maxiter=max_iter, tol=tol, atol="legacy" ) except TypeError: # old scipy coefs[i], info = sp_linalg.cg(C, y_column, maxiter=max_iter, tol=tol) if info < 0: raise ValueError("Failed with error code %d" % info) if max_iter is None and info > 0 and verbose: warnings.warn( "sparse_cg did not converge after %d iterations." % info, ConvergenceWarning, ) return coefs def _solve_lsqr(X, y, alpha, max_iter=None, tol=1e-3): n_samples, n_features = X.shape coefs = np.empty((y.shape[1], n_features), dtype=X.dtype) n_iter = np.empty(y.shape[1], dtype=np.int32) # According to the lsqr documentation, alpha = damp^2. sqrt_alpha = np.sqrt(alpha) for i in range(y.shape[1]): y_column = y[:, i] info = sp_linalg.lsqr( X, y_column, damp=sqrt_alpha[i], atol=tol, btol=tol, iter_lim=max_iter ) coefs[i] = info[0] n_iter[i] = info[2] return coefs, n_iter def _solve_cholesky(X, y, alpha): # w = inv(X^t X + alpha*Id) * X.T y n_features = X.shape[1] n_targets = y.shape[1] A = safe_sparse_dot(X.T, X, dense_output=True) Xy = safe_sparse_dot(X.T, y, dense_output=True) one_alpha = np.array_equal(alpha, len(alpha) * [alpha[0]]) if one_alpha: A.flat[:: n_features + 1] += alpha[0] return linalg.solve(A, Xy, sym_pos=True, overwrite_a=True).T else: coefs = np.empty([n_targets, n_features], dtype=X.dtype) for coef, target, current_alpha in zip(coefs, Xy.T, alpha): A.flat[:: n_features + 1] += current_alpha coef[:] = linalg.solve(A, target, sym_pos=True, overwrite_a=False).ravel() A.flat[:: n_features + 1] -= current_alpha return coefs def _solve_cholesky_kernel(K, y, alpha, sample_weight=None, copy=False): # dual_coef = inv(X X^t + alpha*Id) y n_samples = K.shape[0] n_targets = y.shape[1] if copy: K = K.copy() alpha = np.atleast_1d(alpha) one_alpha = (alpha == alpha[0]).all() has_sw = isinstance(sample_weight, np.ndarray) or sample_weight not in [1.0, None] if has_sw: # Unlike other solvers, we need to support sample_weight directly # because K might be a pre-computed kernel. sw = np.sqrt(np.atleast_1d(sample_weight)) y = y * sw[:, np.newaxis] K *= np.outer(sw, sw) if one_alpha: # Only one penalty, we can solve multi-target problems in one time. K.flat[:: n_samples + 1] += alpha[0] try: # Note: we must use overwrite_a=False in order to be able to # use the fall-back solution below in case a LinAlgError # is raised dual_coef = linalg.solve(K, y, sym_pos=True, overwrite_a=False) except np.linalg.LinAlgError: warnings.warn( "Singular matrix in solving dual problem. Using " "least-squares solution instead." ) dual_coef = linalg.lstsq(K, y)[0] # K is expensive to compute and store in memory so change it back in # case it was user-given. K.flat[:: n_samples + 1] -= alpha[0] if has_sw: dual_coef *= sw[:, np.newaxis] return dual_coef else: # One penalty per target. We need to solve each target separately. dual_coefs = np.empty([n_targets, n_samples], K.dtype) for dual_coef, target, current_alpha in zip(dual_coefs, y.T, alpha): K.flat[:: n_samples + 1] += current_alpha dual_coef[:] = linalg.solve( K, target, sym_pos=True, overwrite_a=False ).ravel() K.flat[:: n_samples + 1] -= current_alpha if has_sw: dual_coefs *= sw[np.newaxis, :] return dual_coefs.T def _solve_svd(X, y, alpha): U, s, Vt = linalg.svd(X, full_matrices=False) idx = s > 1e-15 # same default value as scipy.linalg.pinv s_nnz = s[idx][:, np.newaxis] UTy = np.dot(U.T, y) d = np.zeros((s.size, alpha.size), dtype=X.dtype) d[idx] = s_nnz / (s_nnz ** 2 + alpha) d_UT_y = d * UTy return np.dot(Vt.T, d_UT_y).T def _solve_lbfgs( X, y, alpha, positive=True, max_iter=None, tol=1e-3, X_offset=None, X_scale=None ): """Solve ridge regression with LBFGS. The main purpose is fitting with forcing coefficients to be positive. For unconstrained ridge regression, there are faster dedicated solver methods. Note that with positive bounds on the coefficients, LBFGS seems faster than scipy.optimize.lsq_linear. """ n_samples, n_features = X.shape options = {} if max_iter is not None: options["maxiter"] = max_iter config = { "method": "L-BFGS-B", "tol": tol, "jac": True, "options": options, } if positive: config["bounds"] = [(0, np.inf)] * n_features if X_offset is not None and X_scale is not None: X_offset_scale = X_offset / X_scale else: X_offset_scale = None coefs = np.empty((y.shape[1], n_features), dtype=X.dtype) for i in range(y.shape[1]): x0 = np.zeros((n_features,)) y_column = y[:, i] def func(w): residual = X.dot(w) - y_column if X_offset_scale is not None: residual -= w.dot(X_offset_scale) f = 0.5 * residual.dot(residual) + 0.5 * alpha[i] * w.dot(w) grad = X.T @ residual + alpha[i] * w if X_offset_scale is not None: grad -= X_offset_scale * np.sum(residual) return f, grad result = optimize.minimize(func, x0, **config) if not result["success"]: warnings.warn( "The lbfgs solver did not converge. Try increasing max_iter " f"or tol. Currently: max_iter={max_iter} and tol={tol}", ConvergenceWarning, ) coefs[i] = result["x"] return coefs def _get_valid_accept_sparse(is_X_sparse, solver): if is_X_sparse and solver in ["auto", "sag", "saga"]: return "csr" else: return ["csr", "csc", "coo"] def ridge_regression( X, y, alpha, *, sample_weight=None, solver="auto", max_iter=None, tol=1e-3, verbose=0, positive=False, random_state=None, return_n_iter=False, return_intercept=False, check_input=True, ): """Solve the ridge equation by the method of normal equations. Read more in the :ref:`User Guide <ridge_regression>`. Parameters ---------- X : {ndarray, sparse matrix, LinearOperator} of shape \ (n_samples, n_features) Training data y : ndarray of shape (n_samples,) or (n_samples, n_targets) Target values alpha : float or array-like of shape (n_targets,) Regularization strength; must be a positive float. Regularization improves the conditioning of the problem and reduces the variance of the estimates. Larger values specify stronger regularization. Alpha corresponds to ``1 / (2C)`` in other linear models such as :class:`~sklearn.linear_model.LogisticRegression` or :class:`~sklearn.svm.LinearSVC`. If an array is passed, penalties are assumed to be specific to the targets. Hence they must correspond in number. sample_weight : float or array-like of shape (n_samples,), default=None Individual weights for each sample. If given a float, every sample will have the same weight. If sample_weight is not None and solver='auto', the solver will be set to 'cholesky'. .. versionadded:: 0.17 solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', \ 'sag', 'saga', 'lbfgs'}, default='auto' Solver to use in the computational routines: - 'auto' chooses the solver automatically based on the type of data. - 'svd' uses a Singular Value Decomposition of X to compute the Ridge coefficients. More stable for singular matrices than 'cholesky'. - 'cholesky' uses the standard scipy.linalg.solve function to obtain a closed-form solution via a Cholesky decomposition of dot(X.T, X) - 'sparse_cg' uses the conjugate gradient solver as found in scipy.sparse.linalg.cg. As an iterative algorithm, this solver is more appropriate than 'cholesky' for large-scale data (possibility to set `tol` and `max_iter`). - 'lsqr' uses the dedicated regularized least-squares routine scipy.sparse.linalg.lsqr. It is the fastest and uses an iterative procedure. - 'sag' uses a Stochastic Average Gradient descent, and 'saga' uses its improved, unbiased version named SAGA. Both methods also use an iterative procedure, and are often faster than other solvers when both n_samples and n_features are large. Note that 'sag' and 'saga' fast convergence is only guaranteed on features with approximately the same scale. You can preprocess the data with a scaler from sklearn.preprocessing. - 'lbfgs' uses L-BFGS-B algorithm implemented in `scipy.optimize.minimize`. It can be used only when `positive` is True. All last six solvers support both dense and sparse data. However, only 'sag', 'sparse_cg', and 'lbfgs' support sparse input when `fit_intercept` is True. .. versionadded:: 0.17 Stochastic Average Gradient descent solver. .. versionadded:: 0.19 SAGA solver. max_iter : int, default=None Maximum number of iterations for conjugate gradient solver. For the 'sparse_cg' and 'lsqr' solvers, the default value is determined by scipy.sparse.linalg. For 'sag' and saga solver, the default value is 1000. For 'lbfgs' solver, the default value is 15000. tol : float, default=1e-3 Precision of the solution. verbose : int, default=0 Verbosity level. Setting verbose > 0 will display additional information depending on the solver used. positive : bool, default=False When set to ``True``, forces the coefficients to be positive. Only 'lbfgs' solver is supported in this case. random_state : int, RandomState instance, default=None Used when ``solver`` == 'sag' or 'saga' to shuffle the data. See :term:`Glossary <random_state>` for details. return_n_iter : bool, default=False If True, the method also returns `n_iter`, the actual number of iteration performed by the solver. .. versionadded:: 0.17 return_intercept : bool, default=False If True and if X is sparse, the method also returns the intercept, and the solver is automatically changed to 'sag'. This is only a temporary fix for fitting the intercept with sparse data. For dense data, use sklearn.linear_model._preprocess_data before your regression. .. versionadded:: 0.17 check_input : bool, default=True If False, the input arrays X and y will not be checked. .. versionadded:: 0.21 Returns ------- coef : ndarray of shape (n_features,) or (n_targets, n_features) Weight vector(s). n_iter : int, optional The actual number of iteration performed by the solver. Only returned if `return_n_iter` is True. intercept : float or ndarray of shape (n_targets,) The intercept of the model. Only returned if `return_intercept` is True and if X is a scipy sparse array. Notes ----- This function won't compute the intercept. """ return _ridge_regression( X, y, alpha, sample_weight=sample_weight, solver=solver, max_iter=max_iter, tol=tol, verbose=verbose, positive=positive, random_state=random_state, return_n_iter=return_n_iter, return_intercept=return_intercept, X_scale=None, X_offset=None, check_input=check_input, ) def _ridge_regression( X, y, alpha, sample_weight=None, solver="auto", max_iter=None, tol=1e-3, verbose=0, positive=False, random_state=None, return_n_iter=False, return_intercept=False, X_scale=None, X_offset=None, check_input=True, ): has_sw = sample_weight is not None if solver == "auto": if positive: solver = "lbfgs" elif return_intercept: # sag supports fitting intercept directly solver = "sag" elif not sparse.issparse(X): solver = "cholesky" else: solver = "sparse_cg" if solver not in ("sparse_cg", "cholesky", "svd", "lsqr", "sag", "saga", "lbfgs"): raise ValueError( "Known solvers are 'sparse_cg', 'cholesky', 'svd'" " 'lsqr', 'sag', 'saga' or 'lbfgs'. Got %s." % solver ) if positive and solver != "lbfgs": raise ValueError( "When positive=True, only 'lbfgs' solver can be used. " f"Please change solver {solver} to 'lbfgs' " "or set positive=False." ) if solver == "lbfgs" and not positive: raise ValueError( "'lbfgs' solver can be used only when positive=True. " "Please use another solver." ) if return_intercept and solver != "sag": raise ValueError( "In Ridge, only 'sag' solver can directly fit the " "intercept. Please change solver to 'sag' or set " "return_intercept=False." ) if check_input: _dtype = [np.float64, np.float32] _accept_sparse = _get_valid_accept_sparse(sparse.issparse(X), solver) X = check_array(X, accept_sparse=_accept_sparse, dtype=_dtype, order="C") y = check_array(y, dtype=X.dtype, ensure_2d=False, order=None) check_consistent_length(X, y) n_samples, n_features = X.shape if y.ndim > 2: raise ValueError("Target y has the wrong shape %s" % str(y.shape)) ravel = False if y.ndim == 1: y = y.reshape(-1, 1) ravel = True n_samples_, n_targets = y.shape if n_samples != n_samples_: raise ValueError( "Number of samples in X and y does not correspond: %d != %d" % (n_samples, n_samples_) ) if has_sw: sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype) if solver not in ["sag", "saga"]: # SAG supports sample_weight directly. For other solvers, # we implement sample_weight via a simple rescaling. X, y = _rescale_data(X, y, sample_weight) # There should be either 1 or n_targets penalties alpha = np.asarray(alpha, dtype=X.dtype).ravel() if alpha.size not in [1, n_targets]: raise ValueError( "Number of targets and number of penalties do not correspond: %d != %d" % (alpha.size, n_targets) ) if alpha.size == 1 and n_targets > 1: alpha = np.repeat(alpha, n_targets) n_iter = None if solver == "sparse_cg": coef = _solve_sparse_cg( X, y, alpha, max_iter=max_iter, tol=tol, verbose=verbose, X_offset=X_offset, X_scale=X_scale, ) elif solver == "lsqr": coef, n_iter = _solve_lsqr(X, y, alpha, max_iter, tol) elif solver == "cholesky": if n_features > n_samples: K = safe_sparse_dot(X, X.T, dense_output=True) try: dual_coef = _solve_cholesky_kernel(K, y, alpha) coef = safe_sparse_dot(X.T, dual_coef, dense_output=True).T except linalg.LinAlgError: # use SVD solver if matrix is singular solver = "svd" else: try: coef = _solve_cholesky(X, y, alpha) except linalg.LinAlgError: # use SVD solver if matrix is singular solver = "svd" elif solver in ["sag", "saga"]: # precompute max_squared_sum for all targets max_squared_sum = row_norms(X, squared=True).max() coef = np.empty((y.shape[1], n_features), dtype=X.dtype) n_iter = np.empty(y.shape[1], dtype=np.int32) intercept = np.zeros((y.shape[1],), dtype=X.dtype) for i, (alpha_i, target) in enumerate(zip(alpha, y.T)): init = { "coef": np.zeros((n_features + int(return_intercept), 1), dtype=X.dtype) } coef_, n_iter_, _ = sag_solver( X, target.ravel(), sample_weight, "squared", alpha_i, 0, max_iter, tol, verbose, random_state, False, max_squared_sum, init, is_saga=solver == "saga", ) if return_intercept: coef[i] = coef_[:-1] intercept[i] = coef_[-1] else: coef[i] = coef_ n_iter[i] = n_iter_ if intercept.shape[0] == 1: intercept = intercept[0] coef = np.asarray(coef) elif solver == "lbfgs": coef = _solve_lbfgs( X, y, alpha, positive=positive, tol=tol, max_iter=max_iter, X_offset=X_offset, X_scale=X_scale, ) if solver == "svd": if sparse.issparse(X): raise TypeError("SVD solver does not support sparse inputs currently") coef = _solve_svd(X, y, alpha) if ravel: # When y was passed as a 1d-array, we flatten the coefficients. coef = coef.ravel() if return_n_iter and return_intercept: return coef, n_iter, intercept elif return_intercept: return coef, intercept elif return_n_iter: return coef, n_iter else: return coef class _BaseRidge(LinearModel, metaclass=ABCMeta): @abstractmethod def __init__( self, alpha=1.0, *, fit_intercept=True, normalize="deprecated", copy_X=True, max_iter=None, tol=1e-3, solver="auto", positive=False, random_state=None, ): self.alpha = alpha self.fit_intercept = fit_intercept self.normalize = normalize self.copy_X = copy_X self.max_iter = max_iter self.tol = tol self.solver = solver self.positive = positive self.random_state = random_state def fit(self, X, y, sample_weight=None): self._normalize = _deprecate_normalize( self.normalize, default=False, estimator_name=self.__class__.__name__ ) if self.solver == "lbfgs" and not self.positive: raise ValueError( "'lbfgs' solver can be used only when positive=True. " "Please use another solver." ) if self.positive: if self.solver not in ["auto", "lbfgs"]: raise ValueError( f"solver='{self.solver}' does not support positive fitting. Please" " set the solver to 'auto' or 'lbfgs', or set `positive=False`" ) else: solver = self.solver elif sparse.issparse(X) and self.fit_intercept: if self.solver not in ["auto", "sparse_cg", "sag", "lbfgs"]: raise ValueError( "solver='{}' does not support fitting the intercept " "on sparse data. Please set the solver to 'auto' or " "'sparse_cg', 'sag', 'lbfgs' " "or set `fit_intercept=False`".format(self.solver) ) if self.solver == "lbfgs": solver = "lbfgs" elif self.solver == "sag" and self.max_iter is None and self.tol > 1e-4: warnings.warn( '"sag" solver requires many iterations to fit ' "an intercept with sparse inputs. Either set the " 'solver to "auto" or "sparse_cg", or set a low ' '"tol" and a high "max_iter" (especially if inputs are ' "not standardized)." ) solver = "sag" else: solver = "sparse_cg" else: solver = self.solver if sample_weight is not None: sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype) # when X is sparse we only remove offset from y X, y, X_offset, y_offset, X_scale = self._preprocess_data( X, y, self.fit_intercept, self._normalize, self.copy_X, sample_weight=sample_weight, return_mean=True, ) if solver == "sag" and sparse.issparse(X) and self.fit_intercept: self.coef_, self.n_iter_, self.intercept_ = _ridge_regression( X, y, alpha=self.alpha, sample_weight=sample_weight, max_iter=self.max_iter, tol=self.tol, solver="sag", positive=self.positive, random_state=self.random_state, return_n_iter=True, return_intercept=True, check_input=False, ) # add the offset which was subtracted by _preprocess_data self.intercept_ += y_offset else: if sparse.issparse(X) and self.fit_intercept: # required to fit intercept with sparse_cg solver params = {"X_offset": X_offset, "X_scale": X_scale} else: # for dense matrices or when intercept is set to 0 params = {} self.coef_, self.n_iter_ = _ridge_regression( X, y, alpha=self.alpha, sample_weight=sample_weight, max_iter=self.max_iter, tol=self.tol, solver=solver, positive=self.positive, random_state=self.random_state, return_n_iter=True, return_intercept=False, check_input=False, **params, ) self._set_intercept(X_offset, y_offset, X_scale) return self class Ridge(MultiOutputMixin, RegressorMixin, _BaseRidge): """Linear least squares with l2 regularization. Minimizes the objective function:: ||y - Xw||^2_2 + alpha * ||w||^2_2 This model solves a regression model where the loss function is the linear least squares function and regularization is given by the l2-norm. Also known as Ridge Regression or Tikhonov regularization. This estimator has built-in support for multi-variate regression (i.e., when y is a 2d-array of shape (n_samples, n_targets)). Read more in the :ref:`User Guide <ridge_regression>`. Parameters ---------- alpha : {float, ndarray of shape (n_targets,)}, default=1.0 Regularization strength; must be a positive float. Regularization improves the conditioning of the problem and reduces the variance of the estimates. Larger values specify stronger regularization. Alpha corresponds to ``1 / (2C)`` in other linear models such as :class:`~sklearn.linear_model.LogisticRegression` or :class:`~sklearn.svm.LinearSVC`. If an array is passed, penalties are assumed to be specific to the targets. Hence they must correspond in number. fit_intercept : bool, default=True Whether to fit the intercept for this model. If set to false, no intercept will be used in calculations (i.e. ``X`` and ``y`` are expected to be centered). normalize : bool, default=False This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use :class:`~sklearn.preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. .. deprecated:: 1.0 ``normalize`` was deprecated in version 1.0 and will be removed in 1.2. copy_X : bool, default=True If True, X will be copied; else, it may be overwritten. max_iter : int, default=None Maximum number of iterations for conjugate gradient solver. For 'sparse_cg' and 'lsqr' solvers, the default value is determined by scipy.sparse.linalg. For 'sag' solver, the default value is 1000. For 'lbfgs' solver, the default value is 15000. tol : float, default=1e-3 Precision of the solution. solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', \ 'sag', 'saga', 'lbfgs'}, default='auto' Solver to use in the computational routines: - 'auto' chooses the solver automatically based on the type of data. - 'svd' uses a Singular Value Decomposition of X to compute the Ridge coefficients. More stable for singular matrices than 'cholesky'. - 'cholesky' uses the standard scipy.linalg.solve function to obtain a closed-form solution. - 'sparse_cg' uses the conjugate gradient solver as found in scipy.sparse.linalg.cg. As an iterative algorithm, this solver is more appropriate than 'cholesky' for large-scale data (possibility to set `tol` and `max_iter`). - 'lsqr' uses the dedicated regularized least-squares routine scipy.sparse.linalg.lsqr. It is the fastest and uses an iterative procedure. - 'sag' uses a Stochastic Average Gradient descent, and 'saga' uses its improved, unbiased version named SAGA. Both methods also use an iterative procedure, and are often faster than other solvers when both n_samples and n_features are large. Note that 'sag' and 'saga' fast convergence is only guaranteed on features with approximately the same scale. You can preprocess the data with a scaler from sklearn.preprocessing. - 'lbfgs' uses L-BFGS-B algorithm implemented in `scipy.optimize.minimize`. It can be used only when `positive` is True. All last six solvers support both dense and sparse data. However, only 'sag', 'sparse_cg', and 'lbfgs' support sparse input when `fit_intercept` is True. .. versionadded:: 0.17 Stochastic Average Gradient descent solver. .. versionadded:: 0.19 SAGA solver. positive : bool, default=False When set to ``True``, forces the coefficients to be positive. Only 'lbfgs' solver is supported in this case. random_state : int, RandomState instance, default=None Used when ``solver`` == 'sag' or 'saga' to shuffle the data. See :term:`Glossary <random_state>` for details. .. versionadded:: 0.17 `random_state` to support Stochastic Average Gradient. Attributes ---------- coef_ : ndarray of shape (n_features,) or (n_targets, n_features) Weight vector(s). intercept_ : float or ndarray of shape (n_targets,) Independent term in decision function. Set to 0.0 if ``fit_intercept = False``. n_iter_ : None or ndarray of shape (n_targets,) Actual number of iterations for each target. Available only for sag and lsqr solvers. Other solvers will return None. .. versionadded:: 0.17 n_features_in_ : int Number of features seen during :term:`fit`. .. versionadded:: 0.24 feature_names_in_ : ndarray of shape (`n_features_in_`,) Names of features seen during :term:`fit`. Defined only when `X` has feature names that are all strings. .. versionadded:: 1.0 See Also -------- RidgeClassifier : Ridge classifier. RidgeCV : Ridge regression with built-in cross validation. :class:`~sklearn.kernel_ridge.KernelRidge` : Kernel ridge regression combines ridge regression with the kernel trick. Examples -------- >>> from sklearn.linear_model import Ridge >>> import numpy as np >>> n_samples, n_features = 10, 5 >>> rng = np.random.RandomState(0) >>> y = rng.randn(n_samples) >>> X = rng.randn(n_samples, n_features) >>> clf = Ridge(alpha=1.0) >>> clf.fit(X, y) Ridge() """ def __init__( self, alpha=1.0, *, fit_intercept=True, normalize="deprecated", copy_X=True, max_iter=None, tol=1e-3, solver="auto", positive=False, random_state=None, ): super().__init__( alpha=alpha, fit_intercept=fit_intercept, normalize=normalize, copy_X=copy_X, max_iter=max_iter, tol=tol, solver=solver, positive=positive, random_state=random_state, ) def fit(self, X, y, sample_weight=None): """Fit Ridge regression model. Parameters ---------- X : {ndarray, sparse matrix} of shape (n_samples, n_features) Training data. y : ndarray of shape (n_samples,) or (n_samples, n_targets) Target values. sample_weight : float or ndarray of shape (n_samples,), default=None Individual weights for each sample. If given a float, every sample will have the same weight. Returns ------- self : object Fitted estimator. """ _accept_sparse = _get_valid_accept_sparse(sparse.issparse(X), self.solver) X, y = self._validate_data( X, y, accept_sparse=_accept_sparse, dtype=[np.float64, np.float32], multi_output=True, y_numeric=True, ) return super().fit(X, y, sample_weight=sample_weight) class _RidgeClassifierMixin(LinearClassifierMixin): def _prepare_data(self, X, y, sample_weight, solver): """Validate `X` and `y` and binarize `y`. Parameters ---------- X : {ndarray, sparse matrix} of shape (n_samples, n_features) Training data. y : ndarray of shape (n_samples,) Target values. sample_weight : float or ndarray of shape (n_samples,), default=None Individual weights for each sample. If given a float, every sample will have the same weight. solver : str The solver used in `Ridge` to know which sparse format to support. Returns ------- X : {ndarray, sparse matrix} of shape (n_samples, n_features) Validated training data. y : ndarray of shape (n_samples,) Validated target values. sample_weight : ndarray of shape (n_samples,) Validated sample weights. Y : ndarray of shape (n_samples, n_classes) The binarized version of `y`. """ accept_sparse = _get_valid_accept_sparse(sparse.issparse(X), solver) X, y = self._validate_data( X, y, accept_sparse=accept_sparse, multi_output=True, y_numeric=False, ) self._label_binarizer = LabelBinarizer(pos_label=1, neg_label=-1) Y = self._label_binarizer.fit_transform(y) if not self._label_binarizer.y_type_.startswith("multilabel"): y = column_or_1d(y, warn=True) sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype) if self.class_weight: sample_weight = sample_weight * compute_sample_weight(self.class_weight, y) return X, y, sample_weight, Y def predict(self, X): """Predict class labels for samples in `X`. Parameters ---------- X : {array-like, spare matrix} of shape (n_samples, n_features) The data matrix for which we want to predict the targets. Returns ------- y_pred : ndarray of shape (n_samples,) or (n_samples, n_outputs) Vector or matrix containing the predictions. In binary and multiclass problems, this is a vector containing `n_samples`. In a multilabel problem, it returns a matrix of shape `(n_samples, n_outputs)`. """ check_is_fitted(self, attributes=["_label_binarizer"]) if self._label_binarizer.y_type_.startswith("multilabel"): # Threshold such that the negative label is -1 and positive label # is 1 to use the inverse transform of the label binarizer fitted # during fit. scores = 2 * (self.decision_function(X) > 0) - 1 return self._label_binarizer.inverse_transform(scores) return super().predict(X) @property def classes_(self): """Classes labels.""" return self._label_binarizer.classes_ def _more_tags(self): return {"multilabel": True} class RidgeClassifier(_RidgeClassifierMixin, _BaseRidge): """Classifier using Ridge regression. This classifier first converts the target values into ``{-1, 1}`` and then treats the problem as a regression task (multi-output regression in the multiclass case). Read more in the :ref:`User Guide <ridge_regression>`. Parameters ---------- alpha : float, default=1.0 Regularization strength; must be a positive float. Regularization improves the conditioning of the problem and reduces the variance of the estimates. Larger values specify stronger regularization. Alpha corresponds to ``1 / (2C)`` in other linear models such as :class:`~sklearn.linear_model.LogisticRegression` or :class:`~sklearn.svm.LinearSVC`. fit_intercept : bool, default=True Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : bool, default=False This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use :class:`~sklearn.preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. .. deprecated:: 1.0 ``normalize`` was deprecated in version 1.0 and will be removed in 1.2. copy_X : bool, default=True If True, X will be copied; else, it may be overwritten. max_iter : int, default=None Maximum number of iterations for conjugate gradient solver. The default value is determined by scipy.sparse.linalg. tol : float, default=1e-3 Precision of the solution. class_weight : dict or 'balanced', default=None Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))``. solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', \ 'sag', 'saga', 'lbfgs'}, default='auto' Solver to use in the computational routines: - 'auto' chooses the solver automatically based on the type of data. - 'svd' uses a Singular Value Decomposition of X to compute the Ridge coefficients. More stable for singular matrices than 'cholesky'. - 'cholesky' uses the standard scipy.linalg.solve function to obtain a closed-form solution. - 'sparse_cg' uses the conjugate gradient solver as found in scipy.sparse.linalg.cg. As an iterative algorithm, this solver is more appropriate than 'cholesky' for large-scale data (possibility to set `tol` and `max_iter`). - 'lsqr' uses the dedicated regularized least-squares routine scipy.sparse.linalg.lsqr. It is the fastest and uses an iterative procedure. - 'sag' uses a Stochastic Average Gradient descent, and 'saga' uses its unbiased and more flexible version named SAGA. Both methods use an iterative procedure, and are often faster than other solvers when both n_samples and n_features are large. Note that 'sag' and 'saga' fast convergence is only guaranteed on features with approximately the same scale. You can preprocess the data with a scaler from sklearn.preprocessing. .. versionadded:: 0.17 Stochastic Average Gradient descent solver. .. versionadded:: 0.19 SAGA solver. - 'lbfgs' uses L-BFGS-B algorithm implemented in `scipy.optimize.minimize`. It can be used only when `positive` is True. positive : bool, default=False When set to ``True``, forces the coefficients to be positive. Only 'lbfgs' solver is supported in this case. random_state : int, RandomState instance, default=None Used when ``solver`` == 'sag' or 'saga' to shuffle the data. See :term:`Glossary <random_state>` for details. Attributes ---------- coef_ : ndarray of shape (1, n_features) or (n_classes, n_features) Coefficient of the features in the decision function. ``coef_`` is of shape (1, n_features) when the given problem is binary. intercept_ : float or ndarray of shape (n_targets,) Independent term in decision function. Set to 0.0 if ``fit_intercept = False``. n_iter_ : None or ndarray of shape (n_targets,) Actual number of iterations for each target. Available only for sag and lsqr solvers. Other solvers will return None. classes_ : ndarray of shape (n_classes,) The classes labels. n_features_in_ : int Number of features seen during :term:`fit`. .. versionadded:: 0.24 feature_names_in_ : ndarray of shape (`n_features_in_`,) Names of features seen during :term:`fit`. Defined only when `X` has feature names that are all strings. .. versionadded:: 1.0 See Also -------- Ridge : Ridge regression. RidgeClassifierCV : Ridge classifier with built-in cross validation. Notes ----- For multi-class classification, n_class classifiers are trained in a one-versus-all approach. Concretely, this is implemented by taking advantage of the multi-variate response support in Ridge. Examples -------- >>> from sklearn.datasets import load_breast_cancer >>> from sklearn.linear_model import RidgeClassifier >>> X, y = load_breast_cancer(return_X_y=True) >>> clf = RidgeClassifier().fit(X, y) >>> clf.score(X, y) 0.9595... """ def __init__( self, alpha=1.0, *, fit_intercept=True, normalize="deprecated", copy_X=True, max_iter=None, tol=1e-3, class_weight=None, solver="auto", positive=False, random_state=None, ): super().__init__( alpha=alpha, fit_intercept=fit_intercept, normalize=normalize, copy_X=copy_X, max_iter=max_iter, tol=tol, solver=solver, positive=positive, random_state=random_state, ) self.class_weight = class_weight def fit(self, X, y, sample_weight=None): """Fit Ridge classifier model. Parameters ---------- X : {ndarray, sparse matrix} of shape (n_samples, n_features) Training data. y : ndarray of shape (n_samples,) Target values. sample_weight : float or ndarray of shape (n_samples,), default=None Individual weights for each sample. If given a float, every sample will have the same weight. .. versionadded:: 0.17 *sample_weight* support to RidgeClassifier. Returns ------- self : object Instance of the estimator. """ X, y, sample_weight, Y = self._prepare_data(X, y, sample_weight, self.solver) super().fit(X, Y, sample_weight=sample_weight) return self def _check_gcv_mode(X, gcv_mode): possible_gcv_modes = [None, "auto", "svd", "eigen"] if gcv_mode not in possible_gcv_modes: raise ValueError( "Unknown value for 'gcv_mode'. Got {} instead of one of {}".format( gcv_mode, possible_gcv_modes ) ) if gcv_mode in ["eigen", "svd"]: return gcv_mode # if X has more rows than columns, use decomposition of X^T.X, # otherwise X.X^T if X.shape[0] > X.shape[1]: return "svd" return "eigen" def _find_smallest_angle(query, vectors): """Find the column of vectors that is most aligned with the query. Both query and the columns of vectors must have their l2 norm equal to 1. Parameters ---------- query : ndarray of shape (n_samples,) Normalized query vector. vectors : ndarray of shape (n_samples, n_features) Vectors to which we compare query, as columns. Must be normalized. """ abs_cosine = np.abs(query.dot(vectors)) index = np.argmax(abs_cosine) return index class _X_CenterStackOp(sparse.linalg.LinearOperator): """Behaves as centered and scaled X with an added intercept column. This operator behaves as np.hstack([X - sqrt_sw[:, None] * X_mean, sqrt_sw[:, None]]) """ def __init__(self, X, X_mean, sqrt_sw): n_samples, n_features = X.shape super().__init__(X.dtype, (n_samples, n_features + 1)) self.X = X self.X_mean = X_mean self.sqrt_sw = sqrt_sw def _matvec(self, v): v = v.ravel() return ( safe_sparse_dot(self.X, v[:-1], dense_output=True) - self.sqrt_sw * self.X_mean.dot(v[:-1]) + v[-1] * self.sqrt_sw ) def _matmat(self, v): return ( safe_sparse_dot(self.X, v[:-1], dense_output=True) - self.sqrt_sw[:, None] * self.X_mean.dot(v[:-1]) + v[-1] * self.sqrt_sw[:, None] ) def _transpose(self): return _XT_CenterStackOp(self.X, self.X_mean, self.sqrt_sw) class _XT_CenterStackOp(sparse.linalg.LinearOperator): """Behaves as transposed centered and scaled X with an intercept column. This operator behaves as np.hstack([X - sqrt_sw[:, None] * X_mean, sqrt_sw[:, None]]).T """ def __init__(self, X, X_mean, sqrt_sw): n_samples, n_features = X.shape super().__init__(X.dtype, (n_features + 1, n_samples)) self.X = X self.X_mean = X_mean self.sqrt_sw = sqrt_sw def _matvec(self, v): v = v.ravel() n_features = self.shape[0] res = np.empty(n_features, dtype=self.X.dtype) res[:-1] = safe_sparse_dot(self.X.T, v, dense_output=True) - ( self.X_mean * self.sqrt_sw.dot(v) ) res[-1] = np.dot(v, self.sqrt_sw) return res def _matmat(self, v): n_features = self.shape[0] res = np.empty((n_features, v.shape[1]), dtype=self.X.dtype) res[:-1] = safe_sparse_dot(self.X.T, v, dense_output=True) - self.X_mean[ :, None ] * self.sqrt_sw.dot(v) res[-1] = np.dot(self.sqrt_sw, v) return res class _IdentityRegressor: """Fake regressor which will directly output the prediction.""" def decision_function(self, y_predict): return y_predict def predict(self, y_predict): return y_predict class _IdentityClassifier(LinearClassifierMixin): """Fake classifier which will directly output the prediction. We inherit from LinearClassifierMixin to get the proper shape for the output `y`. """ def __init__(self, classes): self.classes_ = classes def decision_function(self, y_predict): return y_predict class _RidgeGCV(LinearModel): """Ridge regression with built-in Leave-one-out Cross-Validation. This class is not intended to be used directly. Use RidgeCV instead. Notes ----- We want to solve (K + alpha*Id)c = y, where K = X X^T is the kernel matrix. Let G = (K + alpha*Id). Dual solution: c = G^-1y Primal solution: w = X^T c Compute eigendecomposition K = Q V Q^T. Then G^-1 = Q (V + alpha*Id)^-1 Q^T, where (V + alpha*Id) is diagonal. It is thus inexpensive to inverse for many alphas. Let loov be the vector of prediction values for each example when the model was fitted with all examples but this example. loov = (KG^-1Y - diag(KG^-1)Y) / diag(I-KG^-1) Let looe be the vector of prediction errors for each example when the model was fitted with all examples but this example. looe = y - loov = c / diag(G^-1) The best score (negative mean squared error or user-provided scoring) is stored in the `best_score_` attribute, and the selected hyperparameter in `alpha_`. References ---------- http://cbcl.mit.edu/publications/ps/MIT-CSAIL-TR-2007-025.pdf https://www.mit.edu/~9.520/spring07/Classes/rlsslides.pdf """ def __init__( self, alphas=(0.1, 1.0, 10.0), *, fit_intercept=True, normalize="deprecated", scoring=None, copy_X=True, gcv_mode=None, store_cv_values=False, is_clf=False, alpha_per_target=False, ): self.alphas = alphas self.fit_intercept = fit_intercept self.normalize = normalize self.scoring = scoring self.copy_X = copy_X self.gcv_mode = gcv_mode self.store_cv_values = store_cv_values self.is_clf = is_clf self.alpha_per_target = alpha_per_target @staticmethod def _decomp_diag(v_prime, Q): # compute diagonal of the matrix: dot(Q, dot(diag(v_prime), Q^T)) return (v_prime * Q ** 2).sum(axis=-1) @staticmethod def _diag_dot(D, B): # compute dot(diag(D), B) if len(B.shape) > 1: # handle case where B is > 1-d D = D[(slice(None),) + (np.newaxis,) * (len(B.shape) - 1)] return D * B def _compute_gram(self, X, sqrt_sw): """Computes the Gram matrix XX^T with possible centering. Parameters ---------- X : {ndarray, sparse matrix} of shape (n_samples, n_features) The preprocessed design matrix. sqrt_sw : ndarray of shape (n_samples,) square roots of sample weights Returns ------- gram : ndarray of shape (n_samples, n_samples) The Gram matrix. X_mean : ndarray of shape (n_feature,) The weighted mean of ``X`` for each feature. Notes ----- When X is dense the centering has been done in preprocessing so the mean is 0 and we just compute XX^T. When X is sparse it has not been centered in preprocessing, but it has been scaled by sqrt(sample weights). When self.fit_intercept is False no centering is done. The centered X is never actually computed because centering would break the sparsity of X. """ center = self.fit_intercept and sparse.issparse(X) if not center: # in this case centering has been done in preprocessing # or we are not fitting an intercept. X_mean = np.zeros(X.shape[1], dtype=X.dtype) return safe_sparse_dot(X, X.T, dense_output=True), X_mean # X is sparse n_samples = X.shape[0] sample_weight_matrix = sparse.dia_matrix( (sqrt_sw, 0), shape=(n_samples, n_samples) ) X_weighted = sample_weight_matrix.dot(X) X_mean, _ = mean_variance_axis(X_weighted, axis=0) X_mean *= n_samples / sqrt_sw.dot(sqrt_sw) X_mX = sqrt_sw[:, None] * safe_sparse_dot(X_mean, X.T, dense_output=True) X_mX_m = np.outer(sqrt_sw, sqrt_sw) * np.dot(X_mean, X_mean) return ( safe_sparse_dot(X, X.T, dense_output=True) + X_mX_m - X_mX - X_mX.T, X_mean, ) def _compute_covariance(self, X, sqrt_sw): """Computes covariance matrix X^TX with possible centering. Parameters ---------- X : sparse matrix of shape (n_samples, n_features) The preprocessed design matrix. sqrt_sw : ndarray of shape (n_samples,) square roots of sample weights Returns ------- covariance : ndarray of shape (n_features, n_features) The covariance matrix. X_mean : ndarray of shape (n_feature,) The weighted mean of ``X`` for each feature. Notes ----- Since X is sparse it has not been centered in preprocessing, but it has been scaled by sqrt(sample weights). When self.fit_intercept is False no centering is done. The centered X is never actually computed because centering would break the sparsity of X. """ if not self.fit_intercept: # in this case centering has been done in preprocessing # or we are not fitting an intercept. X_mean = np.zeros(X.shape[1], dtype=X.dtype) return safe_sparse_dot(X.T, X, dense_output=True), X_mean # this function only gets called for sparse X n_samples = X.shape[0] sample_weight_matrix = sparse.dia_matrix( (sqrt_sw, 0), shape=(n_samples, n_samples) ) X_weighted = sample_weight_matrix.dot(X) X_mean, _ = mean_variance_axis(X_weighted, axis=0) X_mean = X_mean * n_samples / sqrt_sw.dot(sqrt_sw) weight_sum = sqrt_sw.dot(sqrt_sw) return ( safe_sparse_dot(X.T, X, dense_output=True) - weight_sum * np.outer(X_mean, X_mean), X_mean, ) def _sparse_multidot_diag(self, X, A, X_mean, sqrt_sw): """Compute the diagonal of (X - X_mean).dot(A).dot((X - X_mean).T) without explicitly centering X nor computing X.dot(A) when X is sparse. Parameters ---------- X : sparse matrix of shape (n_samples, n_features) A : ndarray of shape (n_features, n_features) X_mean : ndarray of shape (n_features,) sqrt_sw : ndarray of shape (n_features,) square roots of sample weights Returns ------- diag : np.ndarray, shape (n_samples,) The computed diagonal. """ intercept_col = scale = sqrt_sw batch_size = X.shape[1] diag = np.empty(X.shape[0], dtype=X.dtype) for start in range(0, X.shape[0], batch_size): batch = slice(start, min(X.shape[0], start + batch_size), 1) X_batch = np.empty( (X[batch].shape[0], X.shape[1] + self.fit_intercept), dtype=X.dtype ) if self.fit_intercept: X_batch[:, :-1] = X[batch].A - X_mean * scale[batch][:, None] X_batch[:, -1] = intercept_col[batch] else: X_batch = X[batch].A diag[batch] = (X_batch.dot(A) * X_batch).sum(axis=1) return diag def _eigen_decompose_gram(self, X, y, sqrt_sw): """Eigendecomposition of X.X^T, used when n_samples <= n_features.""" # if X is dense it has already been centered in preprocessing K, X_mean = self._compute_gram(X, sqrt_sw) if self.fit_intercept: # to emulate centering X with sample weights, # ie removing the weighted average, we add a column # containing the square roots of the sample weights. # by centering, it is orthogonal to the other columns K += np.outer(sqrt_sw, sqrt_sw) eigvals, Q = linalg.eigh(K) QT_y = np.dot(Q.T, y) return X_mean, eigvals, Q, QT_y def _solve_eigen_gram(self, alpha, y, sqrt_sw, X_mean, eigvals, Q, QT_y): """Compute dual coefficients and diagonal of G^-1. Used when we have a decomposition of X.X^T (n_samples <= n_features). """ w = 1.0 / (eigvals + alpha) if self.fit_intercept: # the vector containing the square roots of the sample weights (1 # when no sample weights) is the eigenvector of XX^T which # corresponds to the intercept; we cancel the regularization on # this dimension. the corresponding eigenvalue is # sum(sample_weight). normalized_sw = sqrt_sw / np.linalg.norm(sqrt_sw) intercept_dim = _find_smallest_angle(normalized_sw, Q) w[intercept_dim] = 0 # cancel regularization for the intercept c = np.dot(Q, self._diag_dot(w, QT_y)) G_inverse_diag = self._decomp_diag(w, Q) # handle case where y is 2-d if len(y.shape) != 1: G_inverse_diag = G_inverse_diag[:, np.newaxis] return G_inverse_diag, c def _eigen_decompose_covariance(self, X, y, sqrt_sw): """Eigendecomposition of X^T.X, used when n_samples > n_features and X is sparse. """ n_samples, n_features = X.shape cov = np.empty((n_features + 1, n_features + 1), dtype=X.dtype) cov[:-1, :-1], X_mean = self._compute_covariance(X, sqrt_sw) if not self.fit_intercept: cov = cov[:-1, :-1] # to emulate centering X with sample weights, # ie removing the weighted average, we add a column # containing the square roots of the sample weights. # by centering, it is orthogonal to the other columns # when all samples have the same weight we add a column of 1 else: cov[-1] = 0 cov[:, -1] = 0 cov[-1, -1] = sqrt_sw.dot(sqrt_sw) nullspace_dim = max(0, n_features - n_samples) eigvals, V = linalg.eigh(cov) # remove eigenvalues and vectors in the null space of X^T.X eigvals = eigvals[nullspace_dim:] V = V[:, nullspace_dim:] return X_mean, eigvals, V, X def _solve_eigen_covariance_no_intercept( self, alpha, y, sqrt_sw, X_mean, eigvals, V, X ): """Compute dual coefficients and diagonal of G^-1. Used when we have a decomposition of X^T.X (n_samples > n_features and X is sparse), and not fitting an intercept. """ w = 1 / (eigvals + alpha) A = (V * w).dot(V.T) AXy = A.dot(safe_sparse_dot(X.T, y, dense_output=True)) y_hat = safe_sparse_dot(X, AXy, dense_output=True) hat_diag = self._sparse_multidot_diag(X, A, X_mean, sqrt_sw) if len(y.shape) != 1: # handle case where y is 2-d hat_diag = hat_diag[:, np.newaxis] return (1 - hat_diag) / alpha, (y - y_hat) / alpha def _solve_eigen_covariance_intercept( self, alpha, y, sqrt_sw, X_mean, eigvals, V, X ): """Compute dual coefficients and diagonal of G^-1. Used when we have a decomposition of X^T.X (n_samples > n_features and X is sparse), and we are fitting an intercept. """ # the vector [0, 0, ..., 0, 1] # is the eigenvector of X^TX which # corresponds to the intercept; we cancel the regularization on # this dimension. the corresponding eigenvalue is # sum(sample_weight), e.g. n when uniform sample weights. intercept_sv = np.zeros(V.shape[0]) intercept_sv[-1] = 1 intercept_dim = _find_smallest_angle(intercept_sv, V) w = 1 / (eigvals + alpha) w[intercept_dim] = 1 / eigvals[intercept_dim] A = (V * w).dot(V.T) # add a column to X containing the square roots of sample weights X_op = _X_CenterStackOp(X, X_mean, sqrt_sw) AXy = A.dot(X_op.T.dot(y)) y_hat = X_op.dot(AXy) hat_diag = self._sparse_multidot_diag(X, A, X_mean, sqrt_sw) # return (1 - hat_diag), (y - y_hat) if len(y.shape) != 1: # handle case where y is 2-d hat_diag = hat_diag[:, np.newaxis] return (1 - hat_diag) / alpha, (y - y_hat) / alpha def _solve_eigen_covariance(self, alpha, y, sqrt_sw, X_mean, eigvals, V, X): """Compute dual coefficients and diagonal of G^-1. Used when we have a decomposition of X^T.X (n_samples > n_features and X is sparse). """ if self.fit_intercept: return self._solve_eigen_covariance_intercept( alpha, y, sqrt_sw, X_mean, eigvals, V, X ) return self._solve_eigen_covariance_no_intercept( alpha, y, sqrt_sw, X_mean, eigvals, V, X ) def _svd_decompose_design_matrix(self, X, y, sqrt_sw): # X already centered X_mean = np.zeros(X.shape[1], dtype=X.dtype) if self.fit_intercept: # to emulate fit_intercept=True situation, add a column # containing the square roots of the sample weights # by centering, the other columns are orthogonal to that one intercept_column = sqrt_sw[:, None] X = np.hstack((X, intercept_column)) U, singvals, _ = linalg.svd(X, full_matrices=0) singvals_sq = singvals ** 2 UT_y = np.dot(U.T, y) return X_mean, singvals_sq, U, UT_y def _solve_svd_design_matrix(self, alpha, y, sqrt_sw, X_mean, singvals_sq, U, UT_y): """Compute dual coefficients and diagonal of G^-1. Used when we have an SVD decomposition of X (n_samples > n_features and X is dense). """ w = ((singvals_sq + alpha) ** -1) - (alpha ** -1) if self.fit_intercept: # detect intercept column normalized_sw = sqrt_sw / np.linalg.norm(sqrt_sw) intercept_dim = _find_smallest_angle(normalized_sw, U) # cancel the regularization for the intercept w[intercept_dim] = -(alpha ** -1) c = np.dot(U, self._diag_dot(w, UT_y)) + (alpha ** -1) * y G_inverse_diag = self._decomp_diag(w, U) + (alpha ** -1) if len(y.shape) != 1: # handle case where y is 2-d G_inverse_diag = G_inverse_diag[:, np.newaxis] return G_inverse_diag, c def fit(self, X, y, sample_weight=None): """Fit Ridge regression model with gcv. Parameters ---------- X : {ndarray, sparse matrix} of shape (n_samples, n_features) Training data. Will be cast to float64 if necessary. y : ndarray of shape (n_samples,) or (n_samples, n_targets) Target values. Will be cast to float64 if necessary. sample_weight : float or ndarray of shape (n_samples,), default=None Individual weights for each sample. If given a float, every sample will have the same weight. Returns ------- self : object """ _normalize = _deprecate_normalize( self.normalize, default=False, estimator_name=self.__class__.__name__ ) X, y = self._validate_data( X, y, accept_sparse=["csr", "csc", "coo"], dtype=[np.float64], multi_output=True, y_numeric=True, ) # alpha_per_target cannot be used in classifier mode. All subclasses # of _RidgeGCV that are classifiers keep alpha_per_target at its # default value: False, so the condition below should never happen. assert not (self.is_clf and self.alpha_per_target) if sample_weight is not None: sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype) self.alphas = np.asarray(self.alphas) if np.any(self.alphas <= 0): raise ValueError( "alphas must be strictly positive. Got {} containing some " "negative or null value instead.".format(self.alphas) ) X, y, X_offset, y_offset, X_scale = LinearModel._preprocess_data( X, y, self.fit_intercept, _normalize, self.copy_X, sample_weight=sample_weight, ) gcv_mode = _check_gcv_mode(X, self.gcv_mode) if gcv_mode == "eigen": decompose = self._eigen_decompose_gram solve = self._solve_eigen_gram elif gcv_mode == "svd": if sparse.issparse(X): decompose = self._eigen_decompose_covariance solve = self._solve_eigen_covariance else: decompose = self._svd_decompose_design_matrix solve = self._solve_svd_design_matrix n_samples = X.shape[0] if sample_weight is not None: X, y = _rescale_data(X, y, sample_weight) sqrt_sw = np.sqrt(sample_weight) else: sqrt_sw = np.ones(n_samples, dtype=X.dtype) X_mean, *decomposition = decompose(X, y, sqrt_sw) scorer = check_scoring(self, scoring=self.scoring, allow_none=True) error = scorer is None n_y = 1 if len(y.shape) == 1 else y.shape[1] n_alphas = 1 if np.ndim(self.alphas) == 0 else len(self.alphas) if self.store_cv_values: self.cv_values_ = np.empty((n_samples * n_y, n_alphas), dtype=X.dtype) best_coef, best_score, best_alpha = None, None, None for i, alpha in enumerate(np.atleast_1d(self.alphas)): G_inverse_diag, c = solve(float(alpha), y, sqrt_sw, X_mean, *decomposition) if error: squared_errors = (c / G_inverse_diag) ** 2 if self.alpha_per_target: alpha_score = -squared_errors.mean(axis=0) else: alpha_score = -squared_errors.mean() if self.store_cv_values: self.cv_values_[:, i] = squared_errors.ravel() else: predictions = y - (c / G_inverse_diag) if self.store_cv_values: self.cv_values_[:, i] = predictions.ravel() if self.is_clf: identity_estimator = _IdentityClassifier(classes=np.arange(n_y)) alpha_score = scorer( identity_estimator, predictions, y.argmax(axis=1) ) else: identity_estimator = _IdentityRegressor() if self.alpha_per_target: alpha_score = np.array( [ scorer(identity_estimator, predictions[:, j], y[:, j]) for j in range(n_y) ] ) else: alpha_score = scorer( identity_estimator, predictions.ravel(), y.ravel() ) # Keep track of the best model if best_score is None: # initialize if self.alpha_per_target and n_y > 1: best_coef = c best_score = np.atleast_1d(alpha_score) best_alpha = np.full(n_y, alpha) else: best_coef = c best_score = alpha_score best_alpha = alpha else: # update if self.alpha_per_target and n_y > 1: to_update = alpha_score > best_score best_coef[:, to_update] = c[:, to_update] best_score[to_update] = alpha_score[to_update] best_alpha[to_update] = alpha elif alpha_score > best_score: best_coef, best_score, best_alpha = c, alpha_score, alpha self.alpha_ = best_alpha self.best_score_ = best_score self.dual_coef_ = best_coef self.coef_ = safe_sparse_dot(self.dual_coef_.T, X) X_offset += X_mean * X_scale self._set_intercept(X_offset, y_offset, X_scale) if self.store_cv_values: if len(y.shape) == 1: cv_values_shape = n_samples, n_alphas else: cv_values_shape = n_samples, n_y, n_alphas self.cv_values_ = self.cv_values_.reshape(cv_values_shape) return self class _BaseRidgeCV(LinearModel): def __init__( self, alphas=(0.1, 1.0, 10.0), *, fit_intercept=True, normalize="deprecated", scoring=None, cv=None, gcv_mode=None, store_cv_values=False, alpha_per_target=False, ): self.alphas = alphas self.fit_intercept = fit_intercept self.normalize = normalize self.scoring = scoring self.cv = cv self.gcv_mode = gcv_mode self.store_cv_values = store_cv_values self.alpha_per_target = alpha_per_target def fit(self, X, y, sample_weight=None): """Fit Ridge regression model with cv. Parameters ---------- X : ndarray of shape (n_samples, n_features) Training data. If using GCV, will be cast to float64 if necessary. y : ndarray of shape (n_samples,) or (n_samples, n_targets) Target values. Will be cast to X's dtype if necessary. sample_weight : float or ndarray of shape (n_samples,), default=None Individual weights for each sample. If given a float, every sample will have the same weight. Returns ------- self : object Fitted estimator. Notes ----- When sample_weight is provided, the selected hyperparameter may depend on whether we use leave-one-out cross-validation (cv=None or cv='auto') or another form of cross-validation, because only leave-one-out cross-validation takes the sample weights into account when computing the validation score. """ cv = self.cv if cv is None: estimator = _RidgeGCV( self.alphas, fit_intercept=self.fit_intercept, normalize=self.normalize, scoring=self.scoring, gcv_mode=self.gcv_mode, store_cv_values=self.store_cv_values, is_clf=is_classifier(self), alpha_per_target=self.alpha_per_target, ) estimator.fit(X, y, sample_weight=sample_weight) self.alpha_ = estimator.alpha_ self.best_score_ = estimator.best_score_ if self.store_cv_values: self.cv_values_ = estimator.cv_values_ else: if self.store_cv_values: raise ValueError("cv!=None and store_cv_values=True are incompatible") if self.alpha_per_target: raise ValueError("cv!=None and alpha_per_target=True are incompatible") parameters = {"alpha": self.alphas} solver = "sparse_cg" if sparse.issparse(X) else "auto" model = RidgeClassifier if is_classifier(self) else Ridge gs = GridSearchCV( model( fit_intercept=self.fit_intercept, normalize=self.normalize, solver=solver, ), parameters, cv=cv, scoring=self.scoring, ) gs.fit(X, y, sample_weight=sample_weight) estimator = gs.best_estimator_ self.alpha_ = gs.best_estimator_.alpha self.best_score_ = gs.best_score_ self.coef_ = estimator.coef_ self.intercept_ = estimator.intercept_ self.n_features_in_ = estimator.n_features_in_ if hasattr(estimator, "feature_names_in_"): self.feature_names_in_ = estimator.feature_names_in_ return self class RidgeCV(MultiOutputMixin, RegressorMixin, _BaseRidgeCV): """Ridge regression with built-in cross-validation. See glossary entry for :term:`cross-validation estimator`. By default, it performs efficient Leave-One-Out Cross-Validation. Read more in the :ref:`User Guide <ridge_regression>`. Parameters ---------- alphas : ndarray of shape (n_alphas,), default=(0.1, 1.0, 10.0) Array of alpha values to try. Regularization strength; must be a positive float. Regularization improves the conditioning of the problem and reduces the variance of the estimates. Larger values specify stronger regularization. Alpha corresponds to ``1 / (2C)`` in other linear models such as :class:`~sklearn.linear_model.LogisticRegression` or :class:`~sklearn.svm.LinearSVC`. If using Leave-One-Out cross-validation, alphas must be positive. fit_intercept : bool, default=True Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (i.e. data is expected to be centered). normalize : bool, default=False This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use :class:`~sklearn.preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. .. deprecated:: 1.0 ``normalize`` was deprecated in version 1.0 and will be removed in 1.2. scoring : str, callable, default=None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. If None, the negative mean squared error if cv is 'auto' or None (i.e. when using leave-one-out cross-validation), and r2 score otherwise. cv : int, cross-validation generator or an iterable, default=None Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the efficient Leave-One-Out cross-validation - integer, to specify the number of folds. - :term:`CV splitter`, - An iterable yielding (train, test) splits as arrays of indices. For integer/None inputs, if ``y`` is binary or multiclass, :class:`~sklearn.model_selection.StratifiedKFold` is used, else, :class:`~sklearn.model_selection.KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. gcv_mode : {'auto', 'svd', 'eigen'}, default='auto' Flag indicating which strategy to use when performing Leave-One-Out Cross-Validation. Options are:: 'auto' : use 'svd' if n_samples > n_features, otherwise use 'eigen' 'svd' : force use of singular value decomposition of X when X is dense, eigenvalue decomposition of X^T.X when X is sparse. 'eigen' : force computation via eigendecomposition of X.X^T The 'auto' mode is the default and is intended to pick the cheaper option of the two depending on the shape of the training data. store_cv_values : bool, default=False Flag indicating if the cross-validation values corresponding to each alpha should be stored in the ``cv_values_`` attribute (see below). This flag is only compatible with ``cv=None`` (i.e. using Leave-One-Out Cross-Validation). alpha_per_target : bool, default=False Flag indicating whether to optimize the alpha value (picked from the `alphas` parameter list) for each target separately (for multi-output settings: multiple prediction targets). When set to `True`, after fitting, the `alpha_` attribute will contain a value for each target. When set to `False`, a single alpha is used for all targets. .. versionadded:: 0.24 Attributes ---------- cv_values_ : ndarray of shape (n_samples, n_alphas) or \ shape (n_samples, n_targets, n_alphas), optional Cross-validation values for each alpha (only available if ``store_cv_values=True`` and ``cv=None``). After ``fit()`` has been called, this attribute will contain the mean squared errors if `scoring is None` otherwise it will contain standardized per point prediction values. coef_ : ndarray of shape (n_features) or (n_targets, n_features) Weight vector(s). intercept_ : float or ndarray of shape (n_targets,) Independent term in decision function. Set to 0.0 if ``fit_intercept = False``. alpha_ : float or ndarray of shape (n_targets,) Estimated regularization parameter, or, if ``alpha_per_target=True``, the estimated regularization parameter for each target. best_score_ : float or ndarray of shape (n_targets,) Score of base estimator with best alpha, or, if ``alpha_per_target=True``, a score for each target. .. versionadded:: 0.23 n_features_in_ : int Number of features seen during :term:`fit`. .. versionadded:: 0.24 feature_names_in_ : ndarray of shape (`n_features_in_`,) Names of features seen during :term:`fit`. Defined only when `X` has feature names that are all strings. .. versionadded:: 1.0 See Also -------- Ridge : Ridge regression. RidgeClassifier : Classifier based on ridge regression on {-1, 1} labels. RidgeClassifierCV : Ridge classifier with built-in cross validation. Examples -------- >>> from sklearn.datasets import load_diabetes >>> from sklearn.linear_model import RidgeCV >>> X, y = load_diabetes(return_X_y=True) >>> clf = RidgeCV(alphas=[1e-3, 1e-2, 1e-1, 1]).fit(X, y) >>> clf.score(X, y) 0.5166... """ class RidgeClassifierCV(_RidgeClassifierMixin, _BaseRidgeCV): """Ridge classifier with built-in cross-validation. See glossary entry for :term:`cross-validation estimator`. By default, it performs Leave-One-Out Cross-Validation. Currently, only the n_features > n_samples case is handled efficiently. Read more in the :ref:`User Guide <ridge_regression>`. Parameters ---------- alphas : ndarray of shape (n_alphas,), default=(0.1, 1.0, 10.0) Array of alpha values to try. Regularization strength; must be a positive float. Regularization improves the conditioning of the problem and reduces the variance of the estimates. Larger values specify stronger regularization. Alpha corresponds to ``1 / (2C)`` in other linear models such as :class:`~sklearn.linear_model.LogisticRegression` or :class:`~sklearn.svm.LinearSVC`. fit_intercept : bool, default=True Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (i.e. data is expected to be centered). normalize : bool, default=False This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use :class:`~sklearn.preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. .. deprecated:: 1.0 ``normalize`` was deprecated in version 1.0 and will be removed in 1.2. scoring : str, callable, default=None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. cv : int, cross-validation generator or an iterable, default=None Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the efficient Leave-One-Out cross-validation - integer, to specify the number of folds. - :term:`CV splitter`, - An iterable yielding (train, test) splits as arrays of indices. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. class_weight : dict or 'balanced', default=None Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))``. store_cv_values : bool, default=False Flag indicating if the cross-validation values corresponding to each alpha should be stored in the ``cv_values_`` attribute (see below). This flag is only compatible with ``cv=None`` (i.e. using Leave-One-Out Cross-Validation). Attributes ---------- cv_values_ : ndarray of shape (n_samples, n_targets, n_alphas), optional Cross-validation values for each alpha (only if ``store_cv_values=True`` and ``cv=None``). After ``fit()`` has been called, this attribute will contain the mean squared errors if `scoring is None` otherwise it will contain standardized per point prediction values. coef_ : ndarray of shape (1, n_features) or (n_targets, n_features) Coefficient of the features in the decision function. ``coef_`` is of shape (1, n_features) when the given problem is binary. intercept_ : float or ndarray of shape (n_targets,) Independent term in decision function. Set to 0.0 if ``fit_intercept = False``. alpha_ : float Estimated regularization parameter. best_score_ : float Score of base estimator with best alpha. .. versionadded:: 0.23 classes_ : ndarray of shape (n_classes,) The classes labels. n_features_in_ : int Number of features seen during :term:`fit`. .. versionadded:: 0.24 feature_names_in_ : ndarray of shape (`n_features_in_`,) Names of features seen during :term:`fit`. Defined only when `X` has feature names that are all strings. .. versionadded:: 1.0 See Also -------- Ridge : Ridge regression. RidgeClassifier : Ridge classifier. RidgeCV : Ridge regression with built-in cross validation. Notes ----- For multi-class classification, n_class classifiers are trained in a one-versus-all approach. Concretely, this is implemented by taking advantage of the multi-variate response support in Ridge. Examples -------- >>> from sklearn.datasets import load_breast_cancer >>> from sklearn.linear_model import RidgeClassifierCV >>> X, y = load_breast_cancer(return_X_y=True) >>> clf = RidgeClassifierCV(alphas=[1e-3, 1e-2, 1e-1, 1]).fit(X, y) >>> clf.score(X, y) 0.9630... """ def __init__( self, alphas=(0.1, 1.0, 10.0), *, fit_intercept=True, normalize="deprecated", scoring=None, cv=None, class_weight=None, store_cv_values=False, ): super().__init__( alphas=alphas, fit_intercept=fit_intercept, normalize=normalize, scoring=scoring, cv=cv, store_cv_values=store_cv_values, ) self.class_weight = class_weight def fit(self, X, y, sample_weight=None): """Fit Ridge classifier with cv. Parameters ---------- X : ndarray of shape (n_samples, n_features) Training vectors, where `n_samples` is the number of samples and `n_features` is the number of features. When using GCV, will be cast to float64 if necessary. y : ndarray of shape (n_samples,) Target values. Will be cast to X's dtype if necessary. sample_weight : float or ndarray of shape (n_samples,), default=None Individual weights for each sample. If given a float, every sample will have the same weight. Returns ------- self : object Fitted estimator. """ # `RidgeClassifier` does not accept "sag" or "saga" solver and thus support # csr, csc, and coo sparse matrices. By using solver="eigen" we force to accept # all sparse format. X, y, sample_weight, Y = self._prepare_data(X, y, sample_weight, solver="eigen") # If cv is None, gcv mode will be used and we used the binarized Y # since y will not be binarized in _RidgeGCV estimator. # If cv is not None, a GridSearchCV with some RidgeClassifier # estimators are used where y will be binarized. Thus, we pass y # instead of the binarized Y. target = Y if self.cv is None else y super().fit(X, target, sample_weight=sample_weight) return self def _more_tags(self): return { "multilabel": True, "_xfail_checks": { "check_sample_weights_invariance": ( "zero sample_weight is not equivalent to removing samples" ), }, }
the-stack_0_12533
# coding=utf-8 # Copyright 2018 The Dopamine Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The standard DQN replay memory. This implementation is an out-of-graph replay memory + in-graph wrapper. It supports vanilla n-step updates of the form typically found in the literature, i.e. where rewards are accumulated for n steps and the intermediate trajectory is not exposed to the agent. This does not allow, for example, performing off-policy corrections. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import gzip import math import os import pickle import numpy as np import tensorflow.compat.v1 as tf import gin.tf from tensorflow.contrib import staging as contrib_staging # Defines a type describing part of the tuple returned by the replay # memory. Each element of the tuple is a tensor of shape [batch, ...] where # ... is defined the 'shape' field of ReplayElement. The tensor type is # given by the 'type' field. The 'name' field is for convenience and ease of # debugging. ReplayElement = ( collections.namedtuple('shape_type', ['name', 'shape', 'type'])) # A prefix that can not collide with variable names for checkpoint files. STORE_FILENAME_PREFIX = '$store$_' # This constant determines how many iterations a checkpoint is kept for. CHECKPOINT_DURATION = 4 def invalid_range(cursor, replay_capacity, stack_size, update_horizon): """Returns a array with the indices of cursor-related invalid transitions. There are update_horizon + stack_size invalid indices: - The update_horizon indices before the cursor, because we do not have a valid N-step transition (including the next state). - The stack_size indices on or immediately after the cursor. If N = update_horizon, K = stack_size, and the cursor is at c, invalid indices are: c - N, c - N + 1, ..., c, c + 1, ..., c + K - 1. It handles special cases in a circular buffer in the beginning and the end. Args: cursor: int, the position of the cursor. replay_capacity: int, the size of the replay memory. stack_size: int, the size of the stacks returned by the replay memory. update_horizon: int, the agent's update horizon. Returns: np.array of size stack_size with the invalid indices. """ assert cursor < replay_capacity return np.array( [(cursor - update_horizon + i) % replay_capacity for i in range(stack_size + update_horizon)]) class OutOfGraphReplayBuffer(object): """A simple out-of-graph Replay Buffer. Stores transitions, state, action, reward, next_state, terminal (and any extra contents specified) in a circular buffer and provides a uniform transition sampling function. When the states consist of stacks of observations storing the states is inefficient. This class writes observations and constructs the stacked states at sample time. Attributes: add_count: int, counter of how many transitions have been added (including the blank ones at the beginning of an episode). invalid_range: np.array, an array with the indices of cursor-related invalid transitions """ def __init__(self, observation_shape, stack_size, replay_capacity, batch_size, update_horizon=1, gamma=0.99, max_sample_attempts=1000, extra_storage_types=None, observation_dtype=np.uint8, terminal_dtype=np.uint8, action_shape=(), action_dtype=np.int32, reward_shape=(), reward_dtype=np.float32): """Initializes OutOfGraphReplayBuffer. Args: observation_shape: tuple of ints. stack_size: int, number of frames to use in state stack. replay_capacity: int, number of transitions to keep in memory. batch_size: int. update_horizon: int, length of update ('n' in n-step update). gamma: int, the discount factor. max_sample_attempts: int, the maximum number of attempts allowed to get a sample. extra_storage_types: list of ReplayElements defining the type of the extra contents that will be stored and returned by sample_transition_batch. observation_dtype: np.dtype, type of the observations. Defaults to np.uint8 for Atari 2600. terminal_dtype: np.dtype, type of the terminals. Defaults to np.uint8 for Atari 2600. action_shape: tuple of ints, the shape for the action vector. Empty tuple means the action is a scalar. action_dtype: np.dtype, type of elements in the action. reward_shape: tuple of ints, the shape of the reward vector. Empty tuple means the reward is a scalar. reward_dtype: np.dtype, type of elements in the reward. Raises: ValueError: If replay_capacity is too small to hold at least one transition. """ assert isinstance(observation_shape, tuple) if replay_capacity < update_horizon + stack_size: raise ValueError('There is not enough capacity to cover ' 'update_horizon and stack_size.') tf.logging.info( 'Creating a %s replay memory with the following parameters:', self.__class__.__name__) tf.logging.info('\t observation_shape: %s', str(observation_shape)) tf.logging.info('\t observation_dtype: %s', str(observation_dtype)) tf.logging.info('\t terminal_dtype: %s', str(terminal_dtype)) tf.logging.info('\t stack_size: %d', stack_size) tf.logging.info('\t replay_capacity: %d', replay_capacity) tf.logging.info('\t batch_size: %d', batch_size) tf.logging.info('\t update_horizon: %d', update_horizon) tf.logging.info('\t gamma: %f', gamma) self._action_shape = action_shape self._action_dtype = action_dtype self._reward_shape = reward_shape self._reward_dtype = reward_dtype self._observation_shape = observation_shape self._stack_size = stack_size self._state_shape = self._observation_shape + (self._stack_size,) self._replay_capacity = replay_capacity self._batch_size = batch_size self._update_horizon = update_horizon self._gamma = gamma self._observation_dtype = observation_dtype self._terminal_dtype = terminal_dtype self._max_sample_attempts = max_sample_attempts if extra_storage_types: self._extra_storage_types = extra_storage_types else: self._extra_storage_types = [] self._create_storage() self.add_count = np.array(0) self.invalid_range = np.zeros((self._stack_size)) # When the horizon is > 1, we compute the sum of discounted rewards as a dot # product using the precomputed vector <gamma^0, gamma^1, ..., gamma^{n-1}>. self._cumulative_discount_vector = np.array( [math.pow(self._gamma, n) for n in range(update_horizon)], dtype=np.float32) def _create_storage(self): """Creates the numpy arrays used to store transitions. """ self._store = {} for storage_element in self.get_storage_signature(): array_shape = [self._replay_capacity] + list(storage_element.shape) self._store[storage_element.name] = np.empty( array_shape, dtype=storage_element.type) def get_add_args_signature(self): """The signature of the add function. Note - Derived classes may return a different signature. Returns: list of ReplayElements defining the type of the argument signature needed by the add function. """ return self.get_storage_signature() def get_storage_signature(self): """Returns a default list of elements to be stored in this replay memory. Note - Derived classes may return a different signature. Returns: list of ReplayElements defining the type of the contents stored. """ storage_elements = [ ReplayElement('observation', self._observation_shape, self._observation_dtype), ReplayElement('action', self._action_shape, self._action_dtype), ReplayElement('reward', self._reward_shape, self._reward_dtype), ReplayElement('terminal', (), self._terminal_dtype) ] for extra_replay_element in self._extra_storage_types: storage_elements.append(extra_replay_element) return storage_elements def _add_zero_transition(self): """Adds a padding transition filled with zeros (Used in episode beginnings). """ zero_transition = [] for element_type in self.get_add_args_signature(): zero_transition.append( np.zeros(element_type.shape, dtype=element_type.type)) self._add(*zero_transition) def add(self, observation, action, reward, terminal, *args): """Adds a transition to the replay memory. This function checks the types and handles the padding at the beginning of an episode. Then it calls the _add function. Since the next_observation in the transition will be the observation added next there is no need to pass it. If the replay memory is at capacity the oldest transition will be discarded. Args: observation: np.array with shape observation_shape. action: int, the action in the transition. reward: float, the reward received in the transition. terminal: np.dtype, acts as a boolean indicating whether the transition was terminal (1) or not (0). *args: extra contents with shapes and dtypes according to extra_storage_types. """ self._check_add_types(observation, action, reward, terminal, *args) if self.is_empty() or self._store['terminal'][self.cursor() - 1] == 1: for _ in range(self._stack_size - 1): # Child classes can rely on the padding transitions being filled with # zeros. This is useful when there is a priority argument. self._add_zero_transition() self._add(observation, action, reward, terminal, *args) def _add(self, *args): """Internal add method to add to the storage arrays. Args: *args: All the elements in a transition. """ self._check_args_length(*args) transition = {e.name: args[idx] for idx, e in enumerate(self.get_add_args_signature())} self._add_transition(transition) def _add_transition(self, transition): """Internal add method to add transition dictionary to storage arrays. Args: transition: The dictionary of names and values of the transition to add to the storage. """ cursor = self.cursor() for arg_name in transition: self._store[arg_name][cursor] = transition[arg_name] self.add_count += 1 self.invalid_range = invalid_range( self.cursor(), self._replay_capacity, self._stack_size, self._update_horizon) def _check_args_length(self, *args): """Check if args passed to the add method have the same length as storage. Args: *args: Args for elements used in storage. Raises: ValueError: If args have wrong length. """ if len(args) != len(self.get_add_args_signature()): raise ValueError('Add expects {} elements, received {}'.format( len(self.get_add_args_signature()), len(args))) def _check_add_types(self, *args): """Checks if args passed to the add method match those of the storage. Args: *args: Args whose types need to be validated. Raises: ValueError: If args have wrong shape or dtype. """ self._check_args_length(*args) for arg_element, store_element in zip(args, self.get_add_args_signature()): if isinstance(arg_element, np.ndarray): arg_shape = arg_element.shape elif isinstance(arg_element, tuple) or isinstance(arg_element, list): # TODO(b/80536437). This is not efficient when arg_element is a list. arg_shape = np.array(arg_element).shape else: # Assume it is scalar. arg_shape = tuple() store_element_shape = tuple(store_element.shape) if arg_shape != store_element_shape: raise ValueError('arg has shape {}, expected {}'.format( arg_shape, store_element_shape)) def is_empty(self): """Is the Replay Buffer empty?""" return self.add_count == 0 def is_full(self): """Is the Replay Buffer full?""" return self.add_count >= self._replay_capacity def cursor(self): """Index to the location where the next transition will be written.""" return self.add_count % self._replay_capacity def get_range(self, array, start_index, end_index): """Returns the range of array at the index handling wraparound if necessary. Args: array: np.array, the array to get the stack from. start_index: int, index to the start of the range to be returned. Range will wraparound if start_index is smaller than 0. end_index: int, exclusive end index. Range will wraparound if end_index exceeds replay_capacity. Returns: np.array, with shape [end_index - start_index, array.shape[1:]]. """ assert end_index > start_index, 'end_index must be larger than start_index' assert end_index >= 0 assert start_index < self._replay_capacity if not self.is_full(): assert end_index <= self.cursor(), ( 'Index {} has not been added.'.format(start_index)) # Fast slice read when there is no wraparound. if start_index % self._replay_capacity < end_index % self._replay_capacity: return_array = array[start_index:end_index, ...] # Slow list read. else: indices = [(start_index + i) % self._replay_capacity for i in range(end_index - start_index)] return_array = array[indices, ...] return return_array def get_observation_stack(self, index): return self._get_element_stack(index, 'observation') def _get_element_stack(self, index, element_name): state = self.get_range(self._store[element_name], index - self._stack_size + 1, index + 1) # The stacking axis is 0 but the agent expects as the last axis. return np.moveaxis(state, 0, -1) def get_terminal_stack(self, index): return self.get_range(self._store['terminal'], index - self._stack_size + 1, index + 1) def is_valid_transition(self, index): """Checks if the index contains a valid transition. Checks for collisions with the end of episodes and the current position of the cursor. Args: index: int, the index to the state in the transition. Returns: Is the index valid: Boolean. """ # Check the index is in the valid range if index < 0 or index >= self._replay_capacity: return False if not self.is_full(): # The indices and next_indices must be smaller than the cursor. if index >= self.cursor() - self._update_horizon: return False # The first few indices contain the padding states of the first episode. if index < self._stack_size - 1: return False # Skip transitions that straddle the cursor. if index in set(self.invalid_range): return False # If there are terminal flags in any other frame other than the last one # the stack is not valid, so don't sample it. if self.get_terminal_stack(index)[:-1].any(): return False return True def _create_batch_arrays(self, batch_size): """Create a tuple of arrays with the type of get_transition_elements. When using the WrappedReplayBuffer with staging enabled it is important to create new arrays every sample because StaginArea keeps a pointer to the returned arrays. Args: batch_size: (int) number of transitions returned. If None the default batch_size will be used. Returns: Tuple of np.arrays with the shape and type of get_transition_elements. """ transition_elements = self.get_transition_elements(batch_size) batch_arrays = [] for element in transition_elements: batch_arrays.append(np.empty(element.shape, dtype=element.type)) return tuple(batch_arrays) def sample_index_batch(self, batch_size): """Returns a batch of valid indices sampled uniformly. Args: batch_size: int, number of indices returned. Returns: list of ints, a batch of valid indices sampled uniformly. Raises: RuntimeError: If the batch was not constructed after maximum number of tries. """ if self.is_full(): # add_count >= self._replay_capacity > self._stack_size min_id = self.cursor() - self._replay_capacity + self._stack_size - 1 max_id = self.cursor() - self._update_horizon else: # add_count < self._replay_capacity min_id = self._stack_size - 1 max_id = self.cursor() - self._update_horizon if max_id <= min_id: raise RuntimeError('Cannot sample a batch with fewer than stack size ' '({}) + update_horizon ({}) transitions.'. format(self._stack_size, self._update_horizon)) indices = [] attempt_count = 0 while (len(indices) < batch_size and attempt_count < self._max_sample_attempts): index = np.random.randint(min_id, max_id) % self._replay_capacity if self.is_valid_transition(index): indices.append(index) else: attempt_count += 1 if len(indices) != batch_size: raise RuntimeError( 'Max sample attempts: Tried {} times but only sampled {}' ' valid indices. Batch size is {}'. format(self._max_sample_attempts, len(indices), batch_size)) return indices def sample_transition_batch(self, batch_size=None, indices=None): """Returns a batch of transitions (including any extra contents). If get_transition_elements has been overridden and defines elements not stored in self._store, an empty array will be returned and it will be left to the child class to fill it. For example, for the child class OutOfGraphPrioritizedReplayBuffer, the contents of the sampling_probabilities are stored separately in a sum tree. When the transition is terminal next_state_batch has undefined contents. NOTE: This transition contains the indices of the sampled elements. These are only valid during the call to sample_transition_batch, i.e. they may be used by subclasses of this replay buffer but may point to different data as soon as sampling is done. Args: batch_size: int, number of transitions returned. If None, the default batch_size will be used. indices: None or list of ints, the indices of every transition in the batch. If None, sample the indices uniformly. Returns: transition_batch: tuple of np.arrays with the shape and type as in get_transition_elements(). Raises: ValueError: If an element to be sampled is missing from the replay buffer. """ if batch_size is None: batch_size = self._batch_size if indices is None: indices = self.sample_index_batch(batch_size) assert len(indices) == batch_size transition_elements = self.get_transition_elements(batch_size) batch_arrays = self._create_batch_arrays(batch_size) for batch_element, state_index in enumerate(indices): trajectory_indices = [(state_index + j) % self._replay_capacity for j in range(self._update_horizon)] trajectory_terminals = self._store['terminal'][trajectory_indices] is_terminal_transition = trajectory_terminals.any() if not is_terminal_transition: trajectory_length = self._update_horizon else: # np.argmax of a bool array returns the index of the first True. trajectory_length = np.argmax(trajectory_terminals.astype(np.bool), 0) + 1 next_state_index = state_index + trajectory_length trajectory_discount_vector = ( self._cumulative_discount_vector[:trajectory_length]) trajectory_rewards = self.get_range(self._store['reward'], state_index, next_state_index) # Fill the contents of each array in the sampled batch. assert len(transition_elements) == len(batch_arrays) for element_array, element in zip(batch_arrays, transition_elements): if element.name == 'state': element_array[batch_element] = self.get_observation_stack(state_index) elif element.name == 'reward': # compute the discounted sum of rewards in the trajectory. element_array[batch_element] = np.sum( trajectory_discount_vector * trajectory_rewards, axis=0) elif element.name == 'next_state': element_array[batch_element] = self.get_observation_stack( (next_state_index) % self._replay_capacity) elif element.name in ('next_action', 'next_reward'): element_array[batch_element] = ( self._store[element.name.lstrip('next_')][(next_state_index) % self._replay_capacity]) elif element.name == 'terminal': element_array[batch_element] = is_terminal_transition elif element.name == 'indices': element_array[batch_element] = state_index elif element.name in self._store.keys(): element_array[batch_element] = ( self._store[element.name][state_index]) # We assume the other elements are filled in by the subclass. return batch_arrays def get_transition_elements(self, batch_size=None): """Returns a 'type signature' for sample_transition_batch. Args: batch_size: int, number of transitions returned. If None, the default batch_size will be used. Returns: signature: A namedtuple describing the method's return type signature. """ batch_size = self._batch_size if batch_size is None else batch_size transition_elements = [ ReplayElement('state', (batch_size,) + self._state_shape, self._observation_dtype), ReplayElement('action', (batch_size,) + self._action_shape, self._action_dtype), ReplayElement('reward', (batch_size,) + self._reward_shape, self._reward_dtype), ReplayElement('next_state', (batch_size,) + self._state_shape, self._observation_dtype), ReplayElement('next_action', (batch_size,) + self._action_shape, self._action_dtype), ReplayElement('next_reward', (batch_size,) + self._reward_shape, self._reward_dtype), ReplayElement('terminal', (batch_size,), self._terminal_dtype), ReplayElement('indices', (batch_size,), np.int32) ] for element in self._extra_storage_types: transition_elements.append( ReplayElement(element.name, (batch_size,) + tuple(element.shape), element.type)) return transition_elements def _generate_filename(self, checkpoint_dir, name, suffix): return os.path.join(checkpoint_dir, '{}_ckpt.{}.gz'.format(name, suffix)) def _return_checkpointable_elements(self): """Return the dict of elements of the class for checkpointing. Returns: checkpointable_elements: dict containing all non private (starting with _) members + all the arrays inside self._store. """ checkpointable_elements = {} for member_name, member in self.__dict__.items(): if member_name == '_store': for array_name, array in self._store.items(): checkpointable_elements[STORE_FILENAME_PREFIX + array_name] = array elif not member_name.startswith('_'): checkpointable_elements[member_name] = member return checkpointable_elements def save(self, checkpoint_dir, iteration_number): """Save the OutOfGraphReplayBuffer attributes into a file. This method will save all the replay buffer's state in a single file. Args: checkpoint_dir: str, the directory where numpy checkpoint files should be saved. iteration_number: int, iteration_number to use as a suffix in naming numpy checkpoint files. """ if not tf.gfile.Exists(checkpoint_dir): return checkpointable_elements = self._return_checkpointable_elements() for attr in checkpointable_elements: filename = self._generate_filename(checkpoint_dir, attr, iteration_number) with tf.gfile.Open(filename, 'wb') as f: with gzip.GzipFile(fileobj=f) as outfile: # Checkpoint the np arrays in self._store with np.save instead of # pickling the dictionary is critical for file size and performance. # STORE_FILENAME_PREFIX indicates that the variable is contained in # self._store. if attr.startswith(STORE_FILENAME_PREFIX): array_name = attr[len(STORE_FILENAME_PREFIX):] np.save(outfile, self._store[array_name], allow_pickle=False) # Some numpy arrays might not be part of storage elif isinstance(self.__dict__[attr], np.ndarray): np.save(outfile, self.__dict__[attr], allow_pickle=False) else: pickle.dump(self.__dict__[attr], outfile) # After writing a checkpoint file, we garbage collect the checkpoint file # that is four versions old. stale_iteration_number = iteration_number - CHECKPOINT_DURATION if stale_iteration_number >= 0: stale_filename = self._generate_filename(checkpoint_dir, attr, stale_iteration_number) try: tf.gfile.Remove(stale_filename) except tf.errors.NotFoundError: pass def load(self, checkpoint_dir, suffix): """Restores the object from bundle_dictionary and numpy checkpoints. Args: checkpoint_dir: str, the directory where to read the numpy checkpointed files from. suffix: str, the suffix to use in numpy checkpoint files. Raises: NotFoundError: If not all expected files are found in directory. """ save_elements = self._return_checkpointable_elements() # We will first make sure we have all the necessary files available to avoid # loading a partially-specified (i.e. corrupted) replay buffer. for attr in save_elements: filename = self._generate_filename(checkpoint_dir, attr, suffix) if not tf.gfile.Exists(filename): raise tf.errors.NotFoundError(None, None, 'Missing file: {}'.format(filename)) # If we've reached this point then we have verified that all expected files # are available. for attr in save_elements: filename = self._generate_filename(checkpoint_dir, attr, suffix) with tf.gfile.Open(filename, 'rb') as f: with gzip.GzipFile(fileobj=f) as infile: if attr.startswith(STORE_FILENAME_PREFIX): array_name = attr[len(STORE_FILENAME_PREFIX):] self._store[array_name] = np.load(infile, allow_pickle=False) elif isinstance(self.__dict__[attr], np.ndarray): self.__dict__[attr] = np.load(infile, allow_pickle=False) else: self.__dict__[attr] = pickle.load(infile) @gin.configurable(blacklist=['observation_shape', 'stack_size', 'update_horizon', 'gamma']) class WrappedReplayBuffer(object): """Wrapper of OutOfGraphReplayBuffer with an in graph sampling mechanism. Usage: To add a transition: call the add function. To sample a batch: Construct operations that depend on any of the tensors is the transition dictionary. Every sess.run that requires any of these tensors will sample a new transition. """ def __init__(self, observation_shape, stack_size, use_staging=True, replay_capacity=1000000, batch_size=32, update_horizon=1, gamma=0.99, wrapped_memory=None, max_sample_attempts=1000, extra_storage_types=None, observation_dtype=np.uint8, terminal_dtype=np.uint8, action_shape=(), action_dtype=np.int32, reward_shape=(), reward_dtype=np.float32): """Initializes WrappedReplayBuffer. Args: observation_shape: tuple of ints. stack_size: int, number of frames to use in state stack. use_staging: bool, when True it would use a staging area to prefetch the next sampling batch. replay_capacity: int, number of transitions to keep in memory. batch_size: int. update_horizon: int, length of update ('n' in n-step update). gamma: int, the discount factor. wrapped_memory: The 'inner' memory data structure. If None, it creates the standard DQN replay memory. max_sample_attempts: int, the maximum number of attempts allowed to get a sample. extra_storage_types: list of ReplayElements defining the type of the extra contents that will be stored and returned by sample_transition_batch. observation_dtype: np.dtype, type of the observations. Defaults to np.uint8 for Atari 2600. terminal_dtype: np.dtype, type of the terminals. Defaults to np.uint8 for Atari 2600. action_shape: tuple of ints, the shape for the action vector. Empty tuple means the action is a scalar. action_dtype: np.dtype, type of elements in the action. reward_shape: tuple of ints, the shape of the reward vector. Empty tuple means the reward is a scalar. reward_dtype: np.dtype, type of elements in the reward. Raises: ValueError: If update_horizon is not positive. ValueError: If discount factor is not in [0, 1]. """ if replay_capacity < update_horizon + 1: raise ValueError( 'Update horizon ({}) should be significantly smaller ' 'than replay capacity ({}).'.format(update_horizon, replay_capacity)) if not update_horizon >= 1: raise ValueError('Update horizon must be positive.') if not 0.0 <= gamma <= 1.0: raise ValueError('Discount factor (gamma) must be in [0, 1].') self.batch_size = batch_size # Mainly used to allow subclasses to pass self.memory. if wrapped_memory is not None: self.memory = wrapped_memory else: self.memory = OutOfGraphReplayBuffer( observation_shape, stack_size, replay_capacity, batch_size, update_horizon, gamma, max_sample_attempts, observation_dtype=observation_dtype, terminal_dtype=terminal_dtype, extra_storage_types=extra_storage_types, action_shape=action_shape, action_dtype=action_dtype, reward_shape=reward_shape, reward_dtype=reward_dtype) self.create_sampling_ops(use_staging) def add(self, observation, action, reward, terminal, *args): """Adds a transition to the replay memory. Since the next_observation in the transition will be the observation added next there is no need to pass it. If the replay memory is at capacity the oldest transition will be discarded. Args: observation: np.array with shape observation_shape. action: int, the action in the transition. reward: float, the reward received in the transition. terminal: np.dtype, acts as a boolean indicating whether the transition was terminal (1) or not (0). *args: extra contents with shapes and dtypes according to extra_storage_types. """ self.memory.add(observation, action, reward, terminal, *args) def create_sampling_ops(self, use_staging): """Creates the ops necessary to sample from the replay buffer. Creates the transition dictionary containing the sampling tensors. Args: use_staging: bool, when True it would use a staging area to prefetch the next sampling batch. """ with tf.name_scope('sample_replay'): with tf.device('/cpu:*'): transition_type = self.memory.get_transition_elements() transition_tensors = tf.py_func( self.memory.sample_transition_batch, [], [return_entry.type for return_entry in transition_type], name='replay_sample_py_func') self._set_transition_shape(transition_tensors, transition_type) if use_staging: transition_tensors = self._set_up_staging(transition_tensors) self._set_transition_shape(transition_tensors, transition_type) # Unpack sample transition into member variables. self.unpack_transition(transition_tensors, transition_type) def _set_transition_shape(self, transition, transition_type): """Set shape for each element in the transition. Args: transition: tuple of tf.Tensors. transition_type: tuple of ReplayElements descriving the shapes of the respective tensors. """ for element, element_type in zip(transition, transition_type): element.set_shape(element_type.shape) def _set_up_staging(self, transition): """Sets up staging ops for prefetching the next transition. This allows us to hide the py_func latency. To do so we use a staging area to pre-fetch the next batch of transitions. Args: transition: tuple of tf.Tensors with shape memory.get_transition_elements(). Returns: prefetched_transition: tuple of tf.Tensors with shape memory.get_transition_elements() that have been previously prefetched. """ transition_type = self.memory.get_transition_elements() # Create the staging area in CPU. prefetch_area = contrib_staging.StagingArea( [shape_with_type.type for shape_with_type in transition_type]) # Store prefetch op for tests, but keep it private -- users should not be # calling _prefetch_batch. self._prefetch_batch = prefetch_area.put(transition) initial_prefetch = tf.cond( tf.equal(prefetch_area.size(), 0), lambda: prefetch_area.put(transition), tf.no_op) # Every time a transition is sampled self.prefetch_batch will be # called. If the staging area is empty, two put ops will be called. with tf.control_dependencies([self._prefetch_batch, initial_prefetch]): prefetched_transition = prefetch_area.get() return prefetched_transition def unpack_transition(self, transition_tensors, transition_type): """Unpacks the given transition into member variables. Args: transition_tensors: tuple of tf.Tensors. transition_type: tuple of ReplayElements matching transition_tensors. """ self.transition = collections.OrderedDict() for element, element_type in zip(transition_tensors, transition_type): self.transition[element_type.name] = element # TODO(bellemare): These are legacy and should probably be removed in # future versions. self.states = self.transition['state'] self.actions = self.transition['action'] self.rewards = self.transition['reward'] self.next_states = self.transition['next_state'] self.next_actions = self.transition['next_action'] self.next_rewards = self.transition['next_reward'] self.terminals = self.transition['terminal'] self.indices = self.transition['indices'] def save(self, checkpoint_dir, iteration_number): """Save the underlying replay buffer's contents in a file. Args: checkpoint_dir: str, the directory where to read the numpy checkpointed files from. iteration_number: int, the iteration_number to use as a suffix in naming numpy checkpoint files. """ self.memory.save(checkpoint_dir, iteration_number) def load(self, checkpoint_dir, suffix): """Loads the replay buffer's state from a saved file. Args: checkpoint_dir: str, the directory where to read the numpy checkpointed files from. suffix: str, the suffix to use in numpy checkpoint files. """ self.memory.load(checkpoint_dir, suffix)
the-stack_0_12534
import numpy as np from grabscreen import grab_screen import cv2 import time from getkeys import key_check import os def keys_to_output(keys): ''' Convert keys to a ...multi-hot... array [A,W,D] boolean values. ''' output = [0, 0, 0] if 'A' in keys: output[0] = 1 elif 'D' in keys: output[2] = 1 else: output[1] = 1 return output datafile_name = 'training_data-' datafile_no = 1 extension = '.npy' training_data = [] cwd = os.getcwd() for file_name in os.listdir(cwd): if file_name == (datafile_name + str(datafile_no) + extension): print('{} exists, loading previous data!', file_name) datafile_no += 1 training_data.append(np.load(file_name)) if __name__ == "__main__": for i in list(range(4))[::-1]: print(i + 1) time.sleep(1) paused = False while True: if not paused: # 800x600 windowed mode screen = grab_screen(region=(0, 40, 800, 640)) last_time = time.time() screen = cv2.cvtColor(screen, cv2.COLOR_BGR2GRAY) keys = key_check() output = keys_to_output(keys) cv2.imshow('screen', screen) if cv2.waitKey(25) & 0xFF == ord('q'): cv2.destroyAllWindows() # resize to something a bit more acceptable for a CNN input_screen = cv2.resize(screen, (160, 120)) training_data.append([input_screen, output]) if len(training_data) % 1000 == 0: print(len(training_data)) np.save(datafile_name + str(datafile_no), training_data) datafile_no += 1 keys = key_check() if 'T' in keys: if paused: paused = False print('Resume!') time.sleep(1) else: paused = True print('Paused!') time.sleep(1)
the-stack_0_12535
import json import asyncio import websockets from websockets.http import Headers import asyncclick as click import pprint from .console import console from .settings import get_settings import pkg_resources class WebsocketClient(object): def __init__(self, host: str, token: str, proto: str, api_version: str = "v3.0"): self.host = host self.proto = proto self.api_version = api_version self.websocket = None self.do_listen = True self.token = token self.queue = asyncio.Queue() self._connected = False @property def user_agent(self): return { "user-agent": f"threedi-ws-client/{pkg_resources.get_distribution('threedi_ws_client').version}" } def get_queue(self): return self.queue async def is_connected(self): while self._connected is False: await asyncio.sleep(0.5) async def listen(self, endpoint_uri: str): uri = f"{self.proto}://{self.host}/{self.api_version}/{endpoint_uri}" console.print(f"Trying to connect to {uri} now...") headers = Headers(authorization=f"{self.token}") headers.update(**self.user_agent) sim_time: Optional[int] = None async with websockets.connect(uri, extra_headers=headers) as websocket: console.print(f"Connected to {uri}") self._connected = True async for message in websocket: try: message = json.loads(message) content = message["data"] try: sim_time = content["time"] except (KeyError, TypeError): pass if sim_time is not None: message["sim_time"] = sim_time await self.queue.put(message) except websockets.exceptions.ConnectionClosedOK: self.do_listen = False console.print("Websocket connection closed") async def close(self): self.do_listen = False if self.websocket: await self.websocket.close()
the-stack_0_12536
# # Copyright (C) 2016 UAVCAN Development Team <uavcan.org> # # This software is distributed under the terms of the MIT License. # # Author: Pavel Kirienko <[email protected]> # import time import logging from functools import partial from PyQt5.QtWidgets import QMainWindow, QWidget, QVBoxLayout, QAction from PyQt5.QtCore import QTimer, Qt from PyQt5.QtGui import QKeySequence from .. import get_app_icon, get_icon from .plot_areas import PLOT_AREAS from .plot_container import PlotContainerWidget logger = logging.getLogger(__name__) class PlotterWindow(QMainWindow): def __init__(self, get_transfer_callback): super(PlotterWindow, self).__init__() self.setWindowTitle('UAVCAN Plotter') self.setWindowIcon(get_app_icon()) self._active_data_types = set() self._get_transfer = get_transfer_callback self._update_timer = QTimer(self) self._update_timer.setSingleShot(False) self._update_timer.timeout.connect(self._update) self._update_timer.start(50) self._base_time = time.monotonic() self._plot_containers = [] # # Control menu # control_menu = self.menuBar().addMenu('&Control') self._stop_action = QAction(get_icon('stop'), '&Stop Updates', self) self._stop_action.setStatusTip('While stopped, all new data will be discarded') self._stop_action.setShortcut(QKeySequence('Ctrl+Shift+S')) self._stop_action.setCheckable(True) self._stop_action.toggled.connect(self._on_stop_toggled) control_menu.addAction(self._stop_action) self._pause_action = QAction(get_icon('pause'), '&Pause Updates', self) self._pause_action.setStatusTip('While paused, new data will be accumulated in memory ' 'to be processed once un-paused') self._pause_action.setShortcut(QKeySequence('Ctrl+Shift+P')) self._pause_action.setCheckable(True) self._pause_action.toggled.connect(self._on_pause_toggled) control_menu.addAction(self._pause_action) control_menu.addSeparator() self._reset_time_action = QAction(get_icon('history'), '&Reset', self) self._reset_time_action.setStatusTip('Base time will be reset; all plots will be reset') self._reset_time_action.setShortcut(QKeySequence('Ctrl+Shift+R')) self._reset_time_action.triggered.connect(self._do_reset) control_menu.addAction(self._reset_time_action) # # New Plot menu # plot_menu = self.menuBar().addMenu('&New Plot') for idx, pl_name in enumerate(PLOT_AREAS.keys()): new_plot_action = QAction('Add ' + pl_name, self) new_plot_action.setStatusTip('Add new plot window') new_plot_action.setShortcut(QKeySequence('Ctrl+Alt+' + str(idx))) new_plot_action.triggered.connect(partial(self._do_add_new_plot, pl_name)) plot_menu.addAction(new_plot_action) # # Window stuff # self.statusBar().showMessage('Use the "New Plot" menu to add plots') self.setCentralWidget(None) self.resize(600, 400) def _on_stop_toggled(self, checked): self._pause_action.setChecked(False) self.statusBar().showMessage('Stopped' if checked else 'Un-stopped') def _on_pause_toggled(self, checked): self.statusBar().showMessage('Paused' if checked else 'Un-paused') def _do_add_new_plot(self, plot_area_name): def remove(): self._plot_containers.remove(plc) plc = PlotContainerWidget(self, PLOT_AREAS[plot_area_name], self._active_data_types) plc.on_close = remove self._plot_containers.append(plc) docks = [ Qt.LeftDockWidgetArea, Qt.LeftDockWidgetArea, Qt.RightDockWidgetArea, Qt.RightDockWidgetArea, ] dock_to = docks[(len(self._plot_containers) - 1) % len(docks)] self.addDockWidget(dock_to, plc) if len(self._plot_containers) > 1: self.statusBar().showMessage('Drag plots by the header to rearrange or detach them') def _do_reset(self): self._base_time = time.monotonic() for plc in self._plot_containers: try: plc.reset() except Exception: logger.error('Failed to reset plot container', exc_info=True) logger.info('Reset done, new time base %r', self._base_time) def _update(self): if self._stop_action.isChecked(): while self._get_transfer() is not None: # Discarding everything pass return if not self._pause_action.isChecked(): while True: tr = self._get_transfer() if not tr: break self._active_data_types.add(tr.data_type_name) for plc in self._plot_containers: try: plc.process_transfer(tr.ts_mono - self._base_time, tr) except Exception: logger.error('Plot container failed to process a transfer', exc_info=True) for plc in self._plot_containers: try: plc.update() except Exception: logger.error('Plot container failed to update', exc_info=True)
the-stack_0_12537
import datetime import os import shutil import sys import tempfile from invoke import task from invoke.exceptions import Exit from .build_tags import get_default_build_tags from .utils import ( REPO_PATH, bin_name, get_build_flags, get_git_branch_name, get_git_commit, get_go_version, get_version, get_version_numeric_only, ) BIN_DIR = os.path.join(".", "bin", "process-agent") BIN_PATH = os.path.join(BIN_DIR, bin_name("process-agent", android=False)) GIMME_ENV_VARS = ['GOROOT', 'PATH'] @task def build( ctx, race=False, go_version=None, incremental_build=False, major_version='7', python_runtimes='3', arch="x64", go_mod="vendor", ): """ Build the process agent """ ldflags, gcflags, env = get_build_flags( ctx, arch=arch, major_version=major_version, python_runtimes=python_runtimes ) # generate windows resources if sys.platform == 'win32': windres_target = "pe-x86-64" if arch == "x86": env["GOARCH"] = "386" windres_target = "pe-i386" ver = get_version_numeric_only(ctx, env, major_version=major_version) maj_ver, min_ver, patch_ver = ver.split(".") resdir = os.path.join(".", "cmd", "process-agent", "windows_resources") ctx.run( "windmc --target {target_arch} -r {resdir} {resdir}/process-agent-msg.mc".format( resdir=resdir, target_arch=windres_target ) ) ctx.run( "windres --define MAJ_VER={maj_ver} --define MIN_VER={min_ver} --define PATCH_VER={patch_ver} -i cmd/process-agent/windows_resources/process-agent.rc --target {target_arch} -O coff -o cmd/process-agent/rsrc.syso".format( maj_ver=maj_ver, min_ver=min_ver, patch_ver=patch_ver, target_arch=windres_target ) ) # TODO use pkg/version for this main = "main." ld_vars = { "Version": get_version(ctx, major_version=major_version), "GoVersion": get_go_version(), "GitBranch": get_git_branch_name(), "GitCommit": get_git_commit(), "BuildDate": datetime.datetime.now().strftime("%Y-%m-%dT%H:%M:%S"), } goenv = {} if go_version: lines = ctx.run("gimme {version}".format(version=go_version)).stdout.split("\n") for line in lines: for env_var in GIMME_ENV_VARS: if env_var in line: goenv[env_var] = line[line.find(env_var) + len(env_var) + 1 : -1].strip('\'\"') ld_vars["GoVersion"] = go_version # extend PATH from gimme with the one from get_build_flags if "PATH" in os.environ and "PATH" in goenv: goenv["PATH"] += ":" + os.environ["PATH"] env.update(goenv) ldflags += ' '.join(["-X '{name}={value}'".format(name=main + key, value=value) for key, value in ld_vars.items()]) build_tags = get_default_build_tags(build="process-agent", arch=arch) ## secrets is not supported on windows because the process agent still runs as ## root. No matter what `get_default_build_tags()` returns, take secrets out. if sys.platform == 'win32' and "secrets" in build_tags: build_tags.remove("secrets") # TODO static option cmd = 'go build -mod={go_mod} {race_opt} {build_type} -tags "{go_build_tags}" ' cmd += '-o {agent_bin} -gcflags="{gcflags}" -ldflags="{ldflags}" {REPO_PATH}/cmd/process-agent' args = { "go_mod": go_mod, "race_opt": "-race" if race else "", "build_type": "" if incremental_build else "-a", "go_build_tags": " ".join(build_tags), "agent_bin": BIN_PATH, "gcflags": gcflags, "ldflags": ldflags, "REPO_PATH": REPO_PATH, } ctx.run(cmd.format(**args), env=env) @task def build_dev_image(ctx, image=None, push=False, base_image="datadog/agent:latest"): """ Build a dev image of the process-agent based off an existing datadog-agent image image: the image name used to tag the image push: if true, run a docker push on the image base_image: base the docker image off this already build image (default: datadog/agent:latest) """ if image is None: raise Exit(message="image was not specified") with TempDir() as docker_context: ctx.run("cp tools/ebpf/Dockerfiles/Dockerfile-process-agent-dev {to}".format(to=docker_context + "/Dockerfile")) ctx.run("cp bin/process-agent/process-agent {to}".format(to=docker_context + "/process-agent")) ctx.run("cp bin/system-probe/system-probe {to}".format(to=docker_context + "/system-probe")) ctx.run("cp pkg/ebpf/bytecode/build/*.o {to}".format(to=docker_context)) with ctx.cd(docker_context): ctx.run( "docker build --tag {image} --build-arg AGENT_BASE={base_image} .".format( image=image, base_image=base_image ) ) if push: ctx.run("docker push {image}".format(image=image)) class TempDir: def __enter__(self): self.fname = tempfile.mkdtemp() print("created tempdir: {name}".format(name=self.fname)) return self.fname def __exit__(self, exception_type, exception_value, traceback): print("deleting tempdir: {name}".format(name=self.fname)) shutil.rmtree(self.fname)
the-stack_0_12539
#!/usr/bin/env python3 """ This module is used to dump out the SQL/DDL that was used to create any object (of any type). End users typically will not use this module directly. Instead, they will use wrapper scripts that utilize this module. These include - yb_ddl_table.py - yb_ddl_view.py - yb_ddl_sequence.py """ import os import re import sys import copy # fix for deepcopy in python 2.7 copy._deepcopy_dispatch[type(re.compile(''))] = lambda r, _: r from yb_common import Common, Text, Util from yb_get_table_names import get_table_names from yb_get_view_names import get_view_names from yb_get_sequence_names import get_sequence_names class ddl_object(Util): """Issue the command used to dump out the SQL/DDL that was used to create a given object. """ stored_proc_describe_query = """WITH stored_proc_describe AS ( SELECT ROW_NUMBER() OVER (ORDER BY LOWER(n.nspname), LOWER(p.proname)) AS ordinal , n.nspname AS schema , p.proname AS stored_proc , pg_catalog.pg_get_userbyid(p.proowner) AS owner , pg_catalog.pg_get_functiondef(p.oid) AS raw_ddl , CASE WHEN p.proisagg THEN 'agg' WHEN p.proiswindow THEN 'window' WHEN p.prosp THEN 'stored procedure' WHEN p.prorettype = 'pg_catalog.trigger'::pg_catalog.regtype THEN 'trigger' ELSE 'normal' END AS type , '-- Schema: ' || schema || CHR(10) || 'CREATE PROCEDURE ' || stored_proc || REPLACE(REGEXP_REPLACE(raw_ddl, '[^(]*', ''), '$function$', '$CODE$') AS ddl FROM {database}.pg_catalog.pg_proc AS p LEFT JOIN {database}.pg_catalog.pg_namespace AS n ON n.oid = p.pronamespace WHERE n.nspname NOT IN ('sys', 'pg_catalog', 'information_schema') AND type = 'stored procedure' AND {filter_clause} ) SELECT DECODE(ordinal, 1, '', ', ') || '{{' || '"ordinal": ' || ordinal::VARCHAR || '' || ',"owner":""\" ' || owner || ' ""\"' || ',"database":""\" ' || '{database}' || ' ""\"' || ',"schema":""\" ' || schema || ' ""\"' || ',"stored_proc":""\" ' || stored_proc || ' ""\"' || ',"ddl":""\" ' || ddl || ' ""\"' || '}}' AS data FROM stored_proc_describe ORDER BY LOWER(schema), LOWER(stored_proc) """ config = { 'optional_args_single': ['database'] , 'output_tmplt_default': '{ddl}{^M}' } def init_config(self, object_type): """Initialize config dict. """ cmd_line_args = { 'sequence' : "@$HOME/conn.args --current_schema dev --sequence_like '%id%' --" , 'stored_proc' : "@$HOME/conn.args --current_schema dev --stored_proc_like '%id%' --" , 'table' : "@$HOME/conn.args --current_schema dev --table_like 'sale_%' --" , 'view' : "@$HOME/conn.args --schema_in dev Prod --with_db --view_like '%sale%' --" } self.config['description'] = ('Return the {type}/s DDL for the requested' ' database. Use {type} filters to limit the set' ' of tables returned.').format(type = object_type) self.config['optional_args_multi'] = ['owner', 'schema', object_type] self.config['usage_example'] = { 'cmd_line_args': cmd_line_args[object_type] , 'file_args': [Util.conn_args_file] } self.config['output_tmplt_vars'] = [] if object_type == 'table': self.config['output_tmplt_vars'].append('rowcount') self.config['output_tmplt_vars'].extend(['%s_path' % object_type , 'schema_path', 'ddl', 'ordinal' , object_type, 'schema', 'database', 'owner']) self.object_type = object_type def init(self, object_type, db_conn=None, args_handler=None): """Initialize ddl_object class. This initialization performs argument parsing and login verification. It also provides access to functions such as logging and command execution. """ self.init_config(object_type) self.init_default(db_conn, args_handler) def additional_args(self): args_ddl_grp = self.args_handler.args_parser.add_argument_group('optional DDL arguments') args_ddl_grp.add_argument("--with_schema" , action='store_true', help="add the schema name to the %s DDL" % self.object_type) args_ddl_grp.add_argument("--with_db" , action='store_true', help="add the database name to the %s DDL" % self.object_type) args_ddl_grp.add_argument("--schema_name" , help="set a new schema name to the %s DDL" % self.object_type) args_ddl_grp.add_argument("--db_name" , help="set a new database name to the %s DDL" % self.object_type) if self.object_type in ('stored_proc', 'view'): args_ddl_grp.add_argument("--or_replace" , action="store_true", help="add the 'OR REPLACE' clause to the %s DDL" % self.object_type) def additional_args_process(self): if self.args_handler.args.schema_name: self.args_handler.args.with_schema = True if self.args_handler.args.db_name: self.args_handler.args.with_db = True def execute(self): describe_sql = self.get_describe_sql() output = self.exec_query_and_apply_template(describe_sql) if output != '': output = self.ddl_modifications( output, self.args_handler.args) if self.args_handler.args.exec_output: self.cmd_result = self.db_conn.ybsql_query(output) self.cmd_result.on_error_exit() output = self.cmd_result.stdout return output def object_meta_data_to_ybsql_py_dict(self, meta_data): # 'object_path|ordinal|owner|database|schema|object' ybsql_py_key_values = [] ybsql_py_key_values.append(self.sql_to_ybsql_py_key_value('ddl' , 'DESCRIBE %s ONLY DDL;' % meta_data[0] ) ) if (self.object_type == 'table' and re.search(r'\{rowcount[\}\:]', self.args_handler.args.template) ): ybsql_py_key_values.append(self.sql_to_ybsql_py_key_value('rowcount' , 'SELECT COUNT(*) FROM %s;' % meta_data[0] ) ) ybsql_py_key_values.extend( self.dict_to_ybsql_py_key_values( { 'ordinal': meta_data[1] , 'owner': meta_data[2] , 'database': meta_data[3] , 'schema': meta_data[4] , self.object_type: meta_data[5] } ) ) py_dict = self.ybsql_py_key_values_to_py_dict(ybsql_py_key_values) return py_dict def get_describe_sql(self): """Build up SQL DESCRIBE statement/s. :return: A string containing the SQL DESCRIBE statement """ if self.object_type == 'stored_proc': self.db_filter_args.schema_set_all_if_none() filter_clause = self.db_filter_args.build_sql_filter( {'schema':'schema', 'stored_proc':'stored_proc', 'owner':'owner'} ) describe_sql = ddl_object.stored_proc_describe_query.format( filter_clause = filter_clause , database = self.db_conn.database) else: args_handler = copy.deepcopy(self.args_handler) args_handler.args.exec_output = False args_handler.args.template = ('{%s_path}|{ordinal}|{owner}|{database}|{schema}|{%s}' % (self.object_type, self.object_type)) code = ('get_{object_type}_names' '(db_conn=self.db_conn, args_handler=args_handler)').format( object_type=self.object_type) gons = eval(code) object_meta_data_rows = gons.execute() describe_objects = [] if object_meta_data_rows.strip() != '': for object_meta_data in object_meta_data_rows.strip().split('\n'): describe_clause = self.object_meta_data_to_ybsql_py_dict(object_meta_data.split('|')) describe_objects.append(describe_clause) describe_sql = '\echo ,\n'.join(describe_objects) return describe_sql def ddl_modifications(self, ddl, args): """ Modify a given DDL statement by optionally adding db/schema name to a CREATE statement and transforming all SQL reserved words to uppercase. :param ddl: The DDL statement to modify :param args: The command line args after being processed :return: A string containing the modified DDL statement """ new_ddl = [] ddl_schema = '' for line in ddl.split('\n'): token = line.split(':') if token[0] == '-- Schema': ddl_schema = token[1].strip() #add schema and database to object name and quote name where needed matches = re.match(r"\s*CREATE\s*([^\s]*)\s*([^\s(]*)(.*)" , line, re.MULTILINE) if matches: tablepath = matches.group(2) if args.with_schema or args.with_db: tablepath = ( ( args.schema_name if args.schema_name else ddl_schema) + '.' + tablepath ) if args.with_db: tablepath = ( ( args.db_name if args.db_name else self.db_conn.database) + '.' + tablepath ) tablepath = Common.quote_object_paths(tablepath) line = 'CREATE %s %s%s' % (matches.group(1), tablepath, matches.group(3)) #change all data type key words to upper case d_types = [ 'bigint', 'integer', 'smallint', 'numeric', 'real' , 'double precision', 'uuid', 'character varying', 'character' , 'date', 'time without time zone' , 'timestamp without time zone', 'timestamp with time zone' , 'ipv4', 'ipv6', 'macaddr', 'macaddr8' , 'boolean' ] for data_type in d_types: line = re.sub(r"( )" + data_type + r"(,?$|\()", r"\1%s\2" % data_type.upper(), line) new_ddl.append(line) new_ddl = '\n'.join(new_ddl).strip() + '\n' if self.object_type in('stored_proc', 'view') and self.args_handler.args.or_replace: typ = {'view':'VIEW','stored_proc':'PROCEDURE'}[self.object_type] new_ddl = new_ddl.replace('CREATE %s'%typ, 'CREATE OR REPLACE %s'%typ) #remove DDL comments at the beginning of each object definition new_ddl = re.sub(r"--( |-).*?\n", "", new_ddl) #correct trailing ';' at end of each definition to be consistent new_ddl = re.sub(r"(\s*);", ";", new_ddl) return new_ddl def main(util_name): ddlo = ddl_object(util_name=util_name, init_default=False) ddlo.init(object_type=util_name[4:]) print(ddlo.execute()) exit(ddlo.cmd_result.exit_code)
the-stack_0_12541
""" create_label_files.py --------------- This script produces: 1. Reorient the processed registered_scene mesh in a mesh with an AABB centered at the origin and the same dimensions as the OBB, saved under the name foldername.ply 2. Create label files with class labels and projections of 3D BBs in the format singleshotpose requires, saved under labels 3. Create pixel-wise masks, saved under mask 4. Save the homogeneous transform of object in regards to the foldername.ply in each frame """ import numpy as np from pykdtree.kdtree import KDTree import trimesh import cv2 import glob import os import sys from tqdm import trange from scipy.optimize import minimize from config.registrationParameters import * import json def get_camera_intrinsic(folder): with open(folder+'intrinsics.json', 'r') as f: camera_intrinsics = json.load(f) K = np.zeros((3, 3), dtype='float64') K[0, 0], K[0, 2] = float(camera_intrinsics['fx']), float(camera_intrinsics['ppx']) K[1, 1], K[1, 2] = float(camera_intrinsics['fy']), float(camera_intrinsics['ppy']) K[2, 2] = 1. return (camera_intrinsics, K) def compute_projection(points_3D,internal_calibration): points_3D = points_3D.T projections_2d = np.zeros((2, points_3D.shape[1]), dtype='float32') camera_projection = (internal_calibration).dot(points_3D) projections_2d[0, :] = camera_projection[0, :]/camera_projection[2, :] projections_2d[1, :] = camera_projection[1, :]/camera_projection[2, :] return projections_2d def print_usage(): print("Usage: create_label_files.py <path>") print("path: all or name of the folder") print("e.g., create_label_files.py all, create_label_files.py LINEMOD/Cheezit") if __name__ == "__main__": try: if sys.argv[1] == "all": folders = glob.glob("LINEMOD/*/") elif sys.argv[1]+"/" in glob.glob("LINEMOD/*/"): folders = [sys.argv[1]+"/"] else: print_usage() exit() except: print_usage() exit() for classlabel,folder in enumerate(folders): # print(folder[8:-1], "is assigned class label:", classlabel) print("%s is assigned class label %d." % (folder[8:-1],classlabel)) camera_intrinsics, K = get_camera_intrinsic(folder) path_label = folder + "labels" if not os.path.exists(path_label): os.makedirs(path_label) path_mask = folder + "mask" if not os.path.exists(path_mask): os.makedirs(path_mask) path_transforms = folder + "transforms" if not os.path.exists(path_transforms): os.makedirs(path_transforms) transforms_file = folder + 'transforms.npy' try: transforms = np.load(transforms_file) except: print("transforms not computed, run compute_gt_poses.py first") continue mesh = trimesh.load(folder + "registeredScene.ply") Tform = mesh.apply_obb() mesh.export(file_obj = folder + folder[8:-1] +".ply") points = mesh.bounding_box.vertices center = mesh.centroid min_x = np.min(points[:,0]) min_y = np.min(points[:,1]) min_z = np.min(points[:,2]) max_x = np.max(points[:,0]) max_y = np.max(points[:,1]) max_z = np.max(points[:,2]) points = np.array([[min_x, min_y, min_z], [min_x, min_y, max_z], [min_x, max_y, min_z], [min_x, max_y, max_z], [max_x, min_y, min_z], [max_x, min_y, max_z], [max_x, max_y, min_z], [max_x, max_y, max_z]]) points_original = np.concatenate((np.array([[center[0],center[1],center[2]]]), points)) points_original = trimesh.transformations.transform_points(points_original, np.linalg.inv(Tform)) projections = [[],[]] for i in trange(len(transforms)): mesh_copy = mesh.copy() img = cv2.imread(folder+"JPEGImages/" + str(i*LABEL_INTERVAL) + ".jpg") transform = np.linalg.inv(transforms[i]) transformed = trimesh.transformations.transform_points(points_original, transform) corners = compute_projection(transformed,K) corners = corners.T corners[:,0] = corners[:,0]/int(camera_intrinsics['width']) corners[:,1] = corners[:,1]/int(camera_intrinsics['height']) T = np.dot(transform, np.linalg.inv(Tform)) mesh_copy.apply_transform(T) filename = path_transforms + "/"+ str(i*LABEL_INTERVAL)+".npy" np.save(filename, T) sample_points = mesh_copy.sample(10000) masks = compute_projection(sample_points,K) masks = masks.T min_x = np.min(masks[:,0]) min_y = np.min(masks[:,1]) max_x = np.max(masks[:,0]) max_y = np.max(masks[:,1]) image_mask = np.zeros(img.shape[:2],dtype = np.uint8) for pixel in masks: cv2.circle(image_mask,(int(pixel[0]),int(pixel[1])), 5, 255, -1) thresh = cv2.threshold(image_mask, 30, 255, cv2.THRESH_BINARY)[1] _, contours, _ = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) cnt = max(contours, key=cv2.contourArea) image_mask = np.zeros(img.shape[:2],dtype = np.uint8) cv2.drawContours(image_mask, [cnt], -1, 255, -1) mask_path = path_mask+"/"+ str(i*LABEL_INTERVAL)+".png" cv2.imwrite(mask_path, image_mask) file = open(path_label+"/"+ str(i*LABEL_INTERVAL)+".txt","w") message = str(classlabel)[:8] + " " file.write(message) for pixel in corners: for digit in pixel: message = str(digit)[:8] + " " file.write(message) message = str((max_x-min_x)/float(camera_intrinsics['width']))[:8] + " " file.write(message) message = str((max_y-min_y)/float(camera_intrinsics['height']))[:8] file.write(message) file.close()
the-stack_0_12543
from __future__ import print_function, division import numpy as np from PyAstronomy.pyaC import pyaErrors as PE import six.moves as smo def expCorrRN(n, tau, mean=0.0, std=1.0, rnos=None, fullOut=False): """ Generate exponentially correlated random numbers. This procedure implements the prescription given by Deserno 2002 ("How to generate exponentially correlated Gaussian random numbers"). The autocorrelation function of the resulting numbers decays with the predefined "decay time", tau. The correlation coefficient of the resulting numbers is given by exp(-1/tau). Parameters ---------- n : int Number of numbers to be generated. tau : float Decay time mean : float, optional Mean of the numbers to be generated. Default is 0.0. std : float, optional Standard deviation of the generated numbers. Default is 1.0. rnos : array, optional Uncorrelated Gaussian random numbers with mean 0.0 and standard deviation 1.0 to be used to generate correlated random numbers. If not given, Gaussian random numbers will be obtained using numpy.random.normal. fullOut : boolean, optional If False (default), only the correlated random numbers will be returned. Returns ------- Correlated RNs : array Correlated Gaussian random numbers. Uncorrelated RNs : array, optional The uncorrelated random numbers used to generate the correlated numbers (only of `fullOut` is True). Correlation coefficient : float The correlation coefficient (exp(-1/tau), only of `fullOut` is True). """ if rnos is None: # Get n uniformly distributed random numbers between 0 and 1 g = np.random.normal(0.0, 1.0, n) else: g = rnos if len(g) != n: raise(PE.PyAValError("The length of `rnos` must be n.", where="expCorrRN", solution=["Adjust `rnos`.", \ "Remove rnos argument to use internally generated Gaussian random numbers."])) # Prepare result result = np.zeros(n) result[0] = g[0] # Correlation coefficient f = np.exp(-1.0/tau) # Obtain correlated numbers somf = np.sqrt(1.0 - f**2) for i in smo.range(1,n): result[i] = f*result[i-1] + somf*g[i] result = mean + std*result if fullOut: return result, g, f return result
the-stack_0_12544
#import xppcall as pxc from xppcall import xpprun,read_pars_values_from_file,read_init_values_from_file import matplotlib.gridspec as gridspec import matplotlib.pyplot as plt import numpy as np def get_tone_evoked_FR(t,u,v1,v2,tonelist): """ brute force method for extracting peaks following tone-evoked activity. loop over each tone-evoked time frame. """ maxes_u = np.zeros((len(tonelist),2)) maxes_v1 = np.zeros((len(tonelist),2)) maxes_v2 = np.zeros((len(tonelist),2)) i = 0 for toneOn,toneOff in tonelist: # get start/end time index idx_start = np.argmin(np.abs(t-toneOn))+1 idx_end = np.argmin(np.abs(t-toneOff))-1 #print idx_start,idx_end,toneOn,toneOff utemp = u[idx_start:idx_end] v1temp = v1[idx_start:idx_end] v2temp = v2[idx_start:idx_end] ttemp = t[idx_start:idx_end] # https://stackoverflow.com/questions/4624970/finding-local-maxima-minima-with-numpy-in-a-1d-numpy-array maxes_utemp = np.r_[True, utemp[1:] > utemp[:-1]] & np.r_[utemp[:-1] > utemp[1:], True] maxes_v1temp = np.r_[True, v1temp[1:] > v1temp[:-1]] & np.r_[v1temp[:-1] > v1temp[1:], True] maxes_v2temp = np.r_[True, v2temp[1:] > v2temp[:-1]] & np.r_[v2temp[:-1] > v2temp[1:], True] if False: fig = plt.figure() ax = fig.add_subplot(111) ax.plot(ttemp,utemp) ax.plot(ttemp,v1temp) ax.plot(ttemp,v2temp) ax.scatter(ttemp[maxes_utemp],utemp[maxes_utemp]) ax.scatter(ttemp[maxes_v1temp],v1temp[maxes_v1temp]) ax.scatter(ttemp[maxes_v2temp],v2temp[maxes_v2temp]) plt.show() #assert(np.sum(maxes_utemp)==1) #assert(np.sum(maxes_v1temp)==1) #assert(np.sum(maxes_v2temp)==1) # take the first max for now. #print ttemp,maxes_utemp,np.shape(ttemp),np.shape(maxes_utemp) if np.sum(ttemp[maxes_utemp]) > 1: maxes_u[i,:] = [ttemp[maxes_utemp][0],utemp[maxes_utemp][0]] elif np.sum(ttemp[maxes_utemp]) < 1: pass else: maxes_u[i,:] = [ttemp[maxes_utemp],utemp[maxes_utemp]] if np.sum(ttemp[maxes_v1temp]) > 1: maxes_v1[i,:] = [ttemp[maxes_v1temp][0],v1temp[maxes_v1temp][0]] elif np.sum(ttemp[maxes_v1temp]) < 1: pass else: maxes_v1[i,:] = [ttemp[maxes_v1temp],v1temp[maxes_v1temp]] if np.sum(ttemp[maxes_v2temp]) > 1: maxes_v2[i,:] = [ttemp[maxes_v2temp][0],v2temp[maxes_v2temp][0]] elif np.sum(ttemp[maxes_v2temp]) < 1: pass else: print [ttemp[maxes_v2temp],v2temp[maxes_v2temp]] maxes_v2[i,:] = [ttemp[maxes_v2temp],v2temp[maxes_v2temp]] i += 1 #print maxes_u,np.shape(maxes_u) return maxes_u,maxes_v1,maxes_v2 #print maxes_u #print maxes_v1 #print maxes_v2 def run_experiment(fname,pars,inits,return_all=False): npa, vn = xpprun(fname, xppname='xppaut', inits=inits, parameters=pars, clean_after=True) t = npa[:,0] sv = npa[:,1:] total_time = t[-1] u = sv[:,vn.index('u')] v1 = sv[:,vn.index('v1')] v2 = sv[:,vn.index('v2')] ia = sv[:,vn.index('ia')] g = sv[:,vn.index('g')] if return_all: tonelist = [(float(pars['tone1on']),float(pars['tone1off'])), (float(pars['tone2on']),float(pars['tone2off'])), (float(pars['tone3on']),float(pars['tone3off'])), (float(pars['tone4on']),float(pars['tone4off'])), (float(pars['tone5on']),float(pars['tone5off'])) ] # implement parameter return dict. return {'t':t,'u':u,'v1':v1,'v2':v2,'inits':inits,'parameters':pars,'tonelist':tonelist,'sv':sv,'vn':vn,'ia':ia,'g':g} else: return {'t':t,'u':u,'v1':v1,'v2':v2} def main(): fname = 'xpp/natan2015_simple_linear.ode' pars = read_pars_values_from_file(fname) inits = read_init_values_from_file(fname) #pars['taud2']=7 # Pyr input weights #pars['aee']=1.5 #pars['aie1']=1 # PV to pyr weight #pars['aie2']=1 # SOM to pyr weight #pars['aei1']=3;pars['aii1']=1;pars['asom2pv']=1 # pv input weights #pars['aei2']=5;pars['aii2']=2;pars['apv2som']=1 # som input weights #pars['taud1s2p']=200;pars['tads2p']=5 # som->pn depression #pars['taud1s2v']=150;pars['tads2v']=5 # som->pv depression # returns tuple (t,u,v1,v2,inits,parameters,tonelist) control = run_experiment( fname, pars,inits, return_all=True) pars['pv_offall']=2 pv_off = run_experiment( fname, pars,inits, return_all=True) pars['pv_offall']=0 pars['som_offall']=1 som_off = run_experiment( fname, pars,inits, return_all=True) maxes_u_control,maxes_v1_control,maxes_v2_control = get_tone_evoked_FR( control['t'], control['u'], control['v1'], control['v2'], control['tonelist']) maxes_u_pv_off,maxes_v1_pv_off,maxes_v2_pv_off = get_tone_evoked_FR( pv_off['t'], pv_off['u'], pv_off['v1'], pv_off['v2'], pv_off['tonelist']) maxes_u_som_off,maxes_v1_som_off,maxes_v2_som_off = get_tone_evoked_FR( som_off['t'], som_off['u'], som_off['v1'], som_off['v2'], som_off['tonelist']) gs = gridspec.GridSpec(3, 3) ax11 = plt.subplot(gs[0, 0]) ax11.set_title('control') ax11.plot(control['t'],control['u'],label='pyr',color='blue') ax11.plot(control['t'],control['v1'],label='PV',color='green') ax11.plot(control['t'],control['v2'],label='SOM',color='red') # plot detected peaks ax11.scatter(maxes_u_control[:,0],maxes_u_control[:,1],color='blue') ax11.legend() ax21 = plt.subplot(gs[1,0]) ax21.set_title('PV off') ax21.plot(pv_off['t'],pv_off['u'],label='pyr',color='blue') ax21.plot(pv_off['t'],pv_off['v1'],label='PV',color='green') ax21.plot(pv_off['t'],pv_off['v2'],label='SOM',color='red') ax21.scatter(maxes_u_pv_off[:,0],maxes_u_pv_off[:,1],color='blue') ax31 = plt.subplot(gs[2,0]) ax31.set_title('SOM off') ax31.plot(som_off['t'],som_off['u'],label='pyr',color='blue') ax31.plot(som_off['t'],som_off['v1'],label='PV',color='green') ax31.plot(som_off['t'],som_off['v2'],label='SOM',color='red') ax31.scatter(maxes_u_som_off[:,0],maxes_u_som_off[:,1],color='blue') # plot relative firing rates ax12 = plt.subplot(gs[:,1]) tone_number = np.array([0,1,2,3,4]) adapted_fr = maxes_u_control[-1,1] bar_width = 0.2 ax12.set_title('Mean FR') ax12.bar(tone_number,maxes_u_control[:,1]/adapted_fr,width=bar_width,label='control',color='blue') ax12.bar(tone_number+bar_width,maxes_u_pv_off[:,1]/adapted_fr,width=bar_width,label='pv_off',color='green') ax12.bar(tone_number+2*bar_width,maxes_u_som_off[:,1]/adapted_fr,width=bar_width,label='som_off',color='red') ax12.plot([0,4],[1,1],ls='--',color='gray') ax12.legend() plt.tight_layout() # plot diff in firing rates ax13 = plt.subplot(gs[:,2]) ax13.set_title('Diff from Control') ax13.bar(tone_number,np.abs(maxes_u_control[:,1]-maxes_u_pv_off[:,1])/adapted_fr,width=bar_width,label='control-pv_off',color='green') ax13.bar(tone_number+bar_width,np.abs(maxes_u_control[:,1]-maxes_u_som_off[:,1])/adapted_fr,width=bar_width,label='control-som_off',color='red') #ax13.plot([0,4],[1,1],ls='--',color='gray') ax13.legend() # plot synapses if False: sv = control['sv'] vn = control['vn'] aie2 = float(control['parameters']['aie2']) # som to pn asom2pv = float(control['parameters']['asom2pv']) # som to pv ws2p = sv[:,vn.index('ws2p')] # som to pn ws2v = sv[:,vn.index('ws2v')] # som to pv fig2 = plt.figure() ax2 = fig2.add_subplot(111) ax2.plot(control['t'],aie2*ws2p,label='som to pn') ax2.plot(control['t'],asom2pv*ws2v,label='som to pv') plt.show() if __name__ == "__main__": main()
the-stack_0_12546
#!/usr/bin/env python3 """Cyberjunky's 3Commas bot helpers.""" import argparse import configparser import json import os import ssl import sys import time import uuid from pathlib import Path from aiohttp import web from helpers.logging import Logger, NotificationHandler from helpers.misc import format_pair from helpers.threecommas import ( close_threecommas_deal, control_threecommas_bots, get_threecommas_account_marketcode, get_threecommas_deals, init_threecommas_api, load_blacklist, trigger_threecommas_bot_deal, ) def load_config(): """Create default or load existing config file.""" cfg = configparser.ConfigParser(allow_no_value=True) if cfg.read(f"{datadir}/{program}.ini"): return cfg cfg["settings"] = { "timezone": "Europe/Amsterdam", "debug": False, "logrotate": 7, "3c-apikey": "Your 3Commas API Key", "3c-apisecret": "Your 3Commas API Secret", "notifications": False, "notify-urls": ["notify-url1"], } cfg["webserver"] = { "baseurl": uuid.uuid4(), "port": 8090, "; Use ssl certificates when connected to the internet!": None, "ssl": False, "certfile": "Full path to your fullchain.pem", "privkey": "Full path to your privkey.pem", } cfg[f"webhook_{uuid.uuid4()}"] = { "control-botids": [12345, 67890], "usdt-botids": [], "btc-botids": [], "comment": "Just a description of this section", } with open(f"{datadir}/{program}.ini", "w") as cfgfile: cfg.write(cfgfile) return None # Start application program = Path(__file__).stem # Parse and interpret options. parser = argparse.ArgumentParser(description="Cyberjunky's 3Commas bot helper.") parser.add_argument( "-d", "--datadir", help="directory to use for config and logs files", type=str ) parser.add_argument( "-b", "--blacklist", help="local blacklist to use instead of 3Commas's", type=str ) args = parser.parse_args() if args.datadir: datadir = args.datadir else: datadir = os.getcwd() # pylint: disable-msg=C0103 if args.blacklist: blacklistfile = args.blacklist else: blacklistfile = None # Create or load configuration file config = load_config() if not config: # Initialise temp logging logger = Logger(datadir, program, None, 7, False, False) logger.info( f"Created example config file '{datadir}/{program}.ini', edit it and restart the program" ) sys.exit(0) else: # Handle timezone if hasattr(time, "tzset"): os.environ["TZ"] = config.get( "settings", "timezone", fallback="Europe/Amsterdam" ) time.tzset() # Init notification handler notification = NotificationHandler( program, config.getboolean("settings", "notifications"), config.get("settings", "notify-urls"), ) # Initialise logging logger = Logger( datadir, program, notification, int(config.get("settings", "logrotate", fallback=7)), config.getboolean("settings", "debug"), config.getboolean("settings", "notifications"), ) logger.info(f"Loaded configuration from '{datadir}/{program}.ini'") def webhook_deal(thebot, coin, trade): """Check pair and trigger the bot deal.""" # Gather some bot values base = thebot["pairs"][0].split("_")[0] exchange = thebot["account_name"] minvolume = thebot["min_volume_btc_24h"] logger.debug("Base coin for this bot: %s" % base) logger.debug("Minimal 24h volume in BTC for this bot: %s" % minvolume) # Get marketcode (exchange) from account marketcode = get_threecommas_account_marketcode(logger, api, thebot["account_id"]) if not marketcode: return logger.info("Bot exchange: %s (%s)" % (exchange, marketcode)) skipchecks = False if blacklistfile: skipchecks = True # Construct pair based on bot settings and marketcode (BTC stays BTC, but USDT can become BUSD) pair = format_pair(logger, marketcode, base, coin) # Check if pair is on 3Commas blacklist if pair in blacklist: logger.debug( "This pair is on your 3Commas blacklist and was skipped: %s" % pair, True ) return # Check if pair is in bot's pairlist if pair not in thebot["pairs"]: logger.debug( "This pair is not in bot's pairlist, and was skipped: %s" % pair, True, ) return if trade == "buy": # We have valid pair for our bot so we trigger an open asap action logger.info("Triggering your 3Commas bot for buy") trigger_threecommas_bot_deal(logger, api, thebot, pair, skipchecks) else: # Find active deal(s) for this bot so we can close deal(s) for pair deals = get_threecommas_deals(logger, api, thebot["id"], "active") if deals: for deal in deals: if deal["pair"] == pair: close_threecommas_deal(logger, api, deal["id"], pair) return logger.info( "No active deal(s) found for bot '%s' and pair '%s'" % (thebot["name"], pair) ) else: logger.info("No active deal(s) found for bot '%s'" % thebot["name"]) # Initialize 3Commas API api = init_threecommas_api(config) blacklist = load_blacklist(logger, api, blacklistfile) # Webserver app app = web.Application(logger=logger) # Webserver settings baseurl = config.get("webserver", "baseurl") httpport = config.get("webserver", "port") # SSL sslenabled = config.getboolean("webserver", "ssl") certfile = config.get("webserver", "certfile") privkey = config.get("webserver", "privkey") # Fetch configured hooks tokens = list() for section in config.sections(): if section.startswith("webhook_"): # Add token to list tokens.append(section.replace("webhook_", "")) # Process webhook calls async def handle(request): """Handle web requests.""" data = await request.json() logger.debug("Webhook alert received: %s" % data) token = data.get("token") if token in tokens: logger.debug("Webhook alert token acknowledged") # Get and verify actions actiontype = data.get("action").lower() # Bot actions if actiontype in ["enable", "disable"]: logger.debug(f"Webhook bot command received: {actiontype}") botids = json.loads(config.get(f"webhook_{token}", "control-botids")) # Walk through the configured bot(s) for botid in botids: error, data = api.request( entity="bots", action="show", action_id=str(botid), ) if data: logger.debug(f"Webhook '{actiontype}' bot with id '{botid}'") control_threecommas_bots(logger, api, data, actiontype) else: if error and "msg" in error: logger.error("Error occurred updating bots: %s" % error["msg"]) else: logger.error("Error occurred updating bots") # Deal actions elif actiontype in ["buy", "sell"]: logger.debug(f"Webhook deal command received: {actiontype}") pair = data.get("pair") base = pair.split("_")[0] coin = pair.split("_")[1] logger.debug("Pair: %s" % pair) logger.debug("Base: %s" % base) logger.debug("Coin: %s" % coin) logger.debug("Trade type: %s" % actiontype) if base == "USDT": botids = json.loads(config.get(f"webhook_{token}", "usdt-botids")) if len(botids) == 0: logger.debug( "No valid usdt-botids configured for '%s', cannot execute %s" % (base, actiontype) ) return web.Response() elif base == "BTC": botids = json.loads(config.get(f"webhook_{token}", "btc-botids")) if len(botids) == 0: logger.debug( "No valid btc-botids configured for '%s', cannot execute %s" % (base, actiontype) ) return else: logger.error("Error the base of pair '%s' is not supported yet!" % pair) return web.Response() for botid in botids: if botid == 0: logger.debug("No valid botid configured, skipping") continue error, data = api.request( entity="bots", action="show", action_id=str(botid), ) if data: logger.debug(f"Webhook '{actiontype}' bot with id '{botid}'") webhook_deal(data, coin, actiontype) else: if error and "msg" in error: logger.error( "Error occurred triggering bots: %s" % error["msg"] ) else: logger.error("Error occurred triggering bots") else: logger.error( f"Webhook alert received ignored, unsupported type '{actiontype}'" ) return web.Response() logger.error("Webhook alert received denied, token '%s' invalid" % token) return web.Response(status=403) # Prepare webhook webserver app.router.add_post(f"/{baseurl}", handle) logger.info(f"Starting webserver listening to '/{baseurl}'") # https if sslenabled: # Build ssl context context = ssl.SSLContext(ssl.PROTOCOL_TLSv1_2) context.load_cert_chain(certfile, privkey) web.run_app( app, host="0.0.0.0", port=httpport, ssl_context=context, access_log=None ) # http web.run_app(app, host="0.0.0.0", port=httpport, access_log=None)
the-stack_0_12547
############################################################################## # Copyright 2020 IBM Corp. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## import pytest import pandas as pd import numpy as np from pandas.testing import assert_frame_equal import dfpipeline as dfp df = pd.DataFrame({ 'col1': ['A', 'B', 'C'], 'col2': ['L', 'M', 'N'], 'col3': ['X', 'Y', 'Z'], }) selected_df = pd.DataFrame({ 'col1': ['A', 'B', 'C'], 'col2': ['L', 'M', 'N'], }) dropped_df = pd.DataFrame({ 'col2': ['L', 'M', 'N'], 'col3': ['X', 'Y', 'Z'], }) def test_select(): select = dfp.ColumnSelector(columns=['col1', 'col2']) out = select.fit_transform(df.copy()) assert_frame_equal(out, selected_df) def test_drop(): select = dfp.ColumnSelector(columns=['col1'], drop=True) out = select.fit_transform(df.copy()) assert_frame_equal(out, dropped_df)
the-stack_0_12549
import shutil import glob import os from collections import OrderedDict import functools import logging import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.optim.lr_scheduler import _LRScheduler #from utility import * class SegmentationMetric(object): def __init__(self, num_class): self.num_class = num_class self.confusion_matrix = np.zeros((self.num_class,)*2) def Pixel_Accuracy(self): Acc = np.diag(self.confusion_matrix).sum() / self.confusion_matrix.sum() return Acc def Pixel_Accuracy_Class(self): Acc = np.diag(self.confusion_matrix) / self.confusion_matrix.sum(axis=1) Acc = np.nanmean(Acc) return Acc def Mean_Intersection_over_Union(self): MIoU = np.diag(self.confusion_matrix) / ( np.sum(self.confusion_matrix, axis=1) + np.sum(self.confusion_matrix, axis=0) - np.diag(self.confusion_matrix)) MIoU = np.nanmean(MIoU) return MIoU def Frequency_Weighted_Intersection_over_Union(self): freq = np.sum(self.confusion_matrix, axis=1) / np.sum(self.confusion_matrix) iu = np.diag(self.confusion_matrix) / ( np.sum(self.confusion_matrix, axis=1) + np.sum(self.confusion_matrix, axis=0) - np.diag(self.confusion_matrix)) FWIoU = (freq[freq > 0] * iu[freq > 0]).sum() return FWIoU def _generate_matrix(self, gt_image, pre_image): mask = (gt_image >= 0) & (gt_image < self.num_class) label = self.num_class * gt_image[mask].astype('int') + pre_image[mask] count = np.bincount(label, minlength=self.num_class**2) confusion_matrix = count.reshape(self.num_class, self.num_class) return confusion_matrix def add_batch(self, gt_image, pre_image): assert gt_image.shape == pre_image.shape self.confusion_matrix += self._generate_matrix(gt_image, pre_image) def reset(self): self.confusion_matrix = np.zeros((self.num_class,) * 2) class Evaluator(object): def __init__(self,num_class=2): self.eval = SegmentationMetric(num_class) self.reset() def reset(self): self.met = {} def __call__(self, gt, pre): self.eval.reset() self.eval.add_batch(gt.data.cpu().numpy(), pre.data.cpu().numpy()) self.met['pa'] = self.eval.Pixel_Accuracy() self.met['mpa'] = self.eval.Pixel_Accuracy_Class() self.met['miou'] = self.eval.Mean_Intersection_over_Union() self.met['fwiou'] = self.eval.Frequency_Weighted_Intersection_over_Union() return self.met #### class Reseroir(object): '''Reservoir: function --> info logging, model checkpoint, config storage''' def __init__(self, opt): self.opt = opt self.best_params = {} self.init_folder() self.metric = [] self.clear("pa","mpa","miou","fwiou") def init_folder(self): def _sanity_check(folder): if not os.path.exists(folder): os.makedirs(folder) return folder folder = "/disk/data" # log info folder : ../loginfo/(time dependent)/loging/ self.log_folder = os.path.join(folder,"loginfo",self.opt.configure_name,"loging") print(self.log_folder) _sanity_check(self.log_folder) # model checkpoint folder : ../loginfo/(time dependent)/models/ self.model_folder = os.path.join(folder,"loginfo",self.opt.configure_name,"models") _sanity_check(self.model_folder) # config folder : ../loginfo/(time dependent)/config self.config_folder = os.path.join(folder,"loginfo",self.opt.configure_name,"config") _sanity_check(self.config_folder) logging.basicConfig(level=logging.DEBUG,\ format='%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s',\ datefmt = '%a, %d %b %Y %H:%M:%S',\ filename = os.path.join(self.config_folder, "loging.txt"),\ filemode='w') def set_metrics(self, *args): #print("args --> ", args) for arg in args: #print("arg -- > ", arg) self.best_params[arg] = 0 def reset(self): for arg in self.best_params.keys(): self.best_params[arg] = -1.0 def clear(self, *args): self.best_params = {} #print("clear --> ",args) self.set_metrics(*args) def save_checkpoint(self, state_dict, scores, epoch, filename="checkpoint.pth.tar"): if not isinstance(scores, dict): raise ValueError("scores for checkpoint must be dict ") self.metric.append(scores) print("scores --> ", scores) for key, value in scores.items(): if key in self.best_params.keys() and value > self.best_params[key]: self.best_params[key] = value model_name = os.path.join(self.model_folder, key+'_'+filename) torch.save(state_dict, model_name) self.save_configure() def save_configure(self): config_name = os.path.join(self.config_folder,"best_configure.yml") with open(config_name, "w") as f: p = vars(self.opt) for key, value in p.items(): f.write(key+": "+str(value)+"\n") def save_metrics(self): metric_name = os.path.join(self.model_folder,"metrics.txt") with open(metric_name, "w") as f: for data in self.metric: f.write(data) if __name__ == "__main__": #opt = parse_opts() #s = Saver(opt) e = Evaluator(num_class=2) x = np.zeros((5,5), dtype=np.int) x[2:4,1] = 1 y = np.zeros((5,5), dtype=np.int) y[2:3,1] = 1 e.add_batch(x,y) import pdb pdb.set_trace() print(e.Pixel_Accuracy())
the-stack_0_12550
# Copyright 2014-2016 OpenMarket Ltd # Copyright 2018 New Vector Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import abc import collections import html import logging import types import urllib from http import HTTPStatus from inspect import isawaitable from typing import ( Any, Awaitable, Callable, Dict, Iterable, Iterator, List, Optional, Pattern, Tuple, Union, ) import jinja2 from canonicaljson import encode_canonical_json from typing_extensions import Protocol from zope.interface import implementer from twisted.internet import defer, interfaces from twisted.python import failure from twisted.web import resource from twisted.web.server import NOT_DONE_YET, Request from twisted.web.static import File from twisted.web.util import redirectTo from synapse.api.errors import ( CodeMessageException, Codes, RedirectException, SynapseError, UnrecognizedRequestError, ) from synapse.http.site import SynapseRequest from synapse.logging.context import defer_to_thread, preserve_fn, run_in_background from synapse.logging.opentracing import trace_servlet from synapse.util import json_encoder from synapse.util.caches import intern_dict from synapse.util.iterutils import chunk_seq logger = logging.getLogger(__name__) HTML_ERROR_TEMPLATE = """<!DOCTYPE html> <html lang=en> <head> <meta charset="utf-8"> <title>Error {code}</title> </head> <body> <p>{msg}</p> </body> </html> """ def return_json_error(f: failure.Failure, request: SynapseRequest) -> None: """Sends a JSON error response to clients.""" if f.check(SynapseError): # mypy doesn't understand that f.check asserts the type. exc: SynapseError = f.value # type: ignore error_code = exc.code error_dict = exc.error_dict() logger.info("%s SynapseError: %s - %s", request, error_code, exc.msg) else: error_code = 500 error_dict = {"error": "Internal server error", "errcode": Codes.UNKNOWN} logger.error( "Failed handle request via %r: %r", request.request_metrics.name, request, exc_info=(f.type, f.value, f.getTracebackObject()), # type: ignore ) # Only respond with an error response if we haven't already started writing, # otherwise lets just kill the connection if request.startedWriting: if request.transport: try: request.transport.abortConnection() except Exception: # abortConnection throws if the connection is already closed pass else: respond_with_json( request, error_code, error_dict, send_cors=True, ) def return_html_error( f: failure.Failure, request: Request, error_template: Union[str, jinja2.Template], ) -> None: """Sends an HTML error page corresponding to the given failure. Handles RedirectException and other CodeMessageExceptions (such as SynapseError) Args: f: the error to report request: the failing request error_template: the HTML template. Can be either a string (with `{code}`, `{msg}` placeholders), or a jinja2 template """ if f.check(CodeMessageException): # mypy doesn't understand that f.check asserts the type. cme: CodeMessageException = f.value # type: ignore code = cme.code msg = cme.msg if isinstance(cme, RedirectException): logger.info("%s redirect to %s", request, cme.location) request.setHeader(b"location", cme.location) request.cookies.extend(cme.cookies) elif isinstance(cme, SynapseError): logger.info("%s SynapseError: %s - %s", request, code, msg) else: logger.error( "Failed handle request %r", request, exc_info=(f.type, f.value, f.getTracebackObject()), # type: ignore ) else: code = HTTPStatus.INTERNAL_SERVER_ERROR msg = "Internal server error" logger.error( "Failed handle request %r", request, exc_info=(f.type, f.value, f.getTracebackObject()), # type: ignore ) if isinstance(error_template, str): body = error_template.format(code=code, msg=html.escape(msg)) else: body = error_template.render(code=code, msg=msg) respond_with_html(request, code, body) def wrap_async_request_handler(h): """Wraps an async request handler so that it calls request.processing. This helps ensure that work done by the request handler after the request is completed is correctly recorded against the request metrics/logs. The handler method must have a signature of "handle_foo(self, request)", where "request" must be a SynapseRequest. The handler may return a deferred, in which case the completion of the request isn't logged until the deferred completes. """ async def wrapped_async_request_handler(self, request): with request.processing(): await h(self, request) # we need to preserve_fn here, because the synchronous render method won't yield for # us (obviously) return preserve_fn(wrapped_async_request_handler) # Type of a callback method for processing requests # it is actually called with a SynapseRequest and a kwargs dict for the params, # but I can't figure out how to represent that. ServletCallback = Callable[ ..., Union[None, Awaitable[None], Tuple[int, Any], Awaitable[Tuple[int, Any]]] ] class HttpServer(Protocol): """Interface for registering callbacks on a HTTP server""" def register_paths( self, method: str, path_patterns: Iterable[Pattern], callback: ServletCallback, servlet_classname: str, ) -> None: """Register a callback that gets fired if we receive a http request with the given method for a path that matches the given regex. If the regex contains groups these gets passed to the callback via an unpacked tuple. Args: method: The HTTP method to listen to. path_patterns: The regex used to match requests. callback: The function to fire if we receive a matched request. The first argument will be the request object and subsequent arguments will be any matched groups from the regex. This should return either tuple of (code, response), or None. servlet_classname (str): The name of the handler to be used in prometheus and opentracing logs. """ pass class _AsyncResource(resource.Resource, metaclass=abc.ABCMeta): """Base class for resources that have async handlers. Sub classes can either implement `_async_render_<METHOD>` to handle requests by method, or override `_async_render` to handle all requests. Args: extract_context: Whether to attempt to extract the opentracing context from the request the servlet is handling. """ def __init__(self, extract_context=False): super().__init__() self._extract_context = extract_context def render(self, request): """This gets called by twisted every time someone sends us a request.""" defer.ensureDeferred(self._async_render_wrapper(request)) return NOT_DONE_YET @wrap_async_request_handler async def _async_render_wrapper(self, request: SynapseRequest): """This is a wrapper that delegates to `_async_render` and handles exceptions, return values, metrics, etc. """ try: request.request_metrics.name = self.__class__.__name__ with trace_servlet(request, self._extract_context): callback_return = await self._async_render(request) if callback_return is not None: code, response = callback_return self._send_response(request, code, response) except Exception: # failure.Failure() fishes the original Failure out # of our stack, and thus gives us a sensible stack # trace. f = failure.Failure() self._send_error_response(f, request) async def _async_render(self, request: Request): """Delegates to `_async_render_<METHOD>` methods, or returns a 400 if no appropriate method exists. Can be overridden in sub classes for different routing. """ # Treat HEAD requests as GET requests. request_method = request.method.decode("ascii") if request_method == "HEAD": request_method = "GET" method_handler = getattr(self, "_async_render_%s" % (request_method,), None) if method_handler: raw_callback_return = method_handler(request) # Is it synchronous? We'll allow this for now. if isawaitable(raw_callback_return): callback_return = await raw_callback_return else: callback_return = raw_callback_return # type: ignore return callback_return _unrecognised_request_handler(request) @abc.abstractmethod def _send_response( self, request: SynapseRequest, code: int, response_object: Any, ) -> None: raise NotImplementedError() @abc.abstractmethod def _send_error_response( self, f: failure.Failure, request: SynapseRequest, ) -> None: raise NotImplementedError() class DirectServeJsonResource(_AsyncResource): """A resource that will call `self._async_on_<METHOD>` on new requests, formatting responses and errors as JSON. """ def __init__(self, canonical_json=False, extract_context=False): super().__init__(extract_context) self.canonical_json = canonical_json def _send_response( self, request: SynapseRequest, code: int, response_object: Any, ): """Implements _AsyncResource._send_response""" # TODO: Only enable CORS for the requests that need it. respond_with_json( request, code, response_object, send_cors=True, canonical_json=self.canonical_json, ) def _send_error_response( self, f: failure.Failure, request: SynapseRequest, ) -> None: """Implements _AsyncResource._send_error_response""" return_json_error(f, request) class JsonResource(DirectServeJsonResource): """This implements the HttpServer interface and provides JSON support for Resources. Register callbacks via register_paths() Callbacks can return a tuple of status code and a dict in which case the the dict will automatically be sent to the client as a JSON object. The JsonResource is primarily intended for returning JSON, but callbacks may send something other than JSON, they may do so by using the methods on the request object and instead returning None. """ isLeaf = True _PathEntry = collections.namedtuple( "_PathEntry", ["pattern", "callback", "servlet_classname"] ) def __init__(self, hs, canonical_json=True, extract_context=False): super().__init__(canonical_json, extract_context) self.clock = hs.get_clock() self.path_regexs = {} self.hs = hs def register_paths(self, method, path_patterns, callback, servlet_classname): """ Registers a request handler against a regular expression. Later request URLs are checked against these regular expressions in order to identify an appropriate handler for that request. Args: method (str): GET, POST etc path_patterns (Iterable[str]): A list of regular expressions to which the request URLs are compared. callback (function): The handler for the request. Usually a Servlet servlet_classname (str): The name of the handler to be used in prometheus and opentracing logs. """ method = method.encode("utf-8") # method is bytes on py3 for path_pattern in path_patterns: logger.debug("Registering for %s %s", method, path_pattern.pattern) self.path_regexs.setdefault(method, []).append( self._PathEntry(path_pattern, callback, servlet_classname) ) def _get_handler_for_request( self, request: SynapseRequest ) -> Tuple[ServletCallback, str, Dict[str, str]]: """Finds a callback method to handle the given request. Returns: A tuple of the callback to use, the name of the servlet, and the key word arguments to pass to the callback """ # At this point the path must be bytes. request_path_bytes: bytes = request.path # type: ignore request_path = request_path_bytes.decode("ascii") # Treat HEAD requests as GET requests. request_method = request.method if request_method == b"HEAD": request_method = b"GET" # Loop through all the registered callbacks to check if the method # and path regex match for path_entry in self.path_regexs.get(request_method, []): m = path_entry.pattern.match(request_path) if m: # We found a match! return path_entry.callback, path_entry.servlet_classname, m.groupdict() # Huh. No one wanted to handle that? Fiiiiiine. Send 400. return _unrecognised_request_handler, "unrecognised_request_handler", {} async def _async_render(self, request): callback, servlet_classname, group_dict = self._get_handler_for_request(request) # Make sure we have an appropriate name for this handler in prometheus # (rather than the default of JsonResource). request.request_metrics.name = servlet_classname # Now trigger the callback. If it returns a response, we send it # here. If it throws an exception, that is handled by the wrapper # installed by @request_handler. kwargs = intern_dict( { name: urllib.parse.unquote(value) if value else value for name, value in group_dict.items() } ) raw_callback_return = callback(request, **kwargs) # Is it synchronous? We'll allow this for now. if isinstance(raw_callback_return, (defer.Deferred, types.CoroutineType)): callback_return = await raw_callback_return else: callback_return = raw_callback_return # type: ignore return callback_return class DirectServeHtmlResource(_AsyncResource): """A resource that will call `self._async_on_<METHOD>` on new requests, formatting responses and errors as HTML. """ # The error template to use for this resource ERROR_TEMPLATE = HTML_ERROR_TEMPLATE def _send_response( self, request: SynapseRequest, code: int, response_object: Any, ): """Implements _AsyncResource._send_response""" # We expect to get bytes for us to write assert isinstance(response_object, bytes) html_bytes = response_object respond_with_html_bytes(request, 200, html_bytes) def _send_error_response( self, f: failure.Failure, request: SynapseRequest, ) -> None: """Implements _AsyncResource._send_error_response""" return_html_error(f, request, self.ERROR_TEMPLATE) class StaticResource(File): """ A resource that represents a plain non-interpreted file or directory. Differs from the File resource by adding clickjacking protection. """ def render_GET(self, request: Request): set_clickjacking_protection_headers(request) return super().render_GET(request) def _unrecognised_request_handler(request): """Request handler for unrecognised requests This is a request handler suitable for return from _get_handler_for_request. It actually just raises an UnrecognizedRequestError. Args: request (twisted.web.http.Request): """ raise UnrecognizedRequestError() class RootRedirect(resource.Resource): """Redirects the root '/' path to another path.""" def __init__(self, path): resource.Resource.__init__(self) self.url = path def render_GET(self, request): return redirectTo(self.url.encode("ascii"), request) def getChild(self, name, request): if len(name) == 0: return self # select ourselves as the child to render return resource.Resource.getChild(self, name, request) class OptionsResource(resource.Resource): """Responds to OPTION requests for itself and all children.""" def render_OPTIONS(self, request): request.setResponseCode(204) request.setHeader(b"Content-Length", b"0") set_cors_headers(request) return b"" def getChildWithDefault(self, path, request): if request.method == b"OPTIONS": return self # select ourselves as the child to render return resource.Resource.getChildWithDefault(self, path, request) class RootOptionsRedirectResource(OptionsResource, RootRedirect): pass @implementer(interfaces.IPushProducer) class _ByteProducer: """ Iteratively write bytes to the request. """ # The minimum number of bytes for each chunk. Note that the last chunk will # usually be smaller than this. min_chunk_size = 1024 def __init__( self, request: Request, iterator: Iterator[bytes], ): self._request: Optional[Request] = request self._iterator = iterator self._paused = False # Register the producer and start producing data. self._request.registerProducer(self, True) self.resumeProducing() def _send_data(self, data: List[bytes]) -> None: """ Send a list of bytes as a chunk of a response. """ if not data or not self._request: return self._request.write(b"".join(data)) def pauseProducing(self) -> None: self._paused = True def resumeProducing(self) -> None: # We've stopped producing in the meantime (note that this might be # re-entrant after calling write). if not self._request: return self._paused = False # Write until there's backpressure telling us to stop. while not self._paused: # Get the next chunk and write it to the request. # # The output of the JSON encoder is buffered and coalesced until # min_chunk_size is reached. This is because JSON encoders produce # very small output per iteration and the Request object converts # each call to write() to a separate chunk. Without this there would # be an explosion in bytes written (e.g. b"{" becoming "1\r\n{\r\n"). # # Note that buffer stores a list of bytes (instead of appending to # bytes) to hopefully avoid many allocations. buffer = [] buffered_bytes = 0 while buffered_bytes < self.min_chunk_size: try: data = next(self._iterator) buffer.append(data) buffered_bytes += len(data) except StopIteration: # The entire JSON object has been serialized, write any # remaining data, finalize the producer and the request, and # clean-up any references. self._send_data(buffer) self._request.unregisterProducer() self._request.finish() self.stopProducing() return self._send_data(buffer) def stopProducing(self) -> None: # Clear a circular reference. self._request = None def _encode_json_bytes(json_object: Any) -> bytes: """ Encode an object into JSON. Returns an iterator of bytes. """ return json_encoder.encode(json_object).encode("utf-8") def respond_with_json( request: SynapseRequest, code: int, json_object: Any, send_cors: bool = False, canonical_json: bool = True, ): """Sends encoded JSON in response to the given request. Args: request: The http request to respond to. code: The HTTP response code. json_object: The object to serialize to JSON. send_cors: Whether to send Cross-Origin Resource Sharing headers https://fetch.spec.whatwg.org/#http-cors-protocol canonical_json: Whether to use the canonicaljson algorithm when encoding the JSON bytes. Returns: twisted.web.server.NOT_DONE_YET if the request is still active. """ # could alternatively use request.notifyFinish() and flip a flag when # the Deferred fires, but since the flag is RIGHT THERE it seems like # a waste. if request._disconnected: logger.warning( "Not sending response to request %s, already disconnected.", request ) return None if canonical_json: encoder = encode_canonical_json else: encoder = _encode_json_bytes request.setResponseCode(code) request.setHeader(b"Content-Type", b"application/json") request.setHeader(b"Cache-Control", b"no-cache, no-store, must-revalidate") if send_cors: set_cors_headers(request) run_in_background( _async_write_json_to_request_in_thread, request, encoder, json_object ) return NOT_DONE_YET def respond_with_json_bytes( request: Request, code: int, json_bytes: bytes, send_cors: bool = False, ): """Sends encoded JSON in response to the given request. Args: request: The http request to respond to. code: The HTTP response code. json_bytes: The json bytes to use as the response body. send_cors: Whether to send Cross-Origin Resource Sharing headers https://fetch.spec.whatwg.org/#http-cors-protocol Returns: twisted.web.server.NOT_DONE_YET if the request is still active. """ if request._disconnected: logger.warning( "Not sending response to request %s, already disconnected.", request ) return request.setResponseCode(code) request.setHeader(b"Content-Type", b"application/json") request.setHeader(b"Content-Length", b"%d" % (len(json_bytes),)) request.setHeader(b"Cache-Control", b"no-cache, no-store, must-revalidate") if send_cors: set_cors_headers(request) _write_bytes_to_request(request, json_bytes) return NOT_DONE_YET async def _async_write_json_to_request_in_thread( request: SynapseRequest, json_encoder: Callable[[Any], bytes], json_object: Any, ): """Encodes the given JSON object on a thread and then writes it to the request. This is done so that encoding large JSON objects doesn't block the reactor thread. Note: We don't use JsonEncoder.iterencode here as that falls back to the Python implementation (rather than the C backend), which is *much* more expensive. """ json_str = await defer_to_thread(request.reactor, json_encoder, json_object) _write_bytes_to_request(request, json_str) def _write_bytes_to_request(request: Request, bytes_to_write: bytes) -> None: """Writes the bytes to the request using an appropriate producer. Note: This should be used instead of `Request.write` to correctly handle large response bodies. """ # The problem with dumping all of the response into the `Request` object at # once (via `Request.write`) is that doing so starts the timeout for the # next request to be received: so if it takes longer than 60s to stream back # the response to the client, the client never gets it. # # The correct solution is to use a Producer; then the timeout is only # started once all of the content is sent over the TCP connection. # To make sure we don't write all of the bytes at once we split it up into # chunks. chunk_size = 4096 bytes_generator = chunk_seq(bytes_to_write, chunk_size) # We use a `_ByteProducer` here rather than `NoRangeStaticProducer` as the # unit tests can't cope with being given a pull producer. _ByteProducer(request, bytes_generator) def set_cors_headers(request: Request): """Set the CORS headers so that javascript running in a web browsers can use this API Args: request: The http request to add CORS to. """ request.setHeader(b"Access-Control-Allow-Origin", b"*") request.setHeader( b"Access-Control-Allow-Methods", b"GET, HEAD, POST, PUT, DELETE, OPTIONS" ) request.setHeader( b"Access-Control-Allow-Headers", b"X-Requested-With, Content-Type, Authorization, Date", ) def respond_with_html(request: Request, code: int, html: str): """ Wraps `respond_with_html_bytes` by first encoding HTML from a str to UTF-8 bytes. """ respond_with_html_bytes(request, code, html.encode("utf-8")) def respond_with_html_bytes(request: Request, code: int, html_bytes: bytes): """ Sends HTML (encoded as UTF-8 bytes) as the response to the given request. Note that this adds clickjacking protection headers and finishes the request. Args: request: The http request to respond to. code: The HTTP response code. html_bytes: The HTML bytes to use as the response body. """ # could alternatively use request.notifyFinish() and flip a flag when # the Deferred fires, but since the flag is RIGHT THERE it seems like # a waste. if request._disconnected: logger.warning( "Not sending response to request %s, already disconnected.", request ) return request.setResponseCode(code) request.setHeader(b"Content-Type", b"text/html; charset=utf-8") request.setHeader(b"Content-Length", b"%d" % (len(html_bytes),)) # Ensure this content cannot be embedded. set_clickjacking_protection_headers(request) request.write(html_bytes) finish_request(request) def set_clickjacking_protection_headers(request: Request): """ Set headers to guard against clickjacking of embedded content. This sets the X-Frame-Options and Content-Security-Policy headers which instructs browsers to not allow the HTML of the response to be embedded onto another page. Args: request: The http request to add the headers to. """ request.setHeader(b"X-Frame-Options", b"DENY") request.setHeader(b"Content-Security-Policy", b"frame-ancestors 'none';") def respond_with_redirect(request: Request, url: bytes) -> None: """Write a 302 response to the request, if it is still alive.""" logger.debug("Redirect to %s", url.decode("utf-8")) request.redirect(url) finish_request(request) def finish_request(request: Request): """Finish writing the response to the request. Twisted throws a RuntimeException if the connection closed before the response was written but doesn't provide a convenient or reliable way to determine if the connection was closed. So we catch and log the RuntimeException You might think that ``request.notifyFinish`` could be used to tell if the request was finished. However the deferred it returns won't fire if the connection was already closed, meaning we'd have to have called the method right at the start of the request. By the time we want to write the response it will already be too late. """ try: request.finish() except RuntimeError as e: logger.info("Connection disconnected before response was written: %r", e)
the-stack_0_12556
from Module import AbstractModule class Module(AbstractModule): def __init__(self): AbstractModule.__init__(self) def run( self, network, antecedents, out_attributes, user_options, num_cores, out_path): import os from genomicode import filelib from genomicode import parallel from genomicode import alignlib from Betsy import module_utils bam_node, ref_node, target_node = antecedents bam_filenames = module_utils.find_bam_files(bam_node.identifier) assert bam_filenames, "No .bam files." target_filenames = filelib.list_files_in_path( target_node.identifier, endswith=".intervals") assert target_filenames, "No .intervals files." ref = alignlib.create_reference_genome(ref_node.identifier) filelib.safe_mkdir(out_path) assert len(bam_filenames) == len(target_filenames), \ "Should have an .intervals file for each bam file." sample2bamfilename = {} for filename in bam_filenames: p, f = os.path.split(filename) sample, ext = os.path.splitext(f) assert sample not in sample2bamfilename sample2bamfilename[sample] = filename sample2targetfilename = {} for filename in target_filenames: p, f = os.path.split(filename) sample, ext = os.path.splitext(f) assert sample not in sample2targetfilename sample2targetfilename[sample] = filename assert len(sample2bamfilename) == len(sample2targetfilename) missing = [ x for x in sample2bamfilename if x not in sample2targetfilename] assert not missing, "Missing interval files for %d bam files." % \ len(missing) # list of (bam_filename, target_filename, log_filename, out_filename) jobs = [] for sample in sample2bamfilename: bam_filename = sample2bamfilename[sample] target_filename = sample2targetfilename[sample] p, f = os.path.split(bam_filename) sample, ext = os.path.splitext(f) out_filename = os.path.join(out_path, "%s.bam" % sample) log_filename = os.path.join(out_path, "%s.log" % sample) x = bam_filename, target_filename, log_filename, out_filename jobs.append(x) known_sites = [] x1 = module_utils.get_user_option( user_options, "realign_known_sites1", check_file=True) x2 = module_utils.get_user_option( user_options, "realign_known_sites2", check_file=True) x3 = module_utils.get_user_option( user_options, "realign_known_sites3", check_file=True) x = [x1, x2, x3] x = [x for x in x if x] known_sites = x assert known_sites # java -Xmx5g -jar /usr/local/bin/GATK/GenomeAnalysisTK.jar \ # -T IndelRealigner -R <ref.fa> \ # -I <bam_file> -targetIntervals <target_file> -o <bam_file> # Make a list of commands. commands = [] for x in jobs: bam_filename, target_filename, log_filename, out_filename = x x = [("known", x) for x in known_sites] x = alignlib.make_GATK_command( T="IndelRealigner", R=ref.fasta_file_full, I=bam_filename, targetIntervals=target_filename, o=out_filename, _UNHASHABLE=x) x = "%s >& %s" % (x, log_filename) commands.append(x) #for x in commands: # print x #import sys; sys.exit(0) parallel.pshell(commands, max_procs=num_cores) # Make sure the analysis completed successfully. out_filenames = [x[-1] for x in jobs] filelib.assert_exists_nz_many(out_filenames) def name_outfile(self, antecedents, user_options): return "realigned.bam"
the-stack_0_12557
from censys_ml.field_transforms import utils def encode_certificate_fields(input_field, output_field): lines = [] parsed_versions = [1, 2] sha_strs = ["SHA1"] validity_lengths = ["days", "weeks", "months"] # 8192 has been added to the options after i saw some records on censys that have it rsa_lengths = [512, 768, 1024, 2048, 3072, 4096] # 8192 has been considered but left out of the options after i saw some records on censys that have it dh_prime_lengths = [512, 768, 1024, 2048, 3072, 4096] # 521 has been left out ecdsa_lengths = [256, 384] # common exponents, 65537 is left out rsa_exponents = [2, 3, 5, 17, 257] if 'rsa_public_key.length' in input_field or 'rsa_params.length' in input_field or 'dh_params.prime.length' in input_field: lines.extend(utils.one_hot_encode(input_field, output_field, rsa_lengths, "encode_key_length", "is_")) lines.extend(utils.one_hot_encode(input_field, output_field, sha_strs, "encode_SHA_support", "supports_")) elif 'dh_params.prime.length' in input_field: lines.extend(utils.one_hot_encode(input_field, output_field, dh_prime_lengths, "encode_key_length", "is_")) elif 'parsed.version' in input_field: lines.extend(utils.one_hot_encode(input_field, output_field, parsed_versions, "encode_certificate_version")) elif 'ecdsa_public_key.length' in input_field: lines.extend(utils.one_hot_encode(input_field, output_field, ecdsa_lengths, "encode_key_length", 'is_')) elif 'rsa_public_key.exponent' in input_field or 'rsa_params.exponent' in input_field: lines.extend(utils.one_hot_encode(input_field, output_field, rsa_exponents, "encode_RSA_exponent", "is_")) elif 'validity.length' in input_field: lines.extend(utils.one_hot_encode(input_field, output_field, validity_lengths, "encode_validity_length", "in_")) elif 'basic_constraints.max_path_len' in input_field: lines.extend(utils.generate_check_lines(input_field, output_field[:-13], 'has_no_sub_CA', 'has_no_subordinate_CA')) return lines def encode_service_version_fields(input_field, output_field): lines = [] # smb major version groups 3 has been left out smb_versions = [1, 2] # 1 is left out amqp_versions = [0] # rdp major versions, 10 is left out rdp_versions = [1, 2, 3, 4, 5, 6, 7, 8, 9] if 'smb_version.major' in input_field: lines.extend(utils.one_hot_encode(input_field, output_field, smb_versions, "encode_version_major", "is_")) lines.extend(utils.generate_relating_lines(input_field, output_field[:-6], 'version_number', 'version')) elif 'amqp.banner.version.major' in input_field: lines.extend(utils.one_hot_encode(input_field, output_field, amqp_versions, "encode_version_major", "is_")) lines.extend(utils.generate_relating_lines(input_field, output_field[:-6], 'version_number', 'version')) elif 'rdp.banner.version.major' in input_field: lines.extend(utils.one_hot_encode(input_field, output_field, rdp_versions, "encode_version_major", "is_")) lines.extend(utils.generate_relating_lines(input_field, output_field[:-6], 'version_number', 'version')) elif 'bacnet.device_id.vendor.id' in input_field: lines.extend(utils.generate_check_lines(input_field, output_field, 'is_ashrae', 'is_ashrae')) return lines def encode_http_fields(input_field, output_field): lines = [] status_code_strs = ['success', 'redirection', 'client_error', 'server_error'] # same one_hot_encode function was used but functionality is different session_time_ranges = ["minutes", "hours", "days"] if 'session_ticket.lifetime_hint' in input_field: lines.extend(utils.one_hot_encode(input_field, output_field, session_time_ranges, "encode_validity_length", "in_")) elif 'status_code' in input_field: lines.extend(utils.one_hot_encode(input_field, output_field, status_code_strs, "encode_status_code", "is_")) return lines def transform_common_fields(input_field, output_field): lines = [] lines.extend(encode_certificate_fields(input_field, output_field)) lines.extend(encode_service_version_fields(input_field, output_field)) lines.extend(encode_http_fields(input_field, output_field)) return lines def generate_numeric_lines(input_field, output_field, field_data=None): lines = [] lines.extend(transform_common_fields(input_field, output_field)) if input_field[0] == 'p': lines.extend(transform_common_fields(input_field[1:], output_field[1:])) lines.extend(utils.handle_general_case(input_field=input_field, output_field=output_field, line_generator=utils.generate_numeric_line)) return lines def main(): lines = [] strings = [ 'p993.imaps.tls.tls.certificate.parsed.version', 'p993.imaps.tls.tls.chain.parsed.subject_key_info.rsa_public_key.length', 'p80.http.open_proxy.connect.status_code', 'p25.smtp.starttls.tls.certificate.parsed.subject_key_info.rsa_public_key.exponent', 'p443.https.tls.chain.parsed.extensions.basic_constraints.max_path_len', 'p445.smb.banner.smb_version.major', 'p5672.amqp.banner.version.major', 'p3389.rdp.banner.version.major', 'p47808.bacnet.device_id.vendor.id', 'p443.https.tls.server_key_exchange.rsa_params.length', 'p443.https.tls.server_key_exchange.dh_params.prime.length', 'p110.pop3.ssl_2.certificate.parsed.subject_key_info.ecdsa_public_key.length', 'p110.pop3.starttls.tls.session_ticket.lifetime_hint', 'p1433.mssql.banner.tls.certificate.parsed.validity.length', 'p1433.mssql.banner.tls.server_key_exchange.rsa_params.exponent' ] for string in strings: output_field = string.replace('.', '__') lines.extend(generate_numeric_lines(string, output_field)) print('\n'.join(lines)) if __name__ == '__main__': main()
the-stack_0_12561
#! /usr/bin/env python # -*-coding: utf-8 -*- __author__ = 'dracarysX' from collections import deque from peewee import Expression, ForeignKeyField from rest_query.operator import Operator, operator_list from rest_query.query import QueryBuilder from rest_query.parser import BaseParamsParser, cache_property from rest_query.models import ModelExtra from rest_query.serializer import BaseSerializer class PeeweeModelExtraMixin(ModelExtra): """ peewee model mixin """ all_field = '*' def push_join_model(self, field, model): if model not in self.join_model: self.join_model[model] = (field == model.id) def field_by_model(self, model, field_name): if field_name == self.all_field: return model return model._meta.fields[field_name] def is_field_exist(self, model, field_name): if field_name == self.all_field: return True return field_name in model._meta.fields def foreign_model(self, field): return field.rel_model class PeeweeOperator(Operator): """ operator for peewee orm :field: field must be peewee Field instance """ def __init__(self, field, value): super(PeeweeOperator, self).__init__(field, value) def __getattribute__(self, value, *args, **kwargs): if value in operator_list or value == 'iin': result = super(PeeweeOperator, self).__getattribute__(value, *args, **kwargs)() def _(*args, **kwargs): return Expression(result['field'], result['op'], result['value']) return _ return super(PeeweeOperator, self).__getattribute__(value, *args, **kwargs) def between(self): low, high = self._split_value() from peewee import Clause, R return self.format('between', value=Clause(low, R('AND'), high)) class PeeweeParamsParser(PeeweeModelExtraMixin, BaseParamsParser): operator_engine = PeeweeOperator def __init__(self, params_args, model=None, **kwargs): super(PeeweeParamsParser, self).__init__(params_args, **kwargs) self.model = model self.foreign_key = ForeignKeyField def parse_select(self): selects = super(PeeweeParamsParser, self).parse_select() self.select_list = list(filter(self.check_field_exist, selects)) return [self.get_field(select) for select in self.select_list] def split_where(self): _wheres = [] for field, values in self.where_args.items(): try: _value = values.split('.') operator, value = _value[0], '.'.join(_value[1:]) except AttributeError: operator, value = '=', values if self.check_field_exist(field): if operator not in self.operator_list: _wheres.append(self.operator_engine(self.get_field(field), values).eq()) else: _wheres.append( getattr(self.operator_engine(self.get_field(field), value), operator)() ) return _wheres def parse_order(self): orders = super(PeeweeParamsParser, self).parse_order() _order = [] for order in orders: for k, v in order.items(): if self.check_field_exist(k): _order.append(getattr(self.get_field(k), v)()) return _order def parse_paginate(self): paginate = super(PeeweeParamsParser, self).parse_paginate() return (paginate['page'], paginate['limit']) class PeeweeQueryBuilder(QueryBuilder): """ query builder for peewee orm """ parser_engine = PeeweeParamsParser def __init__(self, model, params, **kwargs): super(PeeweeQueryBuilder, self).__init__(model, params, **kwargs) def build(self): query = self.model.select(*self.select) if self.where: query = query.where(*self.where) if self.order: query = query.order_by(*self.order) for model, condition in self.parser.join_model.items(): query = query.join(model, on=condition) return query.paginate(*self.paginate) class PeeweeSerializer(BaseSerializer): """ serializer for peewee object instance. >>> serializer = PeeweeSerializer(obj=book, select_args=['id', 'name', 'author.id', 'author.name']) >>> serializer.data() { 'id': xxx, 'name': 'xxx', 'author': { 'id': xxx, 'name': 'xxx' } } >>> serializer = PeeweeSerializer(object_list=book_list, select_args=['id', 'name', 'author.id', 'author.name']) >>> serializer.data() [ { 'id': xxx, 'name': 'xxx', 'author': { 'id': xxx, 'name': 'xxx' } }, { 'id': xxx, 'name': 'xxx', 'author': { 'id': xxx, 'name': 'xxx' } } ] """ def _obj_update(self, o1, o2): """ o1 update o2, if key in o1 not override """ for key, value in o2.items(): if key not in o1 or (key in o1 and isinstance(o1[key], int)): o1[key] = value return o1 def obj_serializer(self, obj): return {k: getattr(obj, k if not isinstance(v, ForeignKeyField) else '%s_id' % k) for k, v in obj.__class__._meta.fields.items()} def _getattr(self, obj, field): value = getattr(obj, field) if hasattr(value, 'DoesNotExist'): return getattr(obj, '{}_id'.format(field)) return value def serializer(self, obj): if not self.select_args: return self.obj_serializer(obj) data = {} def _serializer(_data, select, obj): args = select.split('.') if len(args) == 1: if select == '*': _data = self._obj_update(_data, self.obj_serializer(obj)) # _data.update(self.obj_serializer(obj)) else: if select not in _data: _data[select] = self._getattr(obj, select) else: if not isinstance(_data[select], dict): _data[select] = self._getattr(obj, select) else: prefix = args[0] if prefix not in _data: _data[prefix] = {} _serializer(_data[prefix], '.'.join(args[1:]), getattr(obj, prefix)) for i in self.select_args: _serializer(data, i, obj) return data # def serializer(self, obj): # """ # single obj serializer. # """ # if self.select_args is None: # return self.obj_serializer(obj) # d = {} # def _get_instance(_obj, _key): # """ # >>> _get_instance(book, 'author.school') # author # """ # k = _key.split('.') # k.reverse() # instance = _obj # while len(k) > 0: # v = k.pop() # if instance is not None and v in instance._meta.fields: # instance = getattr(instance, v) # else: # instance = None # return instance # def _serializer(args): # for arg in args: # if not isinstance(arg, list): # v = arg.rsplit('.', 1) # if len(v) == 1: # if v[0] in obj._meta.fields: # if isinstance(obj._meta.fields[v[0]], ForeignKeyField): # d[v[0]] = getattr(obj, '{}_id'.format(v[0])) # else: # d[v[0]] = getattr(obj, v[0]) # else: # if v[1] == '*': # set_dict(d, v[0], self.obj_serializer(_get_instance(obj, v[0]))) # else: # _model = _get_instance(obj, v[0]) # if v[1] in _model._meta.fields: # set_dict(d, arg, getattr(_model, v[1])) # else: # _serializer(arg) # if len(self.select_args) == 0: # return self.obj_serializer(obj) # _serializer(self.select_args) # return d
the-stack_0_12564
from . import * class KernelVersionCommand(Command): name = "kernel_version" shell = True command = "/bin/sh -c 'printf \"`uname -a`\\n`uname -v`\"'" desc = "analyze changes in kernel version" def parse(output): lines = output.splitlines() if len(lines) != 2: return None kernel_version = lines[1] line = lines[0].split(kernel_version)[0].split() kernel_name, hostname, kernel_release = line return (kernel_name, hostname, kernel_release, kernel_version) def compare(prev, cur): ret = [] if not prev: prev = cur # a hostname change is something for which we want to see a warning if prev[1] != cur[1]: ret.append(W("hostname changed from %s to %s" % (prev[1], cur[1]))) else: ret.append(D("kernel version check (hostname) yields %s" % cur[1])) # count changes and if we found anything which changed in the # kernel's name, version or release information the kernel got # updated so output a warning too then. c = 0 if prev[0] != cur[0]: ret.append(C("kernel name changed from %s to %s" % (prev[0], cur[0]))) c = c + 1 else: ret.append(D("kernel version check (kernel name) yields %s" % cur[0])) if prev[2] != cur[2]: ret.append(C("kernel release changed from %s to %s" % (prev[2], cur[2]))) c = c + 1 else: ret.append(D("kernel version check (kernel release) yields %s" % cur[2])) if prev[3] != cur[3]: ret.append(C("kernel version changed from %s to %s" % (prev[3], cur[3]))) c = c + 1 else: ret.append(D("kernel version check (kernel version) yields %s" % cur[3])) # if we see a count of > 0 it means something in the kernel has # changed so output a warning if c > 0: ret.append(W("kernel seems to have changed from %s to %s" % (" ".join(prev), " ".join(cur)))) return ret class LSBVersionCommand(Command): name = "lsb_version" shell = False command = "/usr/bin/lsb_release -idcr" desc = "analyze changes in Linux Standard Base release settings" def parse(output): lines = output.splitlines() if len(lines) != 4: return {} ret = {} for line in lines: lf = line.strip().find(":") prop = line[0:lf].strip() val = line[lf+1:].strip() ret[prop] = val return ret def compare(prev, cur): anomalies = [] entries = merge_keys_to_list(prev, cur) for entry in entries: p = prev[entry] if entry in prev else "" c = cur[entry] if entry in cur else "" if entry not in ["Description", "Distributor ID", "Codename", "Release"]: anomalies.append(W("unknown entry '%s' returned by lsb_release prev: '%s', cur: '%s'" % (entry, p, c))) elif p == "": anomalies.append(C("LSB '%s' added with value '%s'" % (entry, c))) elif c == "": anomalies.append(W("LSB '%s' removed somehow (had value '%s')" % (entry, p))) elif p != c: anomalies.append(C("LSB %s changed from '%s' to '%s'" % (entry, p, c))) else: anomalies.append(D("LSB %s = %s" % (entry, c))) return anomalies
the-stack_0_12565
import numpy as np from logging import getLogger import kit_timetable_rebuilder as kitrb class TimeTable(object): def __init__(self, image: np.ndarray, logger=None): self.logger = logger or getLogger(__name__) self.image = image bin_img = kitrb.convert_to_bin(image) # 枠線検出 verticals = kitrb.find_vertical_frames(bin_img, num_vertical=8) sides = kitrb.find_side_frames(bin_img, num_side=6) # 枠線に沿ってトリミング, Periodオブジェクトとして保持 periods = list() for d in range(3): days = list() for p in range(6): dst_img = image[ sides[d + 2]["y_seg"]:sides[d + 3]["y_seg"], verticals[p + 1]["x_seg"]:verticals[p + 2]["x_seg"] ] period = kitrb.Period(dst_img) days.append(period) periods.append(days)
the-stack_0_12566
# Copyright (c) 2019 Andres Gomez Ramirez. # All Rights Reserved. from __future__ import print_function from keras.models import Sequential from keras.layers import Dense, Activation from keras.layers import LSTM from keras.optimizers import RMSprop from keras.utils.data_utils import get_file from arhuaco.analysis.features.data_helpers\ import DataHelpers from tqdm import tqdm import numpy as np import random import sys import string import os # This is the main class for RNN based generative models, # That creates synthetic data based on previous examples. class RnnGen: def __init__(self, data_helpers, maxlen, step, num_epochs, num_chars, samples_per_epoch, weights_file, model_file, generated_file , number_generated): # Parameters self.maxlen = maxlen self.step = step self.num_epochs = num_epochs self.num_chars = 0 self.model = None self.data_helpers = data_helpers self.data_generator = None self.char_indices = None self.indices_char = None self.samples_per_epoch = samples_per_epoch self.weights_file = weights_file self.model_file = model_file self.generated_file = generated_file self.number_generated = number_generated def get_data(self): self.data_generator = self.data_helpers.generator_from_file( self.data_helpers.data_source[1], self.data_helpers.samples_per_batch) # Initialize character set chars = sorted(list(set(string.printable+"\n"))) print('total chars:', len(chars)) self.num_chars = len(chars) self.char_indices = dict((c, i) for i, c in enumerate(chars)) self.indices_char = dict((i, c) for i, c in enumerate(chars)) def format_text(self, text): # cut the text in semi-redundant # sequences of maxlen characters sentences = [] next_chars = [] for i in range(0, len(text) - self.maxlen, self.step): sentences.append(text[i: i + self.maxlen]) next_chars.append(text[i + self.maxlen]) print('nb sequences:', len(sentences)) print('Vectorization...') X = np.zeros((len(sentences), self.maxlen, self.num_chars), dtype=np.bool) y = np.zeros((len(sentences), self.num_chars), dtype=np.bool) for i, sentence in enumerate(sentences): for t, char in enumerate(sentence): X[i, t, self.char_indices[char]] = 1 y[i, self.char_indices[next_chars[i]]] = 1 return (X,y) def build_model(self): # build the model: a single LSTM print('Build model...') self.model = Sequential() self.model.add(LSTM(128, input_shape=(self.maxlen, self.num_chars))) self.model.add(Dense(self.num_chars)) self.model.add(Activation('softmax')) optimizer = RMSprop(lr=0.01) self.model.compile(loss='categorical_crossentropy', optimizer=optimizer) def sample(self, preds, temperature=1.0): # helper function to sample an index # from a probability array preds = np.asarray(preds).astype('float64') preds = np.log(preds) / temperature exp_preds = np.exp(preds) preds = exp_preds / np.sum(exp_preds) probas = np.random.multinomial(1, preds, 1) return np.argmax(probas) def train_model(self): # train the model, output generated text # after each iteration if os.path.exists(self.weights_file): self.model.load_weights(self.weights_file) print("Model loaded from disk.") x_train = next(self.data_generator) text = self.data_helpers.get_text_from_list( x_train) else: for iteration in range(1): x_train = next(self.data_generator) text = self.data_helpers.get_text_from_list( x_train) print('total chars in text:', len(text)) X, y = self.format_text(text) print('-' * 50) print('Iteration', iteration) self.model.fit(X, y, batch_size=self.samples_per_epoch, nb_epoch=self.num_epochs) # Save model print("dumping weights to file...") # serialize model to JSON model_json = self.model.to_json() with open(self.model_file, "w") as json_file: json_file.write(model_json) self.model.save_weights(self.weights_file, overwrite=True) self.test_model(text) def test_model(self, text): # Generate new data print("Size of text:"+str(len(text))) for diversity in [0.2, 0.5, 1.0, 1.2]: start_index = random.randint(0, len(text)\ - self.maxlen - 1) with open(self.generated_file+"-"+str(diversity), "a") as gen_file: print() print('----- diversity:', diversity) # Create a seed for generating data generated = '' sentence = text[start_index: start_index + self.maxlen] generated += sentence print('----- Generating with seed: "' + sentence + '"') for i in tqdm(range(self.number_generated)): x = np.zeros((1, self.maxlen, self.num_chars)) for t, char in enumerate(sentence): x[0, t, self.char_indices[char]] = 1. preds = self.model.predict(x, verbose=0)[0] next_index = self.sample(preds, diversity) next_char = self.indices_char[next_index] generated += next_char sentence = sentence[1:] + next_char gen_file.write(generated)
the-stack_0_12567
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import httplib from flask import request, session, make_response from flask_restful import Resource from flask_restful_swagger import swagger from cairis.daemon.CairisHTTPError import ObjectNotFoundHTTPError from cairis.data.DimensionDAO import DimensionDAO from cairis.tools.JsonConverter import json_serialize __author__ = 'Robin Quetin, Shamal Faily' class DimensionsAPI(Resource): # region Swagger Doc @swagger.operation( notes='Get all dimensions of a specific table', nickname='dimensions-table-get', parameters=[ { "name": "session_id", "description": "The ID of the user's session", "required": False, "allowMultiple": False, "dataType": str.__name__, "paramType": "query" }, { "name": "constraint_id", "description": "The ID of the constraint used when obtaining the data", "required": False, "allowMultiple": False, "dataType": str.__name__, "paramType": "query" } ], responseMessages=[ { "code": httplib.BAD_REQUEST, "message": "The database connection was not properly set up" }, { "code": httplib.CONFLICT, "message": "Database conflict" } ] ) # endregion def get(self, table): session_id = request.args.get('session_id', None) id = request.args.get('constraint_id', -1) dao = DimensionDAO(session_id) dimension_names = dao.getDimensions(table,id) dao.close() resp = make_response(json_serialize(dimension_names, session_id=session_id), httplib.OK) resp.headers['Content-type'] = 'application/json' return resp class DimensionNamesAPI(Resource): # region Swagger Doc @swagger.operation( notes='Get all dimensions of a specific table in a specific environment', nickname='dimensions-table-environment-get', parameters=[ { "name": "session_id", "description": "The ID of the user's session", "required": False, "allowMultiple": False, "dataType": str.__name__, "paramType": "query" } ], responseMessages=[ { "code": httplib.BAD_REQUEST, "message": "The database connection was not properly set up" } ] ) # endregion def get(self, table, environment): session_id = request.args.get('session_id', None) dao = DimensionDAO(session_id) dimension_names = dao.getDimensionNames(table,environment) dao.close() resp = make_response(json_serialize(dimension_names, session_id=session_id), httplib.OK) resp.headers['Content-type'] = 'application/json' return resp
the-stack_0_12568
from __future__ import division # Use floating point for math calculations from CTFd.plugins import register_plugin_assets_directory from CTFd.plugins.flags import get_flag_class from CTFd.utils.user import get_current_user from CTFd import utils from CTFd.models import ( db, Solves, Fails, Flags, Challenges, ChallengeFiles, Tags, Hints, Users, Notifications ) from flask import render_template, request, jsonify, Blueprint, current_app from CTFd.utils.user import get_ip from CTFd.utils.uploads import delete_file from CTFd.utils.decorators import admins_only, authed_only, during_ctf_time_only from CTFd.utils.modes import get_model from CTFd.utils import user as current_user from .models import GlowwormChallenge, ADAChallenge, GlowwormContainers, GlowwormAttacks from CTFd.plugins.challenges import CHALLENGE_CLASSES from .db_utils import DBUtils from .control_utils import ControlUtil import datetime, fcntl import logging, os, sys, uuid from .extensions import get_mode def load(app): # upgrade() app.db.create_all() CHALLENGE_CLASSES["ada_challenge"] = GlowwormChallenge register_plugin_assets_directory( app, base_path="/plugins/ctfd_glowworm/assets/" ) glowworm_blueprint = Blueprint( "ctfd-glowworm", __name__, template_folder="templates", static_folder="assets", url_prefix="/plugins/ctfd-glowworm" ) log_dir = app.config["LOG_FOLDER"] logger_glowworm = logging.getLogger("glowworm") logger_glowworm.setLevel(logging.INFO) logs = { "glowworm": os.path.join(log_dir, "glowworm.log"), } try: for log in logs.values(): if not os.path.exists(log): open(log, "a").close() container_log = logging.handlers.RotatingFileHandler( logs["glowworm"], maxBytes=10000 ) logger_glowworm.addHandler(container_log) except IOError: pass stdout = logging.StreamHandler(stream=sys.stdout) logger_glowworm.addHandler(stdout) logger_glowworm.propagate = 0 @glowworm_blueprint.route("/flag", methods=['POST']) # TODO: fix differfent time bug # @during_ctf_time_only def update_flag(): try: req = request.get_json() print(req) key = GlowwormContainers.query.filter_by(docker_id=req['name']).first().key if req['key'] != key: return jsonify({'success': False}) else: flag = uuid.uuid3(uuid.UUID(req['uuid']), req['name'] + req['time'] + key) if DBUtils.update_flag(req['name'], 'flag{' + str(flag) + '}'): return jsonify({'success': True}) else: return jsonify({'success': False}) except Exception as e: print(e) return jsonify({'success': False}) @glowworm_blueprint.route("/challenge/<challenge_id>", methods=['GET']) def get_targets(challenge_id): try: datas = {'success': True, 'data':[]} containers = GlowwormContainers.query.filter_by(challenge_id=challenge_id).all() print(challenge_id,containers) for container in containers: datas['data'].append({"target":"{}:{}".format(container.ip, container.service_port)}) datas['length'] = len(datas['data']) return jsonify(datas) except Exception as e: print(e) return jsonify({'success': False}) @glowworm_blueprint.route('/admin/settings', methods=['GET']) @admins_only # list plugin settings def admin_list_configs(): configs = DBUtils.get_all_configs() return render_template('glowworm_configs.html', configs=configs) @glowworm_blueprint.route('/admin/settings', methods=['PATCH']) @admins_only # modify plugin settings def admin_save_configs(): req = request.get_json() DBUtils.save_all_configs(req.items()) return jsonify({'success': True}) @glowworm_blueprint.route("/admin/containers", methods=['GET']) @admins_only # list alive containers def admin_list_containers(): configs = DBUtils.get_all_configs() page = abs(request.args.get("page", 1, type=int)) results_per_page = 50 page_start = results_per_page * (page - 1) page_end = results_per_page * (page - 1) + results_per_page count = DBUtils.get_all_alive_container_count() containers = DBUtils.get_all_alive_container_page(page_start, page_end) pages = int(count / results_per_page) + (count % results_per_page > 0) return render_template("glowworm_containers.html", containers=containers, pages=pages, curr_page=page, curr_page_start=page_start, configs=configs) @glowworm_blueprint.route('/admin/containers', methods=['PATCH']) @admins_only def renew_admin_container(): user_id = request.args.get('user_id') challenge_id = request.args.get('challenge_id') if ControlUtil.frequency_limit(): return jsonify({'success': False, 'msg': 'Frequency limit, You should wait at least 1 min.'}) try: ControlUtil.renew_container(user_id, challenge_id) return jsonify({'success': True}) except Exception as e: print(e) return jsonify({'success': False}) @glowworm_blueprint.route("/admin/environments", methods=['GET']) @admins_only # list alive containers def admin_list_environments(): configs = DBUtils.get_all_configs() page = abs(request.args.get("page", 1, type=int)) results_per_page = 50 page_start = results_per_page * (page - 1) page_end = results_per_page * (page - 1) + results_per_page count = DBUtils.get_all_alive_environment_count() environments = DBUtils.get_all_alive_environment_page(page_start, page_end) pages = int(count / results_per_page) + (count % results_per_page > 0) return render_template("glowworm_environments.html", environments=environments, pages=pages, curr_page=page, curr_page_start=page_start) @glowworm_blueprint.route("/admin/init", methods=['PATCH']) @admins_only def admin_init_competitions(): try: from .schedule import scheduler start_time = int(utils.get_config("start")) interval = DBUtils.get_all_configs().get("per_round") interval = str(int(int(interval) / 60)) if ControlUtil.init_competition(): job = scheduler.add_job(id='time_base', func=ControlUtil.check_env, args=["init"], trigger='cron', minute="*/{}".format(interval)) # job = scheduler.add_job(id='time_base', func=ControlUtil.check_env, args=["init"], trigger='interval', seconds=5) print(job) return jsonify({'success': True}) else: return jsonify({'success': False}) except Exception as e: return jsonify({'success': False, 'msg': str(e)}) @glowworm_blueprint.route("/admin/remove", methods=['PATCH']) @admins_only def admin_remove_competitions(): if ControlUtil.remove_competition(): return jsonify({'success': True}) else: return jsonify({'success': False}) @glowworm_blueprint.route("/live/attacks", methods=['GET', 'POST']) @admins_only def attacks(): if request.method == "GET": attacks = GlowwormAttacks.query.order_by(GlowwormAttacks.time.desc()).all() print(attacks) return jsonify({'success': True}) elif request.method == "POST": req = request.get_json() print(req) return jsonify({'success': True}) return jsonify({'success': False}) @glowworm_blueprint.route("/admin/env", methods=['PATCH']) @admins_only def admin_env(): req = request.get_json() print(req) if req["type"] == "init": result = ControlUtil.check_env() elif req["type"] == "check": result = ControlUtil.check_env(req['type'], req['challenge_id']) elif req["type"] == "build": result = ControlUtil.build_env(req['challenge_id']) elif req["type"] == "run": result = ControlUtil.start_env(req['challenge_id']) elif req["type"] == "remove": result = ControlUtil.remove_env(req['challenge_id']) if result: return jsonify({'success': True}) else: return jsonify({'success': False, 'msg': result}) @glowworm_blueprint.route('/container', methods=['GET']) @authed_only def container_info(): user_id = get_mode() challenge_id = request.args.get('challenge_id') ControlUtil.check_challenge(challenge_id, user_id) data = ControlUtil.get_container(user_id=user_id, challenge_id=challenge_id) configs = DBUtils.get_all_configs() if data is not None: if int(data.challenge_id) != int(challenge_id): return jsonify({}) else: return jsonify({'success': True, 'type': 'direct', 'ip': configs.get('direct_address', ""), 'service_port' : data.service_port, 'ssh_port' : data.ssh_port, 'ssh_key' : data.ssh_key }) else: return jsonify({'success': True}) @glowworm_blueprint.route('/container', methods=['PATCH']) @authed_only def renew_container(): user_id = get_mode() challenge_id = request.args.get('challenge_id') if ControlUtil.frequency_limit(): return jsonify({'success': False, 'msg': 'Frequency limit, You should wait at least 1 min.'}) try: ControlUtil.renew_container(user_id, challenge_id) return jsonify({'success': True}) except Exception as e: print(e) return jsonify({'success': False}) @glowworm_blueprint.route("/attacks", methods=['GET']) def list_attacks(): page = abs(request.args.get("page", 1, type=int)) results_per_page = 50 page_start = results_per_page * (page - 1) page_end = results_per_page * (page - 1) + results_per_page count = GlowwormAttacks.query.count() attacks = ( GlowwormAttacks.query.order_by(GlowwormAttacks.time.desc()) .slice(page_start, page_end) .all() ) pages = int(count / results_per_page) + (count % results_per_page > 0) return render_template("glowworm_attacks.html", attacks=attacks, pages=pages, curr_page=page) app.register_blueprint(glowworm_blueprint) try: lock_file = open("/tmp/ctfd_glowworm.lock", "w") lock_fd = lock_file.fileno() fcntl.lockf(lock_fd, fcntl.LOCK_EX | fcntl.LOCK_NB) from .schedule import scheduler, Config app.config.from_object(Config()) scheduler.init_app(app) scheduler.start() except IOError: pass
the-stack_0_12569
# -*- coding: utf-8 -*- """ Created on Thu Jul 22 17:32:28 2021 @author: galfredo """ # dataset settings dataset_type = 'CocoVideoDataset' classes = ('1') data_root = 'C:/Users/galfredo/Documents/Challenge Everest/dff test/customized annotations/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadMultiImagesFromFile'), dict(type='SeqLoadAnnotations', with_bbox=True, with_track=True), dict(type='SeqResize', img_scale=(1000, 600), keep_ratio=True), dict(type='SeqRandomFlip', share_params=True, flip_ratio=0.5), dict(type='SeqNormalize', **img_norm_cfg), dict(type='SeqPad', size_divisor=16), dict( type='VideoCollect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_instance_ids']), dict(type='ConcatVideoReferences'), dict(type='SeqDefaultFormatBundle', ref_prefix='ref') ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1000, 600), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=16), dict(type='ImageToTensor', keys=['img']), dict(type='VideoCollect', keys=['img']) ]) ] data = dict( samples_per_gpu=1, workers_per_gpu=2, train=[ dict( type=dataset_type, ann_file=data_root + 'annotations.json', img_prefix=data_root + 'VID', ref_img_sampler=dict( num_ref_imgs=1, frame_range=9, filter_key_img=False, method='uniform'), pipeline=train_pipeline) ], val=dict( type=dataset_type, ann_file=data_root + 'annotations.json', img_prefix=data_root + 'VID', ref_img_sampler=None, pipeline=test_pipeline, test_mode=True), test=dict( type=dataset_type, ann_file=data_root + 'annotations.json', img_prefix=data_root + 'VID', ref_img_sampler=None, pipeline=test_pipeline, test_mode=True))
the-stack_0_12570
""" Copyright 2020 The OneFlow Authors. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import unittest from collections import OrderedDict import numpy as np import oneflow.experimental as flow from test_util import GenArgList def _test_eq(test_case, shape, device): arr1 = np.random.randn(*shape) arr2 = np.random.randn(*shape) input = flow.Tensor(arr1, dtype=flow.float32, device=flow.device(device)) other = flow.Tensor(arr2, dtype=flow.float32, device=flow.device(device)) of_out = flow.eq(input, other) of_out2 = flow.equal(input, other) np_out = np.equal(arr1, arr2) test_case.assertTrue(np.array_equal(of_out.numpy(), np_out)) test_case.assertTrue(np.array_equal(of_out2.numpy(), np_out)) def _test_eq_int(test_case, shape, device): arr = np.random.randn(*shape) input = flow.Tensor(arr, dtype=flow.float32, device=flow.device(device)) num = 1 of_out = flow.eq(input, num) np_out = np.equal(arr, num) test_case.assertTrue(np.array_equal(of_out.numpy(), np_out)) def _test_eq_float(test_case, shape, device): arr = np.random.randn(*shape) input = flow.Tensor(arr, dtype=flow.float32, device=flow.device(device)) num = 1 of_out = flow.eq(input, num) np_out = np.equal(arr, num) test_case.assertTrue(np.array_equal(of_out.numpy(), np_out)) @unittest.skipIf( not flow.unittest.env.eager_execution_enabled(), ".numpy() doesn't work in lazy mode", ) class TestEq(flow.unittest.TestCase): def test_eq(test_case): arg_dict = OrderedDict() arg_dict["test_func"] = [_test_eq, _test_eq_int, _test_eq_float] arg_dict["shape"] = [(2, 3), (2, 3, 4), (2, 4, 5, 6)] arg_dict["device"] = ["cpu", "cuda"] for arg in GenArgList(arg_dict): arg[0](test_case, *arg[1:]) if __name__ == "__main__": unittest.main()
the-stack_0_12571
import os import tensorflow as tf from tensorflow.python.tools import freeze_graph from tensorflow.tools.graph_transforms import TransformGraph import config import download import loss class MSINET: """The class representing the MSI-Net based on the VGG16 model. It implements a definition of the computational graph, as well as functions related to network training. """ def __init__(self): self._output = None self._mapping = {} self.attention = "none" if config.PARAMS["device"] == "gpu": self._data_format = "channels_first" self._channel_axis = 1 self._dims_axis = (2, 3) elif config.PARAMS["device"] == "cpu": self._data_format = "channels_last" self._channel_axis = 3 self._dims_axis = (1, 2) def cbam_block(self, input_feature, name, ratio=8, input_filters=128): """Contains the implementation of Convolutional Block Attention Module(CBAM) block. As described in https://arxiv.org/abs/1807.06521. """ with tf.variable_scope(name): attention_feature = self.channel_attention(input_feature, 'ch_at', ratio, input_filters=input_filters) attention_feature = self.spatial_attention(attention_feature, 'sp_at', input_filters=input_filters) return attention_feature def channel_attention(self, input_feature, name, ratio=8, input_filters=128): kernel_initializer = tf.contrib.layers.variance_scaling_initializer() bias_initializer = tf.constant_initializer(value=0.0) with tf.variable_scope(name): channel = input_filters avg_pool = tf.reduce_mean(input_feature, axis=self._dims_axis, keepdims=True) avg_pool = tf.layers.conv2d(avg_pool, channel // ratio, (1, 1), use_bias=True, name=name + 'mlp_0', strides=(1, 1), padding='valid', data_format=self._data_format, activation=tf.nn.relu, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, reuse=None) avg_pool = tf.layers.conv2d(avg_pool, channel, (1, 1), use_bias=True, name=name + 'mlp_1', strides=(1, 1), padding='valid', data_format=self._data_format, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, reuse=None) max_pool = tf.reduce_max(input_feature, axis=self._dims_axis, keepdims=True) max_pool = tf.layers.conv2d(max_pool, channel//ratio, (1, 1), use_bias=True, name=name + 'mlp_0', strides=(1, 1), padding='valid', data_format=self._data_format, activation=tf.nn.relu, reuse=True) max_pool = tf.layers.conv2d(max_pool, channel, (1, 1), use_bias=True, name=name + 'mlp_1', strides=(1, 1), padding='valid', data_format=self._data_format, reuse=True) scale = tf.sigmoid(avg_pool + max_pool, 'sigmoid') return input_feature * scale def spatial_attention(self, input_feature, name, input_filters=128): kernel_size = 7 kernel_initializer = tf.contrib.layers.variance_scaling_initializer() with tf.variable_scope(name): avg_pool = tf.reduce_mean(input_feature, axis=[3], keepdims=True) max_pool = tf.reduce_max(input_feature, axis=[3], keepdims=True) concat = tf.concat([avg_pool,max_pool], 3) concat = tf.layers.conv2d(concat, filters=1, kernel_size=[kernel_size,kernel_size], strides=[1,1], padding="same", activation=None, kernel_initializer=kernel_initializer, use_bias=False, name='conv') concat = tf.sigmoid(concat, 'sigmoid') return input_feature * concat def se_block(self, residual, name, ratio=8, input_filters=128): with tf.variable_scope(name): # Global average pooling kernel_initializer = tf.contrib.layers.variance_scaling_initializer() bias_initializer = tf.constant_initializer(value=0.0) squeeze = tf.reduce_mean(residual, axis=self._dims_axis, keepdims=True) excitation = tf.layers.conv2d(squeeze, input_filters // ratio, (1, 1), use_bias=True, name=name + '_1x1_down', strides=(1, 1), padding='valid', data_format=self._data_format, activation=tf.nn.relu, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer) excitation = tf.layers.conv2d(excitation, input_filters, (1, 1), use_bias=True, name=name + '_1x1_up', strides=(1, 1), padding='valid', data_format=self._data_format, activation=tf.nn.sigmoid, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer) scale = residual * excitation return scale def _encoder(self, images): """The encoder of the model consists of a pretrained VGG16 architecture with 13 convolutional layers. All dense layers are discarded and the last 3 layers are dilated at a rate of 2 to account for the omitted downsampling. Finally, the activations from 3 layers are combined. Args: images (tensor, float32): A 4D tensor that holds the RGB image batches used as input to the network. """ imagenet_mean = tf.constant([103.939, 116.779, 123.68]) imagenet_mean = tf.reshape(imagenet_mean, [1, 1, 1, 3]) images -= imagenet_mean if self._data_format == "channels_first": images = tf.transpose(images, (0, 3, 1, 2)) layer01 = tf.layers.conv2d(images, 64, 3, padding="same", activation=tf.nn.relu, data_format=self._data_format, name="conv1/conv1_1") layer02 = tf.layers.conv2d(layer01, 64, 3, padding="same", activation=tf.nn.relu, data_format=self._data_format, name="conv1/conv1_2") layer03 = tf.layers.max_pooling2d(layer02, 2, 2, data_format=self._data_format) layer04 = tf.layers.conv2d(layer03, 128, 3, padding="same", activation=tf.nn.relu, data_format=self._data_format, name="conv2/conv2_1") layer05 = tf.layers.conv2d(layer04, 128, 3, padding="same", activation=tf.nn.relu, data_format=self._data_format, name="conv2/conv2_2") layer06 = tf.layers.max_pooling2d(layer05, 2, 2, data_format=self._data_format) layer07 = tf.layers.conv2d(layer06, 256, 3, padding="same", activation=tf.nn.relu, data_format=self._data_format, name="conv3/conv3_1") layer08 = tf.layers.conv2d(layer07, 256, 3, padding="same", activation=tf.nn.relu, data_format=self._data_format, name="conv3/conv3_2") layer09 = tf.layers.conv2d(layer08, 256, 3, padding="same", activation=tf.nn.relu, data_format=self._data_format, name="conv3/conv3_3") layer10 = tf.layers.max_pooling2d(layer09, 2, 2, data_format=self._data_format) layer11 = tf.layers.conv2d(layer10, 512, 3, padding="same", activation=tf.nn.relu, data_format=self._data_format, name="conv4/conv4_1") layer12 = tf.layers.conv2d(layer11, 512, 3, padding="same", activation=tf.nn.relu, data_format=self._data_format, name="conv4/conv4_2") layer13 = tf.layers.conv2d(layer12, 512, 3, padding="same", activation=tf.nn.relu, data_format=self._data_format, name="conv4/conv4_3") layer14 = tf.layers.max_pooling2d(layer13, 2, 1, padding="same", data_format=self._data_format) layer15 = tf.layers.conv2d(layer14, 512, 3, padding="same", activation=tf.nn.relu, dilation_rate=2, data_format=self._data_format, name="conv5/conv5_1") layer16 = tf.layers.conv2d(layer15, 512, 3, padding="same", activation=tf.nn.relu, dilation_rate=2, data_format=self._data_format, name="conv5/conv5_2") layer17 = tf.layers.conv2d(layer16, 512, 3, padding="same", activation=tf.nn.relu, dilation_rate=2, data_format=self._data_format, name="conv5/conv5_3") layer18 = tf.layers.max_pooling2d(layer17, 2, 1, padding="same", data_format=self._data_format) encoder_output = tf.concat([layer10, layer14, layer18],axis=self._channel_axis) if config.PARAMS["attention"] == None : self._output = encoder_output elif config.PARAMS["attention"] == 'se' : self._output = self.se_block(encoder_output, name="00_se", input_filters=1280) elif config.PARAMS["attention"] == 'cbam' : self._output = self.cbam_block(input_feature=encoder_output, name="00_cbam", ratio=8, input_filters=1280) def _aspp(self, features): """The ASPP module samples information at multiple spatial scales in parallel via convolutional layers with different dilation factors. The activations are then combined with global scene context and represented as a common tensor. Args: features (tensor, float32): A 4D tensor that holds the features produced by the encoder module. """ branch1 = tf.layers.conv2d(features, 256, 1, padding="same", activation=tf.nn.relu, data_format=self._data_format, name="aspp/conv1_1") branch2 = tf.layers.conv2d(features, 256, 3, padding="same", activation=tf.nn.relu, dilation_rate=4, data_format=self._data_format, name="aspp/conv1_2") branch3 = tf.layers.conv2d(features, 256, 3, padding="same", activation=tf.nn.relu, dilation_rate=8, data_format=self._data_format, name="aspp/conv1_3") branch4 = tf.layers.conv2d(features, 256, 3, padding="same", activation=tf.nn.relu, dilation_rate=12, data_format=self._data_format, name="aspp/conv1_4") branch5 = tf.reduce_mean(features, axis=self._dims_axis, keepdims=True) branch5 = tf.layers.conv2d(branch5, 256, 1, padding="valid", activation=tf.nn.relu, data_format=self._data_format, name="aspp/conv1_5") shape = tf.shape(features) branch5 = self._upsample(branch5, shape, 1) context = tf.concat([branch1, branch2, branch3, branch4, branch5], axis=self._channel_axis) aspp_output = tf.layers.conv2d(context, 256, 1, padding="same", activation=tf.nn.relu, data_format=self._data_format, name="aspp/conv2") self._output = aspp_output def _decoder(self, features): """The decoder model applies a series of 3 upsampling blocks that each performs bilinear upsampling followed by a 3x3 convolution to avoid checkerboard artifacts in the image space. Unlike all other layers, the output of the model is not modified by a ReLU. Args: features (tensor, float32): A 4D tensor that holds the features produced by the ASPP module. """ shape = tf.shape(features) layer1 = self._upsample(features, shape, 2) layer2 = tf.layers.conv2d(layer1, 128, 3, padding="same", activation=tf.nn.relu, data_format=self._data_format, name="decoder/conv1") shape = tf.shape(layer2) layer3 = self._upsample(layer2, shape, 2) layer4 = tf.layers.conv2d(layer3, 64, 3, padding="same", activation=tf.nn.relu, data_format=self._data_format, name="decoder/conv2") shape = tf.shape(layer4) layer5 = self._upsample(layer4, shape, 2) layer6 = tf.layers.conv2d(layer5, 32, 3, padding="same", activation=tf.nn.relu, data_format=self._data_format, name="decoder/conv3") decoder_output = tf.layers.conv2d(layer6, 1, 3, padding="same", data_format=self._data_format, name="decoder/conv4") if self._data_format == "channels_first": decoder_output = tf.transpose(decoder_output, (0, 2, 3, 1)) self._output = decoder_output def _upsample(self, stack, shape, factor): """This function resizes the input to a desired shape via the bilinear upsampling method. Args: stack (tensor, float32): A 4D tensor with the function input. shape (tensor, int32): A 1D tensor with the reference shape. factor (scalar, int): An integer denoting the upsampling factor. Returns: tensor, float32: A 4D tensor that holds the activations after bilinear upsampling of the input. """ if self._data_format == "channels_first": stack = tf.transpose(stack, (0, 2, 3, 1)) stack = tf.image.resize_bilinear(stack, (shape[self._dims_axis[0]] * factor, shape[self._dims_axis[1]] * factor)) if self._data_format == "channels_first": stack = tf.transpose(stack, (0, 3, 1, 2)) return stack def _normalize(self, maps, eps=1e-7): """This function normalizes the output values to a range between 0 and 1 per saliency map. Args: maps (tensor, float32): A 4D tensor that holds the model output. eps (scalar, float, optional): A small factor to avoid numerical instabilities. Defaults to 1e-7. """ min_per_image = tf.reduce_min(maps, axis=(1, 2, 3), keep_dims=True) maps -= min_per_image max_per_image = tf.reduce_max(maps, axis=(1, 2, 3), keep_dims=True) maps = tf.divide(maps, eps + max_per_image, name="output") self._output = maps def _pretraining(self): """The first 26 variables of the model here are based on the VGG16 network. Therefore, their names are matched to the ones of the pretrained VGG16 checkpoint for correct initialization. """ if self.attention == 'se': index = 38 #70 else: index = 26 for var in tf.global_variables()[:index]: if 'se' not in var.name.split("/", 1)[1]: #print(var.name.split("/", 1)[1]) key = var.name.split("/", 1)[1] key = key.replace("kernel:0", "weights") key = key.replace("bias:0", "biases") self._mapping[key] = var def forward(self, images): """Public method to forward RGB images through the whole network architecture and retrieve the resulting output. Args: images (tensor, float32): A 4D tensor that holds the values of the raw input images. Returns: tensor, float32: A 4D tensor that holds the values of the predicted saliency maps. """ self._encoder(images) self._aspp(self._output) self._decoder(self._output) self._normalize(self._output) return self._output def train(self, ground_truth, predicted_maps, learning_rate): """Public method to define the loss function and optimization algorithm for training the model. Args: ground_truth (tensor, float32): A 4D tensor with the ground truth. predicted_maps (tensor, float32): A 4D tensor with the predictions. learning_rate (scalar, float): Defines the learning rate. Returns: object: The optimizer element used to train the model. tensor, float32: A 0D tensor that holds the averaged error. """ error = loss.kld(ground_truth, predicted_maps) optimizer = tf.train.AdamOptimizer(learning_rate) optimizer = optimizer.minimize(error) return optimizer, error def save(self, saver, sess, dataset, path, device): """This saves a model checkpoint to disk and creates the folder if it doesn't exist yet. Args: saver (object): An object for saving the model. sess (object): The current TF training session. path (str): The path used for saving the model. device (str): Represents either "cpu" or "gpu". """ os.makedirs(path, exist_ok=True) saver.save(sess, path + "model_%s_%s.ckpt" % (dataset, device), write_meta_graph=False, write_state=False) def restore(self, sess, dataset, paths, device): """This function allows continued training from a prior checkpoint and training from scratch with the pretrained VGG16 weights. In case the dataset is either CAT2000 or MIT1003, a prior checkpoint based on the SALICON dataset is required. Args: sess (object): The current TF training session. dataset ([type]): The dataset used for training. paths (dict, str): A dictionary with all path elements. device (str): Represents either "cpu" or "gpu". Returns: object: A saver object for saving the model. """ model_name = "model_%s_%s" % (dataset, device) salicon_name = "model_salicon_%s" % device vgg16_name = "vgg16_hybrid" ext1 = ".ckpt.data-00000-of-00001" ext2 = ".ckpt.index" saver = tf.train.Saver() if os.path.isfile(paths["latest"] + model_name + ext1) and \ os.path.isfile(paths["latest"] + model_name + ext2): saver.restore(sess, paths["latest"] + model_name + ".ckpt") elif dataset in ("mit1003", "dutomron", "cat2000", "pascals", "osie", "fiwi"): if os.path.isfile(paths["best"] + salicon_name + ext1) and \ os.path.isfile(paths["best"] + salicon_name + ext2): saver.restore(sess, paths["best"] + salicon_name + ".ckpt") else: raise FileNotFoundError("Train model on SALICON first") else: if not (os.path.isfile(paths["weights"] + vgg16_name + ext1) or os.path.isfile(paths["weights"] + vgg16_name + ext2)): download.download_pretrained_weights(paths["weights"], "vgg16_hybrid") self._pretraining() loader = tf.train.Saver(self._mapping) loader.restore(sess, paths["weights"] + vgg16_name + ".ckpt") return saver def optimize(self, sess, dataset, path, device): """The best performing model is frozen, optimized for inference by removing unneeded training operations, and written to disk. Args: sess (object): The current TF training session. path (str): The path used for saving the model. device (str): Represents either "cpu" or "gpu". .. seealso:: https://bit.ly/2VBBdqQ and https://bit.ly/2W7YqBa """ model_name = "model_%s_%s" % (dataset, device) model_path = path + model_name tf.train.write_graph(sess.graph.as_graph_def(), path, model_name + ".pbtxt") freeze_graph.freeze_graph(model_path + ".pbtxt", "", False, model_path + ".ckpt", "output", "save/restore_all", "save/Const:0", model_path + ".pb", True, "") os.remove(model_path + ".pbtxt") graph_def = tf.GraphDef() with tf.gfile.Open(model_path + ".pb", "rb") as file: graph_def.ParseFromString(file.read()) transforms = ["remove_nodes(op=Identity)", "merge_duplicate_nodes", "strip_unused_nodes", "fold_constants(ignore_errors=true)"] optimized_graph_def = TransformGraph(graph_def, ["input"], ["output"], transforms) tf.train.write_graph(optimized_graph_def, logdir=path, as_text=False, name=model_name + ".pb")
the-stack_0_12572
from dal import autocomplete, forward from django import forms from .models import TModel class TForm(forms.ModelForm): class Meta: model = TModel fields = ('name', 'owner', 'test') widgets = { 'test': autocomplete.ModelSelect2( url='linked_data_rf', forward=(forward.Field(src="owner", dst="possessor"), forward.Const(val=42, dst="secret")) ) } class Media: js = ( 'linked_data.js', )
the-stack_0_12573
# coding: utf-8 import sys import re from natsort import natsorted INPUT = sys.argv[ 1 ] # NOTE: This script for Kontakt6! # KSP Reference Manual.txt created by Acrobat DC (Windows version & locale cp932) and re-save on vscode as utf-8 encoding. # If created by different locale, change encoding name. ENCODING = 'utf-8' REGEX = r"(\s*[a-z|A-Z|_]+\(\)\s*)+" wordList = [] IGNORE_WORD_LIST = [ "select", "while", "ui_waveform", # in Explain, Examples "array", "by_mark", # miss? "change_xxx", "get_keyrange_xxx", "if", "it", "low_group", "ray_idx", "set_condition", #lower "range", # not exist # Interrupted word "group", "idx", "par_str_arr", "tach_zone", # line separated (-> attach_zone() ) "ui_control", # It is callback "trol_par_str_arr", # extract miss (expexted: control_par_str_arr) ] def appendWord( word, targetList ): if( len( word ) > 0 and not word in IGNORE_WORD_LIST and not word in targetList ) : targetList.append( word ) f = open( INPUT, 'r', encoding = ENCODING ) while( True ): line = f.readline() if( not line ): break m = re.findall( REGEX, line ) if( m == None ): continue for i in m: word = i.strip() word = re.sub( r".*?\s+.*", "", word ) word = re.sub( r"\s*\(\s*", "", word ) word = re.sub( r"\s*\)\s*", "", word ) if word.find( "-" ) >= 0: continue appendWord( word.lower(), wordList ) f.close() for i in natsorted( wordList ): print( i )
the-stack_0_12574
import re import tensorflow.compat.v1 as tf import tensorflow.contrib.slim as slim from tensorflow.contrib.slim.nets import resnet_v1 from dataset.pose_dataset import Batch from nnet import losses net_funcs = {'resnet_50': resnet_v1.resnet_v1_50, 'resnet_101': resnet_v1.resnet_v1_101} def prediction_layer(cfg, input, name, num_outputs): with slim.arg_scope([slim.conv2d, slim.conv2d_transpose], padding='SAME', activation_fn=None, normalizer_fn=None, weights_regularizer=slim.l2_regularizer(cfg.weight_decay)): with tf.variable_scope(name): pred = slim.conv2d_transpose(input, num_outputs, kernel_size=[3, 3], stride=2, scope='block4') return pred def get_batch_spec(cfg): num_joints = cfg.num_joints batch_size = cfg.batch_size batch_spec = { Batch.inputs: [batch_size, None, None, 3], Batch.part_score_targets: [batch_size, None, None, num_joints], Batch.part_score_weights: [batch_size, None, None, num_joints] } if cfg.location_refinement: batch_spec[Batch.locref_targets] = [batch_size, None, None, num_joints * 2] batch_spec[Batch.locref_mask] = [batch_size, None, None, num_joints * 2] if cfg.pairwise_predict: batch_spec[Batch.pairwise_targets] = [batch_size, None, None, num_joints * (num_joints - 1) * 2] batch_spec[Batch.pairwise_mask] = [batch_size, None, None, num_joints * (num_joints - 1) * 2] return batch_spec class PoseNet: def __init__(self, cfg): self.cfg = cfg def extract_features(self, inputs): net_fun = net_funcs[self.cfg.net_type] mean = tf.constant(self.cfg.mean_pixel, dtype=tf.float32, shape=[1, 1, 1, 3], name='img_mean') im_centered = inputs - mean with slim.arg_scope(resnet_v1.resnet_arg_scope()): net, end_points = net_fun(im_centered, global_pool=False, output_stride=16, is_training=False) return net, end_points def prediction_layers(self, features, end_points, reuse=None, no_interm=False, scope='pose'): cfg = self.cfg num_layers = re.findall("resnet_([0-9]*)", cfg.net_type)[0] layer_name = 'resnet_v1_{}'.format(num_layers) + '/block{}/unit_{}/bottleneck_v1' out = {} with tf.variable_scope(scope, reuse=reuse): out['part_pred'] = prediction_layer(cfg, features, 'part_pred', cfg.num_joints) if cfg.location_refinement: out['locref'] = prediction_layer(cfg, features, 'locref_pred', cfg.num_joints * 2) if cfg.pairwise_predict: out['pairwise_pred'] = prediction_layer(cfg, features, 'pairwise_pred', cfg.num_joints * (cfg.num_joints - 1) * 2) if cfg.intermediate_supervision and not no_interm: interm_name = layer_name.format(3, cfg.intermediate_supervision_layer) block_interm_out = end_points[interm_name] out['part_pred_interm'] = prediction_layer(cfg, block_interm_out, 'intermediate_supervision', cfg.num_joints) return out def get_net(self, inputs): net, end_points = self.extract_features(inputs) return self.prediction_layers(net, end_points) def test(self, inputs): heads = self.get_net(inputs) return self.add_test_layers(heads) def add_test_layers(self, heads): prob = tf.sigmoid(heads['part_pred']) outputs = {'part_prob': prob} if self.cfg.location_refinement: outputs['locref'] = heads['locref'] if self.cfg.pairwise_predict: outputs['pairwise_pred'] = heads['pairwise_pred'] return outputs def part_detection_loss(self, heads, batch, locref, pairwise, intermediate): cfg = self.cfg weigh_part_predictions = cfg.weigh_part_predictions part_score_weights = batch[Batch.part_score_weights] if weigh_part_predictions else 1.0 def add_part_loss(pred_layer): return tf.losses.sigmoid_cross_entropy(batch[Batch.part_score_targets], heads[pred_layer], part_score_weights) loss = {} loss['part_loss'] = add_part_loss('part_pred') total_loss = loss['part_loss'] if intermediate: loss['part_loss_interm'] = add_part_loss('part_pred_interm') total_loss = total_loss + loss['part_loss_interm'] if locref: locref_pred = heads['locref'] locref_targets = batch[Batch.locref_targets] locref_weights = batch[Batch.locref_mask] loss_func = losses.huber_loss if cfg.locref_huber_loss else tf.losses.mean_squared_error loss['locref_loss'] = cfg.locref_loss_weight * loss_func(locref_targets, locref_pred, locref_weights) total_loss = total_loss + loss['locref_loss'] if pairwise: pairwise_pred = heads['pairwise_pred'] pairwise_targets = batch[Batch.pairwise_targets] pairwise_weights = batch[Batch.pairwise_mask] loss_func = losses.huber_loss if cfg.pairwise_huber_loss else tf.losses.mean_squared_error loss['pairwise_loss'] = cfg.pairwise_loss_weight * loss_func(pairwise_targets, pairwise_pred, pairwise_weights) total_loss = total_loss + loss['pairwise_loss'] # loss['total_loss'] = slim.losses.get_total_loss(add_regularization_losses=params.regularize) loss['total_loss'] = total_loss return loss def train(self, batch): cfg = self.cfg intermediate = cfg.intermediate_supervision locref = cfg.location_refinement pairwise = cfg.pairwise_predict heads = self.get_net(batch[Batch.inputs]) return self.part_detection_loss(heads, batch, locref, pairwise, intermediate)
the-stack_0_12575
import unittest from dmLibrary import create_app from dmLibrary.external.googleBook import GoogleBook import time import logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) class TestBookClass(unittest.TestCase): def setUp(self): app = create_app() self.ctx = app.app_context() self.ctx.push() self.client = app.test_client() self.gb = GoogleBook() logger.debug('logged from test_something') def tearDown(self): """Do the testing """ pass def test_postBook(self): """ test post new book, try update, and delete it """ data = { "title":"เรียนรู้วิถีชีวิต ประเพณี พิธีกรรม และความเชื่อแบบบูรณาการ", "isbn":"9748846709" } response = self.client.post('/api/v1/books',json=data) logger.info(f"rawResp: {response.data}") self.assertEqual(response.status_code, 201) respData = response.get_json() self.assertEqual(respData["data"]['title'], data['title']) self.assertEqual(respData["data"]['isbn'], data['isbn']) pageCount = self.gb.getPageCount(data["isbn"]) self.assertEqual(respData["data"]['pageCount'], 159) logger.info(f"respData: {respData}") book_id = respData["data"]["id"] # try update the title data = { "title":"test update Book" } response = self.client.patch(f'/api/v1/books/{book_id}',json=data) logger.info(f"rawResp: {response.data}") self.assertEqual(response.status_code, 200) respData = response.get_json() self.assertEqual(respData["data"]['title'], data['title']) # delete it response = self.client.delete(f'/api/v1/books/{book_id}') logger.info(f"rawResp: {response.data}") self.assertEqual(response.status_code, 200)
the-stack_0_12576
#coding=utf-8 ''' use NTFS usn to iter path requires Admin ''' import os import sys curpath = os.path.dirname(os.path.realpath(__file__)) #sys.path.append(os.path.join(curpath,'msvc','Debug')) sys.path.append(os.path.join(curpath,'build','lib.win32-2.7')) def entry(): import libfileiterusn count = 0 it = libfileiterusn.iter_drive(u'c:\\') if it: for v in it: count +=1 sys.stdout.write('{}\n'.format(v.encode('utf-8'))) print('count {}'.format(count)) if __name__ == '__main__': entry()
the-stack_0_12580
import cv2 import numpy as np from PIL import Image import matplotlib.pyplot as plt p = "./test/11.jpg" oriImg = cv2.imread(p) oriPoints = np.float32([[896.75,145.0],[1246.5,336.0], [796.0,407.25]]) canvasPoints = np.float32([[797.25,143.5],[1151.25,297.5],[710.75,415.25]]) rotationMatrix = cv2.getAffineTransform(np.array(oriPoints),np.array(canvasPoints)) dstImg = cv2.warpAffine(oriImg,rotationMatrix,(1664,2352)) # cv2.imshow("perspectiveImg", dstImg) plt.imsave("./test/11out.jpg", dstImg) plt.figure('image') plt.imshow(dstImg) plt.show()
the-stack_0_12581
from django.conf.urls import include from django.urls import re_path from django.views.decorators.cache import never_cache from . import views from .utils import render_xml services_patterns = [ re_path(r'^monitor\.json$', never_cache(views.monitor), name='amo.monitor'), re_path(r'^loaded$', never_cache(views.loaded), name='amo.loaded'), re_path(r'^403', views.handler403), re_path(r'^404', views.handler404), re_path(r'^500', views.handler500), ] api_patterns = [ re_path(r'^site/$', views.SiteStatusView.as_view(), name='amo-site-status'), ] urlpatterns = [ re_path(r'^robots\.txt$', views.robots, name='robots.txt'), re_path(r'^contribute\.json$', views.contribute, name='contribute.json'), re_path(r'^services/', include(services_patterns)), re_path(r'^__version__$', views.version, name='version.json'), re_path(r'^opensearch\.xml$', render_xml, {'template': 'amo/opensearch.xml'}, name='amo.opensearch'), ]
the-stack_0_12582
#!/usr/bin/env python # -*- coding: utf-8 -*- ############################################################################### """ This file is a part of the VeRyPy classical vehicle routing problem heuristic library and provides an implementation of the Stewart & Golden (1984) 3-opt* heuristic with Lagrangean relaxation. The script is callable and can be used as a standalone solver for TSPLIB formatted CVRPs. It has moderate dependencies: a TSP solver (the built-in one can be used) and the internal 3-opt* implementation. Also, numpy is needed for by the algorithm for few convenience functions, as well as scipy for reading and preparing the problem instance. """ ############################################################################### import numpy as np from logging import log, DEBUG from random import shuffle from functools import partial from tsp_solvers.tsp_solver_lkh import solve_tsp_lkh as tsp_opt_algo from cvrp_ops import fast_constraint_check, calculate_objective, normalize_solution from local_search.solution_operators import do_3optstar_move from local_search import LSOPT from util import without_empty_routes, sol2routes, routes2sol from config import COST_EPSILON as S_EPS from config import CAPACITY_EPSILON as C_EPS __author__ = "Jussi Rasku" __copyright__ = "Copyright 2018, Jussi Rasku" __credits__ = ["Jussi Rasku"] __license__ = "MIT" __maintainer__ = "Jussi Rasku" __email__ = "[email protected]" __status__ = "Development" def _make_checker_function(lambda1, lambda2): return def _check_lr3opt_move(D, C, L, removed_weights, best_delta, edges, end_p, end_n, cum_d, cum_l, ldepot_12, ldepot_34, lambdas): """ The Lagrangian constrant violation penalty calculation. The penalties for each of the 14 possible 3-opt* moves are calculated here. They are lifted as the edges are removed and recalculated when the new edges involved in the move are added back. This also updates the delta. .. note:: a good performance optimization would be to do this in parts when i,j,k are changed but that would mean duplication of the do_3optstar_move code, which was not preferable.""" ## Calculate the penalties that are lifted removed_penalties = 0 if C: route_d = cum_d[0]+cum_d[1] if ldepot_12: if route_d-C_EPS>C: removed_penalties+=(route_d-C)*lambdas[0] route_d = cum_d[2]+cum_d[3] else: route_d+=cum_d[3] if ldepot_34: if route_d-C_EPS>C: removed_penalties+=(route_d-C)*lambdas[0] route_d = cum_d[4]+cum_d[5] else: route_d += cum_d[5] if route_d-C_EPS>C: removed_penalties+=(route_d-C)*lambdas[0] if L: route_l = cum_l[0]+cum_l[1]+D[end_n[0],end_n[1]] if ldepot_12: if route_l-S_EPS>L: removed_penalties+=(route_l-L)*lambdas[1] route_l = cum_l[2]+cum_l[3]+D[end_n[2],end_n[3]] else: route_l+=cum_l[3]+D[end_n[2],end_n[3]] if ldepot_34: if route_l-S_EPS>L: removed_penalties+=(route_l-L)*lambdas[1] route_l = cum_l[4]+cum_l[5]+D[end_n[4],end_n[5]] else: route_l += cum_l[5]+D[end_n[4],end_n[5]] if route_l-S_EPS>L: removed_penalties+=(route_l-L)*lambdas[1] ## Calculate the delta (still missing the move induced penalties) added_weights = D[end_n[edges[0][0]], end_n[edges[0][1]]]+\ D[end_n[edges[1][0]], end_n[edges[1][1]]]+\ D[end_n[edges[2][0]], end_n[edges[2][1]]] delta = added_weights-removed_weights-removed_penalties ## Calculate the move induced Lagrangian relaxation penalties # Note that the move has to have some potential to be an improvement. if (delta+S_EPS<best_delta): prev_edge = None route_d = 0 route_l = 0 # Assume that the edges are in right order and to the right direction # so that the final solution can be formed by applying them # consecutively. for curr_edge in edges: # Check if there is a visit to the depot on the previous segment, # that is, between previous END and the current edge START nodes. if (curr_edge[0]==0 or prev_edge[1]==5 or (ldepot_12 is not None and ( end_p[prev_edge[1]]<=ldepot_12<=end_p[curr_edge[0]] or end_p[prev_edge[1]]>=ldepot_12>=end_p[curr_edge[0]])) or ( ldepot_34 is not None and ( end_p[prev_edge[1]]<=ldepot_34<=end_p[curr_edge[0]] or end_p[prev_edge[1]]>=ldepot_34>=end_p[curr_edge[0]]))): if C: if route_d-C_EPS>C: delta += (route_d-C)*lambdas[0] route_d = cum_d[curr_edge[0]] if L: if route_l-S_EPS>L: delta += (route_l-L)*lambdas[1] route_l = cum_l[curr_edge[0]] # abort poor moves early if (delta+S_EPS>=best_delta): return None if C: route_d += cum_d[curr_edge[1]] if L: e_wt = D[end_n[curr_edge[0]],end_n[curr_edge[1]]] route_l+=e_wt+cum_l[curr_edge[1]] prev_edge = curr_edge # The last edge has been connected, time to do check if the last formed # route induces any penalties. if C and route_d-C_EPS>C: delta += (route_d-C)*lambdas[0] if L and route_l-S_EPS>L: delta += (route_l-L)*lambdas[1] if (delta+S_EPS<best_delta): return delta # was not an improving move return None def _init_with_random(D,d,C,L): customers = list(range(1,len(D))) shuffle(customers) random_sol = [0]+customers+[0] return random_sol, calculate_objective(random_sol, D) def _init_with_tsp(D,d,C,L): route_tsp_sol, route_f = tsp_opt_algo(D, range(0,len(D))) return route_tsp_sol+[0], route_f def _force_feasible(sol, D, d, C, L): # Force an incomplete solution feasible feasible_routes = [] routes = sol2routes(sol) for r in routes: feasibler,totald,totall = [0], 0.0, 0.0 prevn = 0 for n in r[1:]: C_violated = (C and totald+d[n]-C_EPS > C) L_violated = (L and totall+D[prevn,n]+D[n,0]-S_EPS > L) if (n==0 or C_violated or L_violated) and len(feasibler)>1: feasibler.append(0) feasible_routes.append(feasibler) feasibler,totald,totall = [0], 0.0, 0.0 prevn = 0 if C: totald+=d[n] if L: totall+=D[prevn,n] if n!=0: feasibler.append(n) prevn = n return routes2sol(feasible_routes) def _get_max(D, with_sol): aidx = np.array( np.unique( with_sol ) ) return np.max( D[aidx][:, aidx] ) def lr3opt_init(D, d, C, L, initial_lambda1_C=None, initial_lambda1_L=None, initialization_algorithm=_init_with_tsp, postoptimize_with_3optstar=True, max_concecutive_lamba_incs=None): """ An implementation of the Stewart & Golden [1]_ 3-opt* heuristic with Lagrangean relaxation. The algorithm starts from a solution that can be either feasible or infeasible and uses local search to move towards better and feasible solutions. More specifically, it works by replacing the constraint checks of the 3-opt* with a penalty that depends on how much the constraint was violated. The 3-opt* that operates on the entire solution, that is, checks for both intra and inter route moves on one pass, was used. The penalties are iteratively doubled as the local search progresses and it is assumed that this eventually forces the solutions to feasible region. .. [1] Stewart, W. R. and Golden, B. L. (1984). A lagrangean relaxation heuristic for vehicle routing. European Journal of Operational Research, 15(1):84–88. Parameters ---------- D : numpy.ndarray is the full 2D distance matrix. d : list is a list of demands. d[0] should be 0.0 as it is the depot. C : float is the capacity constraint limit for the identical vehicles. L : float is the optional constraint for the maximum route length/duration/cost. initial_lambda1_C : float is the initial Langrange multiplier value for the capacity constraint C. If left empty (None) the formula ``l1_C=average(d)/(20*max(D))`` is used. The alternative value suggested by Stewart & Golden (1984) was 0.05. initial_lambda1_L : float is the initial Langrange multiplier value for the maximum route cost/ duration/length constraint. If left empty (None) the formula ``l1_L=average(distance to nearest neighbor)/(10*max(D))`` is used. initialization_algorithm (function): is a function that retuns a TSP or VRP solution and its objective function value. The default is to use LKH TSP solution, but the function _init_with_random can be used to replicate the results of Stewart & Golden (1984) where a random solution is used. Returns ------- list The solution as a list of node indices to visit. .. todo:: due to how the algorithm works, introducing minimize_K would require balancing between penalizing constraint violations and penalizing new routes with an additional multipiler. This was not implemented. """ sol = None try: ## STEP 1: Generate an initial solution sol, initial_f = initialization_algorithm(D,d,C,L) max_D = None lambdas = [initial_lambda1_C,initial_lambda1_L] if C and lambdas[0]==None: max_D = _get_max(D, sol) lambdas[0] = np.average(d)/(20*max_D) if L and lambdas[1]==None: # Stewart & Golden (1984) did not propose an extension for the maximum # route duration/length/cost constraint, but here we have something # similar to L than they used for C constraint relaxation. max_D = _get_max(D, sol) if (max_D is None) else max_D closest_neighbor_D = D.copy() np.fill_diagonal(closest_neighbor_D, max_D) lambdas[1] = np.average(closest_neighbor_D.min(axis=0))/(10*max_D) if __debug__: log(DEBUG, "Start from initial solution %s (%.2f), and with l1=%.2f, l2=%.2f"% (sol, calculate_objective(sol, D), (0 if lambdas[0] is None else lambdas[0]), (0 if lambdas[1] is None else lambdas[1]))) checker_function = partial(_check_lr3opt_move, lambdas=lambdas) # STEP 2: Solve the relaxed problem using 3-opt* c_lambda_incs = 0 while True: # Make sure there is an empty route (for giving the 3-opt* procedure # the option of adding vehicles) while not ( sol[-1]==0 and sol[-2]==0 ): sol+=[0] if __debug__: log(DEBUG-2, "Finding a LR3OPT move for %s (%.2f)"% (sol, calculate_objective(sol, D))) new_sol, delta = do_3optstar_move(sol, D, d, C, L, strategy=LSOPT.FIRST_ACCEPT, move_checker = checker_function) # local optima reached, tighten the relaxation # TODO: it should not happen that the sol==new_sol. However it happens and as a quickfix check for it. if delta is None or sol==new_sol: # return the first feasible solution (note: does not check for covering) if fast_constraint_check(sol,D,d,C,L): if __debug__: log(DEBUG, "Reached feasible solution %s (%.2f)"% (sol, calculate_objective(sol,D))) while postoptimize_with_3optstar: opt_sol, delta = do_3optstar_move(sol, D, d, C, L, strategy=LSOPT.FIRST_ACCEPT) if delta is None: return normalize_solution(sol) # remove any [0,0]'s else: sol = opt_sol #print("REMOVEME improved with post-optimization 3-opt*") log(DEBUG, "Found improving 3-opt* move leading to %s (%.2f)"% (sol, calculate_objective(sol,D))) return normalize_solution(sol) # remove any [0,0]'s else: # STEP 3: Update lambdas lambda_at_inf = False if lambdas[0] is not None: lambdas[0] = lambdas[0]*2 lambda_at_inf = lambdas[0]==float('inf') if lambdas[1] is not None: lambdas[1] = lambdas[1]*2 lambda_at_inf = lambda_at_inf or lambdas[0]==float('inf') if __debug__: log(DEBUG-1, "No improving moves left, increasing lambda to l1=%.2f, l2=%.2f"% ((0 if lambdas[0] is None else lambdas[0]), (0 if lambdas[1] is None else lambdas[1]))) #print("No improving moves left, increasing lambda to l1=%.2f, l2=%.2f"% # ((0 if lambdas[0] is None else lambdas[0]), # (0 if lambdas[1] is None else lambdas[1]))) #TODO: if penalty >> cost, break (stuck on a infeasible region) # how much bigger can be determined by finding such a # pathological problem instance? # safeguard for getting stuck c_lambda_incs+=1 #print("REMOVEME: c_lambda_incs", c_lambda_incs) if lambda_at_inf or (max_concecutive_lamba_incs is not None and c_lambda_incs > max_concecutive_lamba_incs): return _force_feasible(sol, D, d, C, L) else: if __debug__: log(DEBUG, "Found improving LR3OPT move leading to %s (%.2f)"% (new_sol, calculate_objective(new_sol,D))) sol = new_sol c_lambda_incs = 0 except KeyboardInterrupt: # or SIGINT # Pass on the current solution forced feasbile by splitting routes # according to the constraints. raise KeyboardInterrupt(_force_feasible(sol, D, d, C, L)) return without_empty_routes(sol) # Wrapper for the command line user interface (CLI) def get_lr3opt_algorithm(): algo_name = "SG84-LR3OPT" algo_desc = "Stewart & Golden (1984) Lagrangian relaxed 3-opt* heuristic" def call_init(points, D, d, C, L, st, wtt, single, minimize_K): if minimize_K: raise NotImplementedError("LR3OPT does not support minimizing the number of vehicles") return lr3opt_init(D, d, C, L) return (algo_name, algo_desc, call_init) if __name__=="__main__": from shared_cli import cli cli(*get_lr3opt_algorithm())
the-stack_0_12584
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class VirtualMachineScaleSetVMInstanceView(Model): """The instance view of a virtual machine scale set VM. Variables are only populated by the server, and will be ignored when sending a request. :param platform_update_domain: The Update Domain count. :type platform_update_domain: int :param platform_fault_domain: The Fault Domain count. :type platform_fault_domain: int :param rdp_thumb_print: The Remote desktop certificate thumbprint. :type rdp_thumb_print: str :param vm_agent: The VM Agent running on the virtual machine. :type vm_agent: ~azure.mgmt.compute.v2018_04_01.models.VirtualMachineAgentInstanceView :param maintenance_redeploy_status: The Maintenance Operation status on the virtual machine. :type maintenance_redeploy_status: ~azure.mgmt.compute.v2018_04_01.models.MaintenanceRedeployStatus :param disks: The disks information. :type disks: list[~azure.mgmt.compute.v2018_04_01.models.DiskInstanceView] :param extensions: The extensions information. :type extensions: list[~azure.mgmt.compute.v2018_04_01.models.VirtualMachineExtensionInstanceView] :ivar vm_health: The health status for the VM. :vartype vm_health: ~azure.mgmt.compute.v2018_04_01.models.VirtualMachineHealthStatus :param boot_diagnostics: Boot Diagnostics is a debugging feature which allows you to view Console Output and Screenshot to diagnose VM status. <br><br> You can easily view the output of your console log. <br><br> Azure also enables you to see a screenshot of the VM from the hypervisor. :type boot_diagnostics: ~azure.mgmt.compute.v2018_04_01.models.BootDiagnosticsInstanceView :param statuses: The resource status information. :type statuses: list[~azure.mgmt.compute.v2018_04_01.models.InstanceViewStatus] :param placement_group_id: The placement group in which the VM is running. If the VM is deallocated it will not have a placementGroupId. :type placement_group_id: str """ _validation = { 'vm_health': {'readonly': True}, } _attribute_map = { 'platform_update_domain': {'key': 'platformUpdateDomain', 'type': 'int'}, 'platform_fault_domain': {'key': 'platformFaultDomain', 'type': 'int'}, 'rdp_thumb_print': {'key': 'rdpThumbPrint', 'type': 'str'}, 'vm_agent': {'key': 'vmAgent', 'type': 'VirtualMachineAgentInstanceView'}, 'maintenance_redeploy_status': {'key': 'maintenanceRedeployStatus', 'type': 'MaintenanceRedeployStatus'}, 'disks': {'key': 'disks', 'type': '[DiskInstanceView]'}, 'extensions': {'key': 'extensions', 'type': '[VirtualMachineExtensionInstanceView]'}, 'vm_health': {'key': 'vmHealth', 'type': 'VirtualMachineHealthStatus'}, 'boot_diagnostics': {'key': 'bootDiagnostics', 'type': 'BootDiagnosticsInstanceView'}, 'statuses': {'key': 'statuses', 'type': '[InstanceViewStatus]'}, 'placement_group_id': {'key': 'placementGroupId', 'type': 'str'}, } def __init__(self, **kwargs): super(VirtualMachineScaleSetVMInstanceView, self).__init__(**kwargs) self.platform_update_domain = kwargs.get('platform_update_domain', None) self.platform_fault_domain = kwargs.get('platform_fault_domain', None) self.rdp_thumb_print = kwargs.get('rdp_thumb_print', None) self.vm_agent = kwargs.get('vm_agent', None) self.maintenance_redeploy_status = kwargs.get('maintenance_redeploy_status', None) self.disks = kwargs.get('disks', None) self.extensions = kwargs.get('extensions', None) self.vm_health = None self.boot_diagnostics = kwargs.get('boot_diagnostics', None) self.statuses = kwargs.get('statuses', None) self.placement_group_id = kwargs.get('placement_group_id', None)
the-stack_0_12586
# -*- coding: utf-8 -*- # Copyright 2014-2016 OpenMarket Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This module contains REST servlets to do with profile: /profile/<paths> """ from twisted.internet import defer from .base import ClientV1RestServlet, client_path_patterns from synapse.types import UserID from synapse.http.servlet import parse_json_object_from_request class ProfileDisplaynameRestServlet(ClientV1RestServlet): PATTERNS = client_path_patterns("/profile/(?P<user_id>[^/]*)/displayname") def __init__(self, hs): super(ProfileDisplaynameRestServlet, self).__init__(hs) self.handlers = hs.get_handlers() @defer.inlineCallbacks def on_GET(self, request, user_id): user = UserID.from_string(user_id) displayname = yield self.handlers.profile_handler.get_displayname( user, ) ret = {} if displayname is not None: ret["displayname"] = displayname defer.returnValue((200, ret)) @defer.inlineCallbacks def on_PUT(self, request, user_id): requester = yield self.auth.get_user_by_req(request, allow_guest=True) user = UserID.from_string(user_id) is_admin = yield self.auth.is_server_admin(requester.user) content = parse_json_object_from_request(request) try: new_name = content["displayname"] except: defer.returnValue((400, "Unable to parse name")) yield self.handlers.profile_handler.set_displayname( user, requester, new_name, is_admin) defer.returnValue((200, {})) def on_OPTIONS(self, request, user_id): return (200, {}) class ProfileAvatarURLRestServlet(ClientV1RestServlet): PATTERNS = client_path_patterns("/profile/(?P<user_id>[^/]*)/avatar_url") def __init__(self, hs): super(ProfileAvatarURLRestServlet, self).__init__(hs) self.handlers = hs.get_handlers() @defer.inlineCallbacks def on_GET(self, request, user_id): user = UserID.from_string(user_id) avatar_url = yield self.handlers.profile_handler.get_avatar_url( user, ) ret = {} if avatar_url is not None: ret["avatar_url"] = avatar_url defer.returnValue((200, ret)) @defer.inlineCallbacks def on_PUT(self, request, user_id): requester = yield self.auth.get_user_by_req(request) user = UserID.from_string(user_id) is_admin = yield self.auth.is_server_admin(requester.user) content = parse_json_object_from_request(request) try: new_name = content["avatar_url"] except: defer.returnValue((400, "Unable to parse name")) yield self.handlers.profile_handler.set_avatar_url( user, requester, new_name, is_admin) defer.returnValue((200, {})) def on_OPTIONS(self, request, user_id): return (200, {}) class ProfileRestServlet(ClientV1RestServlet): PATTERNS = client_path_patterns("/profile/(?P<user_id>[^/]*)") def __init__(self, hs): super(ProfileRestServlet, self).__init__(hs) self.handlers = hs.get_handlers() @defer.inlineCallbacks def on_GET(self, request, user_id): user = UserID.from_string(user_id) displayname = yield self.handlers.profile_handler.get_displayname( user, ) avatar_url = yield self.handlers.profile_handler.get_avatar_url( user, ) ret = {} if displayname is not None: ret["displayname"] = displayname if avatar_url is not None: ret["avatar_url"] = avatar_url defer.returnValue((200, ret)) def register_servlets(hs, http_server): ProfileDisplaynameRestServlet(hs).register(http_server) ProfileAvatarURLRestServlet(hs).register(http_server) ProfileRestServlet(hs).register(http_server)
the-stack_0_12588
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import re from six import text_type from doommoses.corpus import Perluniprops from doommoses.corpus import NonbreakingPrefixes from doommoses.util import is_cjk perluniprops = Perluniprops() nonbreaking_prefixes = NonbreakingPrefixes() class MosesTokenizer(object): """ This is a Python port of the Moses Tokenizer from https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl """ # Perl Unicode Properties character sets. IsN = text_type("".join(perluniprops.chars("IsN"))) IsAlnum = text_type("".join(perluniprops.chars("IsAlnum"))) # + u'्' IsSc = text_type("".join(perluniprops.chars("IsSc"))) IsSo = text_type("".join(perluniprops.chars("IsSo"))) IsAlpha = text_type("".join(perluniprops.chars("IsAlpha"))) IsLower = text_type("".join(perluniprops.chars("IsLower"))) # Remove ASCII junk. DEDUPLICATE_SPACE = r"\s+", r" " ASCII_JUNK = r"[\000-\037]", r"" # Neurotic Perl heading space, multi-space and trailing space chomp. # These regexes are kept for reference purposes and shouldn't be used!! MID_STRIP = r" +", r" " # Use DEDUPLICATE_SPACE instead. LEFT_STRIP = r"^ ", r"" # Uses text.lstrip() instead. RIGHT_STRIP = r" $", r"" # Uses text.rstrip() instead. # Pad all "other" special characters not in IsAlnum. PAD_NOT_ISALNUM = r"([^{}\s\.'’\`\,\-])".format(IsAlnum), r" \1 " # Splits all hyphens (regardless of circumstances), e.g. # 'foo-bar' -> 'foo @-@ bar' AGGRESSIVE_HYPHEN_SPLIT = ( r"([{alphanum}])\-(?=[{alphanum}])".format(alphanum=IsAlnum), r"\1 @-@ ", ) # Make multi-dots stay together. REPLACE_DOT_WITH_LITERALSTRING_1 = r"\.([\.]+)", " DOTMULTI\1" REPLACE_DOT_WITH_LITERALSTRING_2 = r"DOTMULTI\.([^\.])", "DOTDOTMULTI \1" REPLACE_DOT_WITH_LITERALSTRING_3 = r"DOTMULTI\.", "DOTDOTMULTI" # Separate out "," except if within numbers (5,300) # e.g. A,B,C,D,E > A , B,C , D,E # First application uses up B so rule can't see B,C # two-step version here may create extra spaces but these are removed later # will also space digit,letter or letter,digit forms (redundant with next section) COMMA_SEPARATE_1 = r"([^{}])[,]".format(IsN), r"\1 , " COMMA_SEPARATE_2 = r"[,]([^{}])".format(IsN), r" , \1" COMMA_SEPARATE_3 = r"([{}])[,]$".format(IsN), r"\1 , " # Attempt to get correct directional quotes. DIRECTIONAL_QUOTE_1 = r"^``", r"`` " DIRECTIONAL_QUOTE_2 = r'^"', r"`` " DIRECTIONAL_QUOTE_3 = r"^`([^`])", r"` \1" DIRECTIONAL_QUOTE_4 = r"^'", r"` " DIRECTIONAL_QUOTE_5 = r'([ ([{<])"', r"\1 `` " DIRECTIONAL_QUOTE_6 = r"([ ([{<])``", r"\1 `` " DIRECTIONAL_QUOTE_7 = r"([ ([{<])`([^`])", r"\1 ` \2" DIRECTIONAL_QUOTE_8 = r"([ ([{<])'", r"\1 ` " # Replace ... with _ELLIPSIS_ REPLACE_ELLIPSIS = r"\.\.\.", r" _ELLIPSIS_ " # Restore _ELLIPSIS_ with ... RESTORE_ELLIPSIS = r"_ELLIPSIS_", r"\.\.\." # Restore apostrophe RESTORE_APOS = r"_APOS_", r"\'" RESTORE_APOS_ALT = r"_APOS_ALT_", r"’" # Pad , with tailing space except if within numbers, e.g. 5,300 COMMA_1 = r"([^{numbers}])[,]([^{numbers}])".format(numbers=IsN), r"\1 , \2" COMMA_2 = r"([{numbers}])[,]([^{numbers}])".format(numbers=IsN), r"\1 , \2" COMMA_3 = r"([^{numbers}])[,]([{numbers}])".format(numbers=IsN), r"\1 , \2" # Pad unicode symbols with spaces. SYMBOLS = r"([;:@#\$%&{}{}])".format(IsSc, IsSo), r" \1 " # Separate out intra-token slashes. PTB tokenization doesn't do this, so # the tokens should be merged prior to parsing with a PTB-trained parser. # e.g. "and/or" -> "and @/@ or" INTRATOKEN_SLASHES = ( r"([{alphanum}])\/([{alphanum}])".format(alphanum=IsAlnum), r"$1 \@\/\@ $2", ) # Splits final period at end of string. FINAL_PERIOD = r"""([^.])([.])([\]\)}>"']*) ?$""", r"\1 \2\3" # Pad all question marks and exclamation marks with spaces. PAD_QUESTION_EXCLAMATION_MARK = r"([?!])", r" \1 " # Handles parentheses, brackets and converts them to PTB symbols. PAD_PARENTHESIS = r"([\]\[\(\){}<>])", r" \1 " CONVERT_PARENTHESIS_1 = r"\(", "-LRB-" CONVERT_PARENTHESIS_2 = r"\)", "-RRB-" CONVERT_PARENTHESIS_3 = r"\[", "-LSB-" CONVERT_PARENTHESIS_4 = r"\]", "-RSB-" CONVERT_PARENTHESIS_5 = r"\{", "-LCB-" CONVERT_PARENTHESIS_6 = r"\}", "-RCB-" # Pads double dashes with spaces. PAD_DOUBLE_DASHES = r"--", " -- " # Adds spaces to start and end of string to simplify further regexps. PAD_START_OF_STR = r"^", " " PAD_END_OF_STR = r"$", " " # Converts double quotes to two single quotes and pad with spaces. CONVERT_DOUBLE_TO_SINGLE_QUOTES = r'"', " '' " # Handles single quote in possessives or close-single-quote. HANDLES_SINGLE_QUOTES = r"([^'’])(['’]) ", r"\1 \2 " # Pad apostrophe in possessive or close-single-quote. APOSTROPHE = r"([^'’])(['’])", r"\1 \2 " # Prepend space on contraction apostrophe. CONTRACTION_1 = r"'([sSmMdD]) ", r"_APOS_\1 " CONTRACTION_2 = r"'ll ", r"_APOS_ll " CONTRACTION_3 = r"'re ", r"_APOS_re " CONTRACTION_4 = r"'ve ", r"_APOS_ve " CONTRACTION_5 = r"n't ", r"n_APOS_t " CONTRACTION_6 = r"'LL ", r"_APOS_LL " CONTRACTION_7 = r"'RE ", r"_APOS_RE " CONTRACTION_8 = r"'VE ", r"_APOS_VE " CONTRACTION_9 = r"N'T ", r"N_APOS_T " # Informal Contractions. CONTRACTION_10 = r" ([Cc])annot ", r" \1annot " CONTRACTION_11 = r" ([Dd])'ye ", r" \1_APOS_ye " CONTRACTION_12 = r" ([Gg])imme ", r" \1imme " CONTRACTION_13 = r" ([Gg])onna ", r" \1onna " CONTRACTION_14 = r" ([Gg])otta ", r" \1otta " CONTRACTION_15 = r" ([Ll])emme ", r" \1emme " CONTRACTION_16 = r" ([Mm])ore'n ", r" \1ore_APOS_n " CONTRACTION_17 = r" '([Tt])is ", r" _APOS_\1is " CONTRACTION_18 = r" '([Tt])was ", r" _APOS_\1was " CONTRACTION_19 = r" ([Ww])anna ", r" \1anna " # Prepend space on contraction apostrophe. CONTRACTIONALT_1 = r"’([sSmMdD]) ", r"_APOS_ALT_\1 " CONTRACTIONALT_2 = r"’ll ", r"_APOS_ALT_ll " CONTRACTIONALT_3 = r"’re ", r"_APOS_ALT_re " CONTRACTIONALT_4 = r"’ve ", r"_APOS_ALT_ve " CONTRACTIONALT_5 = r"n’t ", r"n_APOS_ALT_t " CONTRACTIONALT_6 = r"’LL ", r"_APOS_ALT_LL " CONTRACTIONALT_7 = r"’RE ", r"_APOS_ALT_RE " CONTRACTIONALT_8 = r"’VE ", r"_APOS_ALT_VE " CONTRACTIONALT_9 = r"N’T ", r"N_APOS__ALT_T " # Informal Contractions. CONTRACTIONALT_10 = r" ([Cc])annot ", r" \1annot " CONTRACTIONALT_11 = r" ([Dd])’ye ", r" \1_APOS_ALT_ye " CONTRACTIONALT_12 = r" ([Gg])imme ", r" \1imme " CONTRACTIONALT_13 = r" ([Gg])onna ", r" \1onna " CONTRACTIONALT_14 = r" ([Gg])otta ", r" \1otta " CONTRACTIONALT_15 = r" ([Ll])emme ", r" \1emme " CONTRACTIONALT_16 = r" ([Mm])ore’n ", r" \1ore_APOS_ALT_n " CONTRACTIONALT_17 = r" ’([Tt])is ", r" _APOS_ALT_\1is " CONTRACTIONALT_18 = r" ’([Tt])was ", r" _APOS_ALT_\1was " CONTRACTIONALT_19 = r" ([Ww])anna ", r" \1anna " # Hyphens at the boundaries BOUNDARIES_1 = r"(\w)-(\W)", r"\1 - \2" BOUNDARIES_2 = r"^-(\w)", r"- \1" BOUNDARIES_3 = r"(\w)-$", r"\1 -" BOUNDARIES_4 = r"(\W)-(\w)", r"\1 - \2" # Clean out extra spaces CLEAN_EXTRA_SPACE_1 = r" *", r" " CLEAN_EXTRA_SPACE_2 = r"^ *", r"" CLEAN_EXTRA_SPACE_3 = r" *$", r"" # Neurotic Perl regexes to escape special characters. ESCAPE_AMPERSAND = r"&", r"&amp;" ESCAPE_PIPE = r"\|", r"&#124;" ESCAPE_LEFT_ANGLE_BRACKET = r"<", r"&lt;" ESCAPE_RIGHT_ANGLE_BRACKET = r">", r"&gt;" ESCAPE_SINGLE_QUOTE = r"\'", r"&apos;" ESCAPE_DOUBLE_QUOTE = r"\"", r"&quot;" ESCAPE_LEFT_SQUARE_BRACKET = r"\[", r"&#91;" ESCAPE_RIGHT_SQUARE_BRACKET = r"]", r"&#93;" EN_SPECIFIC_1 = r"([^{alpha}])(['’])([^{alpha}])".format(alpha=IsAlpha), r"\1 \2 \3" EN_SPECIFIC_2 = ( r"([^{alpha}{isn}])(['’])([{alpha}])".format(alpha=IsAlpha, isn=IsN), r"\1 \2 \3", ) EN_SPECIFIC_3 = r"([{alpha}])(['’])([^{alpha}])".format(alpha=IsAlpha), r"\1 \2 \3" EN_SPECIFIC_4 = r"([{alpha}])(['’])([{alpha}])".format(alpha=IsAlpha), r"\1 \2 \3" EN_SPECIFIC_5 = r"([{isn}])(['’])([s])".format(isn=IsN), r"\1 \2 \3" ENGLISH_SPECIFIC_APOSTROPHE = [ EN_SPECIFIC_1, EN_SPECIFIC_2, EN_SPECIFIC_3, #EN_SPECIFIC_4, EN_SPECIFIC_5, ] FR_IT_SPECIFIC_1 = r"([^{alpha}])(['’])([^{alpha}])".format(alpha=IsAlpha), r"\1 \2 \3" FR_IT_SPECIFIC_2 = r"([^{alpha}])(['’])([{alpha}])".format(alpha=IsAlpha), r"\1 \2 \3" FR_IT_SPECIFIC_3 = r"([{alpha}])(['’])([^{alpha}])".format(alpha=IsAlpha), r"\1 \2 \3" FR_IT_SPECIFIC_4 = r"([{alpha}])(['’])([{alpha}])".format(alpha=IsAlpha), r"\1\2 \2" FR_IT_SPECIFIC_APOSTROPHE = [ FR_IT_SPECIFIC_1, FR_IT_SPECIFIC_2, FR_IT_SPECIFIC_3, FR_IT_SPECIFIC_4, ] NON_SPECIFIC_APOSTROPHE = r"([\'’])", " \1 " TRAILING_DOT_APOSTROPHE = r"\.' ?$", " . ' " BASIC_PROTECTED_PATTERN_1 = r"<\/?\S+\/?>" BASIC_PROTECTED_PATTERN_2 = r'<\S+( [a-zA-Z0-9]+\="?[^"]")+ ?\/?>' BASIC_PROTECTED_PATTERN_3 = r"<\S+( [a-zA-Z0-9]+\='?[^']')+ ?\/?>" BASIC_PROTECTED_PATTERN_4 = r"[\w\-\_\.]+\@([\w\-\_]+\.)+[a-zA-Z]{2,}" BASIC_PROTECTED_PATTERN_5 = r"(http[s]?|ftp):\/\/[^:\/\s]+(\/\w+)*\/[\w\-\.]+" MOSES_PENN_REGEXES_1 = [ DEDUPLICATE_SPACE, ASCII_JUNK, DIRECTIONAL_QUOTE_1, DIRECTIONAL_QUOTE_2, DIRECTIONAL_QUOTE_3, DIRECTIONAL_QUOTE_4, DIRECTIONAL_QUOTE_5, DIRECTIONAL_QUOTE_6, DIRECTIONAL_QUOTE_7, DIRECTIONAL_QUOTE_8, REPLACE_ELLIPSIS, COMMA_1, COMMA_2, COMMA_3, SYMBOLS, INTRATOKEN_SLASHES, FINAL_PERIOD, PAD_QUESTION_EXCLAMATION_MARK, PAD_PARENTHESIS, CONVERT_PARENTHESIS_1, CONVERT_PARENTHESIS_2, CONVERT_PARENTHESIS_3, CONVERT_PARENTHESIS_4, CONVERT_PARENTHESIS_5, CONVERT_PARENTHESIS_6, PAD_DOUBLE_DASHES, PAD_START_OF_STR, PAD_END_OF_STR, CONVERT_DOUBLE_TO_SINGLE_QUOTES, HANDLES_SINGLE_QUOTES, APOSTROPHE, CONTRACTION_1, CONTRACTION_2, CONTRACTION_3, CONTRACTION_4, CONTRACTION_5, CONTRACTION_6, CONTRACTION_7, CONTRACTION_8, CONTRACTION_9, CONTRACTION_10, CONTRACTION_11, CONTRACTION_12, CONTRACTION_13, CONTRACTION_14, CONTRACTION_15, CONTRACTION_16, CONTRACTION_17, CONTRACTION_18, CONTRACTION_19, CONTRACTIONALT_1, CONTRACTIONALT_2, CONTRACTIONALT_3, CONTRACTIONALT_4, CONTRACTIONALT_5, CONTRACTIONALT_6, CONTRACTIONALT_7, CONTRACTIONALT_8, CONTRACTIONALT_9, CONTRACTIONALT_10, CONTRACTIONALT_11, CONTRACTIONALT_12, CONTRACTIONALT_13, CONTRACTIONALT_14, CONTRACTIONALT_15, CONTRACTIONALT_16, CONTRACTIONALT_17, CONTRACTIONALT_18, CONTRACTIONALT_19, ] MOSES_PENN_REGEXES_2 = [ RESTORE_ELLIPSIS, CLEAN_EXTRA_SPACE_1, CLEAN_EXTRA_SPACE_2, CLEAN_EXTRA_SPACE_3, ESCAPE_AMPERSAND, ESCAPE_PIPE, ESCAPE_LEFT_ANGLE_BRACKET, ESCAPE_RIGHT_ANGLE_BRACKET, ESCAPE_SINGLE_QUOTE, ESCAPE_DOUBLE_QUOTE, RESTORE_APOS, RESTORE_APOS_ALT ] MOSES_ESCAPE_XML_REGEXES = [ ESCAPE_AMPERSAND, ESCAPE_PIPE, ESCAPE_LEFT_ANGLE_BRACKET, ESCAPE_RIGHT_ANGLE_BRACKET, ESCAPE_SINGLE_QUOTE, ESCAPE_DOUBLE_QUOTE, ESCAPE_LEFT_SQUARE_BRACKET, ESCAPE_RIGHT_SQUARE_BRACKET, ] BASIC_PROTECTED_PATTERNS = [ BASIC_PROTECTED_PATTERN_1, BASIC_PROTECTED_PATTERN_2, BASIC_PROTECTED_PATTERN_3, BASIC_PROTECTED_PATTERN_4, BASIC_PROTECTED_PATTERN_5, ] def __init__(self, lang="en", custom_nonbreaking_prefixes_file=None): # Initialize the object. super(MosesTokenizer, self).__init__() self.lang = lang # Initialize the language specific nonbreaking prefixes. self.NONBREAKING_PREFIXES = [ _nbp.strip() for _nbp in nonbreaking_prefixes.words(lang) ] # Load custom nonbreaking prefixes file. if custom_nonbreaking_prefixes_file: self.NONBREAKING_PREFIXES = [] with open(custom_nonbreaking_prefixes_file, 'r') as fin: for line in fin: line = line.strip() if line and not line.startswith("#"): if line not in self.NONBREAKING_PREFIXES: self.NONBREAKING_PREFIXES.append(line) self.NUMERIC_ONLY_PREFIXES = [ w.rpartition(" ")[0] for w in self.NONBREAKING_PREFIXES if self.has_numeric_only(w) ] # Add CJK characters to alpha and alnum. if self.lang in ['zh', 'ja', 'ko', 'cjk']: cjk_chars = "" if self.lang in ["ko", 'cjk']: cjk_chars += text_type("".join(perluniprops.chars("Hangul"))) if self.lang in ["zh", 'cjk']: cjk_chars += text_type("".join(perluniprops.chars("Han"))) if self.lang in ["ja", 'cjk']: cjk_chars += text_type("".join(perluniprops.chars("Hiragana"))) cjk_chars += text_type("".join(perluniprops.chars("Katakana"))) cjk_chars += text_type("".join(perluniprops.chars("Han"))) self.IsAlpha += cjk_chars self.IsAlnum += cjk_chars # Overwrite the alnum regexes. self.PAD_NOT_ISALNUM = r"([^{}\s\.'\`\,\-])".format(self.IsAlnum), r" \1 " self.AGGRESSIVE_HYPHEN_SPLIT = ( r"([{alphanum}])\-(?=[{alphanum}])".format(alphanum=self.IsAlnum), r"\1 @-@ ", ) self.INTRATOKEN_SLASHES = ( r"([{alphanum}])\/([{alphanum}])".format(alphanum=self.IsAlnum), r"$1 \@\/\@ $2", ) def replace_multidots(self, text): text = re.sub(r"\.([\.]+)", r" DOTMULTI\1", text) while re.search(r"DOTMULTI\.", text): text = re.sub(r"DOTMULTI\.([^\.])", r"DOTDOTMULTI \1", text) text = re.sub(r"DOTMULTI\.", "DOTDOTMULTI", text) return text def restore_multidots(self, text): while re.search(r"DOTDOTMULTI", text): text = re.sub(r"DOTDOTMULTI", r"DOTMULTI.", text) return re.sub(r"DOTMULTI", r".", text) def islower(self, text): return not set(text).difference(set(self.IsLower)) def isanyalpha(self, text): return any(set(text).intersection(set(self.IsAlpha))) def has_numeric_only(self, text): return bool(re.search(r"(.*)[\s]+(\#NUMERIC_ONLY\#)", text)) def handles_nonbreaking_prefixes(self, text): # Splits the text into tokens to check for nonbreaking prefixes. tokens = text.split() num_tokens = len(tokens) for i, token in enumerate(tokens): # Checks if token ends with a fullstop. token_ends_with_period = re.search(r"^(\S+)\.$", token) if token_ends_with_period: prefix = token_ends_with_period.group(1) # Checks for 3 conditions if # i. the prefix contains a fullstop and # any char in the prefix is within the IsAlpha charset # ii. the prefix is in the list of nonbreaking prefixes and # does not contain #NUMERIC_ONLY# # iii. the token is not the last token and that the # next token contains all lowercase. if ( ("." in prefix and self.isanyalpha(prefix)) or ( prefix in self.NONBREAKING_PREFIXES and prefix not in self.NUMERIC_ONLY_PREFIXES ) or ( i != num_tokens - 1 and tokens[i + 1] and self.islower(tokens[i + 1][0]) ) ): pass # No change to the token. # Checks if the prefix is in NUMERIC_ONLY_PREFIXES # and ensures that the next word is a digit. elif ( prefix in self.NUMERIC_ONLY_PREFIXES and (i + 1) < num_tokens and re.search(r"^[0-9]+", tokens[i + 1]) ): pass # No change to the token. else: # Otherwise, adds a space after the tokens before a dot. tokens[i] = prefix + " ." return " ".join(tokens) # Stitch the tokens back. def escape_xml(self, text): for regexp, substitution in self.MOSES_ESCAPE_XML_REGEXES: text = re.sub(regexp, substitution, text) return text def penn_tokenize(self, text, return_str=False): """ This is a Python port of the Penn treebank tokenizer adapted by the Moses machine translation community. """ # Converts input string into unicode. text = text_type(text) # Perform a chain of regex substituitions using MOSES_PENN_REGEXES_1 for regexp, substitution in self.MOSES_PENN_REGEXES_1: text = re.sub(regexp, substitution, text) # Handles nonbreaking prefixes. text = self.handles_nonbreaking_prefixes(text) # Restore ellipsis, clean extra spaces, escape XML symbols. for regexp, substitution in self.MOSES_PENN_REGEXES_2: text = re.sub(regexp, substitution, text) return text if return_str else text.split() def tokenize( self, text, aggressive_dash_splits=False, return_str=False, escape=True, protected_patterns=None, ): """ Python port of the Moses tokenizer. :param tokens: A single string, i.e. sentence text. :type tokens: str :param aggressive_dash_splits: Option to trigger dash split rules . :type aggressive_dash_splits: bool """ # Converts input string into unicode. text = text_type(text) # De-duplicate spaces and clean ASCII junk for regexp, substitution in [self.DEDUPLICATE_SPACE, self.ASCII_JUNK, self.BOUNDARIES_1, self.BOUNDARIES_2, self.BOUNDARIES_3, self.BOUNDARIES_4]: text = re.sub(regexp, substitution, text) if protected_patterns: # Find the tokens that needs to be protected. protected_tokens = [ match.group() for protected_pattern in protected_patterns for match in re.finditer(protected_pattern, text, re.IGNORECASE) ] # Apply the protected_patterns. for i, token in enumerate(protected_tokens): substitution = "THISISPROTECTED" + str(i).zfill(3) text = text.replace(token, substitution) # Strips heading and trailing spaces. text = text.strip() # FIXME!!! ''' # For Finnish and Swedish, separate out all "other" special characters. if self.lang in ["fi", "sv"]: # In Finnish and Swedish, the colon can be used inside words # as an apostrophe-like character: # USA:n, 20:een, EU:ssa, USA:s, S:t regexp, substitution = self.FI_SV_COLON_APOSTROPHE text = re.sub(regexp, substitution, text) # If a colon is not immediately followed by lower-case characters, # separate it out anyway. regexp, substitution = self.FI_SV_COLON_NO_LOWER_FOLLOW text = re.sub(regexp, substitution, text) else: ''' # Separate special characters outside of IsAlnum character set. regexp, substitution = self.PAD_NOT_ISALNUM text = re.sub(regexp, substitution, text) # Aggressively splits dashes if aggressive_dash_splits: regexp, substitution = self.AGGRESSIVE_HYPHEN_SPLIT text = re.sub(regexp, substitution, text) # Replaces multidots with "DOTDOTMULTI" literal strings. text = self.replace_multidots(text) # Separate out "," except if within numbers e.g. 5,300 for regexp, substitution in [ self.COMMA_SEPARATE_1, self.COMMA_SEPARATE_2, self.COMMA_SEPARATE_3, ]: text = re.sub(regexp, substitution, text) # (Language-specific) apostrophe tokenization. if self.lang == "en": for regexp, substitution in self.ENGLISH_SPECIFIC_APOSTROPHE: text = re.sub(regexp, substitution, text) elif self.lang in ["fr", "it", "ca"]: for regexp, substitution in self.FR_IT_SPECIFIC_APOSTROPHE: text = re.sub(regexp, substitution, text) # FIXME!!! ##elif self.lang == "so": ## for regexp, substitution in self.SO_SPECIFIC_APOSTROPHE: ## text = re.sub(regexp, substitution, text) else: regexp, substitution = self.NON_SPECIFIC_APOSTROPHE text = re.sub(regexp, substitution, text) # Handles nonbreaking prefixes. text = self.handles_nonbreaking_prefixes(text) # Cleans up extraneous spaces. regexp, substitution = self.DEDUPLICATE_SPACE text = re.sub(regexp, substitution, text).strip() # Split trailing ".'". regexp, substitution = self.TRAILING_DOT_APOSTROPHE text = re.sub(regexp, substitution, text) # Restore the protected tokens. if protected_patterns: for i, token in enumerate(protected_tokens): substitution = "THISISPROTECTED" + str(i).zfill(3) text = text.replace(substitution, token) # Restore multidots. text = self.restore_multidots(text) if escape: # Escape XML symbols. text = self.escape_xml(text) return text if return_str else text.split() class MosesDetokenizer(object): """ This is a Python port of the Moses Detokenizer from https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/detokenizer.perl """ # Currency Symbols. IsAlnum = text_type("".join(perluniprops.chars("IsAlnum"))) IsAlpha = text_type("".join(perluniprops.chars("IsAlpha"))) IsSc = text_type("".join(perluniprops.chars("IsSc"))) AGGRESSIVE_HYPHEN_SPLIT = r" \@\-\@ ", r"-" # Merge multiple spaces. ONE_SPACE = re.compile(r" {2,}"), " " # Unescape special characters. UNESCAPE_FACTOR_SEPARATOR = r"&#124;", r"|" UNESCAPE_LEFT_ANGLE_BRACKET = r"&lt;", r"<" UNESCAPE_RIGHT_ANGLE_BRACKET = r"&gt;", r">" UNESCAPE_DOUBLE_QUOTE = r"&quot;", r'"' UNESCAPE_SINGLE_QUOTE = r"&apos;", r"'" UNESCAPE_SYNTAX_NONTERMINAL_LEFT = r"&#91;", r"[" UNESCAPE_SYNTAX_NONTERMINAL_RIGHT = r"&#93;", r"]" UNESCAPE_AMPERSAND = r"&amp;", r"&" # The legacy regexes are used to support outputs from older Moses versions. UNESCAPE_FACTOR_SEPARATOR_LEGACY = r"&bar;", r"|" UNESCAPE_SYNTAX_NONTERMINAL_LEFT_LEGACY = r"&bra;", r"[" UNESCAPE_SYNTAX_NONTERMINAL_RIGHT_LEGACY = r"&ket;", r"]" MOSES_UNESCAPE_XML_REGEXES = [ UNESCAPE_FACTOR_SEPARATOR_LEGACY, UNESCAPE_FACTOR_SEPARATOR, UNESCAPE_LEFT_ANGLE_BRACKET, UNESCAPE_RIGHT_ANGLE_BRACKET, UNESCAPE_SYNTAX_NONTERMINAL_LEFT_LEGACY, UNESCAPE_SYNTAX_NONTERMINAL_RIGHT_LEGACY, UNESCAPE_DOUBLE_QUOTE, UNESCAPE_SINGLE_QUOTE, UNESCAPE_SYNTAX_NONTERMINAL_LEFT, UNESCAPE_SYNTAX_NONTERMINAL_RIGHT, UNESCAPE_AMPERSAND, ] FINNISH_MORPHSET_1 = [ u"N", u"n", u"A", u"a", u"\xc4", u"\xe4", u"ssa", u"Ssa", u"ss\xe4", u"Ss\xe4", u"sta", u"st\xe4", u"Sta", u"St\xe4", u"hun", u"Hun", u"hyn", u"Hyn", u"han", u"Han", u"h\xe4n", u"H\xe4n", u"h\xf6n", u"H\xf6n", u"un", u"Un", u"yn", u"Yn", u"an", u"An", u"\xe4n", u"\xc4n", u"\xf6n", u"\xd6n", u"seen", u"Seen", u"lla", u"Lla", u"ll\xe4", u"Ll\xe4", u"lta", u"Lta", u"lt\xe4", u"Lt\xe4", u"lle", u"Lle", u"ksi", u"Ksi", u"kse", u"Kse", u"tta", u"Tta", u"ine", u"Ine", ] FINNISH_MORPHSET_2 = [u"ni", u"si", u"mme", u"nne", u"nsa"] FINNISH_MORPHSET_3 = [ u"ko", u"k\xf6", u"han", u"h\xe4n", u"pa", u"p\xe4", u"kaan", u"k\xe4\xe4n", u"kin", ] FINNISH_REGEX = r"^({})({})?({})$".format( text_type("|".join(FINNISH_MORPHSET_1)), text_type("|".join(FINNISH_MORPHSET_2)), text_type("|".join(FINNISH_MORPHSET_3)), ) def __init__(self, lang="en"): super(MosesDetokenizer, self).__init__() self.lang = lang def unescape_xml(self, text): for regexp, substitution in self.MOSES_UNESCAPE_XML_REGEXES: text = re.sub(regexp, substitution, text) return text def tokenize(self, tokens, return_str=True, unescape=True): """ Python port of the Moses detokenizer. :param tokens: A list of strings, i.e. tokenized text. :type tokens: list(str) :return: str """ # Convert the list of tokens into a string and pad it with spaces. text = r" {} ".format(" ".join(tokens)) # Converts input string into unicode. text = text_type(text) # Detokenize the agressive hyphen split. regexp, substitution = self.AGGRESSIVE_HYPHEN_SPLIT text = re.sub(regexp, substitution, text) if unescape: # Unescape the XML symbols. text = self.unescape_xml(text) # Keep track of no. of quotation marks. quote_counts = {u"'": 0, u'"': 0, u"``": 0, u"`": 0, u"''": 0} # The *prepend_space* variable is used to control the "effects" of # detokenization as the function loops through the list of tokens and # changes the *prepend_space* accordingly as it sequentially checks # through the language specific and language independent conditions. prepend_space = " " detokenized_text = "" tokens = text.split() # Iterate through every token and apply language specific detokenization rule(s). for i, token in enumerate(iter(tokens)): # Check if the first char is CJK. if is_cjk(token[0]) and self.lang != "ko": # Perform left shift if this is a second consecutive CJK word. if i > 0 and is_cjk(tokens[i - 1][-1]): detokenized_text += token # But do nothing special if this is a CJK word that doesn't follow a CJK word else: detokenized_text += prepend_space + token prepend_space = " " # If it's a currency symbol. elif re.search(r"^[" + self.IsSc + r"\(\[\{\¿\¡]+$", token): # Perform right shift on currency and other random punctuation items detokenized_text += prepend_space + token prepend_space = "" elif re.search(r"^[\,\.\?\!\:\;\\\%\}\]\)]+$", token): # In French, these punctuations are prefixed with a non-breakable space. if self.lang == "fr" and re.search(r"^[\?\!\:\;\\\%]$", token): detokenized_text += " " # Perform left shift on punctuation items. detokenized_text += token prepend_space = " " elif ( self.lang == "en" and i > 0 and re.search(r"^['][{}]".format(self.IsAlpha), token) ): # and re.search(u'[{}]$'.format(self.IsAlnum), tokens[i-1])): # For English, left-shift the contraction. detokenized_text += token prepend_space = " " elif ( self.lang == "cs" and i > 1 and re.search( r"^[0-9]+$", tokens[-2] ) # If the previous previous token is a number. and re.search(r"^[.,]$", tokens[-1]) # If previous token is a dot. and re.search(r"^[0-9]+$", token) ): # If the current token is a number. # In Czech, left-shift floats that are decimal numbers. detokenized_text += token prepend_space = " " elif ( self.lang in ["fr", "it", "ga", "ca"] and i <= len(tokens) - 2 and re.search(r"[{}][']$".format(self.IsAlpha), token) and re.search(r"^[{}]".format(self.IsAlpha), tokens[i + 1]) ): # If the next token is alpha. # For French and Italian, right-shift the contraction. detokenized_text += prepend_space + token prepend_space = "" elif ( self.lang == "cs" and i <= len(tokens) - 3 and re.search(r"[{}][']$".format(self.IsAlpha), token) and re.search(r"^[-–]$", tokens[i + 1]) and re.search(r"^li$|^mail.*", tokens[i + 2], re.IGNORECASE) ): # In Perl, ($words[$i+2] =~ /^li$|^mail.*/i) # In Czech, right-shift "-li" and a few Czech dashed words (e.g. e-mail) detokenized_text += prepend_space + token + tokens[i + 1] next(tokens, None) # Advance over the dash prepend_space = "" # Combine punctuation smartly. elif re.search(r"""^[\'\"„“`]+$""", token): normalized_quo = token if re.search(r"^[„“”]+$", token): normalized_quo = '"' quote_counts[normalized_quo] = quote_counts.get(normalized_quo, 0) if self.lang == "cs" and token == u"„": quote_counts[normalized_quo] = 0 if self.lang == "cs" and token == u"“": quote_counts[normalized_quo] = 1 if quote_counts[normalized_quo] % 2 == 0: if ( self.lang == "en" and token == u"'" and i > 0 and re.search(r"[s]$", tokens[i - 1]) ): # Left shift on single quote for possessives ending # in "s", e.g. "The Jones' house" detokenized_text += token prepend_space = " " else: # Right shift. detokenized_text += prepend_space + token prepend_space = "" quote_counts[normalized_quo] += 1 else: # Left shift. detokenized_text += token prepend_space = " " quote_counts[normalized_quo] += 1 elif ( self.lang == "fi" and re.search(r":$", tokens[i - 1]) and re.search(self.FINNISH_REGEX, token) ): # Finnish : without intervening space if followed by case suffix # EU:N EU:n EU:ssa EU:sta EU:hun EU:iin ... detokenized_text += prepend_space + token prepend_space = " " else: detokenized_text += prepend_space + token prepend_space = " " # Merge multiple spaces. regexp, substitution = self.ONE_SPACE detokenized_text = re.sub(regexp, substitution, detokenized_text) # Removes heading and trailing spaces. detokenized_text = detokenized_text.strip() return detokenized_text if return_str else detokenized_text.split() def detokenize(self, tokens, return_str=True, unescape=True): """ Duck-typing the abstract *tokenize()*.""" return self.tokenize(tokens, return_str, unescape) __all__ = ["MosesTokenizer", "MosesDetokenizer"]
the-stack_0_12589
"""######################################################################### Author: Yingru Liu Institute: Stony Brook University Descriptions: Tools to build an RNN. ----2017.11.01 #########################################################################""" import tensorflow as tf from dl4s.cores.model import _config import numpy as np """######################################################################### Class: config - Basic configuration of the auto-regressive RNN. #########################################################################""" class config(_config, object): """ Elements outside the __init__ method are static elements. Elements inside the __init__ method are elements of the object. ----from Stackoverflow(https://stackoverflow.com/questions/9056957/correct-way-to-define-class-variables-in-python). """ unitType = 'LSTM' # <string> the type of hidden units(LSTM/GRU/Tanh). dimLayer = [] # <scalar list> the size of each layers [input, hiddens, output]. # """######################################################################### hidden_net: function to build the hidden layers of the RNN input: x - network input indicated by <tensor placeholder>. Config - configuration class. output: cells - tensorflow symbol for the hidden layers of the multi-layer RNN. outputs.reshape - the output of last hidden layer. initializer - the initializer that may be used later. #########################################################################""" def hidden_net( x, graph, Config=config(), ): # get the number of hidden layers. numLayer = len(Config.dimLayer) - 2 # define the initializer. with graph.as_default(): initializer = tf.random_uniform_initializer(-Config.init_scale, Config.init_scale) # <list> stacks of the hidden layers. layers = [] for i in range(numLayer): tf.variable_scope('hidden_' + str(i + 1), initializer=initializer) if Config.unitType == 'LSTM': layers.append(tf.nn.rnn_cell.LSTMCell(num_units=Config.dimLayer[i + 1])) elif Config.unitType == 'GRU': layers.append(tf.nn.rnn_cell.GRUCell(num_units=Config.dimLayer[i + 1])) else: layers.append(tf.nn.rnn_cell.BasicRNNCell(num_units=Config.dimLayer[i + 1])) cells = tf.contrib.rnn.MultiRNNCell(layers, state_is_tuple=True) state = cells.zero_state(tf.shape(x)[0], Config.float) #output: [batch_size, max_time, cell.output_size] outputs, _ = tf.nn.dynamic_rnn(cells, x, initial_state=state) return cells, outputs, initializer
the-stack_0_12591
import pandas as pd import numpy as np import json g1=pd.read_csv('refugees.csv') g2=g1.iloc[:,:] longi=[] lati=[] jsonvalue=[] keys=[] g1dict={} #print(g1.columns) df = pd.DataFrame() df.fillna(2071) df['col'] = g1.columns #print(df) longi = g1["longitude"].tolist() lati = g1["latitude"].tolist() def smallvalues(lat,lon): small=0 reqd=lati[0] for i in range(0,206): small=abs(lati[i]-lat) if small<reqd: reqd=small index=i reqdvalues(index) def reqdvalues(index): keys=g2.head(0) keys=keys.columns.tolist() jsonvalue=g2.iloc[[index]] jsonvalue=jsonvalue.values.tolist() for i in range(5,33): g1dict[keys[i]]= jsonvalue[0][i] jsondumps=json.dumps(g1dict) #print(jsondumps) return(jsondumps) #smallvalues(7.009,32.0987)
the-stack_0_12593
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re import time import calendar import math from collections import defaultdict from . import wcwidth from .displaying import colorme, FormattedValue, DEFAULT_VALUE_COLORS from cassandra.cqltypes import EMPTY unicode_controlchars_re = re.compile(r'[\x00-\x31\x7f-\xa0]') controlchars_re = re.compile(r'[\x00-\x31\x7f-\xff]') def _show_control_chars(match): txt = repr(match.group(0)) if txt.startswith('u'): txt = txt[2:-1] else: txt = txt[1:-1] return txt bits_to_turn_red_re = re.compile(r'\\([^uUx]|u[0-9a-fA-F]{4}|x[0-9a-fA-F]{2}|U[0-9a-fA-F]{8})') def _make_turn_bits_red_f(color1, color2): def _turn_bits_red(match): txt = match.group(0) if txt == '\\\\': return '\\' return color1 + txt + color2 return _turn_bits_red default_null_placeholder = 'null' default_time_format = '' default_float_precision = 3 default_colormap = DEFAULT_VALUE_COLORS empty_colormap = defaultdict(lambda: '') def format_by_type(cqltype, val, encoding, colormap=None, addcolor=False, nullval=None, time_format=None, float_precision=None): if nullval is None: nullval = default_null_placeholder if val is None: return colorme(nullval, colormap, 'error') if addcolor is False: colormap = empty_colormap elif colormap is None: colormap = default_colormap if time_format is None: time_format = default_time_format if float_precision is None: float_precision = default_float_precision return format_value(cqltype, val, encoding=encoding, colormap=colormap, time_format=time_format, float_precision=float_precision, nullval=nullval) def color_text(bval, colormap, displaywidth=None): # note that here, we render natural backslashes as just backslashes, # in the same color as surrounding text, when using color. When not # using color, we need to double up the backslashes so it's not # ambiguous. This introduces the unique difficulty of having different # display widths for the colored and non-colored versions. To avoid # adding the smarts to handle that in to FormattedValue, we just # make an explicit check to see if a null colormap is being used or # not. if displaywidth is None: displaywidth = len(bval) tbr = _make_turn_bits_red_f(colormap['blob'], colormap['text']) coloredval = colormap['text'] + bits_to_turn_red_re.sub(tbr, bval) + colormap['reset'] if colormap['text']: displaywidth -= bval.count(r'\\') return FormattedValue(bval, coloredval, displaywidth) def format_value_default(val, colormap, **_): val = str(val) escapedval = val.replace('\\', '\\\\') bval = controlchars_re.sub(_show_control_chars, escapedval) return color_text(bval, colormap) # Mapping cql type base names ("int", "map", etc) to formatter functions, # making format_value a generic function _formatters = {} def format_value(type, val, **kwargs): if val == EMPTY: return format_value_default('', **kwargs) formatter = _formatters.get(type.__name__, format_value_default) return formatter(val, **kwargs) def formatter_for(typname): def registrator(f): _formatters[typname] = f return f return registrator @formatter_for('bytearray') def format_value_blob(val, colormap, **_): bval = '0x' + ''.join('%02x' % ord(c) for c in val) return colorme(bval, colormap, 'blob') formatter_for('buffer')(format_value_blob) def format_python_formatted_type(val, colormap, color, quote=False): bval = str(val) if quote: bval = "'%s'" % bval return colorme(bval, colormap, color) @formatter_for('Decimal') def format_value_decimal(val, colormap, **_): return format_python_formatted_type(val, colormap, 'decimal') @formatter_for('UUID') def format_value_uuid(val, colormap, **_): return format_python_formatted_type(val, colormap, 'uuid') @formatter_for('inet') def formatter_value_inet(val, colormap, quote=False, **_): return format_python_formatted_type(val, colormap, 'inet', quote=quote) @formatter_for('bool') def format_value_boolean(val, colormap, **_): return format_python_formatted_type(val, colormap, 'boolean') def format_floating_point_type(val, colormap, float_precision, **_): if math.isnan(val): bval = 'NaN' elif math.isinf(val): bval = 'Infinity' else: bval = '%.*g' % (float_precision, val) return colorme(bval, colormap, 'float') formatter_for('float')(format_floating_point_type) def format_integer_type(val, colormap, **_): # base-10 only for now; support others? bval = str(val) return colorme(bval, colormap, 'int') formatter_for('long')(format_integer_type) formatter_for('int')(format_integer_type) @formatter_for('date') def format_value_timestamp(val, colormap, time_format, quote=False, **_): bval = strftime(time_format, calendar.timegm(val.utctimetuple())) if quote: bval = "'%s'" % bval return colorme(bval, colormap, 'timestamp') formatter_for('datetime')(format_value_timestamp) def strftime(time_format, seconds): local = time.localtime(seconds) formatted = time.strftime(time_format, local) if local.tm_isdst != 0: offset = -time.altzone else: offset = -time.timezone if formatted[-4:] != '0000' or time_format[-2:] != '%z' or offset == 0: return formatted # deal with %z on platforms where it isn't supported. see CASSANDRA-4746. if offset < 0: sign = '-' else: sign = '+' hours, minutes = divmod(abs(offset) / 60, 60) return formatted[:-5] + sign + '{0:0=2}{1:0=2}'.format(hours, minutes) @formatter_for('str') def format_value_text(val, encoding, colormap, quote=False, **_): escapedval = val.replace(u'\\', u'\\\\') if quote: escapedval = escapedval.replace("'", "''") escapedval = unicode_controlchars_re.sub(_show_control_chars, escapedval) bval = escapedval.encode(encoding, 'backslashreplace') if quote: bval = "'%s'" % bval displaywidth = wcwidth.wcswidth(bval.decode(encoding)) return color_text(bval, colormap, displaywidth) # name alias formatter_for('unicode')(format_value_text) def format_simple_collection(val, lbracket, rbracket, encoding, colormap, time_format, float_precision, nullval): subs = [format_value(type(sval), sval, encoding=encoding, colormap=colormap, time_format=time_format, float_precision=float_precision, nullval=nullval, quote=True) for sval in val] bval = lbracket + ', '.join(sval.strval for sval in subs) + rbracket lb, sep, rb = [colormap['collection'] + s + colormap['reset'] for s in (lbracket, ', ', rbracket)] coloredval = lb + sep.join(sval.coloredval for sval in subs) + rb displaywidth = 2 * len(subs) + sum(sval.displaywidth for sval in subs) return FormattedValue(bval, coloredval, displaywidth) @formatter_for('list') def format_value_list(val, encoding, colormap, time_format, float_precision, nullval, **_): return format_simple_collection(val, '[', ']', encoding, colormap, time_format, float_precision, nullval) formatter_for('tuple')(format_value_list) @formatter_for('set') def format_value_set(val, encoding, colormap, time_format, float_precision, nullval, **_): return format_simple_collection(sorted(val), '{', '}', encoding, colormap, time_format, float_precision, nullval) formatter_for('frozenset')(format_value_set) formatter_for('sortedset')(format_value_set) @formatter_for('dict') def format_value_map(val, encoding, colormap, time_format, float_precision, nullval, **_): def subformat(v): return format_value(type(v), v, encoding=encoding, colormap=colormap, time_format=time_format, float_precision=float_precision, nullval=nullval, quote=True) subs = [(subformat(k), subformat(v)) for (k, v) in sorted(val.items())] bval = '{' + ', '.join(k.strval + ': ' + v.strval for (k, v) in subs) + '}' lb, comma, colon, rb = [colormap['collection'] + s + colormap['reset'] for s in ('{', ', ', ': ', '}')] coloredval = lb \ + comma.join(k.coloredval + colon + v.coloredval for (k, v) in subs) \ + rb displaywidth = 4 * len(subs) + sum(k.displaywidth + v.displaywidth for (k, v) in subs) return FormattedValue(bval, coloredval, displaywidth) formatter_for('OrderedDict')(format_value_map) def format_value_utype(val, encoding, colormap, time_format, float_precision, nullval, **_): def format_field_value(v): if v is None: return colorme(nullval, colormap, 'error') return format_value(type(v), v, encoding=encoding, colormap=colormap, time_format=time_format, float_precision=float_precision, nullval=nullval, quote=True) def format_field_name(name): return format_value_text(name, encoding=encoding, colormap=colormap, quote=False) subs = [(format_field_name(k), format_field_value(v)) for (k, v) in val._asdict().items()] bval = '{' + ', '.join(k.strval + ': ' + v.strval for (k, v) in subs) + '}' lb, comma, colon, rb = [colormap['collection'] + s + colormap['reset'] for s in ('{', ', ', ': ', '}')] coloredval = lb \ + comma.join(k.coloredval + colon + v.coloredval for (k, v) in subs) \ + rb displaywidth = 4 * len(subs) + sum(k.displaywidth + v.displaywidth for (k, v) in subs) return FormattedValue(bval, coloredval, displaywidth)
the-stack_0_12594
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import re import sys from setuptools import setup, find_packages def get_version(*file_paths): """Retrieves the version from rele/__init__.py""" filename = os.path.join(os.path.dirname(__file__), *file_paths) version_file = open(filename).read() version_match = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]", version_file, re.M) if version_match: return version_match.group(1) raise RuntimeError("Unable to find version string.") version = get_version("rele", "__init__.py") if sys.argv[-1] == "tag": print("Tagging the version on git: %s" % version) os.system('git tag -a %s -m "version %s"' % (version, version)) os.system("git push --tags") sys.exit() readme = open("README.md").read() setup( name="rele", version=version, description="""Relé makes integration with Google PubSub easier.""", long_description=readme, long_description_content_type="text/markdown", author="MercadonaTech", author_email="[email protected]", url="https://github.com/mercadona/rele", packages=find_packages(exclude=("tests",)), include_package_data=True, install_requires=["google-cloud-pubsub"], extras_require={"django": ["django", "tabulate"]}, license="Apache Software License 2.0", zip_safe=False, keywords="rele", classifiers=[ "Development Status :: 3 - Alpha", "Framework :: Django :: 1.11", "Framework :: Django :: 2.0", "Framework :: Django :: 2.1", "Framework :: Django :: 2.2", "Intended Audience :: Developers", "License :: OSI Approved :: Apache Software License", "Natural Language :: English", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", ], )
the-stack_0_12595
import matplotlib.pyplot as plt import pymc3 as pm from scipy.special import logit, expit from scipy.stats import gaussian_kde import numpy as np plt.style.use('seaborn') from statsmodels.distributions import ECDF def calc_hpd(ranks, statistic=np.mean): with pm.Model() as model: #prior on statistic of interest: a = pm.Normal('a', mu=statistic(ranks), sigma=10.0) #'nuisance' parameter: b = pm.HalfNormal('b', sigma=10.0) #likelihood: if statistic==np.mean: y = pm.Normal('y', mu=a, sigma=b, observed=ranks) elif statistic==np.median: y = pm.Laplace('y', mu=a, b=b,observed=ranks) trace = pm.sample(draws=500, tune=500, chains=2, target_accept=0.9) return trace def calc_kde(ranks, xs=np.linspace(0,243,243)): #kde: density = gaussian_kde(ranks) density.covariance_factor= lambda : 0.25 density._compute_covariance() return density(xs) #def calc_ecdf(ranks): # ecdf = [(ranks<i).sum()/len(ranks) for i in range(0, 243)] # return ecdf def plot_fig_label(ax, lab): ax.text(0, 1.15, lab, transform=ax.transAxes, fontsize=24, va='top', ha='left') if __name__ == '__main__': filenames = ['label_correlation', 'hpo_implicit_als', 'hpo_implicit_bpr', 'hpo_lightfm_warp', 'hpo_lightfm_bpr'] yrs = [2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2017] num_targets = [] for yr in yrs: train, test, fps = utils.load_time_split(year=yr, return_fingerprints=True) num_targets.append(train.shape[1]) #num_targets = [225, 228, 231, 234, 237, 240, 242, 243, 243, 243] #plot supplementary figure describing which year to use for time split fig = plt.figure() ax1 = plt.subplot(231) ax2 = plt.subplot(232) ax3 = plt.subplot(233) ax4 = plt.subplot(234) ax5 = plt.subplot(235) from scipy.stats import sem fig.set_figheight(15) fig.set_figwidth(15) z = 1.959964 for name, a in zip(filenames, [ax1, ax2, ax3, ax4, ax5]): lows = list() highs = list() middles = list() for count, year, num in zip(range(len(yrs)), yrs, num_targets): ranks = np.load('./processed_data/'+str(year)+'_'+name+'.npy')/num log_ranks = np.log10(ranks) s = sem(log_ranks) m = log_ranks.mean() low = 10**(m-s*z)*num high = 10**(m+s*z)*num highs.append(high) lows.append(low) middles.append(10**m*num) a.fill_between(yrs, y1=lows, y2=highs, label=name) a.plot(yrs, middles, '-o', c='white',) a.set_ylim(1, 30) a.set_title(name) fig.savefig('supp.pdf') fig.savefig('supp.tif') ##Plot first figure: fig, ax = plt.subplots(2) fig.set_figheight(8) fig.set_figwidth(8) year = 2015 for count, name in enumerate(filenames): ranks = np.load('./processed_data/'+str(year)+'_'+name+'.npy') logit_transformed_ranks = logit(ranks/243) mean_trace = calc_hpd(logit_transformed_ranks, np.mean) median_trace = calc_hpd(logit_transformed_ranks, np.median) print(name) for j,trace in zip([0,1], [mean_trace, median_trace]): untransformed_samples = expit(trace['a'])*244 m = np.mean(untransformed_samples) hpd = pm.hpd(untransformed_samples) print(m, hpd) xs = np.linspace(m-3,m+3,100) density = calc_kde(untransformed_samples, xs=xs)/2 ax[j].errorbar(count, m, yerr = np.array([m-hpd[0], hpd[1]-m])[:,None], fmt='o', mfc='white', mew=2, linewidth=4, markersize=7.5, capsize=3) ax[j].fill_betweenx(xs,density/2+count,count, alpha=0.4,label=name.strip('hpo_')) ax[0].set_ylabel('Mean rank', fontsize=20) ax[0].set_xticks([]) ax[0].legend(fancybox=True, framealpha=1, shadow=True, borderpad=1, ncol=2) ax[1].set_ylabel('Median rank', fontsize=20) ax[1].set_xticks([]) plot_fig_label(ax[0], 'A') plot_fig_label(ax[1], 'B') plt.tight_layout() fig.savefig('statistics.pdf') fig.savefig('statistics.tif') plt.close(fig) ##Plot second figure: filenames.append('nearest_neighbor') fig, ax = plt.subplots(nrows=2, ncols=2) fig.set_figheight(6) fig.set_figwidth(12) ax1 = ax[0,0] ax2 = ax[0,1] ax3 = ax[1,0] ax4 = ax[1,1] for name in filenames: ranks = np.load('./processed_data/'+str(year)+'_'+name+'.npy') ##Plot histogram: n, x = np.histogram(ranks, bins = np.linspace(1,244,244)) ax1.plot(x[:-1]+np.random.uniform(-0.15,0.15,len(n)),n, label=name) ax2.plot(x[:-1]+np.random.uniform(-0.15,0.15,len(n)),n,'-o', mfc='white', mew=1.5, label=name, linewidth=0.5) ##Plot empirical cumulative distribution function ecdf = np.cumsum(n)/n.sum() ax3.plot(x[:-1]+np.random.uniform(-0.1,0.1,len(n)),ecdf) ax4.plot(x[:-1]+np.random.uniform(-0.1,0.1,len(n)),ecdf, '-o', mfc='white', mew=1.5, linewidth=0.5) if name == 'label_correlation': ax4.plot([0,3],[ecdf[2],ecdf[2]],c='C0', linestyle=':',label='Label correlation\nECDF at rank 3') ax1.set_title('Histogram of predicted ranks') ax1.set_ylabel('Count density') ax1.yaxis.grid() ax1.axvline(20, linestyle='--', c='k', label='Rank 20') ax1.set_xlim(0,244) plot_fig_label(ax1, 'A') ax2.set_xlim(0,21) ax2.set_title('Histogram, top 20') ax2.set_xticks(np.arange(1,21,1)) plot_fig_label(ax2, 'B') ax3.set_xlim(0,244) ax3.set_title('Empirical CDF (ECDF) of predicted ranks') ax3.set_ylabel('Cumulative\nnormalized density') ax3.yaxis.grid() ax3.axvline(20, linestyle='--', c='k') ax3.set_xlabel('Ranks') plot_fig_label(ax3, 'C') ax4.set_xlim(0,21) ax4.set_ylim(0.1, 0.7) ax4.set_title('ECDF, top 20') ax4.legend() ax4.set_xticks(np.arange(1,21,1)) ax4.set_xlabel('Ranks') plot_fig_label(ax4, 'D') ax1.legend(fancybox=True, framealpha=1, shadow=True, borderpad=1) plt.tight_layout() fig.savefig('distributions.pdf') fig.savefig('distributions.tif') plt.close(fig)
the-stack_0_12597
# -*- coding: utf-8 -*- # # Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # DO NOT EDIT! This is a generated sample ("LongRunningPromise", "speech_transcribe_async") # To install the latest published package dependency, execute the following: # pip install google-cloud-speech # sample-metadata # title: Transcribe Audio File using Long Running Operation (Local File) (LRO) # description: Transcribe a long audio file using asynchronous speech recognition # usage: python3 samples/v1/speech_transcribe_async.py [--local_file_path "resources/brooklyn_bridge.raw"] # [START speech_transcribe_async] # -*- coding:utf-8 -*- from google.cloud.speech_v1 import enums from google.cloud import speech_v1 import io import os os.environ[ "GOOGLE_APPLICATION_CREDENTIALS" ] = r"/Users/noopy/ghoststation_transcript/credentials.json" def sample_long_running_recognize(local_file_path): """ Transcribe a long audio file using asynchronous speech recognition Args: local_file_path Path to local audio file, e.g. /path/audio.wav """ client = speech_v1.SpeechClient() # local_file_path = 'resources/brooklyn_bridge.raw' # # The language of the supplied audio # language_code = "en-US" # # Sample rate in Hertz of the audio data sent # sample_rate_hertz = 16000 # # Encoding of audio data sent. This sample sets this explicitly. # # This field is optional for FLAC and WAV audio formats. # encoding = enums.RecognitionConfig.AudioEncoding.LINEAR16 # config = { # "language_code": language_code, # "sample_rate_hertz": sample_rate_hertz, # "encoding": encoding, # } audio_channel_count = 2 enable_separate_recognition_per_channel = True language_code = "ko-KR" config = { "audio_channel_count": audio_channel_count, "enable_separate_recognition_per_channel": enable_separate_recognition_per_channel, "language_code": language_code, } with io.open(local_file_path, "rb") as f: content = f.read() audio = {"content": content} operation = client.long_running_recognize(config, audio) print(u"Waiting for operation to complete...") response = operation.result() for result in response.results: # First alternative is the most probable result alternative = result.alternatives[0] print(u"Transcript: {}".format(alternative.transcript)) # [END speech_transcribe_async] def main(): import argparse parser = argparse.ArgumentParser() parser.add_argument( "--local_file_path", type=str, default="transformed_flac/test.flac" ) args = parser.parse_args() sample_long_running_recognize(args.local_file_path) if __name__ == "__main__": main()
the-stack_0_12599
import discord from redbot.core.bot import Red from redbot.core import Config, bank, commands from redbot.core.i18n import Translator, cog_i18n from redbot.core.utils.chat_formatting import ( bold, box, humanize_timedelta, humanize_number, ) try: from redbot.cogs.audio.audio_dataclasses import Query except ImportError: Query = None from .utils import rgetattr from .listeners import Listeners from .statements import ( SELECT_PERMA_GLOBAL, SELECT_PERMA_SINGLE, SELECT_TEMP_GLOBAL, SELECT_TEMP_SINGLE, ) import apsw import lavalink from typing import Union from datetime import datetime _ = Translator("MartTools", __file__) @cog_i18n(_) class MartTools(Listeners, commands.Cog): """Multiple tools that are originally used on Martine.""" __author__ = ["Predä", "Draper"] __version__ = "1.8" async def red_delete_data_for_user(self, **kwargs): """Nothing to delete.""" return def __init__(self, bot: Red): super().__init__() self.bot = bot self.uptime = datetime.utcnow() def cog_unload(self): self._connection.close() def format_help_for_context(self, ctx: commands.Context) -> str: """Thanks Sinbad!""" pre_processed = super().format_help_for_context(ctx) return f"{pre_processed}\n\nAuthors: {', '.join(self.__author__)}\nCog Version: {self.__version__}" def fetch(self, key, id=None, raw: bool = False) -> Union[int, str]: if id is None: query = SELECT_PERMA_GLOBAL condition = {"event": key} else: query = SELECT_PERMA_SINGLE condition = {"event": key, "guild_id": id} result = list(self.cursor.execute(query, condition)) if raw: return result[0][0] if result else 0 return humanize_number(result[0][0] if result else 0) def get(self, key, id=None, raw: bool = False) -> Union[int, str]: if id is None: query = SELECT_TEMP_GLOBAL condition = {"event": key} else: query = SELECT_TEMP_SINGLE condition = {"event": key, "guild_id": id} result = list(self.cursor.execute(query, condition)) if raw: return result[0][0] if result else 0 return humanize_number(result[0][0] if result else 0) def get_bot_uptime(self): delta = datetime.utcnow() - self.uptime return str(humanize_timedelta(timedelta=delta)) def usage_counts_cpm(self, key: str, time: int = 60): delta = datetime.utcnow() - self.uptime minutes = delta.total_seconds() / time total = self.get(key, raw=True) return total / minutes @commands.command() @commands.guild_only() @commands.bot_has_permissions(embed_links=True) async def bankstats(self, ctx: commands.Context): """Show stats of the bank.""" icon = self.bot.user.avatar_url_as(static_format="png") user_bal = await bank.get_balance(ctx.author) credits_name = await bank.get_currency_name(ctx.guild) pos = await bank.get_leaderboard_position(ctx.author) bank_name = await bank.get_bank_name(ctx.guild) bank_config = bank._config if await bank.is_global(): all_accounts = len(await bank_config.all_users()) accounts = await bank_config.all_users() else: all_accounts = len(await bank_config.all_members(ctx.guild)) accounts = await bank_config.all_members(ctx.guild) member_account = await bank.get_account(ctx.author) created_at = str(member_account.created_at) no = "1970-01-01 00:00:00" overall = 0 for key, value in accounts.items(): overall += value["balance"] em = discord.Embed(color=await ctx.embed_colour()) em.set_author(name=_("{} stats:").format(bank_name), icon_url=icon) em.add_field( name=_("{} stats:").format("Global" if await bank.is_global() else "Bank"), value=_( "Total accounts: **{all_accounts}**\nTotal amount: **{overall} {credits_name}**" ).format( all_accounts=all_accounts, overall=humanize_number(overall), credits_name=credits_name, ), ) if pos is not None: percent = round((int(user_bal) / overall * 100), 3) em.add_field( name=_("Your stats:"), value=_( "You have **{bal} {currency}**.\n" "It's **{percent}%** of the {g}amount in the bank.\n" "You are **{pos}/{all_accounts}** in the {g}leaderboard." ).format( bal=humanize_number(user_bal), currency=credits_name, percent=percent, g="global " if await bank.is_global() else "", pos=humanize_number(pos), all_accounts=humanize_number(all_accounts), ), inline=False, ) if created_at != no: em.set_footer(text=_("Bank account created on: ") + str(created_at)) await ctx.send(embed=em) @commands.command(aliases=["usagec"]) async def usagecount(self, ctx: commands.Context): """ Show the usage count of the bot. Commands processed, messages received, and music on servers. """ msg = _( "**Commands processed:** `{commands_count}` commands. (`{cpm_commands:.2f}`/min)\n" "**Commands errors:** `{errors_count}` errors.\n" "**Messages received:** `{messages_read}` messages. (`{cpm_msgs:.2f}`/min)\n" "**Messages sent:** `{messages_sent}` messages. (`{cpm_msgs_sent:.2f}`/min)\n" "**Playing music on:** `{ll_players}` servers.\n" "**Tracks played:** `{tracks_played}` tracks. (`{cpm_tracks:.2f}`/min)\n\n" "**Servers joined:** `{guild_join}` servers. (`{cpm_guild_join:.2f}`/hour)\n" "**Servers left:** `{guild_leave}` servers. (`{cpm_guild_leave:.2f}`/hour)" ).format( commands_count=self.get("processed_commands"), cpm_commands=self.usage_counts_cpm("processed_commands"), errors_count=self.get("command_error"), messages_read=self.get("messages_read"), cpm_msgs=self.usage_counts_cpm("messages_read"), messages_sent=self.get("msg_sent"), cpm_msgs_sent=self.usage_counts_cpm("msg_sent"), ll_players="`{}/{}`".format( humanize_number(len(lavalink.active_players())), humanize_number(len(lavalink.all_players())), ), tracks_played=self.get("tracks_played"), cpm_tracks=self.usage_counts_cpm("tracks_played"), guild_join=self.get("guild_join"), cpm_guild_join=self.usage_counts_cpm("guild_join", 3600), guild_leave=self.get("guild_remove"), cpm_guild_leave=self.usage_counts_cpm("guild_remove", 3600), ) if await ctx.embed_requested(): em = discord.Embed( color=await ctx.embed_colour(), title=_("Usage count of {} since last restart:").format(self.bot.user.name), description=msg, ) em.set_thumbnail(url=self.bot.user.avatar_url_as(static_format="png")) em.set_footer(text=_("Since {}").format(self.get_bot_uptime())) await ctx.send(embed=em) else: await ctx.send( _("Usage count of {} since last restart:\n").format(ctx.bot.user.name) + msg + _("\n\nSince {}").format(self.get_bot_uptime()) ) @commands.bot_has_permissions(embed_links=True) @commands.command(aliases=["advusagec"]) async def advusagecount(self, ctx: commands.Context): """ Permanent stats since first time that the cog has been loaded. """ avatar = self.bot.user.avatar_url_as(static_format="png") query = SELECT_PERMA_SINGLE condition = {"event": "creation_time", "guild_id": -1000} result = list(self.cursor.execute(query, condition)) delta = datetime.utcnow() - datetime.utcfromtimestamp(result[0][0]) uptime = humanize_timedelta(timedelta=delta) ll_players = "{}/{}".format( humanize_number(len(lavalink.active_players())), humanize_number(len(lavalink.all_players())), ) em = discord.Embed( title=_("Usage count of {}:").format(ctx.bot.user.name), color=await ctx.embed_colour(), ) em.add_field( name=_("Message Stats"), value=box( _( "Messages Read : {messages_read}\n" "Messages Sent : {msg_sent}\n" "Messages Deleted : {messages_deleted}\n" "Messages Edited : {messages_edited}\n" "DMs Received : {dms_received}\n" ).format_map( { "messages_read": self.fetch("messages_read"), "msg_sent": self.fetch("msg_sent"), "messages_deleted": self.fetch("messages_deleted"), "messages_edited": self.fetch("messages_edited"), "dms_received": self.fetch("dms_received"), } ), lang="prolog", ), inline=False, ) em.add_field( name=_("Commands Stats"), value=box( _( "Commands Processed : {processed_commands}\n" "Errors Occured : {command_error}\n" "Sessions Resumed : {sessions_resumed}\n" ).format_map( { "processed_commands": self.fetch("processed_commands"), "command_error": self.fetch("command_error"), "sessions_resumed": self.fetch("sessions_resumed"), } ), lang="prolog", ), inline=False, ) em.add_field( name=_("Guild Stats"), value=box( _( "Guilds Joined : {guild_join}\n" "Guilds Left : {guild_remove}\n" ).format_map( { "guild_join": self.fetch("guild_join"), "guild_remove": self.fetch("guild_remove"), } ), lang="prolog", ), inline=False, ) em.add_field( name=_("User Stats"), value=box( _( "New Users : {new_members}\n" "Left Users : {members_left}\n" "Banned Users : {members_banned}\n" "Unbanned Users : {members_unbanned}\n" ).format_map( { "new_members": self.fetch("new_members"), "members_left": self.fetch("members_left"), "members_banned": self.fetch("members_banned"), "members_unbanned": self.fetch("members_unbanned"), } ), lang="prolog", ), inline=False, ) em.add_field( name=_("Role Stats"), value=box( _( "Roles Added : {roles_added}\n" "Roles Removed : {roles_removed}\n" "Roles Updated : {roles_updated}\n" ).format_map( { "roles_added": self.fetch("roles_added"), "roles_removed": self.fetch("roles_removed"), "roles_updated": self.fetch("roles_updated"), } ), lang="prolog", ), inline=False, ) em.add_field( name=_("Emoji Stats"), value=box( _( "Reacts Added : {reactions_added}\n" "Reacts Removed : {reactions_removed}\n" "Emoji Added : {emojis_added}\n" "Emoji Removed : {emojis_removed}\n" "Emoji Updated : {emojis_updated}\n" ).format_map( { "reactions_added": self.fetch("reactions_added"), "reactions_removed": self.fetch("reactions_removed"), "emojis_added": self.fetch("emojis_added"), "emojis_removed": self.fetch("emojis_removed"), "emojis_updated": self.fetch("emojis_updated"), } ), lang="prolog", ), inline=False, ) em.add_field( name=_("Audio Stats"), value=box( _( "Users Who Joined VC : {users_joined_bot_music_room}\n" "Tracks Played : {tracks_played}\n" "Number Of Players : {ll_players}" ).format( users_joined_bot_music_room=self.fetch("users_joined_bot_music_room"), tracks_played=self.fetch("tracks_played"), ll_players=ll_players, ), lang="prolog", ), inline=False, ) if Query: em.add_field( name=_("Track Stats"), value=box( _( "Streams : {streams_played}\n" "YouTube Streams : {yt_streams_played}\n" "Mixer Streams : {mixer_streams_played}\n" "Twitch Streams : {ttv_streams_played}\n" "Other Streams : {streams_played}\n" "YouTube Tracks : {youtube_tracks}\n" "Soundcloud Tracks : {soundcloud_tracks}\n" "Bandcamp Tracks : {bandcamp_tracks}\n" "Vimeo Tracks : {vimeo_tracks}\n" "Mixer Tracks : {mixer_tracks}\n" "Twitch Tracks : {twitch_tracks}\n" "Other Tracks : {other_tracks}\n" ).format( streams_played=self.fetch("streams_played"), yt_streams_played=self.fetch("yt_streams_played"), mixer_streams_played=self.fetch("mixer_streams_played"), ttv_streams_played=self.fetch("ttv_streams_played"), other_streams_played=self.fetch("other_streams_played"), youtube_tracks=self.fetch("youtube_tracks"), soundcloud_tracks=self.fetch("soundcloud_tracks"), bandcamp_tracks=self.fetch("bandcamp_tracks"), vimeo_tracks=self.fetch("vimeo_tracks"), mixer_tracks=self.fetch("mixer_tracks"), twitch_tracks=self.fetch("twitch_tracks"), other_tracks=self.fetch("other_tracks"), ), lang="prolog", ), inline=False, ) em.set_thumbnail(url=avatar) em.set_footer(text=_("Since {}").format(uptime)) await ctx.send(embed=em) @commands.command(aliases=["prefixes"]) async def prefix(self, ctx: commands.Context): """Show all prefixes of the bot""" default_prefixes = await self.bot._config.prefix() try: guild_prefixes = await self.bot._config.guild(ctx.guild).prefix() except AttributeError: guild_prefixes = False bot_name = ctx.bot.user.name avatar = self.bot.user.avatar_url_as(static_format="png") if not guild_prefixes: to_send = [f"`\u200b{p}\u200b`" for p in default_prefixes] plural = _("Prefixes") if len(default_prefixes) >= 2 else _("Prefix") if await ctx.embed_requested(): em = discord.Embed( color=await ctx.embed_colour(), title=_("{} of {}:").format(plural, bot_name), description=" ".join(to_send), ) em.set_thumbnail(url=avatar) await ctx.send(embed=em) else: await ctx.send(bold(_("{} of {}:\n")).format(plural, bot_name) + " ".join(to_send)) else: to_send = [f"`\u200b{p}\u200b`" for p in guild_prefixes] plural = _("prefixes") if len(default_prefixes) >= 2 else _("prefix") if await ctx.embed_requested(): em = discord.Embed( color=await ctx.embed_colour(), title=_("Server {} of {}:").format(plural, bot_name), description=" ".join(to_send), ) em.set_thumbnail(url=avatar) await ctx.send(embed=em) else: await ctx.send( bold(_("Server {} of {name}:\n")).format(plural, bot_name) + " ".join(to_send) ) @commands.command(aliases=["serverc", "serversc"]) async def servercount(self, ctx: commands.Context): """Send servers stats of the bot.""" visible_users = sum(len(s.members) for s in self.bot.guilds) total_users = sum(s.member_count for s in self.bot.guilds) msg = _( "{name} is running on `{shard_count}` {shards}.\n" "Serving `{servs}` servers (`{channels}` channels).\n" "For a total of `{visible_users}` users (`{unique}` unique).\n" "(`{visible_users}` visible now, `{total_users}` total, `{percentage_chunked:.2f}%` chunked)" ).format( name=ctx.bot.user.name, shard_count=humanize_number(self.bot.shard_count), shards=_("shards") if self.bot.shard_count > 1 else _("shard"), servs=humanize_number(len(self.bot.guilds)), channels=humanize_number(sum(len(s.channels) for s in self.bot.guilds)), visible_users=humanize_number(visible_users), unique=humanize_number(len(self.bot.users)), total_users=humanize_number(total_users), percentage_chunked=visible_users / total_users * 100, ) if await ctx.embed_requested(): em = discord.Embed(color=await ctx.embed_colour(), description=msg) await ctx.send(embed=em) else: await ctx.send(msg) @commands.command(aliases=["servreg"]) async def serversregions(self, ctx: commands.Context, sort: str = "guilds"): """ Show total of regions where the bot is. You can also sort by number of users by using `[p]serversregions users` By default it sort by guilds. """ regions_dict = { "vip-us-east": ":flag_us:" + _(" __VIP__ US East"), "vip-us-west": ":flag_us:" + _(" __VIP__ US West"), "vip-amsterdam": ":flag_nl:" + _(" __VIP__ Amsterdam"), "eu-west": ":flag_eu:" + _(" EU West"), "eu-central": ":flag_eu:" + _(" EU Central"), "europe": ":flag_eu:" + _(" Europe"), "london": ":flag_gb:" + _(" London"), "frankfurt": ":flag_de:" + _(" Frankfurt"), "amsterdam": ":flag_nl:" + _(" Amsterdam"), "us-west": ":flag_us:" + _(" US West"), "us-east": ":flag_us:" + _(" US East"), "us-south": ":flag_us:" + _(" US South"), "us-central": ":flag_us:" + _(" US Central"), "singapore": ":flag_sg:" + _(" Singapore"), "sydney": ":flag_au:" + _(" Sydney"), "brazil": ":flag_br:" + _(" Brazil"), "hongkong": ":flag_hk:" + _(" Hong Kong"), "russia": ":flag_ru:" + _(" Russia"), "japan": ":flag_jp:" + _(" Japan"), "southafrica": ":flag_za:" + _(" South Africa"), "india": ":flag_in:" + _(" India"), "dubai": ":flag_ae:" + _(" Dubai"), "south-korea": ":flag_kr:" + _(" South Korea"), } regions = {} for guild in self.bot.guilds: region = str(guild.region) if region not in regions: regions[region] = {"guilds": 0, "users": 0} regions[region]["users"] += guild.member_count regions[region]["guilds"] += 1 def sort_keys(key: str): keys = ( (key[1]["guilds"], key[1]["users"]) if sort != "users" else (key[1]["users"], key[1]["guilds"]) ) return keys regions_stats = dict(sorted(regions.items(), key=lambda x: sort_keys(x), reverse=True)) msg = [ _("{flag}: {guilds_len} and {users_len}").format( flag=regions_dict[region_name], guilds_len=( f"`{humanize_number(values['guilds'])} {_('server') if values['guilds'] < 2 else _('servers')}`" ), users_len=( f"`{humanize_number(values['users'])} {_('user') if values['users'] < 2 else _('users')}`" ), ) for region_name, values in regions_stats.items() ] guilds_word = _("server") if len(self.bot.guilds) < 2 else _("servers") users_word = ( _("user") if sum(k["users"] for k in regions_stats.values()) < 2 else _("users") ) footer = _("For a total of {guilds} and {users}").format( guilds=f"{humanize_number(len(self.bot.guilds))} {guilds_word}", users=f"{humanize_number(sum(k['users'] for k in regions_stats.values()))} {users_word}", ) if await ctx.embed_requested(): em = discord.Embed( color=await ctx.embed_colour(), title=_("Servers regions stats:"), description="\n".join(msg), ) em.set_footer(text=footer) await ctx.send(embed=em) else: msg = bold(_("Servers regions stats:\n\n")) + "\n".join(msg) + "\n" + bold(footer) await ctx.send(msg)
the-stack_0_12600
#!/usr/bin/env python """ plot_hub.py: the plot tool """ import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt def plt_fidelity_vs_iter(fidelities,losses,config,indx=0): fig, (axs1, axs2) = plt.subplots(1, 2) axs1.plot(range(len(fidelities)), fidelities) axs1.set_xlabel('Epoch') axs1.set_ylabel('Fidelity between real and fake states') axs2.plot(range(len(losses)), losses) axs2.set_xlabel('Epoch') axs2.set_ylabel('Wasserstein Loss') plt.tight_layout() plt.savefig('{}/{}qubit_{}_{}.png'.format(config.figure_path,config.system_size, config.label, indx))
the-stack_0_12602
# -*- coding: utf-8 -*- import os import sys import numpy as np IMAGE_SIZE = 64 #按照指定图像大小调整尺寸 def resize_image(image, height = IMAGE_SIZE, width = IMAGE_SIZE): top, bottom, left, right = (0, 0, 0, 0) #获取图像尺寸 h, w, _ = image.shape #对于长宽不相等的图片,找到最长的一边 longest_edge = max(h, w) #计算短边需要增加多上像素宽度使其与长边等长 if h < longest_edge: dh = longest_edge - h top = dh // 2 bottom = dh - top elif w < longest_edge: dw = longest_edge - w left = dw // 2 right = dw - left else: pass BLACK = [0, 0, 0] #给图像增加边界,是图片长、宽等长,cv2.BORDER_CONSTANT指定边界颜色由value指定 constant = cv2.copyMakeBorder(image, top , bottom, left, right, cv2.BORDER_CONSTANT, value = BLACK) #调整图像大小并返回 return cv2.resize(constant, (height, width)) #读取训练数据 images = [] labels = [] def read_images(path_name): for dir_item in os.listdir(path_name): full_path = os.path.abspath(os.path.join(path_name, dir_item)) if os.path.isdir(full_path): read_images(full_path) else: if dir_item.endswith('.jpg'): print(full_path) image = cv2.imread(full_path) image = resize_image(image, IMAGE_SIZE, IMAGE_SIZE) images.append(image) labels.append(path_name) return images,labels #从指定路径读取训练数据 def load_dataset(path_name): images,labels = read_images(path_name) #将输入的所有图片转成四维数组,尺寸为(图片数量*IMAGE_SIZE*IMAGE_SIZE*3) #图片为64 * 64像素,一个像素3个颜色值(RGB) images = np.array(images) labels = np.array([0 if label.endswith('yangwk') else 1 for label in labels]) return images, labels if __name__ == '__main__': path_name = './data/' images, labels = load_dataset(path_name) print(images.shape) print(labels.shape)
the-stack_0_12603
""" ============================================================================ Decoding in time-frequency space data using the Common Spatial Pattern (CSP) ============================================================================ The time-frequency decomposition is estimated by iterating over raw data that has been band-passed at different frequencies. This is used to compute a covariance matrix over each epoch or a rolling time-window and extract the CSP filtered signals. A linear discriminant classifier is then applied to these signals. """ # Authors: Laura Gwilliams <[email protected]> # Jean-Remi King <[email protected]> # Alex Barachant <[email protected]> # Alexandre Gramfort <[email protected]> # # License: BSD (3-clause) import numpy as np import matplotlib.pyplot as plt from mne import Epochs, find_events, create_info from mne.io import concatenate_raws, read_raw_edf from mne.datasets import eegbci from mne.decoding import CSP from mne.time_frequency import AverageTFR from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.model_selection import StratifiedKFold, cross_val_score from sklearn.pipeline import make_pipeline from sklearn.preprocessing import LabelEncoder ############################################################################### # Set parameters and read data event_id = dict(hands=2, feet=3) # motor imagery: hands vs feet subject = 1 runs = [6, 10, 14] raw_fnames = eegbci.load_data(subject, runs) raw_files = [read_raw_edf(f, stim_channel='auto', preload=True) for f in raw_fnames] raw = concatenate_raws(raw_files) # Extract information from the raw file sfreq = raw.info['sfreq'] events = find_events(raw, shortest_event=0, stim_channel='STI 014') raw.pick_types(meg=False, eeg=True, stim=False, eog=False, exclude='bads') # Assemble the classifier using scikit-learn pipeline clf = make_pipeline(CSP(n_components=4, reg=None, log=True, norm_trace=False), LinearDiscriminantAnalysis()) n_splits = 5 # how many folds to use for cross-validation cv = StratifiedKFold(n_splits=n_splits, shuffle=True) # Classification & Time-frequency parameters tmin, tmax = -.200, 2.000 n_cycles = 10. # how many complete cycles: used to define window size min_freq = 5. max_freq = 25. n_freqs = 8 # how many frequency bins to use # Assemble list of frequency range tuples freqs = np.linspace(min_freq, max_freq, n_freqs) # assemble frequencies freq_ranges = list(zip(freqs[:-1], freqs[1:])) # make freqs list of tuples # Infer window spacing from the max freq and number of cycles to avoid gaps window_spacing = (n_cycles / np.max(freqs) / 2.) centered_w_times = np.arange(tmin, tmax, window_spacing)[1:] n_windows = len(centered_w_times) # Instantiate label encoder le = LabelEncoder() ############################################################################### # Loop through frequencies, apply classifier and save scores # init scores freq_scores = np.zeros((n_freqs - 1,)) # Loop through each frequency range of interest for freq, (fmin, fmax) in enumerate(freq_ranges): # Infer window size based on the frequency being used w_size = n_cycles / ((fmax + fmin) / 2.) # in seconds # Apply band-pass filter to isolate the specified frequencies raw_filter = raw.copy().filter(fmin, fmax, n_jobs=1, fir_design='firwin', skip_by_annotation='edge') # Extract epochs from filtered data, padded by window size epochs = Epochs(raw_filter, events, event_id, tmin - w_size, tmax + w_size, proj=False, baseline=None, preload=True) epochs.drop_bad() y = le.fit_transform(epochs.events[:, 2]) X = epochs.get_data() # Save mean scores over folds for each frequency and time window freq_scores[freq] = np.mean(cross_val_score(estimator=clf, X=X, y=y, scoring='roc_auc', cv=cv, n_jobs=1), axis=0) ############################################################################### # Plot frequency results plt.bar(left=freqs[:-1], height=freq_scores, width=np.diff(freqs)[0], align='edge', edgecolor='black') plt.xticks(freqs) plt.ylim([0, 1]) plt.axhline(len(epochs['feet']) / len(epochs), color='k', linestyle='--', label='chance level') plt.legend() plt.xlabel('Frequency (Hz)') plt.ylabel('Decoding Scores') plt.title('Frequency Decoding Scores') ############################################################################### # Loop through frequencies and time, apply classifier and save scores # init scores tf_scores = np.zeros((n_freqs - 1, n_windows)) # Loop through each frequency range of interest for freq, (fmin, fmax) in enumerate(freq_ranges): # Infer window size based on the frequency being used w_size = n_cycles / ((fmax + fmin) / 2.) # in seconds # Apply band-pass filter to isolate the specified frequencies raw_filter = raw.copy().filter(fmin, fmax, n_jobs=1, fir_design='firwin', skip_by_annotation='edge') # Extract epochs from filtered data, padded by window size epochs = Epochs(raw_filter, events, event_id, tmin - w_size, tmax + w_size, proj=False, baseline=None, preload=True) epochs.drop_bad() y = le.fit_transform(epochs.events[:, 2]) # Roll covariance, csp and lda over time for t, w_time in enumerate(centered_w_times): # Center the min and max of the window w_tmin = w_time - w_size / 2. w_tmax = w_time + w_size / 2. # Crop data into time-window of interest X = epochs.copy().crop(w_tmin, w_tmax).get_data() # Save mean scores over folds for each frequency and time window tf_scores[freq, t] = np.mean(cross_val_score(estimator=clf, X=X, y=y, scoring='roc_auc', cv=cv, n_jobs=1), axis=0) ############################################################################### # Plot time-frequency results # Set up time frequency object av_tfr = AverageTFR(create_info(['freq'], sfreq), tf_scores[np.newaxis, :], centered_w_times, freqs[1:], 1) chance = np.mean(y) # set chance level to white in the plot av_tfr.plot([0], vmin=chance, title="Time-Frequency Decoding Scores", cmap=plt.cm.Reds)
the-stack_0_12604
""" Copyright 2019-present NAVER Corp. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ #-*- coding: utf-8 -*- import os import json import math import random import argparse import numpy as np from tqdm import tqdm import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F import torch.optim as optim import Levenshtein as Lev import label_loader from data_loader import AudioDataLoader, SpectrogramDataset, BucketingSampler from models import EncoderRNN, DecoderRNN, Seq2Seq # @Kwang-Ho import time import datetime from initialize import initialize char2index = dict() index2char = dict() SOS_token = 0 EOS_token = 0 PAD_token = 0 def label_to_string(labels): if len(labels.shape) == 1: sent = str() for i in labels: if i.item() == EOS_token: break sent += index2char[i.item()] return sent elif len(labels.shape) == 2: sents = list() for i in labels: sent = str() for j in i: if j.item() == EOS_token: break sent += index2char[j.item()] sents.append(sent) return sents def char_distance(ref, hyp): ref = ref.replace(' ', '') hyp = hyp.replace(' ', '') dist = Lev.distance(hyp, ref) length = len(ref.replace(' ', '')) return dist, length def get_distance(ref_labels, hyp_labels): total_dist = 0 total_length = 0 transcripts = [] for i in range(len(ref_labels)): ref = label_to_string(ref_labels[i]) hyp = label_to_string(hyp_labels[i]) transcripts.append('{hyp}\t{ref}'.format(hyp=hyp, ref=ref)) dist, length = char_distance(ref, hyp) total_dist += dist total_length += length return total_dist, total_length, transcripts def train(model, data_loader, criterion, optimizer, device, epoch, train_sampler, max_norm=400, teacher_forcing_ratio=1): total_loss = 0. total_num = 0 total_dist = 0 total_length = 0 total_sent_num = 0 model.train() for i, (data) in enumerate(data_loader): feats, scripts, feat_lengths, script_lengths = data optimizer.zero_grad() feats = feats.to(device) scripts = scripts.to(device) feat_lengths = feat_lengths.to(device) src_len = scripts.size(1) target = scripts[:, 1:] logit = model(feats, feat_lengths, scripts, teacher_forcing_ratio=teacher_forcing_ratio) logit = torch.stack(logit, dim=1).to(device) y_hat = logit.max(-1)[1] loss = criterion(logit.contiguous().view(-1, logit.size(-1)), target.contiguous().view(-1)) batch_size = logit.size(0) loss = loss / batch_size total_loss += loss.item() total_num += sum(feat_lengths).item() loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm) optimizer.step() dist, length, _ = get_distance(target, y_hat) total_dist += dist total_length += length cer = float(dist / length) * 100 total_sent_num += target.size(0) print('Epoch: [{0}][{1}/{2}]\t' 'Loss {loss:.4f}\t' 'Cer {cer:.4f}'.format( (epoch + 1), (i + 1), len(train_sampler), loss=loss, cer=cer)) # return total_loss / total_num, (total_dist / total_length) * 100 return total_loss / len(data_loader), (total_dist / total_length) * 100 def evaluate(model, data_loader, criterion, device, save_output=False, teacher_forcing_ratio=0.0): total_loss = 0. total_num = 0 total_dist = 0 total_length = 0 total_sent_num = 0 transcripts_list = [] model.eval() with torch.no_grad(): for i, (data) in tqdm(enumerate(data_loader), total=len(data_loader)): feats, scripts, feat_lengths, script_lengths = data feats = feats.to(device) scripts = scripts.to(device) feat_lengths = feat_lengths.to(device) src_len = scripts.size(1) target = scripts[:, 1:] logit = model(feats, feat_lengths, scripts, teacher_forcing_ratio=teacher_forcing_ratio) # 3-th args: None logit = torch.stack(logit, dim=1).to(device) y_hat = logit.max(-1)[1] logit = logit[:,:target.size(1),:] # cut over length to calculate loss loss = criterion(logit.contiguous().view(-1, logit.size(-1)), target.contiguous().view(-1)) batch_size = logit.size(0) loss = loss / batch_size total_loss += loss.item() total_num += sum(feat_lengths).item() dist, length, transcripts = get_distance(target, y_hat) cer = float(dist / length) * 100 total_dist += dist total_length += length if save_output == True: transcripts_list += transcripts total_sent_num += target.size(0) # aver_loss = total_loss / total_num aver_loss = total_loss / len(data_loader) aver_cer = float(total_dist / total_length) * 100 return aver_loss, aver_cer, transcripts_list def main(): global char2index global index2char global SOS_token global EOS_token global PAD_token parser = argparse.ArgumentParser(description='LAS') parser.add_argument('--model-name', type=str, default='LAS') # Dataset parser.add_argument('--train-file', type=str, help='data list about train dataset', default='data/ClovaCall/train_ClovaCall.json') parser.add_argument('--test-file-list', nargs='*', help='data list about test dataset', default=['data/ClovaCall/test_ClovCall.json']) parser.add_argument('--labels-path', default='data/kor_syllable.json', help='Contains large characters over korean') parser.add_argument('--dataset-path', default='data/ClovaCall/clean', help='Target dataset path') # Hyperparameters parser.add_argument('--rnn-type', default='lstm', help='Type of the RNN. rnn|gru|lstm are supported') parser.add_argument('--encoder_layers', type=int, default=3, help='number of layers of model (default: 3)') parser.add_argument('--encoder_size', type=int, default=512, help='hidden size of model (default: 512)') parser.add_argument('--decoder_layers', type=int, default=2, help='number of pyramidal layers (default: 2)') parser.add_argument('--decoder_size', type=int, default=512, help='hidden size of model (default: 512)') parser.add_argument('--dropout', type=float, default=0.3, help='Dropout rate in training (default: 0.3)') parser.add_argument('--no-bidirectional', dest='bidirectional', action='store_false', default=True, help='Turn off bi-directional RNNs, introduces lookahead convolution') parser.add_argument('--batch_size', type=int, default=32, help='Batch size in training (default: 32)') parser.add_argument('--num_workers', type=int, default=4, help='Number of workers in dataset loader (default: 4)') parser.add_argument('--num_gpu', type=int, default=1, help='Number of gpus (default: 1)') parser.add_argument('--epochs', type=int, default=100, help='Number of max epochs in training (default: 100)') parser.add_argument('--lr', type=float, default=3e-4, help='Learning rate (default: 3e-4)') parser.add_argument('--learning-anneal', default=1.1, type=float, help='Annealing learning rate every epoch') parser.add_argument('--teacher_forcing', type=float, default=1.0, help='Teacher forcing ratio in decoder (default: 1.0)') parser.add_argument('--max_len', type=int, default=80, help='Maximum characters of sentence (default: 80)') parser.add_argument('--max-norm', default=400, type=int, help='Norm cutoff to prevent explosion of gradients') # Audio Config parser.add_argument('--sample-rate', default=16000, type=int, help='Sampling Rate') parser.add_argument('--window-size', default=.02, type=float, help='Window size for spectrogram') parser.add_argument('--window-stride', default=.01, type=float, help='Window stride for spectrogram') # System parser.add_argument('--save-folder', default='models', help='Location to save epoch models') parser.add_argument('--model-path', default='models/las_final.pth', help='Location to save best validation model') parser.add_argument('--log-path', default='log/', help='path to predict log about valid and test dataset') parser.add_argument('--cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--seed', type=int, default=123456, help='random seed (default: 123456)') parser.add_argument('--mode', type=str, default='train', help='Train or Test') parser.add_argument('--load-model', action='store_true', default=False, help='Load model') parser.add_argument('--finetune', dest='finetune', action='store_true', default=False, help='Finetune the model after load model') args = parser.parse_args() args.max_norm = 5.0 args.dropout = 0.0 torch.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) np.random.seed(args.seed) random.seed(args.seed) char2index, index2char = label_loader.load_label_json(args.labels_path) SOS_token = char2index['<s>'] EOS_token = char2index['</s>'] PAD_token = char2index['_'] device = torch.device('cuda' if args.cuda else 'cpu') audio_conf = dict(sample_rate=args.sample_rate, window_size=args.window_size, window_stride=args.window_stride) # Batch Size batch_size = args.batch_size * args.num_gpu print(">> Train dataset : ", args.train_file) trainData_list = [] with open(args.train_file, 'r', encoding='utf-8') as f: trainData_list = json.load(f) if args.num_gpu != 1: last_batch = len(trainData_list) % batch_size if last_batch != 0 and last_batch < args.num_gpu: trainData_list = trainData_list[:-last_batch] train_dataset = SpectrogramDataset(audio_conf=audio_conf, dataset_path=args.dataset_path, data_list=trainData_list, char2index=char2index, sos_id=SOS_token, eos_id=EOS_token, normalize=True) train_sampler = BucketingSampler(train_dataset, batch_size=batch_size) train_loader = AudioDataLoader(train_dataset, num_workers=args.num_workers, batch_sampler=train_sampler) print(">> Test dataset : ", args.test_file_list) testLoader_dict = {} for test_file in args.test_file_list: testData_list = [] with open(test_file, 'r', encoding='utf-8') as f: testData_list = json.load(f) test_dataset = SpectrogramDataset(audio_conf=audio_conf, dataset_path=args.dataset_path, data_list=testData_list, char2index=char2index, sos_id=SOS_token, eos_id=EOS_token, normalize=True) testLoader_dict[test_file] = AudioDataLoader(test_dataset, batch_size=1, num_workers=args.num_workers) # input_size = int(math.floor((args.sample_rate * args.window_size) / 2) + 1) input_size = 80 enc = EncoderRNN(input_size, args.encoder_size, n_layers=args.encoder_layers, dropout_p=args.dropout, bidirectional=args.bidirectional, rnn_cell=args.rnn_type, variable_lengths=False) dec = DecoderRNN(len(char2index), args.max_len, args.decoder_size, args.encoder_size, SOS_token, EOS_token, PAD_token, n_layers=args.decoder_layers, rnn_cell=args.rnn_type, dropout_p=args.dropout, bidirectional_encoder=args.bidirectional) model = Seq2Seq(enc, dec) initialize(model, init='xavier_uniform') save_folder = args.save_folder os.makedirs(save_folder, exist_ok=True) optim_state = None if args.load_model: # Starting from previous model print("Loading checkpoint model %s" % args.model_path) state = torch.load(args.model_path) model.load_state_dict(state['model']) print('Model loaded') if not args.finetune: # Just load model optim_state = state['optimizer'] model = model.to(device) # optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=1e-5) optimizer = optim.Adadelta(model.parameters(), lr=1.0, rho=0.95, eps=1e-08, weight_decay=0) scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=1, verbose=True) if optim_state is not None: optimizer.load_state_dict(optim_state) # criterion = nn.CrossEntropyLoss(reduction='mean').to(device) criterion = nn.CrossEntropyLoss(reduction='sum').to(device) # ignore_index=PAD_token print(model) print("Number of parameters: %d" % Seq2Seq.get_param_size(model)) train_model = nn.DataParallel(model) if args.mode != "train": for test_file in args.test_file_list: test_loader = testLoader_dict[test_file] test_loss, test_cer, transcripts_list = evaluate(model, test_loader, criterion, device, save_output=True) for idx, line in enumerate(transcripts_list): # print(line) hyp, ref = line.split('\t') print("({:3d}/{:3d}) [REF]: {}".format(idx+1, len(transcripts_list), ref)) print("({:3d}/{:3d}) [HYP]: {}".format(idx+1, len(transcripts_list), hyp)) print() print("Test {} CER : {}".format(test_file, test_cer)) else: best_cer = 1e10 begin_epoch = 0 # start_time = time.time() start_time = datetime.datetime.now() for epoch in range(begin_epoch, args.epochs): train_loss, train_cer = train(train_model, train_loader, criterion, optimizer, device, epoch, train_sampler, args.max_norm, args.teacher_forcing) # end_time = time.time() # elapsed_time = end_time - start_time elapsed_time = datetime.datetime.now() - start_time train_log = 'Train({name}) Summary Epoch: [{0}]\tAverage Loss {loss:.3f}\tAverage CER {cer:.3f}\tTime {time:}'.format(epoch + 1, name='train', loss=train_loss, cer=train_cer, time=elapsed_time) print(train_log) cer_list = [] for test_file in args.test_file_list: test_loader = testLoader_dict[test_file] test_loss_tf, test_cer_tf, _ = evaluate(model, test_loader, criterion, device, save_output=False, teacher_forcing_ratio=1.0) test_log = '(TF=1.0) Test({name}) Summary Epoch: [{0}]\tAverage Loss {loss:.3f}\tAverage CER {cer:.3f}\t'.format( epoch + 1, name=test_file, loss=test_loss_tf, cer=test_cer_tf) print(test_log) test_loss, test_cer, _ = evaluate(model, test_loader, criterion, device, save_output=False, teacher_forcing_ratio=0.0) test_log = '(TF=0.0) Test({name}) Summary Epoch: [{0}]\tAverage Loss {loss:.3f}\tAverage CER {cer:.3f}\t'.format( epoch + 1, name=test_file, loss=test_loss, cer=test_cer) print(test_log) cer_list.append(test_cer) if best_cer > cer_list[0]: print("Found better validated model, saving to %s" % args.model_path) state = { 'model': model.state_dict(), 'optimizer': optimizer.state_dict() } torch.save(state, args.model_path) best_cer = cer_list[0] print("Shuffling batches...") train_sampler.shuffle(epoch) scheduler.step(float(test_loss_tf)) # print('Learning rate annealed to: {lr:.6f}'.format(lr=scheduler.get_lr())) # for g in optimizer.param_groups: # g['lr'] = g['lr'] / args.learning_anneal # print('Learning rate annealed to: {lr:.6f}'.format(lr=g['lr'])) if __name__ == "__main__": main()
the-stack_0_12605
""" Create a class to measure the average time lapsed between mark() calls This is useful to measure how frequent is the price update (i.e. we call mark() method on every price update) """ import time import random class LatencyMetric: def __init__(self): self._last_received_timestamp = time.time_ns() self._max_duration = 0 self._sum = 0 self._count = 0 def mark(self): # calculate time lapsed ts = time.time_ns() duration = ts - self._last_received_timestamp self._last_received_timestamp = ts self._sum += duration self._count += 1 if duration > self._max_duration: self._max_duration = duration def get_max(self) -> int: return self._max_duration def get_mean(self) -> int: """ get mean in milliseconds """ return self._sum / self._count / 1000000 # A simple driver class to demonstrate the usage if __name__ == '__main__': metric = LatencyMetric() while True: # a random time between 0.9 and 1.1 seconds random_duration = float(random.randint(90, 110)) / 100.0 time.sleep(random_duration) metric.mark() # we expect to print an average time of ~1 second print('Average: {}, max: {}'.format(metric.get_mean(), metric.get_max()))
the-stack_0_12606
# # Copyright Contributors to the OpenTimelineIO project # # Licensed under the Apache License, Version 2.0 (the "Apache License") # with the following modification; you may not use this file except in # compliance with the Apache License and the following modification to it: # Section 6. Trademarks. is deleted and replaced with: # # 6. Trademarks. This License does not grant permission to use the trade # names, trademarks, service marks, or product names of the Licensor # and its affiliates, except as required to comply with Section 4(c) of # the License and to reproduce the content of the NOTICE file. # # You may obtain a copy of the Apache License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the Apache License with the above modification is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the Apache License for the specific # language governing permissions and limitations under the Apache License. # from PySide2 import QtWidgets, QtGui, QtCore import opentimelineio as otio class Details(QtWidgets.QTextEdit): """Text widget with the JSON string of the specified OTIO object.""" def __init__(self, *args, **kwargs): super(Details, self).__init__(*args, **kwargs) self.setReadOnly(True) self.font = QtGui.QFontDatabase.systemFont( QtGui.QFontDatabase.FixedFont) self.font.setPointSize(12) self.setFont(self.font) self.backgroundColor = QtGui.QColor(33, 33, 33) self.textColor = QtGui.QColor(180, 180, 180) self.highlightColor = QtGui.QColor(255, 198, 109) self.keywordColor = QtGui.QColor(204, 120, 50) self.palette = QtGui.QPalette() self.palette.setColor(QtGui.QPalette.Base, self.backgroundColor) self.palette.setColor(QtGui.QPalette.Text, self.textColor) self.palette.setColor(QtGui.QPalette.BrightText, self.highlightColor) self.palette.setColor(QtGui.QPalette.Link, self.keywordColor) self.setPalette(self.palette) self.highlighter = OTIOSyntaxHighlighter(self.palette, self.document()) def set_item(self, item): if item is None: self.setPlainText('') else: s = otio.adapters.write_to_string(item, 'otio_json') self.setPlainText(s) class OTIOSyntaxHighlighter(QtGui.QSyntaxHighlighter): def __init__(self, palette, parent=None): super(OTIOSyntaxHighlighter, self).__init__(parent) self.punctuation_format = QtGui.QTextCharFormat() self.punctuation_format.setForeground(palette.link()) self.punctuation_format.setFontWeight(QtGui.QFont.Bold) self.key_format = QtGui.QTextCharFormat() # self.key_format.setFontItalic(True) self.literal_format = QtGui.QTextCharFormat() self.literal_format.setForeground(palette.brightText()) self.literal_format.setFontWeight(QtGui.QFont.Bold) self.value_format = QtGui.QTextCharFormat() self.value_format.setForeground(palette.brightText()) self.value_format.setFontWeight(QtGui.QFont.Bold) self.schema_format = QtGui.QTextCharFormat() self.schema_format.setForeground(QtGui.QColor(161, 194, 97)) self.schema_format.setFontWeight(QtGui.QFont.Bold) def highlightBlock(self, text): expression = QtCore.QRegExp("(\\{|\\}|\\[|\\]|\\:|\\,)") index = expression.indexIn(text) while index >= 0: length = expression.matchedLength() self.setFormat(index, length, self.punctuation_format) index = expression.indexIn(text, index + length) text.replace("\\\"", " ") expression = QtCore.QRegExp("\".*\" *\\:") expression.setMinimal(True) index = expression.indexIn(text) while index >= 0: length = expression.matchedLength() self.setFormat(index, length - 1, self.key_format) index = expression.indexIn(text, index + length) expression = QtCore.QRegExp("\\: *\".*\"") expression.setMinimal(True) index = expression.indexIn(text) while index >= 0: length = expression.matchedLength() firstQuoteIndex = text.index('"', index) valueLength = length - (firstQuoteIndex - index) - 2 self.setFormat(firstQuoteIndex + 1, valueLength, self.value_format) index = expression.indexIn(text, index + length) expression = QtCore.QRegExp(r"\\: (null|true|false|[0-9\.]+)") index = expression.indexIn(text) while index >= 0: length = expression.matchedLength() self.setFormat(index, length, self.literal_format) index = expression.indexIn(text, index + length) expression = QtCore.QRegExp(r"\"OTIO_SCHEMA\"\s*:\s*\".*\"") index = expression.indexIn(text) while index >= 0: length = expression.matchedLength() self.setFormat(index, length, self.schema_format) index = expression.indexIn(text, index + length)