ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
1a5126c435572d5ce4c4a1315dc59f841c9446d6
from graphbrain.meaning.corefs import main_coref def is_actor(hg, edge): """Checks if the edge is a coreference to an actor.""" if edge.type()[0] == 'c': return hg.exists(('actor/p/.', main_coref(hg, edge))) else: return False def find_actors(hg, edge): """Returns set of all coreferences to actors found in the edge.""" actors = set() if is_actor(hg, edge): actors.add(main_coref(hg, edge)) if not edge.is_atom(): for item in edge: actors |= find_actors(hg, item) return actors
py
1a51276dba6c30c7bbcadc7180a0d7891c8b3359
''' Kattis - jackpot Simply get the LCM of all numbers. Note the property that LCM(a, b, c, ...) = LCM(LCM(a, b), c, ...) GCD also has this property. Time: O(n * log(INT_MAX)) Space O(n), Assuming Euclidean algorithm is O(log (INT_MAX)) ''' from math import gcd def lcm(a, b): return a * b // gcd(a, b) num_tc = int(input()) for _ in range(num_tc): n = int(input()) arr = list(map(int, input().split())) cur = arr[0] if (n == 1): print(cur) continue for i in range(1, n): cur = lcm(cur, arr[i]) if (cur > 1e9): print("More than a billion.") break if (i == n-1): print(cur)
py
1a5127ea5e476e7e5b7497124fad502e5dbaff12
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions andsss # limitations under the License. """Tests for coverage_data_utils.py""" from unittest import mock import pandas as pd import pandas.testing as pd_test from analysis import coverage_data_utils FUZZER = 'afl' BENCHMARK = 'libpng-1.2.56' EXPERIMENT_FILESTORE_PATH = 'gs://fuzzbench-data/myexperiment' SAMPLE_DF = pd.DataFrame([{ 'experiment_filestore': 'gs://fuzzbench-data', 'experiment': 'exp1', 'fuzzer': FUZZER, 'benchmark': BENCHMARK }, { 'experiment_filestore': 'gs://fuzzbench-data2', 'experiment': 'exp2', 'fuzzer': 'libfuzzer', 'benchmark': BENCHMARK }]) def create_coverage_data(): """Utility function to create test data.""" return { 'afl libpng-1.2.56': [[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]], 'libfuzzer libpng-1.2.56': [[0, 0, 1, 1], [0, 0, 2, 3], [0, 0, 3, 3], [0, 0, 4, 4]] } def test_get_unique_region_dict(): """Tests get_unique_region_dict() function.""" coverage_dict = create_coverage_data() benchmark_coverage_dict = coverage_data_utils.get_benchmark_cov_dict( coverage_dict, 'libpng-1.2.56') unique_region_dict = coverage_data_utils.get_unique_region_dict( benchmark_coverage_dict) expected_dict = { (0, 0, 2, 2): ['afl'], (0, 0, 2, 3): ['libfuzzer'], (0, 0, 4, 4): ['libfuzzer'] } assert expected_dict == unique_region_dict def test_get_unique_region_cov_df(): """Tests get_unique_region_cov_df() function.""" coverage_dict = create_coverage_data() benchmark_coverage_dict = coverage_data_utils.get_benchmark_cov_dict( coverage_dict, 'libpng-1.2.56') unique_region_dict = coverage_data_utils.get_unique_region_dict( benchmark_coverage_dict) fuzzer_names = ['afl', 'libfuzzer'] unique_region_df = coverage_data_utils.get_unique_region_cov_df( unique_region_dict, fuzzer_names) unique_region_df = unique_region_df.sort_values(by=['fuzzer']).reset_index( drop=True) expected_df = pd.DataFrame([{ 'fuzzer': 'afl', 'unique_regions_covered': 1 }, { 'fuzzer': 'libfuzzer', 'unique_regions_covered': 2 }]) assert unique_region_df.equals(expected_df) def test_get_benchmark_cov_dict(): """Tests that get_benchmark_cov_dict() returns correct dictionary.""" coverage_dict = create_coverage_data() benchmark = 'libpng-1.2.56' benchmark_cov_dict = coverage_data_utils.get_benchmark_cov_dict( coverage_dict, benchmark) expected_cov_dict = { "afl": {(0, 0, 3, 3), (0, 0, 2, 2), (0, 0, 1, 1)}, "libfuzzer": {(0, 0, 4, 4), (0, 0, 3, 3), (0, 0, 2, 3), (0, 0, 1, 1)} } assert expected_cov_dict == benchmark_cov_dict def test_get_pairwise_unique_coverage_table(): """Tests that get_pairwise_unique_coverage_table() gives the correct dataframe.""" coverage_dict = create_coverage_data() benchmark_coverage_dict = coverage_data_utils.get_benchmark_cov_dict( coverage_dict, 'libpng-1.2.56') fuzzers = ['libfuzzer', 'afl'] table = coverage_data_utils.get_pairwise_unique_coverage_table( benchmark_coverage_dict, fuzzers) expected_table = pd.DataFrame([[0, 1], [2, 0]], index=fuzzers, columns=fuzzers) pd_test.assert_frame_equal(table, expected_table) def test_get_fuzzer_benchmark_covered_regions_filestore_path(): """Tests that get_fuzzer_benchmark_covered_regions_filestore_path returns the correct result.""" assert ( coverage_data_utils.get_fuzzer_benchmark_covered_regions_filestore_path( FUZZER, BENCHMARK, EXPERIMENT_FILESTORE_PATH) == ('gs://fuzzbench-data/myexperiment/' 'coverage/data/libpng-1.2.56/afl/' 'covered_regions.json')) def test_fuzzer_and_benchmark_to_key(): """Tests that fuzzer_and_benchmark_to_key returns the correct result.""" assert (coverage_data_utils.fuzzer_and_benchmark_to_key( FUZZER, BENCHMARK) == 'afl libpng-1.2.56') def test_key_to_fuzzer_and_benchmark(): """Tests that key_to_fuzzer_and_benchmark returns the correct result.""" assert (coverage_data_utils.key_to_fuzzer_and_benchmark('afl libpng-1.2.56') == (FUZZER, BENCHMARK)) def test_fuzzer_benchmark_key_roundtrip(): """Tests that key_to_fuzzer_and_benchmark(fuzzer_and_benchmark_to_key(X, Y)) returns (X, Y).""" assert (coverage_data_utils.key_to_fuzzer_and_benchmark( coverage_data_utils.fuzzer_and_benchmark_to_key( FUZZER, BENCHMARK)) == (FUZZER, BENCHMARK)) def test_get_experiment_filestore_path_for_fuzzer_benchmark(): """Tests that get_experiment_filestore_path_for_fuzzer_benchmark returns the right result.""" filestore_path = ( coverage_data_utils.get_experiment_filestore_path_for_fuzzer_benchmark( FUZZER, BENCHMARK, SAMPLE_DF)) assert filestore_path == 'gs://fuzzbench-data/exp1' @mock.patch('analysis.coverage_data_utils.logger.warning') def test_get_experiment_filestore_path_for_fuzzer_benchmark_multiple( mocked_warning): """Tests that get_experiment_filestore_path_for_fuzzer_benchmark returns the right result when there are multiple filestores for a single pair and that a warning is logged..""" df = pd.DataFrame([{ 'experiment_filestore': 'gs://fuzzbench-data', 'experiment': 'exp1', 'fuzzer': FUZZER, 'benchmark': BENCHMARK }, { 'experiment_filestore': 'gs://fuzzbench-data2', 'experiment': 'exp2', 'fuzzer': FUZZER, 'benchmark': BENCHMARK }]) filestore_path = ( coverage_data_utils.get_experiment_filestore_path_for_fuzzer_benchmark( FUZZER, BENCHMARK, df)) assert filestore_path in ('gs://fuzzbench-data/exp1', 'gs://fuzzbench-data2/exp2') assert mocked_warning.call_count == 1 def test_get_experiment_filestore_paths(): """Tests that get_experiment_filestore_paths returns the right result.""" df = pd.DataFrame([{ 'experiment_filestore': 'gs://fuzzbench-data', 'experiment': 'exp1' }, { 'experiment_filestore': 'gs://fuzzbench-data2', 'experiment': 'exp2' }]) assert sorted(coverage_data_utils.get_experiment_filestore_paths(df)) == [ 'gs://fuzzbench-data/exp1', 'gs://fuzzbench-data2/exp2' ] def test_coverage_report_filestore_path(): """Tests that get_coverage_report_filestore_path returns the correct result.""" expected_cov_report_url = ('gs://fuzzbench-data/exp1/coverage/reports/' 'libpng-1.2.56/afl/index.html') assert coverage_data_utils.get_coverage_report_filestore_path( FUZZER, BENCHMARK, SAMPLE_DF) == expected_cov_report_url
py
1a5128cb582687dfedd982955440f032013ecde3
import requests print('Hello, World!')
py
1a5128f63761cad1cb2f08d17b4a29ba97960ffe
import torch from torch.nn.functional import softmax import json import nltk nltk.download('punkt') from nltk.tokenize import sent_tokenize from transformers import AutoTokenizer, AutoModelForMaskedLM import numpy as np import sys import random import os from os import path def get_abstract(article): return ' '.join([x['text'] for x in article['abstract']]) def get_pls(article): return article['pls'] if article['pls_type'] == 'long' else ' '.join([x['text'] for x in article['pls']]) def mask_batch(tokens, tokenizer, num_mask): indexed_tokens = [] mask_indices = [] for i in range(10): cur_mask_indices = random.sample(list(range(1,len(tokens)-1)), num_mask) masked_tokens = [tokens[index] for index in cur_mask_indices] for index in cur_mask_indices: tokens[index] = '[MASK]' indexed_tokens.append(tokenizer.convert_tokens_to_ids(tokens)) mask_indices.append(cur_mask_indices) for j in range(num_mask): index = cur_mask_indices[j] tokens[index] = masked_tokens[j] return indexed_tokens, mask_indices def run_model_sentence(tokens, tokenizer, model, num_mask=5, batch_size=1, device='cuda'): (indexed_tokens, mask_indices) = mask_batch(tokens, tokenizer, num_mask) predictions = [] model.eval() model.to(device) start_index = 0 while start_index < len(indexed_tokens): end_index = min(start_index + batch_size, len(indexed_tokens)) cur_indexed_tokens = torch.tensor(indexed_tokens[start_index:end_index], dtype=torch.long).to(device) segment_ids = torch.ones((end_index-start_index, len(tokens)), dtype=torch.long).to(device) with torch.no_grad(): outputs = model.forward(cur_indexed_tokens, token_type_ids=segment_ids) predictions.append(outputs[0].to('cpu')) start_index = end_index predictions = torch.cat(predictions, dim=0) return predictions, mask_indices def eval_sentence(sentence, tokenizer, model, num_mask=5, batch_size=1, device='cuda'): tokens = tokenizer.tokenize(sentence) if len(tokens) > 510: tokens = tokens[:510] tokens = ['[CLS]'] + tokens + ['[SEP]'] #if num_mask is a float, treat as a percentage of tokens to mask, #of course excluding the CLS and SEP tokens if type(num_mask) == float: num_mask = int(num_mask * (len(tokens)-2)) (predictions, mask_indices) = run_model_sentence(tokens, tokenizer, model, num_mask, batch_size, device) probabilities = [] for i in range(len(predictions)): for mask_index in mask_indices[i]: distribution = softmax(predictions[i, mask_index], dim=0) masked_token_index = tokenizer.convert_tokens_to_ids(tokens[mask_index]) prob = distribution[masked_token_index].item() probabilities.append(prob) return probabilities def eval_paragraph(paragraph, tokenizer, model, num_mask=5, batch_size=1, device='cuda'): probabilities = [] for sent in sent_tokenize(paragraph): if type(num_mask) == int and len(tokenizer.tokenize(sent)) < num_mask: print('skipping sentence...') continue probabilities += eval_sentence(sent, tokenizer, model, num_mask, batch_size, device) return probabilities def eval_article(article, tokenizer, model, num_mask=5, batch_size=1, device='cuda'): abstract_probs = eval_paragraph(article['abstract'], tokenizer, model, num_mask, batch_size, device) pls_probs = eval_paragraph(article['pls'], tokenizer, model, num_mask, batch_size, device) gen_probs = eval_paragraph(article['gen'], tokenizer, model, num_mask, batch_size, device) return abstract_probs, pls_probs, gen_probs def probability_results(data, input_file_name, tokenizer, model, file_name, num_mask=5, batch_size=1, device='cuda'): prefix = path.split(input_file_name)[-2] #read in the dois already processed (if the file_name exists) so that they #can be ignored in this run already = set() if path.isfile(path.join(prefix, file_name)): with open(path.join(prefix, file_name)) as f: for l in f.readlines(): if len(l) > 0: already.add(l.split(', ')[0]) for index,article in enumerate(data): if article['doi'] in already: continue print(index) (abstract_probs, pls_probs, gen_probs) = eval_article(article, tokenizer, model, num_mask, batch_size, device) abstract_avg = np.mean(abstract_probs) pls_avg = np.mean(pls_probs) gen_avg = np.mean(gen_probs) with open(path.join(prefix, file_name), 'a+', 1) as f: f.write(f'{article["doi"]} {abstract_avg} {pls_avg} {gen_avg}\n') f.flush() model_name = sys.argv[1] input_file_name = sys.argv[2] file_name = sys.argv[3] num_mask = float(sys.argv[4]) if '.' in sys.argv[4] else int(sys.argv[4]) batch_size = int(sys.argv[5]) tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForMaskedLM.from_pretrained(model_name) start_index = int(sys.argv[6]) end_index = int(sys.argv[7]) print(input_file_name) sys.exit() data = json.load(open(input_file_name)) probability_results(data[start_index:end_index], input_file_name, tokenizer, model, file_name, num_mask, batch_size, device='cuda')
py
1a512a61018e69e597d41ad89791d54861209bf8
"""Binary for running Mosquitto MQTT bridge with credential rotation.""" import datetime import os import signal import subprocess import time import jwt import psutil def create_jwt_token(): """Creates a JWT (https://jwt.io) to establish an MQTT connection. Returns: An MQTT auth token generated from the given project_id and private key Raises: ValueError: If the private_key_file does not contain a known key. """ token = { # The time that the token was issued at 'iat': datetime.datetime.utcnow(), # The time the token expires. 'exp': datetime.datetime.utcnow() + datetime.timedelta(minutes=int(os.environ["JWT_EXPIRATION_MINUTES"])), # The audience field should always be set to the GCP project id. 'aud': os.environ["PROJECT_ID"] } # Read the private key file. with open("/etc/mqtt/ec_private.pem", 'r') as f: private_key = f.read() print ('Creating JWT from private key file') return jwt.encode(token, private_key, algorithm='ES256').decode('utf-8') def update_config(config): """Updates mosquitto condig file on disk. Args: config: path to the Mosquitto config """ # TODO proper template tooling? config = config.replace('GOOGLE_CLOUD_JWT', create_jwt_token()).replace( 'CONFIG_DEVICE_ID', os.environ["BRIDGE_DEVICE_ID"]).replace( 'CONFIG_PROJECT_ID', os.environ["PROJECT_ID"]).replace( 'CONFIG_LOCATION', os.environ["CLOUD_REGION"]).replace( 'CONFIG_REGISTRY', os.environ["REGISTRY_ID"]).replace( 'BASE_DIR', '/etc/mqtt') with open("/mosquitto/config/mosquitto.conf", 'w') as dst_conf: dst_conf.write(config) print ('Wrote config to {}'.format("/mosquitto/config/mosquitto.conf")) def main(): with open("/etc/mqtt/bridge.conf.tmpl", 'r') as src_conf: config_template = src_conf.read() update_config(config_template) while True: time.sleep(int(os.environ["CONFIG_REFRESH_MINUTES"]) * 60) print ('Restarting MQTT Bridge') update_config(config_template) procs = [procObj for procObj in psutil.process_iter() if 'mosquitto' in procObj.name().lower() ] if len(procs): procs[0].send_signal(signal.SIGTERM) if __name__ == '__main__': main()
py
1a512ab8ef03baf240d77260f2d1cf0dff32e573
#-*- coding: utf-8 -*- import re import pickle # say-as ๊ธฐ๋ณธ ๊ทœ์น™: ์ฐธ๊ณ  ๋…ผ๋ฌธ <๊ธฐ์ˆ ๋ฌธ์—์„œ ์šฐ๋ฆฌ๋ง ์ˆซ์ž ์“ฐ๊ธฐ, ๊ถŒ์„ฑ๊ทœ> _mandarin_num = {"0": "๊ณต", "1": "์ผ", "2": "์ด", "3": "์‚ผ", "4": "์‚ฌ", "5": "์˜ค", "6": "์œก", "7": "์น ", "8": "ํŒ”", "9": "๊ตฌ", "10": "์‹ญ", "100": "๋ฐฑ", "1000": "์ฒœ", "10000": "๋งŒ", "100000000": "์–ต", "1000000000000": "์กฐ"} _korean_num = {"1": "ํ•œ", "2": "๋‘", "3": "์„ธ", "4": "๋„ค", "5": "๋‹ค์„ฏ", "6": "์—ฌ์„ฏ", "7": "์ผ๊ณฑ", '8': "์—ฌ๋Ÿ", "9": "์•„ํ™‰", "10": "์—ด", "20": "์Šค๋ฌผ", "30": "์„œ๋ฅธ", "40": "๋งˆํ”", "50": "์‰ฐ", "60": "์˜ˆ์ˆœ", "70": "์ผํ”", "80": "์—ฌ๋“ ", "90": "์•„ํ”"} _korean_end_word = ['๊ฐœ', '๋ˆ', '๋งˆ๋ฆฌ', '๋ฒŒ', '์‚ด', '์†', '์ž๋ฃจ', '๋ฐœ', '์ฃฝ', '์ฑ„', '์ผค๋ ˆ', '์พŒ', '์‹œ', 'ํฌ๊ธฐ', '๋ฒˆ์งธ', '๊ฐ€์ง€', '๊ณณ', '์‚ด', '์ฒ™', '์บ”', '๋ฐฐ', '๊ทธ๋ฃจ', '๋ช…', '๋ฒˆ', '๋‹ฌ', '๊ฒน', '๊ฑด', '๋Œ€'] _exception_korean_end_word = ['๊ฐœ๊ตญ', '๋‹ฌ๋Ÿฌ', '๊ฐœ์›”'] _english_word = {'a': '์—์ด', 'b': '๋น„', 'c': '์”จ', 'd': '๋””', 'e': '์ด', 'f': '์—ํ”„', 'g': '์ฅ', 'h': '์—์ด์น˜', 'i': '์•„์ด', 'j': '์ œ์ด', 'k': '์ผ€์ด', 'l': '์—˜', 'n': '์—”', 'm': '์— ', 'o': '์˜ค', 'p': 'ํ”ผ', 'q': 'ํ', 'r':'์–ผ', 's': '์—์Šค', 't': 'ํ‹ฐ', 'u':'์œ ', 'v':'๋ธŒ์ด', 'w':'๋”๋ธ”์œ ', 'x': '์—‘์Šค', 'y': '์™€์ด', 'z': '์ง€'} _special_num_sub = {'A4': '์—์ดํฌ', 'G20': '์ง€์ด์‹ญ', 'G2': '์ง€ํˆฌ', 'U2': '์œ ํˆฌ', '2PM': 'ํˆฌํ”ผ์— ', '88์˜ฌ๋ฆผํ”ฝ': 'ํŒ”ํŒ”์˜ฌ๋ฆผํ”ฝ', '119์—': '์ผ์ผ๊ตฌ์—', '112์‹ ๊ณ ': '์ผ์ผ์ด์‹ ๊ณ ', '๋น…3': '๋น…์“ฐ๋ฆฌ', '4๋Œ€๊ฐ•': '์‚ฌ๋Œ€๊ฐ•'} # lexicon ๊ธฐ๋ณธ ๊ทœ์น™: ์ฐธ๊ณ  ์‚ฌ์ „ <๊ตญ๋ฆฝ๊ตญ์–ด์› ํ‘œ์ค€๊ตญ์–ด๋Œ€์‚ฌ์ „> with open('./tts/text/dictionary/lexicon.pickle', 'rb') as handle: _lexicon = pickle.load(handle) # sub ๊ธฐ๋ณธ ๊ทœ์น™ with open('./tts/text/dictionary/sub.pickle', 'rb') as handle: _sub = pickle.load(handle) with open('./tts/text/dictionary/num_sub.pickle', 'rb') as handle: _num_sub = pickle.load(handle) _num_sub['ใŽœ'] = '๋ฐ€๋ฆฌ๋ฏธํ„ฐ' def read1to999(n): units = [''] + list('์‹ญ๋ฐฑ์ฒœ') nums = '์ผ์ด์‚ผ์‚ฌ์˜ค์œก์น ํŒ”๊ตฌ' result = [] i = 0 while n > 0: n, r = divmod(n, 10) if r > 0: if units[i] == '': result.append(nums[r - 1] + units[i]) else: if r == 1: result.append(units[i]) else: result.append(nums[r - 1] + units[i]) i += 1 return ''.join(result[::-1]) def readNumM(n): """ ํ•œ์ž๋กœ ์ˆซ์ž ์ฝ๊ธฐ """ result = '' if n >= 1000000000000: r, n = divmod(n, 10000000000000) tmp = read1to999(r) if len(tmp) == 1 and tmp[-1] == '์ผ': result += '์กฐ' else: result += tmp + "์กฐ" if n >= 100000000: r, n = divmod(n, 100000000) tmp = read1to999(r) if len(tmp) == 1 and tmp[-1] == '์ผ': result += '์–ต' else: result += tmp + "์–ต" if n >= 10000: r, n = divmod(n, 10000) tmp = read1to999(r) if len(tmp) == 1 and tmp[-1] == '์ผ': result += '๋งŒ' else: result += tmp + "๋งŒ" result += read1to999(n) return result def readNumK(intNum): """ ํ•œ๊ธ€๋กœ ์ˆซ์ž ์ฝ๊ธฐ """ tmp_list = list(_korean_num.keys()) num_list = list() for num in tmp_list: num_list.append(int(num)) num_list.sort(reverse=True) result = "" for num in num_list: if intNum >= num: intNum -= num result += _korean_num[str(num)] return result def txt_preprocessing(txt): word_list = txt.split(' ') # for tts for k, word in enumerate(word_list): # lexicon & sub ๋ฐœ์Œ ๊ต์ฒด english = re.sub('[^a-zA-Z]', '', word) not_checked = 1 if english != '' and not re.findall('\d', word): # lexicon ์ฒ˜๋ฆฌ for key, value in _lexicon.items(): if key.lower() == english.lower(): word_list[k] = word_list[k].replace(english, value) not_checked = 0 # sub ์ฒ˜๋ฆฌ for key, value in _sub.items(): if key.lower() == english.lower(): word_list[k] = word_list[k].replace(english, value) not_checked = 0 elif re.findall('\d+', word): # num_sub ์ฒ˜๋ฆฌ for key, value in _num_sub.items(): if key in word: word_list[k] = word_list[k].replace(key, value) not_checked = 0 # say-as ๋ฐœ์Œ ๊ต์ฒด seperated_num = 0 if '-' in word: seperated_num = 1 if '.' in word: if word[-1] != '.': word_list[k].replace('.', '์ ') if ',' in word: if word[-1] != ',': word_list[k].replace(',', '') word.replace(',', '') strNum_list = re.findall('\d+', word) # ๊ฐ’ ์ค‘๋ณต ์‹œ ์ œ๊ฑฐํ•ด ๋‚˜๊ฐ€๋ฉด์„œ ์ฒ˜๋ฆฌ ํ•„์š” prev = -1 for strNum in strNum_list: pos = word.index(strNum) if prev == pos: # ์•ฝ์‹ ๊ฐ’ ์ค‘๋ณต ์ฒ˜๋ฆฌ continue wList = [word[0:pos], word[pos: pos + len(strNum)], word[pos + len(strNum):]] wList = [w for w in wList if not w == ''] check = "" # ์ฒ˜์Œ์ด 0์œผ๋กœ ์‹œ์ž‘ํ•˜๋ฉด ํ•œ๋ฌธ-๋ถ„๋ฆฌ if strNum[0] == '0' or seperated_num: check = "ํ•œ๋ฌธ-๋ถ„๋ฆฌ" if word_list[k-1] == '์นด๋“œ๋ฒˆํ˜ธ๋Š”': word_list[k]= word_list[k].replace('-', '๋‹ค์‹œ') else: word_list[k]= word_list[k].replace('-', '์—') else: for i, w in enumerate(wList): # ์ˆซ์ž ๋’ค์— ๋ถ™๋Š” ๊ฒƒ์ด ์—†์„ ๋•Œ, ํ•œ๋ฌธ if len(wList) == (i + 1): if k > 1: if word_list[k - 1][0] == '-': check = "ํ•œ๋ฌธ-๋ถ„๋ฆฌ" break if k + 1 < len(word_list): if word_list[k + 1] == '': check = "ํ•œ๋ฌธ" elif word_list[k + 1][0] == '-': check = "ํ•œ๋ฌธ-๋ถ„๋ฆฌ" elif word_list[k + 1][0] in _korean_end_word: check = "ํ•œ๊ธ€" else: check = "ํ•œ๋ฌธ" else: check = "ํ•œ๋ฌธ" break elif w == strNum: # ์ˆซ์ž ๋’ค์— ๋ถ™๋Š” ๊ฒƒ์— ๋”ฐ๋ผ ํ•œ๊ธ€, ํ•œ๋ฌธ ์„ ํƒ if wList[i + 1][0] in _korean_end_word: check = "ํ•œ๊ธ€" else: check = "ํ•œ๋ฌธ" break tmpNum = "" intNum = int(strNum) if check == "ํ•œ๋ฌธ-๋ถ„๋ฆฌ": for s in strNum: # ํ•œ๊ธ€์ž์”ฉ ์ฝ๊ธฐ (0 == ๊ณต) tmpNum += _mandarin_num[s] elif check == "ํ•œ๋ฌธ": # ์ˆซ์ž ํ•œ๋ฌธ ์ฝ๊ธฐ tmpNum = readNumM(intNum) else: # check == "ํ•œ๊ธ€" # 100์ด์ƒ ํ•œ๋ฌธ ์ฝ๊ธฐ + ์ดํ•˜ ํ•œ๊ธ€ ์ฝ๊ธฐ tmpNum = readNumM(intNum // 100 * 100) + readNumK(intNum % 100) word_list[k] = word_list[k].replace(strNum, tmpNum) elif '-' in word: word_list[k] = word_list[k].replace('-', '์—') if not_checked: tmp = '' for char in word_list[k]: if char.lower() in _english_word.keys(): not_checked = 0 tmp += _english_word[char.lower()] else: tmp += char word_list[k] = tmp tts_sentence = word_list[0] for word in word_list[1:]: # ๊ธธ์ด 1 ์˜ˆ์™ธ์ฒ˜๋ฆฌ ํ•„์š” tts_sentence += ' ' + word return tts_sentence def txt_preprocessing_only_num(txt): word_list = txt.split(' ') for k, word in enumerate(word_list): strNum_list = re.findall('\d+', word) not_special_case = True for key, value in _special_num_sub.items(): if key in word: not_special_case = False word_list[k] = word_list[k].replace(key, value) if not_special_case and strNum_list: # num_sub ์ฒ˜๋ฆฌ for key, value in _num_sub.items(): if key in word: if 'k' + key in word: key = 'k' + key value = 'ํ‚ฌ๋กœ' + value elif 'm' + key in word: key = 'm' + key value = '๋ฐ€๋ฆฌ' + value elif 'c' + key in word: key = 'c' + key value = '์„ผํ‹ฐ' + value word_list[k] = word_list[k].replace(key, value) break # say-as ๋ฐœ์Œ ๊ต์ฒด seperated_num = 0 if '-' in word: seperated_num = 1 if '.' in word: if word[-1] != '.': word_list[k] = word_list[k].replace('.', '์ ') if ',' in word: if word[-1] != ',': word_list[k] = word_list[k].replace(',', '') if 'ยท' in word: word_list[k] = word_list[k].replace('ยท', '') prev = -1 for strNum in sorted(strNum_list, key=lambda x:len(x), reverse=True): pos = word.index(strNum) if prev == pos: # ์•ฝ์‹ ๊ฐ’ ์ค‘๋ณต ์ฒ˜๋ฆฌ continue wList = [word[0:pos], word[pos: pos + len(strNum)], word[pos + len(strNum):]] wList = [w for w in wList if not w == ''] check = "" one_change = False if 'ยท' in word: check = 'ํ•œ๋ฌธ-๋ถ„๋ฆฌ' one_change = True elif re.findall('(\d+)-(\d+)', word): check = "ํ•œ๋ฌธ-๋ถ„๋ฆฌ" if word_list[k-1] == '์นด๋“œ๋ฒˆํ˜ธ๋Š”': word_list[k] = word_list[k].replace('-','๋‹ค์‹œ') else: word_list[k] = word_list[k].replace('-','์—') elif strNum[0] == '0': # ์ฒ˜์Œ์ด 0์œผ๋กœ ์‹œ์ž‘ํ•˜๋ฉด ํ•œ๋ฌธ-๋ถ„๋ฆฌ if len(strNum) == 1: word_list[k] = word_list[k].replace('0', '์˜') continue elif '00' in strNum: key = '' value = '' for _ in range(strNum.count('0')): key += '0' value += '๋•ก' word_list[k] = word_list[k].replace(key, value) continue check = "ํ•œ๋ฌธ-๋ถ„๋ฆฌ" else: for i, w in enumerate(wList): # ์ˆซ์ž ๋’ค์— ๋ถ™๋Š” ๊ฒƒ์ด ์—†์„ ๋•Œ, ํ•œ๋ฌธ if len(wList) == (i + 1): if k > 1: if word_list[k - 1][0] == '-': check = "ํ•œ๋ฌธ-๋ถ„๋ฆฌ" break if k + 1 < len(word_list): if word_list[k + 1][0] == '-': check = "ํ•œ๋ฌธ-๋ถ„๋ฆฌ" elif len(word_list[k+1]) >= 2: if word_list[k+1][:2] in _korean_end_word: check = "ํ•œ๊ธ€" break elif word_list[k + 1][0] in _korean_end_word: check = "ํ•œ๊ธ€" for e in _exception_korean_end_word: if e in word_list[k+1]: check = 'ํ•œ๋ฌธ' break else: check = "ํ•œ๋ฌธ" else: check = "ํ•œ๋ฌธ" break elif w == strNum: # ์ˆซ์ž ๋’ค์— ๋ถ™๋Š” ๊ฒƒ์— ๋”ฐ๋ผ ํ•œ๊ธ€, ํ•œ๋ฌธ ์„ ํƒ if len(wList[i+1]) >= 2: if wList[i+1][:2] in _korean_end_word: check = 'ํ•œ๊ธ€' break if wList[i + 1][0] in _korean_end_word: check = "ํ•œ๊ธ€" for e in _exception_korean_end_word: if e in wList[i+1]: check = 'ํ•œ๋ฌธ' break else: check = "ํ•œ๋ฌธ" break tmpNum = "" intNum = int(strNum) if check == "ํ•œ๋ฌธ-๋ถ„๋ฆฌ": for s in strNum: # ํ•œ๊ธ€์ž์”ฉ ์ฝ๊ธฐ (0 == ๊ณต) tmpNum += _mandarin_num[s] elif check == "ํ•œ๋ฌธ": # ์ˆซ์ž ํ•œ๋ฌธ ์ฝ๊ธฐ tmpNum = readNumM(intNum) else: # check == "ํ•œ๊ธ€" # 100์ด์ƒ ํ•œ๋ฌธ ์ฝ๊ธฐ + ์ดํ•˜ ํ•œ๊ธ€ ์ฝ๊ธฐ if intNum > 99: tmpNum = readNumM(intNum) else: tmpNum = readNumK(intNum) # tmpNum = readNumM(intNum // 100 * 100) + readNumK(intNum % 100) word_list[k] = word_list[k].replace(strNum, tmpNum) if word_list: word_list = [' ' + w for w in word_list] tts_sentence = ''.join(word_list) tts_sentence = tts_sentence[1:] return tts_sentence else: return ' '
py
1a512ada26a67444caf04ce3a7020c10077be53b
import pathlib import random import sys import panel as pn import param _COLORS = [ ("#00A170", "white"), ("#DAA520", "white"), ("#2F4F4F", "white"), ("#F08080", "white"), ("#4099da", "white"), # lightblue ] _LOGOS = { "default": "https://panel.holoviz.org/_static/logo_stacked.png", "dark": "https://raw.githubusercontent.com/holoviz/panel/98389a8dead125bcb7c60dc2c1564e112d89d3fa/doc/_static/logo_stacked_dark_theme.png", } _MENU_FILE = pathlib.Path(__file__).parent / "menu.html" _MENU_TEXT = _MENU_FILE.read_text() _ACE_THEMES={ "default": "chrome", "dark": "tomorrow_night_eighties" } RAW_CSS = """ .sidenav .menu-item-active a { background: var(--accent-fill-active); color: white; } """ if not RAW_CSS in pn.config.raw_css: pn.config.raw_css.append(RAW_CSS) def _mock_panel(): def _reload(module=None): if module is not None: for module in pn.io.reload._modules: if module in sys.modules: del sys.modules[module] for cb in pn.io.reload._callbacks.values(): cb.stop() pn.io.reload._callbacks.clear() if pn.state.location: pn.state.location.reload = True for loc in pn.state._locations.values(): loc.reload = True pn.io.reload._reload = _reload _mock_panel() #tests class Configuration(param.Parameterized): theme = param.String() site = param.String(default="Panel@PyData 2021") title = param.String() url = param.String() logo = param.String() accent_base_color = param.Color() header_color = param.Color() header_accent_base_color = param.Color("white") header_background = param.Color() main_max_width = param.String("95%") sidebar_width = param.Integer(400) ace_theme=param.String() def __init__(self, random=False, **params): """Configuration for your (Fast) Template Args: random (bool, optional): Whether or not to provide randomized values. Defaults to False. """ super().__init__(**params) self.theme = self._get_theme() if random: color_index = self._get_random_color_index() else: color_index=0 self.accent_base_color = _COLORS[color_index][0] self.header_color = _COLORS[color_index][1] self.header_background = self.accent_base_color self.logo=_LOGOS[self.theme] self.ace_theme=_ACE_THEMES[self.theme] def _get_theme(self): if pn.template.FastListTemplate().theme==pn.template.DarkTheme: return "dark" return "default" def _get_random_color_index(self): if not "color" in pn.state.cache: pn.state.cache["color"]=-1 color = pn.state.cache["color"]+1 if color==len(_COLORS): color=0 pn.state.cache["color"]=color return color @property def _collapsed_icon(self) -> str: return f"""<svg style="stroke: { self.accent_base_color }" width="18" height="18" viewBox="0 0 18 18" fill="none" xmlns="http://www.w3.org/2000/svg" slot="collapsed-icon"> <path d="M15.2222 1H2.77778C1.79594 1 1 1.79594 1 2.77778V15.2222C1 16.2041 1.79594 17 2.77778 17H15.2222C16.2041 17 17 16.2041 17 15.2222V2.77778C17 1.79594 16.2041 1 15.2222 1Z" stroke-linecap="round" stroke-linejoin="round"></path> <path d="M9 5.44446V12.5556" stroke-linecap="round" stroke-linejoin="round"></path> <path d="M5.44446 9H12.5556" stroke-linecap="round" stroke-linejoin="round"></path> </svg>""" @property def _expanded_icon(self) -> str: return f"""<svg style="stroke: { self.accent_base_color }" width="18" height="18" viewBox="0 0 18 18" fill="none" xmlns="http://www.w3.org/2000/svg" slot="expanded-icon"> <path d="M15.2222 1H2.77778C1.79594 1 1 1.79594 1 2.77778V15.2222C1 16.2041 1.79594 17 2.77778 17H15.2222C16.2041 17 17 16.2041 17 15.2222V2.77778C17 1.79594 16.2041 1 15.2222 1Z" stroke-linecap="round" stroke-linejoin="round"></path> <path d="M5.44446 9H12.5556" stroke-linecap="round" stroke-linejoin="round"></path> </svg> """ @property def menu(self) -> str: """Returns a HTML Menu""" test=f'<li><a href="{ self.url }">{ self.title }</a></li>' return ( _MENU_TEXT .replace("{ COLLAPSED_ICON }", self._collapsed_icon) .replace("{ EXPANDED_ICON }", self._expanded_icon) .replace(f'<li><a href="{ self.url }">{ self.title }</a></li>', f'<li class="menu-item-active"><a href="{ self.url }">{ self.title }</a></li>') ) def get_logo_pane(self, **params): return pn.pane.PNG( self.logo, link_url="https://panel.holoviz.org", embed=False, sizing_mode="fixed", align="center", **params ) if __name__.startswith("bokeh"): config = Configuration(title="Works in your Notebook and IDE", url="works_in_your_notebook_and_ide", random=True) pn.template.FastListTemplate( title="Test Configuration", site=config.site, header_accent_base_color=config.header_accent_base_color, header_background=config.header_background, header_color=config.header_color, sidebar_footer=config.menu, accent_base_color=config.accent_base_color, main=[pn.pane.PNG(config.logo)], ).servable()
py
1a512afa955db9ae343b7bc3f8415930970c515a
#!/usr/bin/env python # -*- coding: utf-8 -*- """Utility functions for dealing with files""" import pkg_resources import pathlib EXAMPLE_AUDIO = "example_data/Kevin_MacLeod_-_Vibe_Ace.ogg" __all__ = ["example_audio_file", "find_files"] def example_audio_file(): """Get the path to an included audio example file. .. raw:: html <div xmlns:cc="http://creativecommons.org/ns#" xmlns:dct="http://purl.org/dc/terms/" about="http://freemusicarchive.org/music/Kevin_MacLeod/Jazz_Sampler/Vibe_Ace_1278"> <span property="dct:title">Vibe Ace</span> (<a rel="cc:attributionURL" property="cc:attributionName" href="http://freemusicarchive.org/music/Kevin_MacLeod/">Kevin MacLeod</a>) / <a rel="license" href="http://creativecommons.org/licenses/by/3.0/">CC BY 3.0</a> </div> Examples -------- >>> # Load the waveform from the example track >>> y, sr = librosa.load(librosa.util.example_audio_file()) Returns ------- filename : str Path to the audio example file included with librosa """ return pkg_resources.resource_filename(__name__, EXAMPLE_AUDIO) def find_files( directory, ext=None, recurse=True, case_sensitive=False, limit=None, offset=0 ): """Get a sorted list of (audio) files in a directory or directory sub-tree. Examples -------- >>> # Get all audio files in a directory sub-tree >>> files = librosa.util.find_files('~/Music') >>> # Look only within a specific directory, not the sub-tree >>> files = librosa.util.find_files('~/Music', recurse=False) >>> # Only look for mp3 files >>> files = librosa.util.find_files('~/Music', ext='mp3') >>> # Or just mp3 and ogg >>> files = librosa.util.find_files('~/Music', ext=['mp3', 'ogg']) >>> # Only get the first 10 files >>> files = librosa.util.find_files('~/Music', limit=10) >>> # Or last 10 files >>> files = librosa.util.find_files('~/Music', offset=-10) Parameters ---------- directory : Path object Path to look for files ext : str or list of str A file extension or list of file extensions to include in the search. Default: `['aac', 'au', 'flac', 'm4a', 'mp3', 'ogg', 'wav']` recurse : boolean If `True`, then all subfolders of `directory` will be searched. Otherwise, only `directory` will be searched. case_sensitive : boolean If `False`, files matching upper-case version of extensions will be included. limit : int > 0 or None Return at most `limit` files. If `None`, all files are returned. offset : int Return files starting at `offset` within the list. Use negative values to offset from the end of the list. Returns ------- files : list of str The list of audio files. """ directory = pathlib.Path(directory) if ext is None: ext = ["aac", "au", "flac", "m4a", "mp3", "ogg", "wav"] elif isinstance(ext, str): ext = [ext] # Cast into a set ext = set(ext) # Generate upper-case versions if not case_sensitive: # Force to lower-case ext = set([e.lower() for e in ext]) # Add in upper-case versions ext |= set([e.upper() for e in ext]) files = set() if recurse: files = __get_files(directory, ext, True) else: files = __get_files(directory, ext, False) files = list(files) files.sort() files = files[offset:] if limit is not None: files = files[:limit] return files def __get_files(dir_name: pathlib.Path, extensions: set, recur: bool): """Helper function to get files in a single directory""" # Expand out the directory dir_name = dir_name.expanduser().absolute() my_files = set() if recur: for sub_ext in extensions: my_files |= set(dir_name.rglob("*." + sub_ext)) else: for sub_ext in extensions: my_files |= set(dir_name.glob("*." + sub_ext)) return my_files
py
1a512b264fca96694fd6b631bf3c75b364b65451
# -*- coding: utf-8 -*- """ webapp2_extras.sessions_memcache ================================ Extended sessions stored in memcache. App Engine-specific modules were moved to webapp2_extras.appengine. This module is here for compatibility purposes. :copyright: 2011 by tipfy.org. :license: Apache Sotware License, see LICENSE for details. """ import warnings warnings.warn(DeprecationWarning( 'webapp2_extras.sessions_memcache is deprecated. ' 'App Engine-specific modules were moved to webapp2_extras.appengine.'), stacklevel=1) from webapp2_extras.appengine.sessions_memcache import *
py
1a512b838a3af229edc9db52ec5b9d9662f5c037
import tkinter as tk root=tk.Tk() root.geometry('350x100') lb_rgb=tk.Label(text='rgb',fg='#000',bg='#fff') lb_rrggbb=tk.Label(text='rrggbb',fg='#abcdef',bg='#123456') lb_rrrgggbbb=tk.Label(text='rrrgggbbb',fg='#123456789',bg='#987abcdef') lb_colorname=tk.Label(text='colorname',fg='magenta',bg='yellow') [widget.pack() for widget in (lb_rgb,lb_rrggbb,lb_rrrgggbbb,lb_colorname)] root.mainloop()
py
1a512beb264cebcb4947baa1873b09e99b650cfe
''' This module was downloaded from the pycroscopy github page: https://github.com/pycroscopy/pycroscopy It was edited slightly with contributor Jessica Kong @kongjy to accomodate the new format in which PiFM data is taken with a polarizer installed. ''' import os import numpy as np from pyUSID.io.translator import Translator from pyUSID.io import write_utils from pyUSID import USIDataset import pyUSID as usid import h5py class PiFMTranslator(Translator): """ Class that writes images, spectrograms, point spectra and associated ancillary data sets to h5 file in pyUSID data structure. """ def translate(self, path, append_path='', grp_name='Measurement'): """ Parameters ---------- file_path : String / unicode Absolute path of the .ibw file verbose : Boolean (Optional) Whether or not to show print statements for debugging append_path : string (Optional) h5_file to add these data to, must be a path to the h5_file on disk parm_encoding : str, optional Codec to be used to decode the bytestrings into Python strings if needed. Default 'utf-8' Returns ------- h5_path : String / unicode Absolute path of the .h5 file """ self.get_path(path) self.read_anfatec_params() self.read_file_desc() self.read_spectrograms() self.read_imgs() self.read_spectra() self.make_pos_vals_inds_dims() self.create_hdf5_file(append_path, grp_name) self.write_spectrograms() self.write_images() self.write_spectra() self.write_ps_spectra() return self.h5_f def get_path(self, path): """writes full path, directory, and file name as attributes to class""" # get paths/get params dictionary, img/spectrogram/spectrum descriptions self.path = path full_path = os.path.realpath(self.path) directory = os.path.dirname(full_path) # file name basename = os.path.basename(self.path) self.full_path = full_path self.directory = directory self.basename = basename #these dictionary parameters will be written to hdf5 file under measurement attributes def read_anfatec_params(self): """reads the scan parameters and writes them to a dictionary""" params_dictionary = {} params = True with open(self.path, 'r', encoding="ISO-8859-1") as f: for line in f: if params: sline = [val.strip() for val in line.split(':')] if len(sline) == 2 and sline[0][0] != ';': params_dictionary[sline[0]] = sline[1] #in ANFATEC parameter files, all attributes are written before file references. if sline[0].startswith('FileDesc'): params = False f.close() self.params_dictionary = params_dictionary self.x_len, self.y_len = int(params_dictionary['xPixel']), int(params_dictionary['yPixel']) def read_file_desc(self): """reads spectrogram, image, and spectra file descriptions and stores all to dictionary where the key:value pairs are filename:[all descriptors]""" spectrogram_desc = {} img_desc = {} spectrum_desc = {} pspectrum_desc = {} with open(self.path,'r', encoding="ISO-8859-1") as f: ## can be made more concise...by incorporating conditons with loop control lines = f.readlines() for index, line in enumerate(lines): sline = [val.strip() for val in line.split(':')] #if true, then file describes image. if sline[0].startswith('FileDescBegin'): no_descriptors = 5 file_desc = [] for i in range(no_descriptors): line_desc = [val.strip() for val in lines[index+i+1].split(':')] file_desc.append(line_desc[1]) #img_desc['filename'] = caption, scale, physical unit, offset img_desc[file_desc[0]] = file_desc[1:] #if true, file describes spectrogram (ie hyperspectral image) if sline[0].startswith('FileDesc2Begin'): no_descriptors = 10 file_desc = [] for i in range(no_descriptors): line_desc = [val.strip() for val in lines[index+i+1].split(':')] file_desc.append(line_desc[1]) #caption, bytes perpixel, scale, physical unit, offset, offset, datatype, bytes per reading #filename wavelengths, phys units wavelengths. spectrogram_desc[file_desc[0]] = file_desc[1:] if sline[0].startswith('AFMSpectrumDescBegin'): file_desc = [] line_desc = [val.strip() for val in lines[index+1].split(':')][1] if 'powerspectrum' in line_desc: no_descriptors = 2 for i in range(no_descriptors): line_desc = [val.strip() for val in lines[index+i+1].split(':')] file_desc.append(line_desc[1]) #file name, position x, position y pspectrum_desc[file_desc[0]] = file_desc[1:] else: no_descriptors = 7 for i in range(no_descriptors): line_desc = [val.strip() for val in lines[index+i+1].split(':')] file_desc.append(line_desc[1]) #file name, position x, position y spectrum_desc[file_desc[0]] = file_desc[1:] f.close() self.img_desc = img_desc self.spectrogram_desc = spectrogram_desc self.spectrum_desc = spectrum_desc self.pspectrum_desc = pspectrum_desc def read_spectrograms(self): """reads spectrograms, associated spectral values, and saves them in two dictionaries""" spectrograms = {} spectrogram_spec_vals = {} for file_name, descriptors in self.spectrogram_desc.items(): # load and save spectroscopic values spec_vals_i = np.loadtxt(os.path.join(self.directory, file_name.strip('.int') + 'Wavelengths.txt')) #if true, data is acquired with polarizer, with an attenuation data column if np.array(spec_vals_i).ndim == 2: spectrogram_spec_vals[file_name] = spec_vals_i[:,0] attenuation = {} attenuation[file_name] = spec_vals_i[:,1] self.attenuation = attenuation else: spectrogram_spec_vals[file_name] = spec_vals_i # load and save spectrograms spectrogram_i = np.fromfile(os.path.join(self.directory, file_name), dtype='i4') spectrograms[file_name] = np.zeros((self.x_len, self.y_len, len(spec_vals_i))) for y, line in enumerate(np.split(spectrogram_i, self.y_len)): for x, pt_spectrum in enumerate(np.split(line, self.x_len)): spectrograms[file_name][x, y, :] = pt_spectrum * float(descriptors[2]) self.spectrograms = spectrograms self.spectrogram_spec_vals = spectrogram_spec_vals def read_imgs(self): """reads images and saves to dictionary""" imgs = {} for file_name, descriptors in self.img_desc.items(): img_i = np.fromfile(os.path.join(self.directory, file_name), dtype='i4') imgs[file_name] = np.zeros((self.x_len, self.y_len)) for y, line in enumerate(np.split(img_i, self.y_len)): for x, pixel in enumerate(np.split(line, self.x_len)): imgs[file_name][x, y] = pixel * float(descriptors[1]) self.imgs = imgs def read_spectra(self): """reads all point spectra and saves to dictionary""" spectra = {} spectra_spec_vals = {} spectra_x_y_dim_name = {} for file_name, descriptors in self.spectrum_desc.items(): spectrum_f = np.loadtxt(os.path.join(self.directory, file_name), skiprows=1) spectra_spec_vals[file_name] = spectrum_f[:, 0] spectra[file_name] = spectrum_f[:,1] with open(os.path.join(self.directory, file_name)) as f: spectra_x_y_dim_name[file_name] = f.readline().strip('\n').split('\t') for file_name, descriptors in self.pspectrum_desc.items(): spectrum_f = np.loadtxt(os.path.join(self.directory, file_name), skiprows=1) spectra_spec_vals[file_name] = spectrum_f[:, 0] spectra[file_name] = spectrum_f[:,1] with open(os.path.join(self.directory, file_name)) as f: spectra_x_y_dim_name[file_name] = f.readline().strip('\n').split('\t') self.spectra = spectra self.spectra_spec_vals = spectra_spec_vals self.spectra_x_y_dim_name = spectra_x_y_dim_name def make_pos_vals_inds_dims(self): x_range = float(self.params_dictionary['XScanRange']) y_range = float(self.params_dictionary['YScanRange']) x_center = float(self.params_dictionary['xCenter']) y_center = float(self.params_dictionary['yCenter']) x_start = x_center-(x_range/2); x_end = x_center+(x_range/2) y_start = y_center-(y_range/2); y_end = y_center+(y_range/2) dx = x_range/self.x_len dy = y_range/self.y_len #assumes y scan direction:down; scan angle: 0 deg y_linspace = -np.arange(y_start, y_end, step=dy) x_linspace = np.arange(x_start, x_end, step=dx) pos_ind, pos_val = write_utils.build_ind_val_matrices(unit_values=(x_linspace, y_linspace), is_spectral=False) #usid.write_utils.Dimension uses ascii encoding, which can not encode # micron symbol, so we replace it, if present, with the letter u. pos_dims = [usid.write_utils.Dimension('X', self.params_dictionary['XPhysUnit'].replace('\xb5', 'u'), self.x_len), usid.write_utils.Dimension('Y', self.params_dictionary['YPhysUnit'].replace('\xb5', 'u'), self.y_len)] self.pos_ind, self.pos_val, self.pos_dims = pos_ind, pos_val, pos_dims def create_hdf5_file(self, append_path='', grp_name='Measurement'): if not append_path: h5_path = os.path.join(self.directory, self.basename.replace('.txt', '.h5')) if os.path.exists(h5_path): raise FileExistsError #if file already exists. (maybe there is a better way to check for this) else: self.h5_f = h5py.File(h5_path, mode='w') else: if not os.path.exists(append_path): raise Exception('File does not exist. Check pathname.') self.h5_f = h5py.File(append_path, mode='r+') self.h5_meas_grp = usid.hdf_utils.create_indexed_group(self.h5_f, grp_name) usid.hdf_utils.write_simple_attrs(self.h5_meas_grp, self.params_dictionary) return def write_spectrograms(self): if bool(self.spectrogram_desc): for spectrogram_f, descriptors in self.spectrogram_desc.items(): channel_i = usid.hdf_utils.create_indexed_group(self.h5_meas_grp, 'Channel_') spec_vals_i = self.spectrogram_spec_vals[spectrogram_f] spectrogram_spec_dims = usid.write_utils.Dimension('Wavelength', descriptors[8], spec_vals_i) h5_raw = usid.hdf_utils.write_main_dataset(channel_i, # parent HDF5 group (self.x_len * self.y_len, len(spec_vals_i)), # shape of Main dataset 'Raw_Data', # Name of main dataset 'Spectrogram', # Physical quantity contained in Main dataset descriptors[3], # Units for the physical quantity self.pos_dims, # Position dimensions spectrogram_spec_dims, # Spectroscopic dimensions dtype=np.float32, # data type / precision main_dset_attrs={'Caption': descriptors[0], 'Bytes_Per_Pixel': descriptors[1], 'Scale': descriptors[2], 'Physical_Units': descriptors[3], 'Offset': descriptors[4], 'Datatype': descriptors[5], 'Bytes_Per_Reading': descriptors[6], 'Wavelength_File': descriptors[7], 'Wavelength_Units': descriptors[8]}) h5_raw.h5_pos_vals[:, :] = self.pos_val h5_raw[:, :] = self.spectrograms[spectrogram_f].reshape(h5_raw.shape) def write_images(self): if bool(self.img_desc): for img_f, descriptors in self.img_desc.items(): #check for existing spectrogram or image and link position/spec inds/vals #at most two channels worth of need to be checked try: str_main = str(usid.hdf_utils.get_all_main(self.h5_f['Measurement_000/Channel_000'])) i_beg = str_main.find('located at: \n\t') + 14 i_end = str_main.find('\nData contains') - 1 data_loc = str_main[i_beg:i_end] channel_data = USIDataset(self.h5_f[data_loc]) h5_pos_inds = channel_data.h5_pos_inds h5_pos_vals = channel_data.h5_pos_vals pos_dims = None write_pos_vals = False if channel_data.spec_dim_sizes[0] == 1: h5_spec_inds = channel_data.h5_spec_inds h5_spec_vals = channel_data.h5_spec_vals spec_dims = None #if channel 000 is spectrogram, check next dataset elif channel_data.spec_dim_sizes[0] !=1: str_main = str(usid.hdf_utils.get_all_main(self.h5_f['Measurement_000/Channel_001'])) i_beg = str_main.find('located at: \n\t') + 14 i_end = str_main.find('\nData contains') - 1 data_loc = str_main[i_beg:i_end] channel_data = USIDataset(self.h5_f[data_loc]) #channel data is an image, & we link their spec inds/vals if channel_data.spec_dim_sizes[0] == 1: h5_spec_inds = channel_data.h5_spec_inds h5_spec_vals = channel_data.h5_spec_vals spec_dims = None #in case where channel does not exist, we make new spec/pos inds/vals except KeyError: #pos dims h5_pos_inds = None h5_pos_vals = None pos_dims = self.pos_dims write_pos_vals = True #spec dims h5_spec_inds = None h5_spec_vals = None spec_dims = usid.write_utils.Dimension('arb', 'a.u', 1) channel_i = usid.hdf_utils.create_indexed_group(self.h5_meas_grp,'Channel_') h5_raw = usid.hdf_utils.write_main_dataset(channel_i, #parent HDF5 group (self.x_len * self.y_len, 1), # shape of Main dataset 'Raw_' + descriptors[0].replace('-', '_'), # Name of main dataset descriptors[0], # Physical quantity contained in Main dataset descriptors[2], # Units for the physical quantity h5_pos_inds=h5_pos_inds, h5_pos_vals=h5_pos_vals, # Position dimensions pos_dims=pos_dims, # Spectroscopic dimensions h5_spec_inds=h5_spec_inds, h5_spec_vals=h5_spec_vals, spec_dims=spec_dims, dtype=np.float32, # data type / precision main_dset_attrs={'Caption': descriptors[0], 'Scale': descriptors[1], 'Physical_Units': descriptors[2], 'Offset': descriptors[3]}) h5_raw[:, :] = self.imgs[img_f].reshape(h5_raw.shape) if write_pos_vals: h5_raw.h5_pos_vals[:, :] = self.pos_val def write_spectra(self): if bool(self.spectrum_desc): for spec_f, descriptors in self.spectrum_desc.items(): #create new measurement group for ea spectrum self.h5_meas_grp = usid.hdf_utils.create_indexed_group(self.h5_f, 'Measurement_') x_name = self.spectra_x_y_dim_name[spec_f][0].split(' ')[0] x_unit = self.spectra_x_y_dim_name[spec_f][0].split(' ')[1] y_name = self.spectra_x_y_dim_name[spec_f][1].split(' ')[0] y_unit = self.spectra_x_y_dim_name[spec_f][1].split(' ')[1] spec_i_spec_dims = usid.write_utils.Dimension(x_name, x_unit, self.spectra_spec_vals[spec_f]) spec_i_pos_dims = [usid.write_utils.Dimension('X', self.params_dictionary['XPhysUnit'].replace('\xb5','u'), np.array([float(descriptors[1])])), usid.write_utils.Dimension('Y', self.params_dictionary['YPhysUnit'].replace('\xb5','u'), np.array([float(descriptors[1])]))] #write data to a channel in the measurement group spec_i_ch = usid.hdf_utils.create_indexed_group(self.h5_meas_grp, 'Spectrum_') h5_raw = usid.hdf_utils.write_main_dataset(spec_i_ch, # parent HDF5 group (1, len(self.spectra_spec_vals[spec_f])), # shape of Main dataset 'Raw_Spectrum', # Name of main dataset y_name, # Physical quantity contained in Main dataset y_unit, # Units for the physical quantity # Position dimensions pos_dims=spec_i_pos_dims, spec_dims=spec_i_spec_dims, # Spectroscopic dimensions dtype=np.float32, # data type / precision main_dset_attrs={'XLoc': descriptors[0], 'YLoc': descriptors[1]}) h5_raw[:, :] = self.spectra[spec_f].reshape(h5_raw.shape) def write_ps_spectra(self): if bool(self.pspectrum_desc): for spec_f, descriptors in self.pspectrum_desc.items(): # create new measurement group for ea spectrum self.h5_meas_grp = usid.hdf_utils.create_indexed_group(self.h5_f, 'Measurement_') x_name = self.spectra_x_y_dim_name[spec_f][0].split(' ')[0] x_unit = self.spectra_x_y_dim_name[spec_f][0].split(' ')[1] y_name = self.spectra_x_y_dim_name[spec_f][1].split(' ')[0] y_unit = self.spectra_x_y_dim_name[spec_f][1].split(' ')[1] spec_i_spec_dims = usid.write_utils.Dimension(x_name, x_unit, self.spectra_spec_vals[spec_f]) spec_i_pos_dims = [usid.write_utils.Dimension('X', self.params_dictionary['XPhysUnit'].replace( '\xb5', 'u'), np.array([0])), usid.write_utils.Dimension('Y', self.params_dictionary['YPhysUnit'].replace( '\xb5', 'u'), np.array([0]))] # write data to a channel in the measurement group spec_i_ch = usid.hdf_utils.create_indexed_group(self.h5_meas_grp, 'PowerSpectrum_') h5_raw = usid.hdf_utils.write_main_dataset(spec_i_ch, # parent HDF5 group (1, len(self.spectra_spec_vals[spec_f])), # shape of Main dataset 'Raw_Spectrum', # Name of main dataset y_name, # Physical quantity contained in Main dataset y_unit, # Units for the physical quantity # Position dimensions pos_dims=spec_i_pos_dims, spec_dims=spec_i_spec_dims, # Spectroscopic dimensions dtype=np.float32, # data type / precision main_dset_attrs={'XLoc': 0, 'YLoc': 0}) h5_raw[:, :] = self.spectra[spec_f].reshape(h5_raw.shape)
py
1a512ceecd4d63da59ec6e4910518820be7fea1c
from django.urls import path,re_path from measure import views from rest_framework.routers import DefaultRouter app_name = 'measure' router = DefaultRouter() urlpatterns = [ re_path(r'api/MeasureRecordCreate/', views.MeasureRecordCreate.as_view()), re_path(r'api/MeasureRecordList/(?P<userid>[a-zA-Z0-9]+)/(?P<incident_category>[0-9]+)$', views.MeasureRecordList.as_view()), re_path(r'api/MeasureRecordListByUser/(?P<userid>[a-zA-Z0-9]+)$', views.MeasureRecordListByUser.as_view()) ]
py
1a512de630c61faf09776d4a8bc853b03ddb05ef
from django.shortcuts import render from .models import student_info from .form import (student_info, studentform) def st_info(request): if request.method == 'POST': if request.POST.get('first_name') and request.POST.get('second_name') and request.POST.get('date_birth') and request.POST.get('admin_no') and request.POST.get(telephone): post = student_info() first_name = request.POST.get('fname', None) second_name = request.POST.get('sname', None) date_birth = request.POST.get('dateofbirth', None) admin_no = request.POST.get('admission', None) telephone = request.POST.get('tel', None) Title = 'STUDENT INFORMATION' form = student_info(request.POST) # form.save() # form = student(request.POST or None, request.FILES or None) student_context = { 'fname': first_name, 'sname': second_name, 'dateofbirth': date_birth, 'admission':admin_no, 'tel':telephone } return render(request, 'student.html', student_context) else: return render(request,'student.html')
py
1a512e2e118f0b0406fc39d422b32773bc7e468f
from colorama import Fore from time import sleep from config import token from codecs import open from requests import get import os logo = """ __ _ _ _ _ / _| | | | | (_) | __ _| |_ ___| |_ ___| |__ _| |_ \ \/ / _/ _ \ __/ __| '_ \| | __| > <| || __/ || (__| | | | | |_ /_/\_\_| \___|\__\___|_| |_|_|\__| v1.3 xstratumm """ intro = """ xfetchit uses public VKontakte API (https://vk.com/dev/methods). Only you are responsible for your actions. """ LINK = "https://api.vk.com/method/" def cls(): os.system("cls" if os.name == "nt" else "clear") def donate(): wallets = """ I will be very grateful for any crypto from you, thx! :3 BTC 1HzA8mZxksDGNuTMu5sKUottp9S8bv9NKA ETH 0xe9a30E9c2aa2D72c224e771c316aE9a7F4fdE36A LTC LKeWWBWSN7JQxBKDx32WQnJYPD77LdNSrx ZEC t1HvDeXHFtoTBYHbzNpVH5ocLgnannmdhhc Dash XrFaQBuBK7GKtPyWWEy8vsTguer4qRqNCX ETC 0x6d5644C78CBB78542c6219E3815ffE7EbEBd88bf QTUM QeQ9SaJEHJ9uR2Apa9ymonfpAudnamBUuY TRX TKojkeYBDY74ghqrFrj9dTWziw6y2Mh1CN """ cls() print(wallets) def fetch(offset, group_id): r = get(LINK + "groups.getMembers", params={"access_token": token, "v": 5.9, "group_id": group_id, "offset": offset, "fields": "contacts"}).json() return r def parse(user, parsed): if not "mobile_phone" in user or not user["mobile_phone"]: pass else: user = user["mobile_phone"] if user[0] in ["7", "8", "+"]: parsed.append(user) def groupParse(group_id): r = get(LINK + "groups.getMembers", params={"access_token": token, "v": 5.9, "group_id": group_id, "fields": "contacts"}).json() if not "response" in r: print("\nInvalid group ID or screen name (or group is private).") print("Please check it and try one more time.") else: cls() print("Number of members: " + str(r["response"]["count"])) print("\nStarting parsing in 5 seconds.") sleep(5) cls() print("Parsing started.") print("It can take some time according to amount of group members.\n") print("Wait...") users = r["response"]["items"] count = r["response"]["count"] parsed = [] for user in users: parse(user, parsed) if count >= 1000: left = count - len(users) if left <= 1000: r = get(LINK + "groups.getMembers", params={"access_token": token, "v": 5.9, "group_id": group_id, "offset": 1000, "fields": "contacts"}).json() for user in r["response"]["items"]: parse(user, parsed) else: offset = 0 while left >= 1000: offset += 1000 left -= 1000 r = fetch(offset, group_id) for user in r["response"]["items"]: parse(user, parsed) offset += left r = fetch(offset, group_id) for user in r["response"]["items"]: parse(user, parsed) cls() if len(parsed) == 0: print("Parsing ended, but " + Fore.RED + "nothing found" + Fore.RESET + ".\nTry another group.") else: print("Parsing ended. Found: " + str(len(parsed)) + " numbers") print("\nSaving results to \"found.txt\"") if os.path.isfile("found.txt"): f = open("found.txt", 'a', "utf-8") else: f = open("found.txt", "w", "utf-8") for user in parsed: f.write(user + "\r\n") f.close() def main(): cls() print(Fore.RED + logo + Fore.RESET + intro + "\n") print("Choose:\n\n1) Parse phone numbers\n" + "2) Exit\n" + Fore.YELLOW + "3) Donate\n" + Fore.RESET) choice = input("> ") if choice == "1": cls() print("Choose:\n\n" + Fore.BLUE + "1) Group" + Fore.RESET + "\n*parses" + " all users' phone numbers from specified group\n\n" + "2) Exit\n") choice = input("> ") if choice == "1": cls() group_id = input(Fore.BLUE + "Enter group ID or its screen name\n" + Fore.RESET + "> ") groupParse(group_id) elif choice == "2": exit(0) else: print("\nInvalid choice.\nPlease read one more time.") elif choice == "2": exit(0) elif choice == "3": donate() exit(0) else: print("\nInvalid choice.\nPlease read one more time.") if __name__ == "__main__": if len(token) < 85: print("\nInvalid token.\n\nPlease configure it in\n\"config.py\"") else: main()
py
1a512e5c8b3b064743410ebb0efff9d3a37b26ee
"""Output primitives for the binding generator classes. This should really be a class, but then everybody would be passing the output object to each other. I chose for the simpler approach of a module with a global variable. Use SetOutputFile() or SetOutputFileName() to change the output file. """ _NeedClose = 0 def SetOutputFile(file = None, needclose = 0): """Call this with an open file object to make it the output file. Call it without arguments to close the current file (if necessary) and reset it to sys.stdout. If the second argument is true, the new file will be explicitly closed on a subsequence call. """ global _File, _NeedClose if _NeedClose: tmp = _File _NeedClose = 0 _File = None tmp.close() if file is None: import sys file = sys.stdout _File = file _NeedClose = file and needclose def SetOutputFileName(filename = None): """Call this with a filename to make it the output file. Call it without arguments to close the current file (if necessary) and reset it to sys.stdout. """ SetOutputFile() if filename: SetOutputFile(open(filename, 'w'), 1) SetOutputFile() # Initialize _File _Level = 0 # Indentation level def GetLevel(): """"Return the current indentation level.""" return _Level def SetLevel(level): """Set the current indentation level. This does no type or range checking -- use at own risk. """ global _Level _Level = level def Output(format = "", *args): VaOutput(format, args) def VaOutput(format, args): """Call this with a format string and and argument tuple for the format. A newline is always added. Each line in the output is indented to the proper indentation level -- even if the result of the format expansion contains embedded newlines. Exception: lines beginning with '#' are not indented -- these are assumed to be C preprprocessor lines. """ text = format % args if _Level > 0: indent = '\t' * _Level import string lines = string.splitfields(text, '\n') for i in range(len(lines)): if lines[i] and lines[i][0] != '#': lines[i] = indent + lines[i] text = string.joinfields(lines, '\n') _File.write(text + '\n') def IndentLevel(by = 1): """Increment the indentation level by one. When called with an argument, adds it to the indentation level. """ global _Level if _Level+by < 0: raise Error, "indentation underflow (internal error)" _Level = _Level + by def DedentLevel(by = 1): """Decrement the indentation level by one. When called with an argument, subtracts it from the indentation level. """ IndentLevel(-by) def OutIndent(format = "", *args): """Combine Output() followed by IndentLevel(). If no text is given, acts like lone IndentLevel(). """ if format: VaOutput(format, args) IndentLevel() def OutDedent(format = "", *args): """Combine Output() followed by DedentLevel(). If no text is given, acts like loneDedentLevel(). """ if format: VaOutput(format, args) DedentLevel() def OutLbrace(format = "", *args): """Like Output, but add a '{' and increase the indentation level. If no text is given a lone '{' is output. """ if format: format = format + " {" else: format = "{" VaOutput(format, args) IndentLevel() def OutRbrace(): """Decrease the indentation level and output a '}' on a line by itself.""" DedentLevel() Output("}") def OutHeader(text, dash): """Output a header comment using a given dash character.""" n = 64 - len(text) Output() Output("/* %s %s %s */", dash * (n/2), text, dash * (n - n/2)) Output() def OutHeader1(text): """Output a level 1 header comment (uses '=' dashes).""" OutHeader(text, "=") def OutHeader2(text): """Output a level 2 header comment (uses '-' dashes).""" OutHeader(text, "-") def Out(text): """Output multiline text that's internally indented. Pass this a multiline character string. The whitespace before the first nonblank line of the string will be subtracted from all lines. The lines are then output using Output(), but without interpretation of formatting (if you need formatting you can do it before the call). Recommended use: Out(''' int main(argc, argv) int argc; char *argv; { printf("Hello, world\\n"); exit(0); } ''') Caveat: the indentation must be consistent -- if you use three tabs in the first line, (up to) three tabs are removed from following lines, but a line beginning with 24 spaces is not trimmed at all. Don't use this as a feature. """ # (Don't you love using triple quotes *inside* triple quotes? :-) import string lines = string.splitfields(text, '\n') indent = "" for line in lines: if string.strip(line): for c in line: if c not in string.whitespace: break indent = indent + c break n = len(indent) for line in lines: if line[:n] == indent: line = line[n:] else: for c in indent: if line[:1] <> c: break line = line[1:] VaOutput("%s", line) def _test(): """Test program. Run when the module is run as a script.""" OutHeader1("test bgenOutput") Out(""" #include <Python.h> #include <stdio.h> main(argc, argv) int argc; char **argv; { int i; """) IndentLevel() Output("""\ /* Here are a few comment lines. Just to test indenting multiple lines. End of the comment lines. */ """) Output("for (i = 0; i < argc; i++)") OutLbrace() Output('printf("argv[%%d] = %%s\\n", i, argv[i]);') OutRbrace() Output("exit(0)") OutRbrace() OutHeader2("end test") if __name__ == '__main__': _test()
py
1a512ec1948106a842cad67d1cffbb02aafa0db8
from __future__ import (absolute_import, division, print_function, unicode_literals) from ..doctools import document from .stat import stat @document class stat_identity(stat): """ Identity (do nothing) statistic {usage} Parameters ---------- {common_parameters} """ DEFAULT_PARAMS = {'geom': 'point', 'position': 'identity', 'na_rm': False} @classmethod def compute_panel(cls, data, scales, **params): return data
py
1a5130269261a6bccca29952d887826f117ebecf
import import_target, import_target as aliased from import_target import func, other_func from import_target import func as aliased_func, other_func as aliased_other_func from import_star import * assert import_target.X == import_target.func() assert import_target.X == func() assert import_target.Y == other_func() assert import_target.X == aliased.X assert import_target.Y == aliased.Y assert import_target.X == aliased_func() assert import_target.Y == aliased_other_func() assert STAR_IMPORT == '123' # TODO: Once we can determine current directory, use that to construct this # path: #import sys #sys.path.append("snippets/import_directory") #import nested_target #try: # X #except NameError: # pass #else: # raise AssertionError('X should not be imported')
py
1a5130edac396d3698385e8aacff0cd65b1fa5af
#!/usr/bin/env python # -*- encoding: utf-8 -*- # Copyright 2011-2018, Nigel Small # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from collections import deque from datetime import datetime from time import sleep from warnings import warn from py2neo.cypher import cypher_escape from py2neo.data import Table, Record from py2neo.internal.addressing import get_connection_data from py2neo.internal.caching import ThreadLocalEntityCache from py2neo.internal.compat import string_types, xstr from py2neo.internal.util import version_tuple, title_case, snake_case from py2neo.matching import NodeMatcher, RelationshipMatcher update_stats_keys = [ "constraints_added", "constraints_removed", "indexes_added", "indexes_removed", "labels_added", "labels_removed", "nodes_created", "nodes_deleted", "properties_set", "relationships_deleted", "relationships_created", ] class Database(object): """ Accessor for an entire Neo4j graph database installation over Bolt or HTTP. Within the py2neo object hierarchy, a :class:`.Database` contains a :class:`.Graph` in which most activity occurs. Currently, Neo4j only supports one `Graph` per `Database`. An explicit URI can be passed to the constructor:: >>> from py2neo import Database >>> db = Database("bolt://camelot.example.com:7687") Alternatively, the default value of ``bolt://localhost:7687`` is used:: >>> default_db = Database() >>> default_db <Database uri='bolt://localhost:7687'> """ _instances = {} _driver = None _graphs = None @classmethod def forget_all(cls): """ Forget all cached :class:`.Database` details. """ for _, db in cls._instances.items(): db._driver.close() db._driver = None cls._instances.clear() def __new__(cls, uri=None, **settings): connection_data = get_connection_data(uri, **settings) key = connection_data["hash"] try: inst = cls._instances[key] except KeyError: inst = super(Database, cls).__new__(cls) inst._connection_data = connection_data from py2neo.internal.http import HTTPDriver, HTTPSDriver from neo4j.v1 import Driver inst._driver = Driver(connection_data["uri"], auth=connection_data["auth"], encrypted=connection_data["secure"], user_agent=connection_data["user_agent"]) inst._graphs = {} cls._instances[key] = inst return inst def __repr__(self): class_name = self.__class__.__name__ data = self._connection_data return "<%s uri=%r secure=%r user_agent=%r>" % ( class_name, data["uri"], data["secure"], data["user_agent"]) def __eq__(self, other): try: return self.uri == other.uri except AttributeError: return False def __ne__(self, other): return not self.__eq__(other) def __hash__(self): return hash(self._connection_data["hash"]) def __contains__(self, database): return database in self._graphs def __getitem__(self, database): if database == "data" and database not in self._graphs: self._graphs[database] = Graph(**self._connection_data) return self._graphs[database] def __setitem__(self, database, graph): self._graphs[database] = graph def __iter__(self): yield "data" @property def driver(self): return self._driver @property def uri(self): """ The URI to which this `Database` is connected. """ return self._connection_data["uri"] @property def default_graph(self): """ The default graph exposed by this database. :rtype: :class:`.Graph` """ return self["data"] def keys(self): return list(self) def query_jmx(self, namespace, instance=None, name=None, type=None): """ Query the JMX service attached to this database. """ d = {} for nom, _, attributes in self.default_graph.run("CALL dbms.queryJmx('')"): ns, _, terms = nom.partition(":") if ns != namespace: continue terms = dict(tuple(term.partition("=")[0::2]) for term in terms.split(",")) if instance is not None and instance != terms["instance"]: continue if name is not None and name != terms["name"]: continue if type is not None and type != terms["type"]: continue for attr_name, attr_data in attributes.items(): attr_value = attr_data.get("value") if attr_value == "true": d[attr_name] = True elif attr_value == "false": d[attr_name] = False elif isinstance(attr_value, string_types) and "." in attr_value: try: d[attr_name] = float(attr_value) except (TypeError, ValueError): d[attr_name] = attr_value else: try: d[attr_name] = int(attr_value) except (TypeError, ValueError): d[attr_name] = attr_value return d @property def name(self): """ Return the name of the active Neo4j database. """ info = self.query_jmx("org.neo4j", name="Kernel") return info.get("DatabaseName") @property def kernel_start_time(self): """ Return the time from which this Neo4j instance was in operational mode. """ info = self.query_jmx("org.neo4j", name="Kernel") return datetime.fromtimestamp(info["KernelStartTime"] / 1000.0) @property def kernel_version(self): """ Return the version of Neo4j. """ info = self.query_jmx("org.neo4j", name="Kernel") version_string = info["KernelVersion"].partition("version:")[-1].partition(",")[0].strip() return version_tuple(version_string) @property def product(self): """ Return the product name. """ info = self.query_jmx("org.neo4j", name="Kernel") return info["KernelVersion"] @property def store_creation_time(self): """ Return the time when this Neo4j graph store was created. """ info = self.query_jmx("org.neo4j", name="Kernel") return datetime.fromtimestamp(info["StoreCreationDate"] / 1000.0) @property def store_id(self): """ Return an identifier that, together with store creation time, uniquely identifies this Neo4j graph store. """ info = self.query_jmx("org.neo4j", name="Kernel") return info["StoreId"] @property def primitive_counts(self): """ Return a dictionary of estimates of the numbers of different kinds of Neo4j primitives. """ return self.query_jmx("org.neo4j", name="Primitive count") @property def store_file_sizes(self): """ Return a dictionary of file sizes for each file in the Neo4j graph store. """ return self.query_jmx("org.neo4j", name="Store file sizes") @property def config(self): """ Return a dictionary of the configuration parameters used to configure Neo4j. """ return self.query_jmx("org.neo4j", name="Configuration") class Graph(object): """ The `Graph` class represents the graph data storage space within a Neo4j graph database. Connection details are provided using URIs and/or individual settings. Supported URI schemes are: - ``http`` - ``https`` - ``bolt`` - ``bolt+routing`` The full set of supported `settings` are: ============== ============================================= ============== ============= Keyword Description Type Default ============== ============================================= ============== ============= ``auth`` A 2-tuple of (user, password) tuple ``('neo4j', 'password')`` ``host`` Database server host name str ``'localhost'`` ``password`` Password to use for authentication str ``'password'`` ``port`` Database server port int ``7687`` ``scheme`` Use a specific URI scheme str ``'bolt'`` ``secure`` Use a secure connection (TLS) bool ``False`` ``user`` User to authenticate as str ``'neo4j'`` ``user_agent`` User agent to send for all connections str `(depends on URI scheme)` ============== ============================================= ============== ============= Each setting can be provided as a keyword argument or as part of an ``http:``, ``https:``, ``bolt:`` or ``bolt+routing:`` URI. Therefore, the examples below are equivalent:: >>> from py2neo import Graph >>> graph_1 = Graph() >>> graph_2 = Graph(host="localhost") >>> graph_3 = Graph("bolt://localhost:7687") Once obtained, the `Graph` instance provides direct or indirect access to most of the functionality available within py2neo. """ #: The :class:`.Database` to which this :class:`.Graph` belongs. database = None #: The :class:`.Schema` resource for this :class:`.Graph`. schema = None node_cache = ThreadLocalEntityCache() relationship_cache = ThreadLocalEntityCache() def __new__(cls, uri=None, **settings): name = settings.pop("name", "data") database = Database(uri, **settings) if name in database: inst = database[name] else: inst = object.__new__(cls) inst.database = database inst.schema = Schema(inst) inst.__name__ = name database[name] = inst return inst def __repr__(self): return "<Graph database=%r name=%r>" % (self.database, self.__name__) def __eq__(self, other): try: return self.database == other.database and self.__name__ == other.__name__ except (AttributeError, TypeError): return False def __ne__(self, other): return not self.__eq__(other) def __len__(self): return len(self.relationships) def __bool__(self): return True __nonzero__ = __bool__ def begin(self, autocommit=False): """ Begin a new :class:`.Transaction`. :param autocommit: if :py:const:`True`, the transaction will automatically commit after the first operation """ return Transaction(self, autocommit) def create(self, subgraph): """ Run a :meth:`.Transaction.create` operation within a :class:`.Transaction`. :param subgraph: a :class:`.Node`, :class:`.Relationship` or other :class:`.Subgraph` """ with self.begin() as tx: tx.create(subgraph) def delete(self, subgraph): """ Run a :meth:`.Transaction.delete` operation within an `autocommit` :class:`.Transaction`. To delete only the relationships, use the :meth:`.separate` method. :param subgraph: a :class:`.Node`, :class:`.Relationship` or other :class:`.Subgraph` object """ self.begin(autocommit=True).delete(subgraph) def delete_all(self): """ Delete all nodes and relationships from this :class:`.Graph`. .. warning:: This method will permanently remove **all** nodes and relationships from the graph and cannot be undone. """ self.run("MATCH (a) DETACH DELETE a") self.node_cache.clear() self.relationship_cache.clear() def evaluate(self, cypher, parameters=None, **kwparameters): """ Run a :meth:`.Transaction.evaluate` operation within an `autocommit` :class:`.Transaction`. :param cypher: Cypher statement :param parameters: dictionary of parameters :return: first value from the first record returned or :py:const:`None`. """ return self.begin(autocommit=True).evaluate(cypher, parameters, **kwparameters) def exists(self, subgraph): """ Run a :meth:`.Transaction.exists` operation within an `autocommit` :class:`.Transaction`. :param subgraph: a :class:`.Node`, :class:`.Relationship` or other :class:`.Subgraph` object :return: """ return self.begin(autocommit=True).exists(subgraph) def match(self, nodes=None, r_type=None, limit=None): """ Match and return all relationships with specific criteria. For example, to find all of Alice's friends:: for rel in graph.match((alice, ), r_type="FRIEND"): print(rel.end_node["name"]) :param nodes: Sequence or Set of start and end nodes (:const:`None` means any node); a Set implies a match in any direction :param r_type: type of relationships to match (:const:`None` means any type) :param limit: maximum number of relationships to match (:const:`None` means unlimited) """ return RelationshipMatcher(self).match(nodes=nodes, r_type=r_type).limit(limit) def match_one(self, nodes=None, r_type=None): """ Match and return one relationship with specific criteria. :param nodes: Sequence or Set of start and end nodes (:const:`None` means any node); a Set implies a match in any direction :param r_type: type of relationships to match (:const:`None` means any type) """ rels = list(self.match(nodes=nodes, r_type=r_type, limit=1)) if rels: return rels[0] else: return None def merge(self, subgraph, label=None, *property_keys): """ Run a :meth:`.Transaction.merge` operation within an `autocommit` :class:`.Transaction`. :param subgraph: a :class:`.Node`, :class:`.Relationship` or other :class:`.Subgraph` object :param label: label on which to match any existing nodes :param property_keys: property keys on which to match any existing nodes """ with self.begin() as tx: tx.merge(subgraph, label, *property_keys) @property def name(self): return self.__name__ @property def nodes(self): """ Obtain a :class:`.NodeMatcher` for this graph. This can be used to find nodes that match given criteria: >>> graph = Graph() >>> graph.nodes[1234] (_1234:Person {name: 'Alice'}) >>> graph.nodes.get(1234) (_1234:Person {name: 'Alice'}) >>> graph.nodes.match("Person", name="Alice").first() (_1234:Person {name: 'Alice'}) Nodes can also be efficiently counted using this attribute: >>> len(graph.nodes) 55691 >>> len(graph.nodes.match("Person", age=33)) 12 """ return NodeMatcher(self) def pull(self, subgraph): """ Pull data to one or more entities from their remote counterparts. :param subgraph: the collection of nodes and relationships to pull """ with self.begin() as tx: tx.pull(subgraph) def push(self, subgraph): """ Push data from one or more entities to their remote counterparts. :param subgraph: the collection of nodes and relationships to push """ with self.begin() as tx: tx.push(subgraph) @property def relationships(self): """ Obtain a :class:`.RelationshipMatcher` for this graph. This can be used to find relationships that match given criteria as well as efficiently count relationships. """ return RelationshipMatcher(self) def run(self, cypher, parameters=None, **kwparameters): """ Run a :meth:`.Transaction.run` operation within an `autocommit` :class:`.Transaction`. :param cypher: Cypher statement :param parameters: dictionary of parameters :param kwparameters: extra keyword parameters :return: """ return self.begin(autocommit=True).run(cypher, parameters, **kwparameters) def separate(self, subgraph): """ Run a :meth:`.Transaction.separate` operation within an `autocommit` :class:`.Transaction`. :param subgraph: a :class:`.Node`, :class:`.Relationship` or other :class:`.Subgraph` """ self.begin(autocommit=True).separate(subgraph) class Schema(object): """ The schema resource attached to a `Graph` instance. """ def __init__(self, graph): self.graph = graph @property def node_labels(self): """ The set of node labels currently defined within the graph. """ return frozenset(record[0] for record in self.graph.run("CALL db.labels")) @property def relationship_types(self): """ The set of relationship types currently defined within the graph. """ return frozenset(record[0] for record in self.graph.run("CALL db.relationshipTypes")) def create_index(self, label, *property_keys): """ Create a schema index for a label and property key combination. """ self.graph.run("CREATE INDEX ON :%s(%s)" % (cypher_escape(label), ",".join(map(cypher_escape, property_keys)))).close() while property_keys not in self.get_indexes(label): sleep(0.1) def create_uniqueness_constraint(self, label, *property_keys): """ Create a uniqueness constraint for a label. """ self.graph.run("CREATE CONSTRAINT ON (a:%s) " "ASSERT a.%s IS UNIQUE" % (cypher_escape(label), ",".join(map(cypher_escape, property_keys)))).close() while property_keys not in self.get_uniqueness_constraints(label): sleep(0.1) def drop_index(self, label, *property_keys): """ Remove label index for a given property key. """ self.graph.run("DROP INDEX ON :%s(%s)" % (cypher_escape(label), ",".join(map(cypher_escape, property_keys)))).close() def drop_uniqueness_constraint(self, label, *property_keys): """ Remove the uniqueness constraint for a given property key. """ self.graph.run("DROP CONSTRAINT ON (a:%s) " "ASSERT a.%s IS UNIQUE" % (cypher_escape(label), ",".join(map(cypher_escape, property_keys)))).close() def _get_indexes(self, label, t=None): indexes = [] for record in self.graph.run("CALL db.indexes"): description = record['description'] if 'description' in record.keys() else None lbl = record['label'] if 'label' in record.keys() else None properties = record['properties'] if 'properties' in record.keys() else [] state = record['state'] if 'state' in record.keys() else None typ = record['type'] if 'type' in record.keys() else None provider = record['provider'] if 'provider' in record.keys() else None # minimum requirements are values for description, state, and type if description is None or state is None or typ is None: raise RuntimeError("Unexpected response from procedure " "db.indexes (%d fields)" % len(record)) if state not in (u"ONLINE", u"online"): continue if t and typ != t: continue if not lbl or not properties: from py2neo.cypher.lexer import CypherLexer from pygments.token import Token tokens = list(CypherLexer().get_tokens(description)) for token_type, token_value in tokens: if token_type is Token.Name.Label: lbl = token_value.strip("`") elif token_type is Token.Name.Variable: properties.append(token_value.strip("`")) if not lbl or not properties: continue if lbl == label: indexes.append(tuple(properties)) return indexes def get_indexes(self, label): """ Fetch a list of indexed property keys for a label. """ return self._get_indexes(label) def get_uniqueness_constraints(self, label): """ Fetch a list of unique constraints for a label. """ return self._get_indexes(label, "node_unique_property") class Result(object): """ Wraps a BoltStatementResult """ def __init__(self, graph, entities, result): from neo4j.v1 import BoltStatementResult from py2neo.internal.http import HTTPStatementResult from py2neo.internal.packstream import PackStreamHydrator self.result = result self.result.error_class = GraphError.hydrate # TODO: un-yuk this if isinstance(result, HTTPStatementResult): self.result._hydrant.entities = entities self.result_iterator = iter(self.result) elif isinstance(result, BoltStatementResult): self.result._hydrant = PackStreamHydrator(graph, result.keys(), entities) self.result_iterator = iter(map(Record, self.result)) else: raise RuntimeError("Unexpected statement result class %r" % result.__class__.__name__) def keys(self): """ Return the keys for the whole data set. """ return self.result.keys() def summary(self): """ Return the summary. """ return self.result.summary() def plan(self): """ Return the query plan, if available. """ metadata = self.result.summary().metadata plan = {} if "plan" in metadata: plan.update(metadata["plan"]) if "profile" in metadata: plan.update(metadata["profile"]) if "http_plan" in metadata: plan.update(metadata["http_plan"]["root"]) def collapse_args(data): if "args" in data: for key in data["args"]: data[key] = data["args"][key] del data["args"] if "children" in data: for child in data["children"]: collapse_args(child) def snake_keys(data): if isinstance(data, list): for item in data: snake_keys(item) return if not isinstance(data, dict): return for key, value in list(data.items()): new_key = snake_case(key) if new_key != key: data[new_key] = value del data[key] if isinstance(value, (list, dict)): snake_keys(value) collapse_args(plan) snake_keys(plan) return plan def stats(self): """ Return the query statistics. """ return vars(self.result.summary().counters) def fetch(self): """ Fetch and return the next item. """ try: return next(self.result_iterator) except StopIteration: return None class GraphError(Exception): """ """ __cause__ = None http_status_code = None code = None message = None @classmethod def hydrate(cls, data): code = data["code"] message = data["message"] _, classification, category, title = code.split(".") if classification == "ClientError": try: error_cls = ClientError.get_mapped_class(code) except KeyError: error_cls = ClientError message = "%s: %s" % (title_case(title), message) elif classification == "DatabaseError": error_cls = DatabaseError elif classification == "TransientError": error_cls = TransientError else: error_cls = cls inst = error_cls(message) inst.code = code inst.message = message return inst def __new__(cls, *args, **kwargs): try: exception = kwargs["exception"] error_cls = type(xstr(exception), (cls,), {}) except KeyError: error_cls = cls return Exception.__new__(error_cls, *args) def __init__(self, *args, **kwargs): Exception.__init__(self, *args) for key, value in kwargs.items(): setattr(self, key.lower(), value) class ClientError(GraphError): """ The Client sent a bad request - changing the request might yield a successful outcome. """ @classmethod def get_mapped_class(cls, status): from neo4j.exceptions import ConstraintError, CypherSyntaxError, CypherTypeError, Forbidden, AuthError return { # ConstraintError "Neo.ClientError.Schema.ConstraintValidationFailed": ConstraintError, "Neo.ClientError.Schema.ConstraintViolation": ConstraintError, "Neo.ClientError.Statement.ConstraintVerificationFailed": ConstraintError, "Neo.ClientError.Statement.ConstraintViolation": ConstraintError, # CypherSyntaxError "Neo.ClientError.Statement.InvalidSyntax": CypherSyntaxError, "Neo.ClientError.Statement.SyntaxError": CypherSyntaxError, # CypherTypeError "Neo.ClientError.Procedure.TypeError": CypherTypeError, "Neo.ClientError.Statement.InvalidType": CypherTypeError, "Neo.ClientError.Statement.TypeError": CypherTypeError, # Forbidden "Neo.ClientError.General.ForbiddenOnReadOnlyDatabase": Forbidden, "Neo.ClientError.General.ReadOnly": Forbidden, "Neo.ClientError.Schema.ForbiddenOnConstraintIndex": Forbidden, "Neo.ClientError.Schema.IndexBelongsToConstrain": Forbidden, "Neo.ClientError.Security.Forbidden": Forbidden, "Neo.ClientError.Transaction.ForbiddenDueToTransactionType": Forbidden, # Unauthorized "Neo.ClientError.Security.AuthorizationFailed": AuthError, "Neo.ClientError.Security.Unauthorized": AuthError, }[status] class DatabaseError(GraphError): """ The database failed to service the request. """ class TransientError(GraphError): """ The database cannot service the request right now, retrying later might yield a successful outcome. """ class TransactionFinished(GraphError): """ Raised when actions are attempted against a :class:`.Transaction` that is no longer available for use. """ class Transaction(object): """ A transaction is a logical container for multiple Cypher statements. """ session = None _finished = False def __init__(self, graph, autocommit=False): self.graph = graph self.autocommit = autocommit self.entities = deque() self.driver = driver = self.graph.database.driver self.session = driver.session() self.results = [] if autocommit: self.transaction = None else: self.transaction = self.session.begin_transaction() def __del__(self): if self.session: self.session.close() def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): if exc_type is None: self.commit() else: self.rollback() def _assert_unfinished(self): if self._finished: raise TransactionFinished(self) def finished(self): """ Indicates whether or not this transaction has been completed or is still open. """ return self._finished def run(self, cypher, parameters=None, **kwparameters): """ Send a Cypher statement to the server for execution and return a :py:class:`.Cursor` for navigating its result. :param cypher: Cypher statement :param parameters: dictionary of parameters :returns: :py:class:`.Cursor` object """ from neo4j.v1 import CypherError self._assert_unfinished() try: entities = self.entities.popleft() except IndexError: entities = {} try: if self.transaction: result = self.transaction.run(cypher, parameters, **kwparameters) else: result = self.session.run(cypher, parameters, **kwparameters) except CypherError as error: raise GraphError.hydrate({"code": error.code, "message": error.message}) else: r = Result(self.graph, entities, result) self.results.append(r) return Cursor(r) finally: if not self.transaction: self.finish() def process(self): """ Send all pending statements to the server for processing. """ self._assert_unfinished() self.session.sync() def finish(self): self.process() if self.transaction: self.transaction.close() self._assert_unfinished() self._finished = True self.session.close() self.session = None def commit(self): """ Commit the transaction. """ if self.transaction: self.transaction.success = True self.finish() def rollback(self): """ Roll back the current transaction, undoing all actions previously taken. """ self._assert_unfinished() if self.transaction: self.transaction.success = False self.finish() def evaluate(self, cypher, parameters=None, **kwparameters): """ Execute a single Cypher statement and return the value from the first column of the first record. :param cypher: Cypher statement :param parameters: dictionary of parameters :returns: single return value or :const:`None` """ return self.run(cypher, parameters, **kwparameters).evaluate(0) def create(self, subgraph): """ Create remote nodes and relationships that correspond to those in a local subgraph. Any entities in *subgraph* that are already bound to remote entities will remain unchanged, those which are not will become bound to their newly-created counterparts. For example:: >>> from py2neo import Graph, Node, Relationship >>> g = Graph() >>> tx = g.begin() >>> a = Node("Person", name="Alice") >>> tx.create(a) >>> b = Node("Person", name="Bob") >>> ab = Relationship(a, "KNOWS", b) >>> tx.create(ab) >>> tx.commit() >>> g.exists(ab) True :param subgraph: a :class:`.Node`, :class:`.Relationship` or other creatable object """ try: create = subgraph.__db_create__ except AttributeError: raise TypeError("No method defined to create object %r" % subgraph) else: create(self) def delete(self, subgraph): """ Delete the remote nodes and relationships that correspond to those in a local subgraph. To delete only the relationships, use the :meth:`.separate` method. :param subgraph: a :class:`.Node`, :class:`.Relationship` or other :class:`.Subgraph` """ try: delete = subgraph.__db_delete__ except AttributeError: raise TypeError("No method defined to delete object %r" % subgraph) else: delete(self) def exists(self, subgraph): """ Determine whether one or more graph entities all exist within the database. Note that if any nodes or relationships in *subgraph* are not bound to remote counterparts, this method will return ``False``. :param subgraph: a :class:`.Node`, :class:`.Relationship` or other :class:`.Subgraph` :returns: ``True`` if all entities exist remotely, ``False`` otherwise """ try: exists = subgraph.__db_exists__ except AttributeError: raise TypeError("No method defined to check existence of object %r" % subgraph) else: return exists(self) def merge(self, subgraph, primary_label=None, primary_key=None): """ Merge nodes and relationships from a local subgraph into the database. Each node and relationship is merged independently, with nodes merged first and relationships merged second. For each node, the merge is carried out by comparing that node with a potential remote equivalent on the basis of a label and property value. If no remote match is found, a new node is created. The label and property to use for comparison are determined by `primary_label` and `primary_key` but may be overridden for individual nodes by the presence of `__primarylabel__` and `__primarykey__` attributes on the node itself. Note that multiple property keys may be specified by using a tuple. For each relationship, the merge is carried out by comparing that relationship with a potential remote equivalent on the basis of matching start and end nodes plus relationship type. If no remote match is found, a new relationship is created. :param subgraph: a :class:`.Node`, :class:`.Relationship` or other :class:`.Subgraph` object :param primary_label: label on which to match any existing nodes :param primary_key: property key(s) on which to match any existing nodes """ try: merge = subgraph.__db_merge__ except AttributeError: raise TypeError("No method defined to merge object %r" % subgraph) else: merge(self, primary_label, primary_key) def pull(self, subgraph): """ Update local entities from their remote counterparts. For any nodes and relationships that exist in both the local :class:`.Subgraph` and the remote :class:`.Graph`, pull properties and node labels into the local copies. This operation does not create or delete any entities. :param subgraph: a :class:`.Node`, :class:`.Relationship` or other :class:`.Subgraph` """ try: pull = subgraph.__db_pull__ except AttributeError: raise TypeError("No method defined to pull object %r" % subgraph) else: return pull(self) def push(self, subgraph): """ Update remote entities from their local counterparts. For any nodes and relationships that exist in both the local :class:`.Subgraph` and the remote :class:`.Graph`, push properties and node labels into the remote copies. This operation does not create or delete any entities. :param subgraph: a :class:`.Node`, :class:`.Relationship` or other :class:`.Subgraph` """ try: push = subgraph.__db_push__ except AttributeError: raise TypeError("No method defined to push object %r" % subgraph) else: return push(self) def separate(self, subgraph): """ Delete the remote relationships that correspond to those in a local subgraph. This leaves any nodes untouched. :param subgraph: a :class:`.Node`, :class:`.Relationship` or other :class:`.Subgraph` """ try: separate = subgraph.__db_separate__ except AttributeError: raise TypeError("No method defined to separate object %r" % subgraph) else: separate(self) class Cursor(object): """ A `Cursor` is a navigator for a stream of records. A cursor can be thought of as a window onto an underlying data stream. All cursors in py2neo are "forward-only", meaning that navigation starts before the first record and may proceed only in a forward direction. It is not generally necessary for application code to instantiate a cursor directly as one will be returned by any Cypher execution method. However, cursor creation requires only a :class:`.DataSource` object which contains the logic for how to access the source data that the cursor navigates. Many simple cursor use cases require only the :meth:`.forward` method and the :attr:`.current` attribute. To navigate through all available records, a `while` loop can be used:: while cursor.forward(): print(cursor.current["name"]) If only the first record is of interest, a similar `if` structure will do the job:: if cursor.forward(): print(cursor.current["name"]) To combine `forward` and `current` into a single step, use the built-in py:func:`next` function:: print(next(cursor)["name"]) Cursors are also iterable, so can be used in a loop:: for record in cursor: print(record["name"]) For queries that are expected to return only a single value within a single record, use the :meth:`.evaluate` method. This will return the first value from the next record or :py:const:`None` if neither the field nor the record are present:: print(cursor.evaluate()) """ def __init__(self, result): self._result = result self._current = None def __next__(self): if self.forward(): return self._current else: raise StopIteration() # Exists only for Python 2 iteration compatibility next = __next__ def __iter__(self): while self.forward(): yield self._current def __getitem__(self, key): return self._current[key] @property def current(self): """ Returns the current record or :py:const:`None` if no record has yet been selected. """ return self._current def close(self): """ Close this cursor and free up all associated resources. """ self._result = None self._current = None def keys(self): """ Return the field names for the records in the stream. """ return self._result.keys() def summary(self): """ Return the result summary. """ return self._result.summary() def plan(self): """ Return the plan returned with this result, if any. """ return self._result.plan() def stats(self): """ Return the query statistics. """ s = dict.fromkeys(update_stats_keys, 0) s.update(self._result.stats()) s["contains_updates"] = bool(sum(s.get(k, 0) for k in update_stats_keys)) return s def forward(self, amount=1): """ Attempt to move the cursor one position forward (or by another amount if explicitly specified). The cursor will move position by up to, but never more than, the amount specified. If not enough scope for movement remains, only that remainder will be consumed. The total amount moved is returned. :param amount: the amount to move the cursor :returns: the amount that the cursor was able to move """ if amount == 0: return 0 assert amount > 0 amount = int(amount) moved = 0 fetch = self._result.fetch while moved != amount: new_current = fetch() if new_current is None: break else: self._current = new_current moved += 1 return moved def evaluate(self, field=0): """ Return the value of the first field from the next record (or the value of another field if explicitly specified). This method attempts to move the cursor one step forward and, if successful, selects and returns an individual value from the new current record. By default, this value will be taken from the first value in that record but this can be overridden with the `field` argument, which can represent either a positional index or a textual key. If the cursor cannot be moved forward or if the record contains no values, :py:const:`None` will be returned instead. This method is particularly useful when it is known that a Cypher query returns only a single value. :param field: field to select value from (optional) :returns: value of the field or :py:const:`None` Example: >>> from py2neo import Graph >>> g = Graph() >>> g.run("MATCH (a) WHERE a.email={x} RETURN a.name", x="[email protected]").evaluate() 'Bob Robertson' """ if self.forward(): try: return self[field] except IndexError: return None else: return None def data(self): """ Consume and extract the entire result as a list of dictionaries. :: >>> from py2neo import Graph >>> graph = Graph() >>> graph.run("MATCH (a:Person) RETURN a.name, a.born LIMIT 4").data() [{'a.born': 1964, 'a.name': 'Keanu Reeves'}, {'a.born': 1967, 'a.name': 'Carrie-Anne Moss'}, {'a.born': 1961, 'a.name': 'Laurence Fishburne'}, {'a.born': 1960, 'a.name': 'Hugo Weaving'}] :return: the full query result :rtype: `list` of `dict` """ return [record.data() for record in self] def to_table(self): """ Consume and extract the entire result as a :class:`.Table` object. :return: the full query result """ return Table(self) def to_subgraph(self): """ Consume and extract the entire result as a :class:`.Subgraph` containing the union of all the graph structures within. :return: :class:`.Subgraph` object """ s = None for record in self: s_ = record.to_subgraph() if s_ is not None: if s is None: s = s_ else: s |= s_ return s def to_ndarray(self, dtype=None, order='K'): """ Consume and extract the entire result as a `numpy.ndarray <https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html>`_. .. note:: This method requires `numpy` to be installed. :param dtype: :param order: :warns: If `numpy` is not installed :returns: `ndarray <https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html>`__ object. """ try: from numpy import array except ImportError: warn("Numpy is not installed.") raise else: return array(list(map(list, self)), dtype=dtype, order=order) def to_series(self, field=0, index=None, dtype=None): """ Consume and extract one field of the entire result as a `pandas.Series <http://pandas.pydata.org/pandas-docs/stable/dsintro.html#series>`_. .. note:: This method requires `pandas` to be installed. :param field: :param index: :param dtype: :warns: If `pandas` is not installed :returns: `Series <http://pandas.pydata.org/pandas-docs/stable/dsintro.html#series>`__ object. """ try: from pandas import Series except ImportError: warn("Pandas is not installed.") raise else: return Series([record[field] for record in self], index=index, dtype=dtype) def to_data_frame(self, index=None, columns=None, dtype=None): """ Consume and extract the entire result as a `pandas.DataFrame <http://pandas.pydata.org/pandas-docs/stable/dsintro.html#dataframe>`_. :: >>> from py2neo import Graph >>> graph = Graph() >>> graph.run("MATCH (a:Person) RETURN a.name, a.born LIMIT 4").to_data_frame() a.born a.name 0 1964 Keanu Reeves 1 1967 Carrie-Anne Moss 2 1961 Laurence Fishburne 3 1960 Hugo Weaving .. note:: This method requires `pandas` to be installed. :param index: Index to use for resulting frame. :param columns: Column labels to use for resulting frame. :param dtype: Data type to force. :warns: If `pandas` is not installed :returns: `DataFrame <http://pandas.pydata.org/pandas-docs/stable/dsintro.html#series>`__ object. """ try: from pandas import DataFrame except ImportError: warn("Pandas is not installed.") raise else: return DataFrame(list(map(dict, self)), index=index, columns=columns, dtype=dtype) def to_matrix(self, mutable=False): """ Consume and extract the entire result as a `sympy.Matrix <http://docs.sympy.org/latest/tutorial/matrices.html>`_. .. note:: This method requires `sympy` to be installed. :param mutable: :returns: `Matrix <http://docs.sympy.org/latest/tutorial/matrices.html>`_ object. """ try: from sympy import MutableMatrix, ImmutableMatrix except ImportError: warn("Sympy is not installed.") raise else: if mutable: return MutableMatrix(list(map(list, self))) else: return ImmutableMatrix(list(map(list, self)))
py
1a51321a05bc6d5853a09e6b5f0eb734ab006599
""" Display number of ongoing tickets from RT queues. Configuration parameters: cache_timeout: how often we refresh this module in seconds (default 300) db: database to use (default '') format: see placeholders below (default 'general: {General}') host: database host to connect to (default '') password: login password (default '') threshold_critical: set bad color above this threshold (default 20) threshold_warning: set degraded color above this threshold (default 10) timeout: timeout for database connection (default 5) user: login user (default '') Format placeholders: {YOUR_QUEUE_NAME} number of ongoing RT tickets (open+new+stalled) Color options: color_bad: Exceeded threshold_critical color_degraded: Exceeded threshold_warning Requires: PyMySQL: https://pypi.org/project/PyMySQL/ or MySQL-python: https://pypi.org/project/MySQL-python/ It features thresholds to colorize the output and forces a low timeout to limit the impact of a server connectivity problem on your i3bar freshness. @author ultrabug SAMPLE OUTPUT {'full_text': 'general: 24'} """ try: import pymysql as mysql except: # noqa e722 // (ImportError, ModuleNotFoundError): # py2/py3 import MySQLdb as mysql class Py3status: """ """ # available configuration parameters cache_timeout = 300 db = "" format = "general: {General}" host = "" password = "" threshold_critical = 20 threshold_warning = 10 timeout = 5 user = "" def rt(self): has_one_queue_formatted = False response = {"full_text": ""} tickets = {} mydb = mysql.connect( host=self.host, user=self.user, passwd=self.password, db=self.db, connect_timeout=self.timeout, ) mycr = mydb.cursor() mycr.execute( """select q.Name as queue, coalesce(total,0) as total from Queues as q left join ( select t.Queue as queue, count(t.id) as total from Tickets as t where Status = 'new' or Status = 'open' or Status = 'stalled' group by t.Queue) as s on s.Queue = q.id group by q.Name;""" ) for row in mycr.fetchall(): queue, nb_tickets = row if queue == "___Approvals": continue tickets[queue] = nb_tickets if queue in self.format: has_one_queue_formatted = True if nb_tickets > self.threshold_critical: response.update({"color": self.py3.COLOR_BAD}) elif nb_tickets > self.threshold_warning and "color" not in response: response.update({"color": self.py3.COLOR_DEGRADED}) if has_one_queue_formatted: response["full_text"] = self.py3.safe_format(self.format, tickets) else: response["full_text"] = f"queue(s) not found ({self.format})" mydb.close() response["cached_until"] = self.py3.time_in(self.cache_timeout) return response if __name__ == "__main__": """ Run module in test mode. """ from py3status.module_test import module_test module_test(Py3status)
py
1a5133065d4d5e2a0349dafa4de346672b98e595
from __future__ import division import inspect import os from collections import OrderedDict, namedtuple from copy import copy from distutils.version import LooseVersion from itertools import product import corner import json import matplotlib import matplotlib.pyplot as plt from matplotlib import lines as mpllines import numpy as np import pandas as pd import scipy.stats from scipy.special import logsumexp from . import utils from .utils import ( logger, infer_parameters_from_function, check_directory_exists_and_if_not_mkdir, latex_plot_format, safe_save_figure, BilbyJsonEncoder, load_json, move_old_file, get_version_information, decode_bilby_json, ) from .prior import Prior, PriorDict, DeltaFunction def result_file_name(outdir, label, extension='json', gzip=False): """ Returns the standard filename used for a result file Parameters ---------- outdir: str Name of the output directory label: str Naming scheme of the output file extension: str, optional Whether to save as `hdf5` or `json` gzip: bool, optional Set to True to append `.gz` to the extension for saving in gzipped format Returns ------- str: File name of the output file """ if extension in ['json', 'hdf5']: if extension == 'json' and gzip: return os.path.join(outdir, '{}_result.{}.gz'.format(label, extension)) else: return os.path.join(outdir, '{}_result.{}'.format(label, extension)) else: raise ValueError("Extension type {} not understood".format(extension)) def _determine_file_name(filename, outdir, label, extension, gzip): """ Helper method to determine the filename """ if filename is not None: return filename else: if (outdir is None) and (label is None): raise ValueError("No information given to load file") else: return result_file_name(outdir, label, extension, gzip) def read_in_result(filename=None, outdir=None, label=None, extension='json', gzip=False): """ Reads in a stored bilby result object Parameters ---------- filename: str Path to the file to be read (alternative to giving the outdir and label) outdir, label, extension: str Name of the output directory, label and extension used for the default naming scheme. """ filename = _determine_file_name(filename, outdir, label, extension, gzip) # Get the actual extension (may differ from the default extension if the filename is given) extension = os.path.splitext(filename)[1].lstrip('.') if extension == 'gz': # gzipped file extension = os.path.splitext(os.path.splitext(filename)[0])[1].lstrip('.') if 'json' in extension: result = Result.from_json(filename=filename) elif ('hdf5' in extension) or ('h5' in extension): result = Result.from_hdf5(filename=filename) elif extension is None: raise ValueError("No filetype extension provided") else: raise ValueError("Filetype {} not understood".format(extension)) return result def get_weights_for_reweighting( result, new_likelihood=None, new_prior=None, old_likelihood=None, old_prior=None): """ Calculate the weights for reweight() See bilby.core.result.reweight() for help with the inputs Returns ------- ln_weights: array An array of the natural-log weights new_log_likelihood_array: array An array of the natural-log likelihoods new_log_prior_array: array An array of the natural-log priors """ nposterior = len(result.posterior) old_log_likelihood_array = np.zeros(nposterior) old_log_prior_array = np.zeros(nposterior) new_log_likelihood_array = np.zeros(nposterior) new_log_prior_array = np.zeros(nposterior) for ii, sample in result.posterior.iterrows(): # Convert sample to dictionary par_sample = {key: sample[key] for key in result.search_parameter_keys} if old_likelihood is not None: old_likelihood.parameters.update(par_sample) old_log_likelihood_array[ii] = old_likelihood.log_likelihood() else: old_log_likelihood_array[ii] = sample["log_likelihood"] if new_likelihood is not None: new_likelihood.parameters.update(par_sample) new_log_likelihood_array[ii] = new_likelihood.log_likelihood() else: # Don't perform likelihood reweighting (i.e. likelihood isn't updated) new_log_likelihood_array[ii] = old_log_likelihood_array[ii] if old_prior is not None: old_log_prior_array[ii] = old_prior.ln_prob(par_sample) else: old_log_prior_array[ii] = sample["log_prior"] if new_prior is not None: new_log_prior_array[ii] = new_prior.ln_prob(par_sample) else: # Don't perform prior reweighting (i.e. prior isn't updated) new_log_prior_array[ii] = old_log_prior_array[ii] ln_weights = ( new_log_likelihood_array + new_log_prior_array - old_log_likelihood_array - old_log_prior_array) return ln_weights, new_log_likelihood_array, new_log_prior_array def rejection_sample(posterior, weights): """ Perform rejection sampling on a posterior using weights Parameters ---------- posterior: pd.DataFrame or np.ndarray of shape (nsamples, nparameters) The dataframe or array containing posterior samples weights: np.ndarray An array of weights Returns ------- reweighted_posterior: pd.DataFrame The posterior resampled using rejection sampling """ keep = weights > np.random.uniform(0, max(weights), weights.shape) return posterior[keep] def reweight(result, label=None, new_likelihood=None, new_prior=None, old_likelihood=None, old_prior=None): """ Reweight a result to a new likelihood/prior using rejection sampling Parameters ---------- label: str, optional An updated label to apply to the result object new_likelihood: bilby.core.likelood.Likelihood, (optional) If given, the new likelihood to reweight too. If not given, likelihood reweighting is not applied new_prior: bilby.core.prior.PriorDict, (optional) If given, the new prior to reweight too. If not given, prior reweighting is not applied old_likelihood: bilby.core.likelihood.Likelihood, (optional) If given, calculate the old likelihoods from this object. If not given, the values stored in the posterior are used. old_prior: bilby.core.prior.PriorDict, (optional) If given, calculate the old prior from this object. If not given, the values stored in the posterior are used. Returns ------- result: bilby.core.result.Result A copy of the result object with a reweighted posterior """ result = copy(result) nposterior = len(result.posterior) logger.info("Reweighting posterior with {} samples".format(nposterior)) ln_weights, new_log_likelihood_array, new_log_prior_array = get_weights_for_reweighting( result, new_likelihood=new_likelihood, new_prior=new_prior, old_likelihood=old_likelihood, old_prior=old_prior) # Overwrite the likelihood and prior evaluations result.posterior["log_likelihood"] = new_log_likelihood_array result.posterior["log_prior"] = new_log_prior_array weights = np.exp(ln_weights) result.posterior = rejection_sample(result.posterior, weights=weights) logger.info("Rejection sampling resulted in {} samples".format(len(result.posterior))) result.meta_data["reweighted_using_rejection_sampling"] = True result.log_evidence += logsumexp(ln_weights) - np.log(nposterior) result.priors = new_prior if label: result.label = label else: result.label += "_reweighted" return result class Result(object): def __init__(self, label='no_label', outdir='.', sampler=None, search_parameter_keys=None, fixed_parameter_keys=None, constraint_parameter_keys=None, priors=None, sampler_kwargs=None, injection_parameters=None, meta_data=None, posterior=None, samples=None, nested_samples=None, log_evidence=np.nan, log_evidence_err=np.nan, log_noise_evidence=np.nan, log_bayes_factor=np.nan, log_likelihood_evaluations=None, log_prior_evaluations=None, sampling_time=None, nburn=None, num_likelihood_evaluations=None, walkers=None, max_autocorrelation_time=None, use_ratio=None, parameter_labels=None, parameter_labels_with_unit=None, gzip=False, version=None): """ A class to store the results of the sampling run Parameters ---------- label, outdir, sampler: str The label, output directory, and sampler used search_parameter_keys, fixed_parameter_keys, constraint_parameter_keys: list Lists of the search, constraint, and fixed parameter keys. Elements of the list should be of type `str` and match the keys of the `prior` priors: dict, bilby.core.prior.PriorDict A dictionary of the priors used in the run sampler_kwargs: dict Key word arguments passed to the sampler injection_parameters: dict A dictionary of the injection parameters meta_data: dict A dictionary of meta data to store about the run posterior: pandas.DataFrame A pandas data frame of the posterior samples, nested_samples: array_like An array of the output posterior samples and the unweighted samples log_evidence, log_evidence_err, log_noise_evidence, log_bayes_factor: float Natural log evidences log_likelihood_evaluations: array_like The evaluations of the likelihood for each sample point num_likelihood_evaluations: int The number of times the likelihood function is called log_prior_evaluations: array_like The evaluations of the prior for each sample point sampling_time: float The time taken to complete the sampling nburn: int The number of burn-in steps discarded for MCMC samplers walkers: array_like The samplers taken by a ensemble MCMC samplers max_autocorrelation_time: float The estimated maximum autocorrelation time for MCMC samplers use_ratio: bool A boolean stating whether the likelihood ratio, as opposed to the likelihood was used during sampling parameter_labels, parameter_labels_with_unit: list Lists of the latex-formatted parameter labels gzip: bool Set to True to gzip the results file (if using json format) version: str, Version information for software used to generate the result. Note, this information is generated when the result object is initialized Note --------- All sampling output parameters, e.g. the samples themselves are typically not given at initialisation, but set at a later stage. """ self.label = label self.outdir = os.path.abspath(outdir) self.sampler = sampler self.search_parameter_keys = search_parameter_keys self.fixed_parameter_keys = fixed_parameter_keys self.constraint_parameter_keys = constraint_parameter_keys self.parameter_labels = parameter_labels self.parameter_labels_with_unit = parameter_labels_with_unit self.priors = priors self.sampler_kwargs = sampler_kwargs self.meta_data = meta_data self.injection_parameters = injection_parameters self.posterior = posterior self.samples = samples self.nested_samples = nested_samples self.walkers = walkers self.nburn = nburn self.use_ratio = use_ratio self.log_evidence = log_evidence self.log_evidence_err = log_evidence_err self.log_noise_evidence = log_noise_evidence self.log_bayes_factor = log_bayes_factor self.log_likelihood_evaluations = log_likelihood_evaluations self.log_prior_evaluations = log_prior_evaluations self.num_likelihood_evaluations = num_likelihood_evaluations self.sampling_time = sampling_time self.version = version self.max_autocorrelation_time = max_autocorrelation_time self.prior_values = None self._kde = None @classmethod def from_hdf5(cls, filename=None, outdir=None, label=None): """ Read in a saved .h5 data file Parameters ---------- filename: str If given, try to load from this filename outdir, label: str If given, use the default naming convention for saved results file Returns ------- result: bilby.core.result.Result Raises ------- ValueError: If no filename is given and either outdir or label is None If no bilby.core.result.Result is found in the path """ import deepdish filename = _determine_file_name(filename, outdir, label, 'hdf5', False) if os.path.isfile(filename): dictionary = deepdish.io.load(filename) # Some versions of deepdish/pytables return the dictionary as # a dictionary with a key 'data' if len(dictionary) == 1 and 'data' in dictionary: dictionary = dictionary['data'] if "priors" in dictionary: # parse priors from JSON string (allowing for backwards # compatibility) if not isinstance(dictionary["priors"], PriorDict): try: priordict = PriorDict() for key, value in dictionary["priors"].items(): if key not in ["__module__", "__name__", "__prior_dict__"]: priordict[key] = decode_bilby_json(value) dictionary["priors"] = priordict except Exception as e: raise IOError( "Unable to parse priors from '{}':\n{}".format( filename, e, ) ) try: if isinstance(dictionary.get('posterior', None), dict): dictionary['posterior'] = pd.DataFrame(dictionary['posterior']) return cls(**dictionary) except TypeError as e: raise IOError("Unable to load dictionary, error={}".format(e)) else: raise IOError("No result '{}' found".format(filename)) @classmethod def from_json(cls, filename=None, outdir=None, label=None, gzip=False): """ Read in a saved .json data file Parameters ---------- filename: str If given, try to load from this filename outdir, label: str If given, use the default naming convention for saved results file Returns ------- result: bilby.core.result.Result Raises ------- ValueError: If no filename is given and either outdir or label is None If no bilby.core.result.Result is found in the path """ filename = _determine_file_name(filename, outdir, label, 'json', gzip) if os.path.isfile(filename): dictionary = load_json(filename, gzip) try: return cls(**dictionary) except TypeError as e: raise IOError("Unable to load dictionary, error={}".format(e)) else: raise IOError("No result '{}' found".format(filename)) def __str__(self): """Print a summary """ if getattr(self, 'posterior', None) is not None: if getattr(self, 'log_noise_evidence', None) is not None: return ("nsamples: {:d}\n" "ln_noise_evidence: {:6.3f}\n" "ln_evidence: {:6.3f} +/- {:6.3f}\n" "ln_bayes_factor: {:6.3f} +/- {:6.3f}\n" .format(len(self.posterior), self.log_noise_evidence, self.log_evidence, self.log_evidence_err, self.log_bayes_factor, self.log_evidence_err)) else: return ("nsamples: {:d}\n" "ln_evidence: {:6.3f} +/- {:6.3f}\n" .format(len(self.posterior), self.log_evidence, self.log_evidence_err)) else: return '' @property def priors(self): if self._priors is not None: return self._priors else: raise ValueError('Result object has no priors') @priors.setter def priors(self, priors): if isinstance(priors, dict): if isinstance(priors, PriorDict): self._priors = priors else: self._priors = PriorDict(priors) if self.parameter_labels is None: if 'H_eff5' in self.search_parameter_keys: self.priors['H_eff5'].latex_label = '$H_{eff5}$' if 'chi_1' in self.search_parameter_keys: self.priors['chi_1'].latex_label = '$\\chi_1$' if 'chi_2' in self.search_parameter_keys: self.priors['chi_2'].latex_label = '$\\chi_2$' if 'Q_tilde' in self.search_parameter_keys: self.priors['Q_tilde'].latex_label = '$\\tilde{Q}$' self.parameter_labels = [self.priors[k].latex_label for k in self.search_parameter_keys] if self.parameter_labels_with_unit is None: self.parameter_labels_with_unit = [ self.priors[k].latex_label_with_unit for k in self.search_parameter_keys] elif priors is None: self._priors = priors self.parameter_labels = self.search_parameter_keys self.parameter_labels_with_unit = self.search_parameter_keys else: raise ValueError("Input priors not understood") @property def samples(self): """ An array of samples """ if self._samples is not None: return self._samples else: raise ValueError("Result object has no stored samples") @samples.setter def samples(self, samples): self._samples = samples @property def num_likelihood_evaluations(self): """ number of likelihood evaluations """ if self._num_likelihood_evaluations is not None: return self._num_likelihood_evaluations else: raise ValueError("Result object has no stored likelihood evaluations") @num_likelihood_evaluations.setter def num_likelihood_evaluations(self, num_likelihood_evaluations): self._num_likelihood_evaluations = num_likelihood_evaluations @property def nested_samples(self): """" An array of unweighted samples """ if self._nested_samples is not None: return self._nested_samples else: raise ValueError("Result object has no stored nested samples") @nested_samples.setter def nested_samples(self, nested_samples): self._nested_samples = nested_samples @property def walkers(self): """" An array of the ensemble walkers """ if self._walkers is not None: return self._walkers else: raise ValueError("Result object has no stored walkers") @walkers.setter def walkers(self, walkers): self._walkers = walkers @property def nburn(self): """" An array of the ensemble walkers """ if self._nburn is not None: return self._nburn else: raise ValueError("Result object has no stored nburn") @nburn.setter def nburn(self, nburn): self._nburn = nburn @property def posterior(self): """ A pandas data frame of the posterior """ if self._posterior is not None: return self._posterior else: raise ValueError("Result object has no stored posterior") @posterior.setter def posterior(self, posterior): self._posterior = posterior @property def log_10_bayes_factor(self): return self.log_bayes_factor / np.log(10) @property def log_10_evidence(self): return self.log_evidence / np.log(10) @property def log_10_evidence_err(self): return self.log_evidence_err / np.log(10) @property def log_10_noise_evidence(self): return self.log_noise_evidence / np.log(10) @property def version(self): return self._version @version.setter def version(self, version): if version is None: self._version = 'bilby={}'.format(utils.get_version_information()) else: self._version = version def _get_save_data_dictionary(self): # This list defines all the parameters saved in the result object save_attrs = [ 'label', 'outdir', 'sampler', 'log_evidence', 'log_evidence_err', 'log_noise_evidence', 'log_bayes_factor', 'priors', 'posterior', 'injection_parameters', 'meta_data', 'search_parameter_keys', 'fixed_parameter_keys', 'constraint_parameter_keys', 'sampling_time', 'sampler_kwargs', 'use_ratio', 'log_likelihood_evaluations', 'log_prior_evaluations', 'num_likelihood_evaluations', 'samples', 'nested_samples', 'walkers', 'nburn', 'parameter_labels', 'parameter_labels_with_unit', 'version'] dictionary = OrderedDict() for attr in save_attrs: try: dictionary[attr] = getattr(self, attr) except ValueError as e: logger.debug("Unable to save {}, message: {}".format(attr, e)) pass return dictionary def save_to_file(self, filename=None, overwrite=False, outdir=None, extension='json', gzip=False): """ Writes the Result to a json or deepdish h5 file Parameters ---------- filename: optional, Filename to write to (overwrites the default) overwrite: bool, optional Whether or not to overwrite an existing result file. default=False outdir: str, optional Path to the outdir. Default is the one stored in the result object. extension: str, optional {json, hdf5, True} Determines the method to use to store the data (if True defaults to json) gzip: bool, optional If true, and outputing to a json file, this will gzip the resulting file and add '.gz' to the file extension. """ if extension is True: extension = "json" outdir = self._safe_outdir_creation(outdir, self.save_to_file) if filename is None: filename = result_file_name(outdir, self.label, extension, gzip) move_old_file(filename, overwrite) # Convert the prior to a string representation for saving on disk dictionary = self._get_save_data_dictionary() # Convert callable sampler_kwargs to strings if dictionary.get('sampler_kwargs', None) is not None: for key in dictionary['sampler_kwargs']: if hasattr(dictionary['sampler_kwargs'][key], '__call__'): dictionary['sampler_kwargs'][key] = str(dictionary['sampler_kwargs']) try: # convert priors to JSON dictionary for both JSON and hdf5 files dictionary["priors"] = dictionary["priors"]._get_json_dict() if extension == 'json': if gzip: import gzip # encode to a string json_str = json.dumps(dictionary, cls=BilbyJsonEncoder).encode('utf-8') with gzip.GzipFile(filename, 'w') as file: file.write(json_str) else: with open(filename, 'w') as file: json.dump(dictionary, file, indent=2, cls=BilbyJsonEncoder) elif extension == 'hdf5': import deepdish for key in dictionary: if isinstance(dictionary[key], pd.DataFrame): dictionary[key] = dictionary[key].to_dict() deepdish.io.save(filename, dictionary) else: raise ValueError("Extension type {} not understood".format(extension)) except Exception as e: logger.error("\n\n Saving the data has failed with the " "following message:\n {} \n\n".format(e)) def save_posterior_samples(self, filename=None, outdir=None, label=None): """ Saves posterior samples to a file Generates a .dat file containing the posterior samples and auxillary data saved in the posterior. Note, strings in the posterior are removed while complex numbers will be given as absolute values with abs appended to the column name Parameters ---------- filename: str Alternative filename to use. Defaults to outdir/label_posterior_samples.dat outdir, label: str Alternative outdir and label to use """ if filename is None: if label is None: label = self.label outdir = self._safe_outdir_creation(outdir, self.save_posterior_samples) filename = '{}/{}_posterior_samples.dat'.format(outdir, label) else: outdir = os.path.dirname(filename) self._safe_outdir_creation(outdir, self.save_posterior_samples) # Drop non-numeric columns df = self.posterior.select_dtypes([np.number]).copy() # Convert complex columns to abs for key in df.keys(): if np.any(np.iscomplex(df[key])): complex_term = df.pop(key) df.loc[:, key + "_abs"] = np.abs(complex_term) df.loc[:, key + "_angle"] = np.angle(complex_term) logger.info("Writing samples file to {}".format(filename)) df.to_csv(filename, index=False, header=True, sep=' ') def get_latex_labels_from_parameter_keys(self, keys): """ Returns a list of latex_labels corresponding to the given keys Parameters ---------- keys: list List of strings corresponding to the desired latex_labels Returns ------- list: The desired latex_labels """ latex_labels = [] for key in keys: if key in self.search_parameter_keys: idx = self.search_parameter_keys.index(key) label = self.parameter_labels_with_unit[idx] elif key in self.parameter_labels: label = key else: label = None logger.debug( 'key {} not a parameter label or latex label'.format(key) ) if label is None: label = key.replace("_", " ") latex_labels.append(label) return latex_labels @property def covariance_matrix(self): """ The covariance matrix of the samples the posterior """ samples = self.posterior[self.search_parameter_keys].values return np.cov(samples.T) @property def posterior_volume(self): """ The posterior volume """ if self.covariance_matrix.ndim == 0: return np.sqrt(self.covariance_matrix) else: return 1 / np.sqrt(np.abs(np.linalg.det( 1 / self.covariance_matrix))) @staticmethod def prior_volume(priors): """ The prior volume, given a set of priors """ return np.prod([priors[k].maximum - priors[k].minimum for k in priors]) def occam_factor(self, priors): """ The Occam factor, See Chapter 28, `Mackay "Information Theory, Inference, and Learning Algorithms" <http://www.inference.org.uk/itprnn/book.html>`_ Cambridge University Press (2003). """ return self.posterior_volume / self.prior_volume(priors) @property def bayesian_model_dimensionality(self): """ Characterises how many parameters are effectively constraint by the data See <https://arxiv.org/abs/1903.06682> Returns ------- float: The model dimensionality """ return 2 * (np.mean(self.posterior['log_likelihood']**2) - np.mean(self.posterior['log_likelihood'])**2) def get_one_dimensional_median_and_error_bar(self, key, fmt='.2f', quantiles=(0.16, 0.84)): """ Calculate the median and error bar for a given key Parameters ---------- key: str The parameter key for which to calculate the median and error bar fmt: str, ('.2f') A format string quantiles: list, tuple A length-2 tuple of the lower and upper-quantiles to calculate the errors bars for. Returns ------- summary: namedtuple An object with attributes, median, lower, upper and string """ summary = namedtuple('summary', ['median', 'lower', 'upper', 'string']) if len(quantiles) != 2: raise ValueError("quantiles must be of length 2") quants_to_compute = np.array([quantiles[0], 0.5, quantiles[1]]) quants = np.percentile(self.posterior[key], quants_to_compute * 100) summary.median = quants[1] summary.plus = quants[2] - summary.median summary.minus = summary.median - quants[0] fmt = "{{0:{0}}}".format(fmt).format string_template = r"${{{0}}}_{{-{1}}}^{{+{2}}}$" summary.string = string_template.format( fmt(summary.median), fmt(summary.minus), fmt(summary.plus)) return summary @latex_plot_format def plot_single_density(self, key, prior=None, cumulative=False, title=None, truth=None, save=True, file_base_name=None, bins=50, label_fontsize=16, title_fontsize=16, quantiles=(0.16, 0.84), dpi=300): """ Plot a 1D marginal density, either probability or cumulative. Parameters ---------- key: str Name of the parameter to plot prior: {bool (True), bilby.core.prior.Prior} If true, add the stored prior probability density function to the one-dimensional marginal distributions. If instead a Prior is provided, this will be plotted. cumulative: bool If true plot the CDF title: bool If true, add 1D title of the median and (by default 1-sigma) error bars. To change the error bars, pass in the quantiles kwarg. See method `get_one_dimensional_median_and_error_bar` for further details). If `quantiles=None` is passed in, no title is added. truth: {bool, float} If true, plot self.injection_parameters[parameter]. If float, plot this value. save: bool: If true, save plot to disk. file_base_name: str, optional If given, the base file name to use (by default `outdir/label_` is used) bins: int The number of histogram bins label_fontsize, title_fontsize: int The fontsizes for the labels and titles quantiles: tuple A length-2 tuple of the lower and upper-quantiles to calculate the errors bars for. dpi: int Dots per inch resolution of the plot Returns ------- figure: matplotlib.pyplot.figure A matplotlib figure object """ logger.info('Plotting {} marginal distribution'.format(key)) label = self.get_latex_labels_from_parameter_keys([key])[0] fig, ax = plt.subplots() try: ax.hist(self.posterior[key].values, bins=bins, density=True, histtype='step', cumulative=cumulative) except ValueError as e: logger.info( 'Failed to generate 1d plot for {}, error message: {}' .format(key, e)) return ax.set_xlabel(label, fontsize=label_fontsize) if truth is not None: ax.axvline(truth, ls='-', color='orange') summary = self.get_one_dimensional_median_and_error_bar( key, quantiles=quantiles) ax.axvline(summary.median - summary.minus, ls='--', color='C0') ax.axvline(summary.median + summary.plus, ls='--', color='C0') if title: ax.set_title(summary.string, fontsize=title_fontsize) if isinstance(prior, Prior): theta = np.linspace(ax.get_xlim()[0], ax.get_xlim()[1], 300) if cumulative is False: ax.plot(theta, prior.prob(theta), color='C2') else: ax.plot(theta, prior.cdf(theta), color='C2') if save: fig.tight_layout() if cumulative: file_name = file_base_name + key + '_cdf' else: file_name = file_base_name + key + '_pdf' safe_save_figure(fig=fig, filename=file_name, dpi=dpi) plt.close(fig) else: return fig def plot_marginals(self, parameters=None, priors=None, titles=True, file_base_name=None, bins=50, label_fontsize=16, title_fontsize=16, quantiles=(0.16, 0.84), dpi=300, outdir=None): """ Plot 1D marginal distributions Parameters ---------- parameters: (list, dict), optional If given, either a list of the parameter names to include, or a dictionary of parameter names and their "true" values to plot. priors: {bool (False), bilby.core.prior.PriorDict} If true, add the stored prior probability density functions to the one-dimensional marginal distributions. If instead a PriorDict is provided, this will be plotted. titles: bool If true, add 1D titles of the median and (by default 1-sigma) error bars. To change the error bars, pass in the quantiles kwarg. See method `get_one_dimensional_median_and_error_bar` for further details). If `quantiles=None` is passed in, no title is added. file_base_name: str, optional If given, the base file name to use (by default `outdir/label_` is used) bins: int The number of histogram bins label_fontsize, title_fontsize: int The font sizes for the labels and titles quantiles: tuple A length-2 tuple of the lower and upper-quantiles to calculate the errors bars for. dpi: int Dots per inch resolution of the plot outdir: str, optional Path to the outdir. Default is the one store in the result object. Returns ------- """ if isinstance(parameters, dict): plot_parameter_keys = list(parameters.keys()) truths = parameters elif parameters is None: plot_parameter_keys = self.posterior.keys() if self.injection_parameters is None: truths = dict() else: truths = self.injection_parameters else: plot_parameter_keys = list(parameters) if self.injection_parameters is None: truths = dict() else: truths = self.injection_parameters if file_base_name is None: outdir = self._safe_outdir_creation(outdir, self.plot_marginals) file_base_name = '{}/{}_1d/'.format(outdir, self.label) check_directory_exists_and_if_not_mkdir(file_base_name) if priors is True: priors = getattr(self, 'priors', dict()) elif isinstance(priors, dict): pass elif priors in [False, None]: priors = dict() else: raise ValueError('Input priors={} not understood'.format(priors)) for i, key in enumerate(plot_parameter_keys): if not isinstance(self.posterior[key].values[0], float): continue prior = priors.get(key, None) truth = truths.get(key, None) for cumulative in [False, True]: self.plot_single_density( key, prior=prior, cumulative=cumulative, title=titles, truth=truth, save=True, file_base_name=file_base_name, bins=bins, label_fontsize=label_fontsize, dpi=dpi, title_fontsize=title_fontsize, quantiles=quantiles) @latex_plot_format def plot_corner(self, parameters=None, priors=None, titles=True, save=True, filename=None, dpi=300, **kwargs): """ Plot a corner-plot Parameters ---------- parameters: (list, dict), optional If given, either a list of the parameter names to include, or a dictionary of parameter names and their "true" values to plot. priors: {bool (False), bilby.core.prior.PriorDict} If true, add the stored prior probability density functions to the one-dimensional marginal distributions. If instead a PriorDict is provided, this will be plotted. titles: bool If true, add 1D titles of the median and (by default 1-sigma) error bars. To change the error bars, pass in the quantiles kwarg. See method `get_one_dimensional_median_and_error_bar` for further details). If `quantiles=None` is passed in, no title is added. save: bool, optional If true, save the image using the given label and outdir filename: str, optional If given, overwrite the default filename dpi: int, optional Dots per inch resolution of the plot **kwargs: Other keyword arguments are passed to `corner.corner`. We set some defaults to improve the basic look and feel, but these can all be overridden. Also optional an 'outdir' argument which can be used to override the outdir set by the absolute path of the result object. Notes ----- The generation of the corner plot themselves is done by the corner python module, see https://corner.readthedocs.io for more information. Truth-lines can be passed in in several ways. Either as the values of the parameters dict, or a list via the `truths` kwarg. If injection_parameters where given to run_sampler, these will auto- matically be added to the plot. This behaviour can be stopped by adding truths=False. Returns ------- fig: A matplotlib figure instance """ # If in testing mode, not corner plots are generated if utils.command_line_args.bilby_test_mode: return # bilby default corner kwargs. Overwritten by anything passed to kwargs defaults_kwargs = dict( bins=50, smooth=0.9, label_kwargs=dict(fontsize=16), title_kwargs=dict(fontsize=16), color='#0072C1', truth_color='tab:orange', quantiles=[0.16, 0.84], levels=(1 - np.exp(-0.5), 1 - np.exp(-2), 1 - np.exp(-9 / 2.)), plot_density=False, plot_datapoints=True, fill_contours=True, max_n_ticks=3) if LooseVersion(matplotlib.__version__) < "2.1": defaults_kwargs['hist_kwargs'] = dict(normed=True) else: defaults_kwargs['hist_kwargs'] = dict(density=True) if 'lionize' in kwargs and kwargs['lionize'] is True: defaults_kwargs['truth_color'] = 'tab:blue' defaults_kwargs['color'] = '#FF8C00' defaults_kwargs.update(kwargs) kwargs = defaults_kwargs # Handle if truths was passed in if 'truth' in kwargs: kwargs['truths'] = kwargs.pop('truth') if "truths" in kwargs: truths = kwargs.get('truths') if isinstance(parameters, list) and isinstance(truths, list): if len(parameters) != len(truths): raise ValueError( "Length of parameters and truths don't match") elif isinstance(truths, dict) and parameters is None: parameters = kwargs.pop('truths') elif isinstance(truths, bool): pass elif truths is None: kwargs["truths"] = False else: raise ValueError( "Combination of parameters and truths not understood") # If injection parameters where stored, use these as parameter values # but do not overwrite input parameters (or truths) cond1 = getattr(self, 'injection_parameters', None) is not None cond2 = parameters is None cond3 = bool(kwargs.get("truths", True)) if cond1 and cond2 and cond3: parameters = { key: self.injection_parameters.get(key, np.nan) for key in self.search_parameter_keys } # If parameters is a dictionary, use the keys to determine which # parameters to plot and the values as truths. if isinstance(parameters, dict): plot_parameter_keys = list(parameters.keys()) kwargs['truths'] = list(parameters.values()) elif parameters is None: plot_parameter_keys = self.search_parameter_keys else: plot_parameter_keys = list(parameters) # Get latex formatted strings for the plot labels kwargs['labels'] = kwargs.get( 'labels', self.get_latex_labels_from_parameter_keys( plot_parameter_keys)) kwargs["labels"] = sanity_check_labels(kwargs["labels"]) # Unless already set, set the range to include all samples # This prevents ValueErrors being raised for parameters with no range kwargs['range'] = kwargs.get('range', [1] * len(plot_parameter_keys)) # Remove truths if it is a bool if isinstance(kwargs.get('truths'), bool): kwargs.pop('truths') # Create the data array to plot and pass everything to corner xs = self.posterior[plot_parameter_keys].values if len(plot_parameter_keys) > 1: fig = corner.corner(xs, **kwargs) else: ax = kwargs.get("ax", plt.subplot()) ax.hist(xs, bins=kwargs["bins"], color=kwargs["color"], histtype="step", **kwargs["hist_kwargs"]) ax.set_xlabel(kwargs["labels"][0]) fig = plt.gcf() axes = fig.get_axes() # Add the titles if titles and kwargs.get('quantiles', None) is not None: for i, par in enumerate(plot_parameter_keys): ax = axes[i + i * len(plot_parameter_keys)] if ax.title.get_text() == '': ax.set_title(self.get_one_dimensional_median_and_error_bar( par, quantiles=kwargs['quantiles']).string, **kwargs['title_kwargs']) # Add priors to the 1D plots if priors is True: priors = getattr(self, 'priors', False) if isinstance(priors, dict): for i, par in enumerate(plot_parameter_keys): ax = axes[i + i * len(plot_parameter_keys)] theta = np.linspace(ax.get_xlim()[0], ax.get_xlim()[1], 300) ax.plot(theta, priors[par].prob(theta), color='C2') elif priors in [False, None]: pass else: raise ValueError('Input priors={} not understood'.format(priors)) if save: if filename is None: outdir = self._safe_outdir_creation(kwargs.get('outdir'), self.plot_corner) filename = '{}/{}_corner.png'.format(outdir, self.label) logger.debug('Saving corner plot to {}'.format(filename)) safe_save_figure(fig=fig, filename=filename, dpi=dpi) plt.close(fig) return fig @latex_plot_format def plot_walkers(self, **kwargs): """ Method to plot the trace of the walkers in an ensemble MCMC plot """ if hasattr(self, 'walkers') is False: logger.warning("Cannot plot_walkers as no walkers are saved") return if utils.command_line_args.bilby_test_mode: return nwalkers, nsteps, ndim = self.walkers.shape idxs = np.arange(nsteps) fig, axes = plt.subplots(nrows=ndim, figsize=(6, 3 * ndim)) walkers = self.walkers[:, :, :] parameter_labels = sanity_check_labels(self.parameter_labels) for i, ax in enumerate(axes): ax.plot(idxs[:self.nburn + 1], walkers[:, :self.nburn + 1, i].T, lw=0.1, color='r') ax.set_ylabel(parameter_labels[i]) for i, ax in enumerate(axes): ax.plot(idxs[self.nburn:], walkers[:, self.nburn:, i].T, lw=0.1, color='k') ax.set_ylabel(parameter_labels[i]) fig.tight_layout() outdir = self._safe_outdir_creation(kwargs.get('outdir'), self.plot_walkers) filename = '{}/{}_walkers.png'.format(outdir, self.label) logger.debug('Saving walkers plot to {}'.format('filename')) safe_save_figure(fig=fig, filename=filename) plt.close(fig) @latex_plot_format def plot_with_data(self, model, x, y, ndraws=1000, npoints=1000, xlabel=None, ylabel=None, data_label='data', data_fmt='o', draws_label=None, filename=None, maxl_label='max likelihood', dpi=300, outdir=None): """ Generate a figure showing the data and fits to the data Parameters ---------- model: function A python function which when called as `model(x, **kwargs)` returns the model prediction (here `kwargs` is a dictionary of key-value pairs of the model parameters. x, y: np.ndarray The independent and dependent data to plot ndraws: int Number of draws from the posterior to plot npoints: int Number of points used to plot the smoothed fit to the data xlabel, ylabel: str Labels for the axes data_label, draws_label, maxl_label: str Label for the data, draws, and max likelihood legend data_fmt: str Matpltolib fmt code, defaults to `'-o'` dpi: int Passed to `plt.savefig` filename: str If given, the filename to use. Otherwise, the filename is generated from the outdir and label attributes. outdir: str, optional Path to the outdir. Default is the one store in the result object. """ # Determine model_posterior, the subset of the full posterior which # should be passed into the model model_keys = infer_parameters_from_function(model) model_posterior = self.posterior[model_keys] xsmooth = np.linspace(np.min(x), np.max(x), npoints) fig, ax = plt.subplots() logger.info('Plotting {} draws'.format(ndraws)) for _ in range(ndraws): s = model_posterior.sample().to_dict('records')[0] ax.plot(xsmooth, model(xsmooth, **s), alpha=0.25, lw=0.1, color='r', label=draws_label) try: if all(~np.isnan(self.posterior.log_likelihood)): logger.info('Plotting maximum likelihood') s = model_posterior.iloc[self.posterior.log_likelihood.idxmax()] ax.plot(xsmooth, model(xsmooth, **s), lw=1, color='k', label=maxl_label) except (AttributeError, TypeError): logger.debug( "No log likelihood values stored, unable to plot max") ax.plot(x, y, data_fmt, markersize=2, label=data_label) if xlabel is not None: ax.set_xlabel(xlabel) if ylabel is not None: ax.set_ylabel(ylabel) handles, labels = plt.gca().get_legend_handles_labels() by_label = OrderedDict(zip(labels, handles)) plt.legend(by_label.values(), by_label.keys()) ax.legend(numpoints=3) fig.tight_layout() if filename is None: outdir = self._safe_outdir_creation(outdir, self.plot_with_data) filename = '{}/{}_plot_with_data'.format(outdir, self.label) safe_save_figure(fig=fig, filename=filename, dpi=dpi) plt.close(fig) @staticmethod def _add_prior_fixed_values_to_posterior(posterior, priors): if priors is None: return posterior for key in priors: if isinstance(priors[key], DeltaFunction): posterior[key] = priors[key].peak elif isinstance(priors[key], float): posterior[key] = priors[key] return posterior def samples_to_posterior(self, likelihood=None, priors=None, conversion_function=None, npool=1): """ Convert array of samples to posterior (a Pandas data frame) Also applies the conversion function to any stored posterior Parameters ---------- likelihood: bilby.likelihood.GravitationalWaveTransient, optional GravitationalWaveTransient likelihood used for sampling. priors: bilby.prior.PriorDict, optional Dictionary of prior object, used to fill in delta function priors. conversion_function: function, optional Function which adds in extra parameters to the data frame, should take the data_frame, likelihood and prior as arguments. """ try: data_frame = self.posterior except ValueError: data_frame = pd.DataFrame( self.samples, columns=self.search_parameter_keys) data_frame = self._add_prior_fixed_values_to_posterior( data_frame, priors) data_frame['log_likelihood'] = getattr( self, 'log_likelihood_evaluations', np.nan) if self.log_prior_evaluations is None and priors is not None: data_frame['log_prior'] = priors.ln_prob( dict(data_frame[self.search_parameter_keys]), axis=0) else: data_frame['log_prior'] = self.log_prior_evaluations if conversion_function is not None: if "npool" in inspect.getargspec(conversion_function).args: data_frame = conversion_function(data_frame, likelihood, priors, npool=npool) else: data_frame = conversion_function(data_frame, likelihood, priors) self.posterior = data_frame def calculate_prior_values(self, priors): """ Evaluate prior probability for each parameter for each sample. Parameters ---------- priors: dict, PriorDict Prior distributions """ self.prior_values = pd.DataFrame() for key in priors: if key in self.posterior.keys(): if isinstance(priors[key], DeltaFunction): continue else: self.prior_values[key]\ = priors[key].prob(self.posterior[key].values) def get_all_injection_credible_levels(self, keys=None): """ Get credible levels for all parameters Parameters ---------- keys: list, optional A list of keys for which return the credible levels, if None, defaults to search_parameter_keys Returns ------- credible_levels: dict The credible levels at which the injected parameters are found. """ if keys is None: keys = self.search_parameter_keys if self.injection_parameters is None: raise(TypeError, "Result object has no 'injection_parameters'. " "Cannot compute credible levels.") credible_levels = {key: self.get_injection_credible_level(key) for key in keys if isinstance(self.injection_parameters.get(key, None), float)} return credible_levels def get_injection_credible_level(self, parameter): """ Get the credible level of the injected parameter Calculated as CDF(injection value) Parameters ---------- parameter: str Parameter to get credible level for Returns ------- float: credible level """ if self.injection_parameters is None: raise(TypeError, "Result object has no 'injection_parameters'. " "Cannot copmute credible levels.") if parameter in self.posterior and\ parameter in self.injection_parameters: credible_level =\ sum(self.posterior[parameter].values < self.injection_parameters[parameter]) / len(self.posterior) return credible_level else: return np.nan def _check_attribute_match_to_other_object(self, name, other_object): """ Check attribute name exists in other_object and is the same Parameters ---------- name: str Name of the attribute in this instance other_object: object Other object with attributes to compare with Returns ------- bool: True if attribute name matches with an attribute of other_object, False otherwise """ a = getattr(self, name, False) b = getattr(other_object, name, False) logger.debug('Checking {} value: {}=={}'.format(name, a, b)) if (a is not False) and (b is not False): type_a = type(a) type_b = type(b) if type_a == type_b: if type_a in [str, float, int, dict, list]: try: return a == b except ValueError: return False elif type_a in [np.ndarray]: return np.all(a == b) return False @property def kde(self): """ Kernel density estimate built from the stored posterior Uses `scipy.stats.gaussian_kde` to generate the kernel density """ if self._kde: return self._kde else: self._kde = scipy.stats.gaussian_kde( self.posterior[self.search_parameter_keys].values.T) return self._kde def posterior_probability(self, sample): """ Calculate the posterior probability for a new sample This queries a Kernel Density Estimate of the posterior to calculate the posterior probability density for the new sample. Parameters ---------- sample: dict, or list of dictionaries A dictionary containing all the keys from self.search_parameter_keys and corresponding values at which to calculate the posterior probability Returns ------- p: array-like, The posterior probability of the sample """ if isinstance(sample, dict): sample = [sample] ordered_sample = [[s[key] for key in self.search_parameter_keys] for s in sample] return self.kde(ordered_sample) def _safe_outdir_creation(self, outdir=None, caller_func=None): if outdir is None: outdir = self.outdir try: utils.check_directory_exists_and_if_not_mkdir(outdir) except PermissionError: raise FileMovedError("Can not write in the out directory.\n" "Did you move the here file from another system?\n" "Try calling " + caller_func.__name__ + " with the 'outdir' " "keyword argument, e.g. " + caller_func.__name__ + "(outdir='.')") return outdir def get_weights_by_new_prior(self, old_prior, new_prior, prior_names=None): """ Calculate a list of sample weights based on the ratio of new to old priors Parameters ---------- old_prior: PriorDict, The prior used in the generation of the original samples. new_prior: PriorDict, The prior to use to reweight the samples. prior_names: list A list of the priors to include in the ratio during reweighting. Returns ------- weights: array-like, A list of sample weights. """ weights = [] # Shared priors - these will form a ratio if prior_names is not None: shared_parameters = {key: self.posterior[key] for key in new_prior if key in old_prior and key in prior_names} else: shared_parameters = {key: self.posterior[key] for key in new_prior if key in old_prior} parameters = [{key: self.posterior[key][i] for key in shared_parameters.keys()} for i in range(len(self.posterior))] for i in range(len(self.posterior)): weight = 1 for prior_key in shared_parameters.keys(): val = self.posterior[prior_key][i] weight *= new_prior.evaluate_constraints(parameters[i]) weight *= new_prior[prior_key].prob(val) / old_prior[prior_key].prob(val) weights.append(weight) return weights def to_arviz(self, prior=None): """ Convert the Result object to an ArviZ InferenceData object. Parameters ---------- prior: int If a positive integer is given then that number of prior samples will be drawn and stored in the ArviZ InferenceData object. Returns ------- azdata: InferenceData The ArviZ InferenceData object. """ try: import arviz as az except ImportError: logger.debug( "ArviZ is not installed, so cannot convert to InferenceData" ) posdict = {} for key in self.posterior: posdict[key] = self.posterior[key].values if "log_likelihood" in posdict: loglikedict = { "log_likelihood": posdict.pop("log_likelihood") } else: if self.log_likelihood_evaluations is not None: loglikedict = { "log_likelihood": self.log_likelihood_evaluations } else: loglikedict = None priorsamples = None if prior is not None: if self.priors is None: logger.warning( "No priors are in the Result object, so prior samples " "will not be included in the output." ) else: priorsamples = self.priors.sample(size=prior) azdata = az.from_dict( posterior=posdict, log_likelihood=loglikedict, prior=priorsamples, ) # add attributes version = { "inference_library": "bilby: {}".format(self.sampler), "inference_library_version": get_version_information() } azdata.posterior.attrs.update(version) if "log_likelihood" in azdata._groups: azdata.log_likelihood.attrs.update(version) if "prior" in azdata._groups: azdata.prior.attrs.update(version) return azdata class ResultList(list): def __init__(self, results=None): """ A class to store a list of :class:`bilby.core.result.Result` objects from equivalent runs on the same data. This provides methods for outputing combined results. Parameters ---------- results: list A list of `:class:`bilby.core.result.Result`. """ super(ResultList, self).__init__() for result in results: self.append(result) def append(self, result): """ Append a :class:`bilby.core.result.Result`, or set of results, to the list. Parameters ---------- result: :class:`bilby.core.result.Result` or filename pointing to a result object, to append to the list. """ if isinstance(result, Result): super(ResultList, self).append(result) elif isinstance(result, str): super(ResultList, self).append(read_in_result(result)) else: raise TypeError("Could not append a non-Result type") def combine(self): """ Return the combined results in a :class:bilby.core.result.Result` object. """ if len(self) == 0: return Result() elif len(self) == 1: return copy(self[0]) else: result = copy(self[0]) if result.label is not None: result.label += '_combined' self.check_consistent_sampler() self.check_consistent_data() self.check_consistent_parameters() self.check_consistent_priors() # check which kind of sampler was used: MCMC or Nested Sampling if result._nested_samples is not None: posteriors, result = self._combine_nested_sampled_runs(result) else: posteriors = [res.posterior for res in self] combined_posteriors = pd.concat(posteriors, ignore_index=True) result.posterior = combined_posteriors.sample(len(combined_posteriors)) # shuffle return result def _combine_nested_sampled_runs(self, result): """ Combine multiple nested sampling runs. Currently this keeps posterior samples from each run in proportion with the evidence for each individual run Parameters ---------- result: bilby.core.result.Result The result object to put the new samples in. Returns ------- posteriors: list A list of pandas DataFrames containing the reduced sample set from each run. result: bilby.core.result.Result The result object with the combined evidences. """ self.check_nested_samples() # Combine evidences log_evidences = np.array([res.log_evidence for res in self]) result.log_evidence = logsumexp(log_evidences, b=1. / len(self)) result.log_bayes_factor = result.log_evidence - result.log_noise_evidence # Propogate uncertainty in combined evidence log_errs = [res.log_evidence_err for res in self if np.isfinite(res.log_evidence_err)] if len(log_errs) > 0: result.log_evidence_err = 0.5 * logsumexp(2 * np.array(log_errs), b=1. / len(self)) else: result.log_evidence_err = np.nan # Combined posteriors with a weighting result_weights = np.exp(log_evidences - np.max(log_evidences)) posteriors = list() for res, frac in zip(self, result_weights): selected_samples = (np.random.uniform(size=len(res.posterior)) < frac) posteriors.append(res.posterior[selected_samples]) # remove original nested_samples result.nested_samples = None result.sampler_kwargs = None return posteriors, result def check_nested_samples(self): for res in self: try: res.nested_samples except ValueError: raise ResultListError("Not all results contain nested samples") def check_consistent_priors(self): for res in self: for p in self[0].priors.keys(): if not self[0].priors[p] == res.priors[p] or len(self[0].priors) != len(res.priors): raise ResultListError("Inconsistent priors between results") def check_consistent_parameters(self): if not np.all([set(self[0].search_parameter_keys) == set(res.search_parameter_keys) for res in self]): raise ResultListError("Inconsistent parameters between results") def check_consistent_data(self): if not np.all([res.log_noise_evidence == self[0].log_noise_evidence for res in self])\ and not np.all([np.isnan(res.log_noise_evidence) for res in self]): raise ResultListError("Inconsistent data between results") def check_consistent_sampler(self): if not np.all([res.sampler == self[0].sampler for res in self]): raise ResultListError("Inconsistent samplers between results") @latex_plot_format def plot_multiple(results, filename=None, labels=None, colours=None, save=True, evidences=False, corner_labels=None, **kwargs): """ Generate a corner plot overlaying two sets of results Parameters ---------- results: list A list of `bilby.core.result.Result` objects containing the samples to plot. filename: str File name to save the figure to. If None (default), a filename is constructed from the outdir of the first element of results and then the labels for all the result files. labels: list List of strings to use when generating a legend. If None (default), the `label` attribute of each result in `results` is used. colours: list The colours for each result. If None, default styles are applied. save: bool If true, save the figure kwargs: dict All other keyword arguments are passed to `result.plot_corner` (except for the keyword `labels` for which you should use the dedicated `corner_labels` input). However, `show_titles` and `truths` are ignored since they would be ambiguous on such a plot. evidences: bool, optional Add the log-evidence calculations to the legend. If available, the Bayes factor will be used instead. corner_labels: list, optional List of strings to be passed to the input `labels` to `result.plot_corner`. Returns ------- fig: A matplotlib figure instance """ kwargs['show_titles'] = False kwargs['truths'] = None if corner_labels is not None: kwargs['labels'] = corner_labels fig = results[0].plot_corner(save=False, **kwargs) default_filename = '{}/{}'.format(results[0].outdir, 'combined') lines = [] default_labels = [] for i, result in enumerate(results): if colours: c = colours[i] else: c = 'C{}'.format(i) hist_kwargs = kwargs.get('hist_kwargs', dict()) hist_kwargs['color'] = c fig = result.plot_corner(fig=fig, save=False, color=c, **kwargs) default_filename += '_{}'.format(result.label) lines.append(mpllines.Line2D([0], [0], color=c)) default_labels.append(result.label) # Rescale the axes for i, ax in enumerate(fig.axes): ax.autoscale() plt.draw() if labels is None: labels = default_labels labels = sanity_check_labels(labels) if evidences: if np.isnan(results[0].log_bayes_factor): template = ' $\mathrm{{ln}}(Z)={lnz:1.3g}$' else: template = ' $\mathrm{{ln}}(B)={lnbf:1.3g}$' labels = [template.format(lnz=result.log_evidence, lnbf=result.log_bayes_factor) for ii, result in enumerate(results)] axes = fig.get_axes() ndim = int(np.sqrt(len(axes))) axes[ndim - 1].legend(lines, labels) if filename is None: filename = default_filename if save: safe_save_figure(fig=fig, filename=filename) return fig @latex_plot_format def make_pp_plot(results, filename=None, save=True, confidence_interval=[0.68, 0.95, 0.997], lines=None, legend_fontsize='x-small', keys=None, title=True, confidence_interval_alpha=0.1, **kwargs): """ Make a P-P plot for a set of runs with injected signals. Parameters ---------- results: list A list of Result objects, each of these should have injected_parameters filename: str, optional The name of the file to save, the default is "outdir/pp.png" save: bool, optional Whether to save the file, default=True confidence_interval: (float, list), optional The confidence interval to be plotted, defaulting to 1-2-3 sigma lines: list If given, a list of matplotlib line formats to use, must be greater than the number of parameters. legend_fontsize: float The font size for the legend keys: list A list of keys to use, if None defaults to search_parameter_keys confidence_interval_alpha: float, list, optional The transparency for the background condifence interval kwargs: Additional kwargs to pass to matplotlib.pyplot.plot Returns ------- fig, pvals: matplotlib figure and a NamedTuple with attributes `combined_pvalue`, `pvalues`, and `names`. """ if keys is None: keys = results[0].search_parameter_keys credible_levels = pd.DataFrame() for result in results: credible_levels = credible_levels.append( result.get_all_injection_credible_levels(keys), ignore_index=True) if lines is None: colors = ["C{}".format(i) for i in range(8)] linestyles = ["-", "--", ":"] lines = ["{}{}".format(a, b) for a, b in product(linestyles, colors)] if len(lines) < len(credible_levels.keys()): raise ValueError("Larger number of parameters than unique linestyles") x_values = np.linspace(0, 1, 1001) N = len(credible_levels) fig, ax = plt.subplots() if isinstance(confidence_interval, float): confidence_interval = [confidence_interval] if isinstance(confidence_interval_alpha, float): confidence_interval_alpha = [confidence_interval_alpha] * len(confidence_interval) elif len(confidence_interval_alpha) != len(confidence_interval): raise ValueError( "confidence_interval_alpha must have the same length as confidence_interval") for ci, alpha in zip(confidence_interval, confidence_interval_alpha): edge_of_bound = (1. - ci) / 2. lower = scipy.stats.binom.ppf(1 - edge_of_bound, N, x_values) / N upper = scipy.stats.binom.ppf(edge_of_bound, N, x_values) / N # The binomial point percent function doesn't always return 0 @ 0, # so set those bounds explicitly to be sure lower[0] = 0 upper[0] = 0 ax.fill_between(x_values, lower, upper, alpha=alpha, color='k') pvalues = [] logger.info("Key: KS-test p-value") for ii, key in enumerate(credible_levels): pp = np.array([sum(credible_levels[key].values < xx) / len(credible_levels) for xx in x_values]) pvalue = scipy.stats.kstest(credible_levels[key], 'uniform').pvalue pvalues.append(pvalue) logger.info("{}: {}".format(key, pvalue)) try: name = results[0].priors[key].latex_label except AttributeError: name = key if name == 'H_eff5': name = '$H_{eff5}$' if name == 'chi_1': name = '$\\chi_1$' if name == 'chi_2': name = '$\\chi_2$' if name == 'Q_tilde': name = '$\\tilde{Q}$' label = "{} ({:2.3f})".format(name, pvalue) plt.plot(x_values, pp, lines[ii], label=label, **kwargs) Pvals = namedtuple('pvals', ['combined_pvalue', 'pvalues', 'names']) pvals = Pvals(combined_pvalue=scipy.stats.combine_pvalues(pvalues)[1], pvalues=pvalues, names=list(credible_levels.keys())) logger.info( "Combined p-value: {}".format(pvals.combined_pvalue)) if title: ax.set_title("N={}, p-value={:2.4f}".format( len(results), pvals.combined_pvalue)) ax.set_xlabel("C.I.") ax.set_ylabel("Fraction of events in C.I.") ax.legend(handlelength=2, labelspacing=0.25, fontsize=legend_fontsize) ax.set_xlim(0, 1) ax.set_ylim(0, 1) fig.tight_layout() if save: if filename is None: filename = 'outdir/pp.png' safe_save_figure(fig=fig, filename=filename, dpi=500) return fig, pvals def sanity_check_labels(labels): """ Check labels for plotting to remove matplotlib errors """ for ii, lab in enumerate(labels): if "_" in lab and "$" not in lab: labels[ii] = lab.replace("_", "-") return labels class ResultError(Exception): """ Base exception for all Result related errors """ class ResultListError(ResultError): """ For Errors occuring during combining results. """ class FileMovedError(ResultError): """ Exceptions that occur when files have been moved """
py
1a513373add8250dfa28479a4b2652e1520684a3
# -*- coding: utf-8 -*- from __future__ import division from __future__ import print_function import datetime import json import math import os import time import sys import unittest from artists.miro.constraints import ( DatasetConstraints, Fields, FieldConstraints, MinConstraint, MaxConstraint, SignConstraint, TypeConstraint, MaxNullsConstraint, NoDuplicatesConstraint, AllowedValuesConstraint, MinLengthConstraint, MaxLengthConstraint, constraint_class, strip_lines, ) TESTDATA_DIR = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'testdata') class TestConstraints(unittest.TestCase): def test_constraint_repr(self): self.assertEqual(repr(MinConstraint(7)), 'MinConstraint(value=7, precision=None)') self.assertEqual(repr(MinConstraint('a')), "MinConstraint(value='a', precision=None)") self.assertEqual(repr(MinConstraint('a', precision='closed')), "MinConstraint(value='a', precision='closed')") self.assertEqual(repr(MinLengthConstraint(3)), "MinLengthConstraint(value=3)") self.assertEqual(repr(MaxConstraint(-3)), 'MaxConstraint(value=-3, precision=None)') self.assertEqual(repr(MaxConstraint('KJ')), "MaxConstraint(value='KJ', precision=None)") self.assertEqual(repr(MaxConstraint(4.2, precision='closed')), "MaxConstraint(value=4.2, precision='closed')") self.assertEqual(repr(MaxLengthConstraint(0)), "MaxLengthConstraint(value=0)") self.assertEqual(repr(SignConstraint('positive')), "SignConstraint(value='positive')") self.assertEqual(repr(MaxNullsConstraint(0)), "MaxNullsConstraint(value=0)") self.assertEqual(repr(NoDuplicatesConstraint()), "NoDuplicatesConstraint(value=True)") self.assertEqual(repr(TypeConstraint('int')), "TypeConstraint(value='int')") self.assertEqual(repr(TypeConstraint(['int', 'real'])), "TypeConstraint(value=['int', 'real'])") self.assertEqual(repr(AllowedValuesConstraint(['a', 'b'])), "AllowedValuesConstraint(value=['a', 'b'])") def test_constraint_class(self): goods = { 'type': 'TypeConstraint', 'min': 'MinConstraint', 'min_length': 'MinLengthConstraint', 'max': 'MaxConstraint', 'max_length': 'MaxLengthConstraint', 'sign': 'SignConstraint', 'max_nulls': 'MaxNullsConstraint', 'no_duplicates': 'NoDuplicatesConstraint', 'allowed_values': 'AllowedValuesConstraint', } for k,v in goods.items(): self.assertEqual(constraint_class(k), v) def testBadConstraints(self): self.assertRaisesRegex(TypeError, 'unexpected keyword', SignConstraint, precision='closed') self.assertRaises(AssertionError, MinConstraint, 3, precision='unknown') self.assertRaises(AssertionError, SignConstraint, 'not too positive') self.assertRaises(AssertionError, TypeConstraint, 'float') self.assertRaises(AssertionError, TypeConstraint, ['int', 'float']) self.assertRaises(AssertionError, TypeConstraint, ['int', None]) def testFieldConstraintsDict(self): c = FieldConstraints('one', [TypeConstraint('int'), MinConstraint(3), MaxConstraint(7), SignConstraint('positive'), MaxNullsConstraint(0), NoDuplicatesConstraint()]) dfc = Fields([c]) self.assertEqual(strip_lines(json.dumps(dfc.to_dict_value(), indent=4)), '''{ "one": { "type": "int", "min": 3, "max": 7, "sign": "positive", "max_nulls": 0, "no_duplicates": true } }''') c = FieldConstraints('one', [TypeConstraint('int'), MinConstraint(3, precision='closed'), MaxConstraint(7, precision='fuzzy'), SignConstraint('positive'), MaxNullsConstraint(0), NoDuplicatesConstraint()]) dfc = Fields([c]) self.assertEqual(strip_lines(json.dumps(dfc.to_dict_value(), indent=4)), '''{ "one": { "type": "int", "min": { "value": 3, "precision": "closed" }, "max": { "value": 7, "precision": "fuzzy" }, "sign": "positive", "max_nulls": 0, "no_duplicates": true } }''') def testload(self): path = os.path.join(TESTDATA_DIR, 'ddd.tdda') constraints = DatasetConstraints(loadpath=path) # print(constraints) if sys.version_info.major < 3: # Quieten down Python3's vexatious complaining TestConstraints.assertRaisesRegex = TestConstraints.assertRaisesRegexp if __name__ == '__main__': unittest.main()
py
1a5136559244ff3bee06a9c97afe68a8d155d407
def _is_displayed_filter(item): try: result = item.is_displayed() #print("is_displayed? %s" % result) return True #return result except Exception as e: print(e) return False
py
1a51366ca291f2414312722836609ca0ca5737af
# python from chempy import io from chempy import protein from chempy import protein_mmff from chempy import bond_mmff # #print 'normal' #protein_mmff.check_sum(protein_mmff.normal) #print 'n_terminal' #protein_mmff.check_sum(protein_mmff.n_terminal) #print 'c_terminal' #protein_mmff.check_sum(protein_mmff.c_terminal) model= io.pdb.fromFile("../../test/dat/pept.pdb") model= protein.generate(model,forcefield=protein_mmff,bondfield=bond_mmff) for a in model.atom: a.numeric_type = protein_mmff.alpha_map[a.text_type] sm = 0 for a in model.atom: sm = sm + a.partial_charge print " prot: net partial charge on protein is %8.3f" % sm print " prot: (this should be integral)!" io.pkl.toFile(model,"generate_mmff.pkl")
py
1a5139b933b9dcdbf9bb161fb4a9a5e3a33ec728
# -*- coding: utf-8 -*- # # Testing for server caching. # # ------------------------------------------------ # imports # ------- import unittest import pytest import requests from xml.etree import ElementTree from . import config # tests # ----- @pytest.mark.usefixtures("server") class TestLocalMock(unittest.TestCase): def test_no_file(self): response = requests.get(config.URL + '/missing') self.assertEqual(response.status_code, 404) return def test_status(self): response = requests.get(config.URL + '/_/status') self.assertEqual(response.status_code, 200) data = response.json() self.assertEqual(data['status'], 'ok') return def test_get_root(self): # json response = requests.get(config.URL + '/json') self.assertEqual(response.status_code, 200) data = response.json() self.assertEqual(data['status'], 'ok') self.assertEqual(data['type'], 'json') # xml response = requests.get(config.URL + '/xml') self.assertEqual(response.status_code, 200) data = ElementTree.fromstring(response.content) self.assertEqual(data.find('status').text, 'ok') self.assertEqual(data.find('type').text, 'xml') # text response = requests.get(config.URL + '/txt') self.assertEqual(response.status_code, 200) data = str(response.text.rstrip()) self.assertEqual(data, 'test') return def test_get_query(self): # json response = requests.get(config.URL + '/query/json') self.assertEqual(response.status_code, 200) data = response.json() self.assertEqual(data['status'], 'ok') self.assertEqual(data['type'], 'json') # xml response = requests.get(config.URL + '/query/xml') self.assertEqual(response.status_code, 200) data = ElementTree.fromstring(response.content) self.assertEqual(data.find('status').text, 'ok') self.assertEqual(data.find('type').text, 'xml') # text response = requests.get(config.URL + '/query/txt') self.assertEqual(response.status_code, 200) data = str(response.text.rstrip()) self.assertEqual(data, 'test') return def test_get_params_single(self): response = requests.get(config.URL + '?arg=test') self.assertEqual(response.status_code, 200) data = response.json() self.assertEqual(data['status'], 'ok') self.assertEqual(data['param'], 'test') self.assertEqual(data['arg'], 'test') return def test_get_params_multiple(self): response = requests.get(config.URL + '?narg=ntest&arg=test') self.assertEqual(response.status_code, 200) data = response.json() self.assertEqual(data['status'], 'ok') self.assertEqual(data['param'], 'test') self.assertEqual(data['arg'], 'test') return def test_get_query_params_single(self): response = requests.get(config.URL + '/query?arg=test') self.assertEqual(response.status_code, 200) data = response.json() self.assertEqual(data['status'], 'ok') self.assertEqual(data['param'], 'test') self.assertEqual(data['arg'], 'test') return def test_get_query_params_multiple(self): response = requests.get(config.URL + '/query?narg=ntest&arg=test') self.assertEqual(response.status_code, 200) data = response.json() self.assertEqual(data['status'], 'ok') self.assertEqual(data['param'], 'test') self.assertEqual(data['arg'], 'test') return def test_post_payload(self): # test resource: 1906fde response = requests.post(config.URL, json={'data': 'test'}) self.assertEqual(response.status_code, 200) data = response.json() self.assertEqual(data['status'], 'ok') self.assertEqual(data['param'], 'test') return def test_post_params_payload(self): # test resource: arg=test1906fde response = requests.post(config.URL + '?arg=test', json={'data': 'test'}) self.assertEqual(response.status_code, 200) data = response.json() self.assertEqual(data['status'], 'ok') self.assertEqual(data['param'], 'test') self.assertEqual(data['arg'], 'test') return def test_post_query_payload(self): # test resource: query/1906fde response = requests.post(config.URL + '/query', json={'data': 'test'}) self.assertEqual(response.status_code, 200) data = response.json() self.assertEqual(data['status'], 'ok') self.assertEqual(data['param'], 'test') return def test_post_query_params_payload(self): # test resource: query/arg=test1906fde response = requests.post(config.URL + '/query?arg=test', json={'data': 'test'}) self.assertEqual(response.status_code, 200) data = response.json() self.assertEqual(data['status'], 'ok') self.assertEqual(data['param'], 'test') self.assertEqual(data['arg'], 'test') return def test_get_named_param(self): import uuid uu = str(uuid.uuid4()) # root response = requests.get(config.URL + '/' + uu) self.assertEqual(response.status_code, 200) data = response.json() self.assertEqual(data['status'], 'ok') self.assertEqual(data['param'], 'test') self.assertTrue('uuid' in data) # query response = requests.get(config.URL + '/query/' + uu) self.assertEqual(response.status_code, 200) data = response.json() self.assertEqual(data['status'], 'ok') self.assertEqual(data['param'], 'test') self.assertTrue('uuid' in data) return def test_resolve_with_post_method(self): # GET response = requests.get(config.URL + '/json') self.assertEqual(response.status_code, 200) data = response.json() self.assertEqual(data['status'], 'ok') self.assertEqual(data['type'], 'json') # POST response = requests.post(config.URL + '/json') self.assertEqual(response.status_code, 200) data = response.json() self.assertEqual(data['status'], 'ok') self.assertEqual(data['type'], 'json') # PUT response = requests.put(config.URL + '/json') self.assertEqual(response.status_code, 200) data = response.json() self.assertEqual(data['status'], 'ok') self.assertEqual(data['type'], 'json') return @pytest.mark.usefixtures("server") class TestDynamicMock(unittest.TestCase): # GET def test_get_simple(self): response = requests.get(config.URL + '/simple') self.assertEqual(response.status_code, 200) data = response.json() self.assertEqual(data['status'], 'ok') return def test_get_simple_args(self): response = requests.get(config.URL + '/simple?arg=test') self.assertEqual(response.status_code, 200) data = response.json() self.assertEqual(data['status'], 'ok') self.assertEqual(data['arg'], 'test') return def test_get_nested(self): response = requests.get(config.URL + '/nested/test') self.assertEqual(response.status_code, 200) data = response.json() self.assertEqual(data['status'], 'ok') self.assertEqual(data['param'], 'test') return def test_get_nested_args(self): response = requests.get(config.URL + '/nested/test?arg=test') self.assertEqual(response.status_code, 200) data = response.json() self.assertEqual(data['status'], 'ok') self.assertEqual(data['param'], 'test') self.assertEqual(data['arg'], 'test') return # POST def test_post_simple(self): response = requests.post(config.URL + '/simple', json={'param': 'test'}) self.assertEqual(response.status_code, 200) data = response.json() self.assertEqual(data['status'], 'ok') self.assertEqual(data['param'], 'test') return def test_post_simple_args(self): response = requests.post(config.URL + '/simple?arg=test', json={'param': 'test'}) self.assertEqual(response.status_code, 200) data = response.json() self.assertEqual(data['status'], 'ok') self.assertEqual(data['arg'], 'test') self.assertEqual(data['param'], 'test') return def test_post_nested(self): response = requests.post(config.URL + '/nested/test', json={'payload': 'test'}) self.assertEqual(response.status_code, 200) data = response.json() self.assertEqual(data['status'], 'ok') self.assertEqual(data['param'], 'test') self.assertEqual(data['payload'], 'test') return def test_post_nested_args(self): response = requests.post(config.URL + '/nested/test?arg=test', json={'payload': 'test'}) self.assertEqual(response.status_code, 200) data = response.json() self.assertEqual(data['status'], 'ok') self.assertEqual(data['arg'], 'test') self.assertEqual(data['param'], 'test') self.assertEqual(data['payload'], 'test') return # PUT def test_put_simple(self): response = requests.put(config.URL + '/simple', json={'param': 'test'}) self.assertEqual(response.status_code, 200) data = response.json() self.assertEqual(data['status'], 'ok') self.assertEqual(data['param'], 'test') return def test_put_simple_args(self): response = requests.put(config.URL + '/simple?arg=test', json={'param': 'test'}) self.assertEqual(response.status_code, 200) data = response.json() self.assertEqual(data['status'], 'ok') self.assertEqual(data['arg'], 'test') self.assertEqual(data['param'], 'test') return def test_put_nested(self): response = requests.put(config.URL + '/nested/test', json={'payload': 'test'}) self.assertEqual(response.status_code, 200) data = response.json() self.assertEqual(data['status'], 'ok') self.assertEqual(data['param'], 'test') self.assertEqual(data['payload'], 'test') return def test_put_nested_args(self): response = requests.put(config.URL + '/nested/test?arg=test', json={'payload': 'test'}) self.assertEqual(response.status_code, 200) data = response.json() self.assertEqual(data['status'], 'ok') self.assertEqual(data['arg'], 'test') self.assertEqual(data['param'], 'test') self.assertEqual(data['payload'], 'test') return
py
1a5139eab8c37e6abf96e51703246fbb16c912d0
""" Open3d visualization tool box Written by Jihan YANG All rights preserved from 2021 - present. """ import open3d import torch import matplotlib import numpy as np box_colormap = [ [1, 1, 1], [0, 1, 0], [0, 1, 1], [1, 1, 0], ] def get_coor_colors(obj_labels): """ Args: obj_labels: 1 is ground, labels > 1 indicates different instance cluster Returns: rgb: [N, 3]. color for each point. """ colors = matplotlib.colors.XKCD_COLORS.values() max_color_num = obj_labels.max() color_list = list(colors)[:max_color_num+1] colors_rgba = [matplotlib.colors.to_rgba_array(color) for color in color_list] label_rgba = np.array(colors_rgba)[obj_labels] label_rgba = label_rgba.squeeze()[:, :3] return label_rgba def draw_scenes(points, gt_boxes=None, ref_boxes=None, ref_labels=None, ref_scores=None, point_colors=None, draw_origin=True): """ ็ป˜ๅˆถ็‚นไบ‘ Args: points:็‚นไบ‘ gt_boxes:็œŸๅ€ผbox ๏ผˆN, 7๏ผ‰ ref_boxes:้ข„ๆต‹box ๏ผˆM, 7๏ผ‰ ref_scores:้ข„ๆต‹ๅˆ†ๆ•ฐ (M,) ref_labels:้ข„ๆต‹็ฑปๅˆซ (M,) """ # 1.ๅˆคๆ–ญๆ•ฐๆฎ็ฑปๅž‹๏ผŒๅนถๅฐ†ๆ•ฐๆฎไปŽtensor่ฝฌๅŒ–ไธบnumpy็š„array if isinstance(points, torch.Tensor): points = points.cpu().numpy() if isinstance(gt_boxes, torch.Tensor): gt_boxes = gt_boxes.cpu().numpy() if isinstance(ref_boxes, torch.Tensor): ref_boxes = ref_boxes.cpu().numpy() vis = open3d.visualization.Visualizer() vis.create_window() vis.get_render_option().point_size = 1.0 vis.get_render_option().background_color = np.zeros(3) # draw origin if draw_origin: axis_pcd = open3d.geometry.TriangleMesh.create_coordinate_frame(size=1.0, origin=[0, 0, 0]) vis.add_geometry(axis_pcd) pts = open3d.geometry.PointCloud() pts.points = open3d.utility.Vector3dVector(points[:, :3]) vis.add_geometry(pts) if point_colors is None: pts.colors = open3d.utility.Vector3dVector(np.ones((points.shape[0], 3))) else: pts.colors = open3d.utility.Vector3dVector(point_colors) if gt_boxes is not None: vis = draw_box(vis, gt_boxes, (0, 0, 1)) if ref_boxes is not None: vis = draw_box(vis, ref_boxes, (0, 1, 0), ref_labels, ref_scores) vis.run() vis.destroy_window() def translate_boxes_to_open3d_instance(gt_boxes): """ 4-------- 6 /| /| 5 -------- 3 . | | | | . 7 -------- 1 |/ |/ 2 -------- 0 """ center = gt_boxes[0:3] lwh = gt_boxes[3:6] axis_angles = np.array([0, 0, gt_boxes[6] + 1e-10]) rot = open3d.geometry.get_rotation_matrix_from_axis_angle(axis_angles) box3d = open3d.geometry.OrientedBoundingBox(center, rot, lwh) line_set = open3d.geometry.LineSet.create_from_oriented_bounding_box(box3d) # import ipdb; ipdb.set_trace(context=20) lines = np.asarray(line_set.lines) lines = np.concatenate([lines, np.array([[1, 4], [7, 6]])], axis=0) line_set.lines = open3d.utility.Vector2iVector(lines) return line_set, box3d def draw_box(vis, gt_boxes, color=(0, 1, 0), ref_labels=None, score=None): for i in range(gt_boxes.shape[0]): line_set, box3d = translate_boxes_to_open3d_instance(gt_boxes[i]) if ref_labels is None: line_set.paint_uniform_color(color) else: line_set.paint_uniform_color(box_colormap[ref_labels[i]]) vis.add_geometry(line_set) # if score is not None: # corners = box3d.get_box_points() # vis.add_3d_label(corners[5], '%.2f' % score[i]) return vis
py
1a513a88a7314c8bd656186af8247e5f7717cdb5
import torch from torch import nn from MedicalNet.models import resnet def generate_model(opt): assert opt.model in [ 'resnet' ] if opt.model == 'resnet': assert opt.model_depth in [10, 18, 34, 50, 101, 152, 200] if opt.model_depth == 10: model = resnet.resnet10( sample_input_W=opt.input_W, sample_input_H=opt.input_H, sample_input_D=opt.input_D, shortcut_type=opt.resnet_shortcut, no_cuda=opt.no_cuda, num_seg_classes=opt.n_seg_classes) elif opt.model_depth == 18: model = resnet.resnet18( sample_input_W=opt.input_W, sample_input_H=opt.input_H, sample_input_D=opt.input_D, shortcut_type=opt.resnet_shortcut, no_cuda=opt.no_cuda, num_seg_classes=opt.n_seg_classes) elif opt.model_depth == 34: model = resnet.resnet34( sample_input_W=opt.input_W, sample_input_H=opt.input_H, sample_input_D=opt.input_D, shortcut_type=opt.resnet_shortcut, no_cuda=opt.no_cuda, num_seg_classes=opt.n_seg_classes) elif opt.model_depth == 50: model = resnet.resnet50( sample_input_W=opt.input_W, sample_input_H=opt.input_H, sample_input_D=opt.input_D, shortcut_type=opt.resnet_shortcut, no_cuda=opt.no_cuda, num_seg_classes=opt.n_seg_classes) elif opt.model_depth == 101: model = resnet.resnet101( sample_input_W=opt.input_W, sample_input_H=opt.input_H, sample_input_D=opt.input_D, shortcut_type=opt.resnet_shortcut, no_cuda=opt.no_cuda, num_seg_classes=opt.n_seg_classes) elif opt.model_depth == 152: model = resnet.resnet152( sample_input_W=opt.input_W, sample_input_H=opt.input_H, sample_input_D=opt.input_D, shortcut_type=opt.resnet_shortcut, no_cuda=opt.no_cuda, num_seg_classes=opt.n_seg_classes) elif opt.model_depth == 200: model = resnet.resnet200( sample_input_W=opt.input_W, sample_input_H=opt.input_H, sample_input_D=opt.input_D, shortcut_type=opt.resnet_shortcut, no_cuda=opt.no_cuda, num_seg_classes=opt.n_seg_classes) if not opt.no_cuda: if len(opt.gpu_id) > 1: model = model.cuda() model = nn.DataParallel(model, device_ids=opt.gpu_id) net_dict = model.state_dict() else: import os os.environ["CUDA_VISIBLE_DEVICES"] = str(opt.gpu_id[0]) model = model.cuda() model = nn.DataParallel(model, device_ids=None) net_dict = model.state_dict() else: net_dict = model.state_dict() # load pretrain if opt.pretrain_path: print('loading pretrained model {}'.format(opt.pretrain_path)) pretrain = torch.load(opt.pretrain_path) pretrain_dict = {k: v for k, v in pretrain['state_dict'].items() if k in net_dict.keys()} net_dict.update(pretrain_dict) model.load_state_dict(net_dict) new_parameters = [] for pname, p in model.named_parameters(): for layer_name in opt.new_layer_names: if pname.find(layer_name) >= 0: new_parameters.append(p) break new_parameters_id = list(map(id, new_parameters)) base_parameters = list(filter(lambda p: id(p) not in new_parameters_id, model.parameters())) parameters = {'base_parameters': base_parameters, 'new_parameters': new_parameters} return model, parameters return model, model.parameters()
py
1a513b4f2b01274207b9937e18a8fb16db770fb2
# vim:ts=4:sts=4:sw=4:expandtab import copy import datetime import dateutil.parser import glob import json import logging import math from multiprocessing import Process import os import random import shutil import subprocess import sys import tempfile import traceback from threading import Thread import time import uuid from kolejka.common import kolejka_config, foreman_config from kolejka.common import KolejkaTask, KolejkaResult, KolejkaLimits from kolejka.common import MemoryAction, TimeAction, parse_memory from kolejka.client import KolejkaClient from kolejka.common.gpu import gpu_stats from kolejka.common.images import ( pull_docker_image, get_docker_image_size, check_docker_image_existance, list_docker_images, remove_docker_image ) from kolejka.worker.stage0 import stage0 from kolejka.worker.volume import check_python_volume def manage_images(pull, size, necessary_images, priority_images): necessary_size = sum(necessary_images.values(), 0) free_size = size - necessary_size assert free_size >= 0 docker_images = list_docker_images() p_images = dict() for image in priority_images: if image in docker_images: p_images[image] = docker_images[image] priority_images = p_images keep_images = set() for image in necessary_images: keep_images.add(image) list_images = list(priority_images.items()) random.shuffle(list_images) li = list(docker_images.items()) random.shuffle(li) list_images += li for image,size in list_images: if image in keep_images: continue if size <= free_size: free_size -= size keep_images.add(image) for image in docker_images: if image not in keep_images: remove_docker_image(image) for image, size in necessary_images.items(): pull_image = pull if not pull_image: if not check_docker_image_existance(image): pull_image = True if pull_image: pull_docker_image(image) image_size = get_docker_image_size(image) assert image_size <= size def foreman_single(temp_path, task): config = foreman_config() with tempfile.TemporaryDirectory(temp_path) as jailed_path: if task.limits.workspace is not None: subprocess.run(['mount', '-t', 'tmpfs', '-o', 'size='+str(task.limits.workspace), 'none', jailed_path], check=True) try: task_path = os.path.join(jailed_path, 'task') result_path = os.path.join(jailed_path, 'result') temp_path = os.path.join(jailed_path, 'temp') os.makedirs(task_path, exist_ok=True) os.makedirs(result_path, exist_ok=True) os.makedirs(temp_path, exist_ok=True) task.path = task_path client = KolejkaClient() client.task_get(task.id, task_path) for k,f in task.files.items(): f.path = k task.commit() stage0(task.path, result_path, temp_path=temp_path, consume_task_folder=True) result = KolejkaResult(result_path) result.tags = config.tags client.result_put(result) except: traceback.print_exc() finally: if task.limits.storage is not None: subprocess.run(['umount', '-l', jailed_path]) def foreman(): config = foreman_config() gstats = gpu_stats().gpus limits = KolejkaLimits() limits.cpus = config.cpus limits.memory = config.memory limits.swap = config.swap limits.pids = config.pids limits.storage = config.storage limits.image = config.image limits.workspace = config.workspace limits.time = config.time limits.network = config.network limits.gpus = config.gpus if limits.gpus is None: limits.gpus = len(gstats) limits.gpu_memory = config.gpu_memory for k,v in gstats.items(): if limits.gpu_memory is None: limits.gpu_memory = v.memory_total elif v.memory_total is not None: limits.gpu_memory = min(limits.gpu_memory, v.memory_total) client = KolejkaClient() logging.debug('Foreman tags: {}, limits: {}'.format(config.tags, limits.dump())) while True: try: tasks = client.dequeue(config.concurency, limits, config.tags) if len(tasks) == 0: time.sleep(config.interval) else: check_python_volume() while len(tasks) > 0: resources = KolejkaLimits() resources.copy(limits) image_usage = dict() processes = list() cpus_offset = 0 gpus_offset = 0 for task in tasks: if len(processes) >= config.concurency: break if task.exclusive and len(processes) > 0: break task.limits.update(limits) task.limits.cpus_offset = cpus_offset task.limits.gpus_offset = gpus_offset ok = True if resources.cpus is not None and task.limits.cpus > resources.cpus: ok = False if task.limits.gpus is not None and task.limits.gpus > 0: if resources.gpus is None or task.limits.gpus > resources.gpus: ok = False if resources.gpu_memory is not None and task.limits.gpu_memory > resources.gpu_memory: ok = False if resources.memory is not None and task.limits.memory > resources.memory: ok = False if resources.swap is not None and task.limits.swap > resources.swap: ok = False if resources.pids is not None and task.limits.pids > resources.pids: ok = False if resources.storage is not None and task.limits.storage > resources.storage: ok = False if resources.image is not None: image_usage_add = max(image_usage.get(task.image, 0), task.limits.image) - image_usage.get(task.image, 0) if image_usage_add > resources.image: ok = False if resources.workspace is not None and task.limits.workspace > resources.workspace: ok = False if ok: proc = Process(target=foreman_single, args=(config.temp_path, task)) processes.append(proc) cpus_offset += task.limits.cpus if resources.cpus is not None: resources.cpus -= task.limits.cpus if resources.gpus is not None and task.limits.gpus is not None: resources.gpus -= task.limits.gpus gpus_offset += task.limits.gpus if resources.memory is not None: resources.memory -= task.limits.memory if resources.swap is not None: resources.swap -= task.limits.swap if resources.pids is not None: resources.pids -= task.limits.pids if resources.storage is not None: resources.storage -= task.limits.storage if resources.image is not None: resources.image -= image_usage_add image_usage[task.image] = max(image_usage.get(task.image, 0), task.limits.image) if resources.workspace is not None: resources.workspace -= task.limits.workspace tasks = tasks[1:] if task.exclusive: break else: break if config.image is not None: manage_images( config.pull, config.image, image_usage, [task.image for task in tasks] ) for proc in processes: proc.start() for proc in processes: proc.join() except KeyboardInterrupt: raise except: traceback.print_exc() time.sleep(config.interval) def config_parser(parser): parser.add_argument('--auto-tags', type=bool, help='add automatically generated machine tags', default=True) parser.add_argument('--pull', action='store_true', help='always pull images, even if local version is present', default=False) parser.add_argument('--tags', type=str, help='comma separated list of machine tags') parser.add_argument('--temp', type=str, help='temp folder') parser.add_argument('--interval', type=float, help='dequeue interval (in seconds)') parser.add_argument('--concurency', type=int, help='number of simultaneous tasks') parser.add_argument('--cpus', type=int, help='cpus limit') parser.add_argument('--memory', action=MemoryAction, help='memory limit') parser.add_argument('--swap', action=MemoryAction, help='swap limit') parser.add_argument('--pids', type=int, help='pids limit') parser.add_argument('--storage', action=MemoryAction, help='storage limit') parser.add_argument('--image', action=MemoryAction, help='image size limit') parser.add_argument('--workspace', action=MemoryAction, help='workspace size limit') parser.add_argument('--time', action=TimeAction, help='time limit') parser.add_argument('--network', type=bool, help='allow netowrking') parser.add_argument('--gpus', type=int, help='gpus limit') parser.add_argument('--gpu-memory', type=MemoryAction, help='gpu memory limit') def execute(args): kolejka_config(args=args) foreman() parser.set_defaults(execute=execute)
py
1a513e9386324d0c4e8586c26aa3d520518132f4
"""Helper functions for beam search.""" import numpy as np from queue import PriorityQueue from future.utils import implements_iterator def InitBeam(phrase, user_id, m): # Need to find the hidden state for the last char in the prefix. prev_hidden = np.zeros((1, 2 * m.params.num_units)) for word in phrase[:-1]: feed_dict = { m.model.prev_hidden_state: prev_hidden, m.model.prev_word: [m.char_vocab[word]], m.model.beam_size: 4 } prev_hidden = m.session.run(m.model.next_hidden_state, feed_dict) return prev_hidden class BeamItem(object): """This is a node in the beam search tree. Each node holds four things: a log probability, a list of previous words, and the two hidden state vectors. """ def __init__(self, prev_word, prev_hidden, log_prob=0.0): self.log_probs = log_prob if type(prev_word) == list: self.words = prev_word else: self.words = [prev_word] self.prev_hidden = prev_hidden def __le__(self, other): return self.log_probs <= other.log_probs def __lt__(self, other): return self.log_probs < other.log_probs def __ge__(self, other): return self.log_probs >= other.log_probs def __gt__(self, other): return self.log_probs > other.log_probs def __eq__(self, other): return self.log_probs == other.log_probs def __str__(self): return 'beam {0:.3f}: '.format(self.log_probs) + ''.join(self.words) class BeamQueue(object): """Bounded priority queue.""" def __init__(self, max_size=10): self.max_size = max_size self.size = 0 self.bound = None self.q = PriorityQueue() def Insert(self, item): self.size += 1 self.q.put((-item.log_probs, item)) if self.size > self.max_size: self.Eject() def CheckBound(self, val): # If the queue is full then we know that there is no chance of a new item # being accepted if it's priority is worse than the last thing that got # ejected. return self.size < self.max_size or self.bound is None or val < self.bound def Eject(self): score, _ = self.q.get() self.bound = -score self.size -= 1 def __iter__(self): return self def __next__(self): if not self.q.empty(): _, item = self.q.get() return item raise StopIteration def next(self): return self.__next__() def GetCompletions(prefix, user_id, m, branching_factor=8, beam_size=300, stop='</S>'): """ Find top completions for a given prefix, user and model.""" m.Lock(user_id) # pre-compute the adaptive recurrent matrix prev_state = InitBeam(prefix, user_id, m) nodes = [BeamItem(prefix, prev_state)] for i in range(36): new_nodes = BeamQueue(max_size=beam_size) current_nodes = [] for node in nodes: if i > 0 and node.words[-1] == stop: # don't extend past the stop token new_nodes.Insert(node) # copy over finished beams else: current_nodes.append(node) # these ones will get extended if len(current_nodes) == 0: return new_nodes # all beams have finished # group together all the nodes in the queue for efficient computation prev_hidden = np.vstack([item.prev_hidden for item in current_nodes]) prev_words = np.array([m.char_vocab[item.words[-1]] for item in current_nodes]) feed_dict = { m.model.prev_word: prev_words, m.model.prev_hidden_state: prev_hidden, m.model.beam_size: branching_factor } current_char, current_char_p, prev_hidden = m.session.run( [m.beam_chars, m.model.selected_p, m.model.next_hidden_state], feed_dict) for i, node in enumerate(current_nodes): for new_word, top_value in zip(current_char[i, :], current_char_p[i, :]): new_cost = top_value + node.log_probs if new_nodes.CheckBound(new_cost): # only create a new object if it fits in beam new_beam = BeamItem(node.words + [new_word], prev_hidden[i, :], log_prob=new_cost) new_nodes.Insert(new_beam) nodes = new_nodes return nodes def FirstNonMatch(s1, s2, start=0): # returns the position of the first non-matching character min_len = min(len(s1), len(s2)) for i in xrange(start, min_len): if s1[i] != s2[i]: return i return min_len def GetSavedKeystrokes(m, query, branching_factor=4, beam_size=100): """Find the shortest prefix that gets the right completion. Uses binary search. """ left = 1 right = len(query) while left <= right: midpoint = (left + right) / 2 prefix = ['<S>'] + list(query[:midpoint]) completions = GetCompletions( prefix, 0, m, branching_factor=branching_factor, beam_size=beam_size) top_completion = list(completions)[-1] top_completion = ''.join(top_completion.words[1:-1]) if top_completion == query: right = midpoint - 1 else: left = midpoint + 1 return left
py
1a513fa6fc6875f73565686b07d96b3014f71980
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Keras metrics.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized from tensorflow.python.data.ops import dataset_ops from tensorflow.python.distribute import combinations as ds_combinations from tensorflow.python.distribute import strategy_combinations from tensorflow.python.framework import ops from tensorflow.python.framework import test_combinations as combinations from tensorflow.python.keras import metrics from tensorflow.python.ops import math_ops from tensorflow.python.platform import test def _labeled_dataset_fn(): # First four batches of x: labels, predictions -> (labels == predictions) # 0: 0, 0 -> True; 1: 1, 1 -> True; 2: 2, 2 -> True; 3: 3, 0 -> False # 4: 4, 1 -> False; 5: 0, 2 -> False; 6: 1, 0 -> False; 7: 2, 1 -> False # 8: 3, 2 -> False; 9: 4, 0 -> False; 10: 0, 1 -> False; 11: 1, 2 -> False # 12: 2, 0 -> False; 13: 3, 1 -> False; 14: 4, 2 -> False; 15: 0, 0 -> True return dataset_ops.Dataset.range(1000).map( lambda x: {"labels": x % 5, "predictions": x % 3}).batch( 4, drop_remainder=True) def _boolean_dataset_fn(): # First four batches of labels, predictions: {TP, FP, TN, FN} # with a threshold of 0.5: # T, T -> TP; F, T -> FP; T, F -> FN # F, F -> TN; T, T -> TP; F, T -> FP # T, F -> FN; F, F -> TN; T, T -> TP # F, T -> FP; T, F -> FN; F, F -> TN return dataset_ops.Dataset.from_tensor_slices({ "labels": [True, False, True, False], "predictions": [True, True, False, False]}).repeat().batch( 3, drop_remainder=True) def _threshold_dataset_fn(): # First four batches of labels, predictions: {TP, FP, TN, FN} # with a threshold of 0.5: # True, 1.0 -> TP; False, .75 -> FP; True, .25 -> FN # False, 0.0 -> TN; True, 1.0 -> TP; False, .75 -> FP # True, .25 -> FN; False, 0.0 -> TN; True, 1.0 -> TP # False, .75 -> FP; True, .25 -> FN; False, 0.0 -> TN return dataset_ops.Dataset.from_tensor_slices({ "labels": [True, False, True, False], "predictions": [1.0, 0.75, 0.25, 0.]}).repeat().batch( 3, drop_remainder=True) def _regression_dataset_fn(): return dataset_ops.Dataset.from_tensor_slices({ "labels": [1., .5, 1., 0.], "predictions": [1., .75, .25, 0.]}).repeat() def all_combinations(): return combinations.combine( distribution=[ strategy_combinations.default_strategy, strategy_combinations.one_device_strategy, strategy_combinations.mirrored_strategy_with_gpu_and_cpu, strategy_combinations.mirrored_strategy_with_two_gpus, strategy_combinations.mirrored_strategy_with_two_gpus_no_merge_call, ], mode=["graph"]) def tpu_combinations(): return combinations.combine( distribution=[strategy_combinations.tpu_strategy,], mode=["graph"]) class KerasMetricsTest(test.TestCase, parameterized.TestCase): def _test_metric(self, distribution, dataset_fn, metric_init_fn, expected_fn): with ops.Graph().as_default(), distribution.scope(): metric = metric_init_fn() iterator = distribution.make_input_fn_iterator(lambda _: dataset_fn()) updates = distribution.experimental_local_results( distribution.run(metric, args=(iterator.get_next(),))) batches_per_update = distribution.num_replicas_in_sync self.evaluate(iterator.initializer) self.evaluate([v.initializer for v in metric.variables]) batches_consumed = 0 for i in range(4): batches_consumed += batches_per_update self.evaluate(updates) self.assertAllClose(expected_fn(batches_consumed), self.evaluate(metric.result()), 0.001, msg="After update #" + str(i+1)) if batches_consumed >= 4: # Consume 4 input batches in total. break @ds_combinations.generate(all_combinations() + tpu_combinations()) def testMean(self, distribution): def _dataset_fn(): return dataset_ops.Dataset.range(1000).map(math_ops.to_float).batch( 4, drop_remainder=True) def _expected_fn(num_batches): # Mean(0..3) = 1.5, Mean(0..7) = 3.5, Mean(0..11) = 5.5, etc. return num_batches * 2 - 0.5 self._test_metric(distribution, _dataset_fn, metrics.Mean, _expected_fn) if __name__ == "__main__": test.main()
py
1a513fd1df262cf2f1aaa46b98dea606cec603b1
from django.test import TestCase from l10n.validators import aupostcode, capostcode, uspostcode from l10n import l10n_settings from l10n.utils import moneyfmt from decimal import Decimal class AUPostCodeTest(TestCase): def test_valid(self): code = aupostcode.validate("2000") self.assertEqual('2000', code) code = aupostcode.validate(" 2000 ") self.assertEqual('2000', code) def test_invalid(self): try: code = capostcode.validate("") self.fail('Invalid blank postal code not caught') except: pass try: code = capostcode.validate("no") self.fail('Invalid postal code "no" not caught') except: pass class CAPostCodeTest(TestCase): def test_valid(self): code = capostcode.validate("M5V2T6") self.assertEqual('M5V2T6', code) code = capostcode.validate("m5v2t6") self.assertEqual('M5V2T6', code) def test_invalid(self): try: code = capostcode.validate("") self.fail('Invalid blank postal code not caught') except: pass try: code = capostcode.validate("no") self.fail('Invalid postal code "no" not caught') except: pass try: code = capostcode.validate("M5V M5V") self.fail('Invalid postal code "M5V M5V" not caught') except: pass try: code = capostcode.validate("D5V 2T6") self.fail('Invalid postal code "D5V 2T6" not caught -- "D" is not a valid major geographic area or province.') except: pass class USPostCodeTest(TestCase): def test_five_digit(self): zipcode = uspostcode.validate("66044") self.assertEqual('66044', zipcode) try: zipcode = uspostcode.validate(" 66044 ") self.fail("Invalid postal code not caught") except: pass def test_nine_digit(self): zipcode = uspostcode.validate("94043-1351") self.assertEqual('94043-1351', zipcode) try: zipcode = uspostcode.validate(" 94043-1351 ") self.fail('Invalide postal code not caught') except: pass def test_invalid(self): try: code = uspostcode.validate("") self.fail('Invalid blank postal code not caught') except: pass try: zipcode = uspostcode.validate("no") self.fail('Invalid ZIP code "no" not caught') except: pass class MoneyFmtTest(TestCase): def testUSD(self): l10n_settings.set_l10n_setting('default_currency', 'USD') val = Decimal('10.00') self.assertEqual(moneyfmt(val), '$10.00') self.assertEqual(moneyfmt(val, currency_code='USD'), '$10.00') def testGBP(self): l10n_settings.set_l10n_setting('default_currency', 'GBP') val = Decimal('10.00') self.assertEqual(moneyfmt(val), 'ยฃ10.00') self.assertEqual(moneyfmt(val, currency_code='GBP'), 'ยฃ10.00') self.assertEqual(moneyfmt(val, currency_code='USD'), '$10.00') val = Decimal('-100.00') self.assertEqual(moneyfmt(val), '-ยฃ100.00') def testFake(self): currencies = l10n_settings.get_l10n_setting('currency_formats') currencies['FAKE'] = {'symbol': '^ ', 'positive': "%(val)0.2f ^", 'negative': "(%(val)0.2f) ^", 'decimal': ','} l10n_settings.set_l10n_setting('currency_formats', currencies) val = Decimal('10.00') self.assertEqual(moneyfmt(val, currency_code='FAKE'), '10,00 ^') val = Decimal('-50.00') self.assertEqual(moneyfmt(val, currency_code='FAKE'), '(50,00) ^')
py
1a5141b1615fd021b6bee8e978f8e7b355ae6847
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RoaRequest class ListMergeRequestsRequest(RoaRequest): def __init__(self): RoaRequest.__init__(self, 'codeup', '2020-04-14', 'ListMergeRequests') self.set_uri_pattern('/api/v4/merge_requests/advanced_search') self.set_method('GET') def get_BeforeDate(self): return self.get_query_params().get('BeforeDate') def set_BeforeDate(self,BeforeDate): self.add_query_param('BeforeDate',BeforeDate) def get_AssigneeIdList(self): return self.get_query_params().get('AssigneeIdList') def set_AssigneeIdList(self,AssigneeIdList): self.add_query_param('AssigneeIdList',AssigneeIdList) def get_AccessToken(self): return self.get_query_params().get('AccessToken') def set_AccessToken(self,AccessToken): self.add_query_param('AccessToken',AccessToken) def get_SubscriberCodeupIdList(self): return self.get_query_params().get('SubscriberCodeupIdList') def set_SubscriberCodeupIdList(self,SubscriberCodeupIdList): self.add_query_param('SubscriberCodeupIdList',SubscriberCodeupIdList) def get_AfterDate(self): return self.get_query_params().get('AfterDate') def set_AfterDate(self,AfterDate): self.add_query_param('AfterDate',AfterDate) def get_OrganizationId(self): return self.get_query_params().get('OrganizationId') def set_OrganizationId(self,OrganizationId): self.add_query_param('OrganizationId',OrganizationId) def get_GroupIdList(self): return self.get_query_params().get('GroupIdList') def set_GroupIdList(self,GroupIdList): self.add_query_param('GroupIdList',GroupIdList) def get_Search(self): return self.get_query_params().get('Search') def set_Search(self,Search): self.add_query_param('Search',Search) def get_AuthorCodeupIdList(self): return self.get_query_params().get('AuthorCodeupIdList') def set_AuthorCodeupIdList(self,AuthorCodeupIdList): self.add_query_param('AuthorCodeupIdList',AuthorCodeupIdList) def get_AuthorIdList(self): return self.get_query_params().get('AuthorIdList') def set_AuthorIdList(self,AuthorIdList): self.add_query_param('AuthorIdList',AuthorIdList) def get_PageSize(self): return self.get_query_params().get('PageSize') def set_PageSize(self,PageSize): self.add_query_param('PageSize',PageSize) def get_ProjectIdList(self): return self.get_query_params().get('ProjectIdList') def set_ProjectIdList(self,ProjectIdList): self.add_query_param('ProjectIdList',ProjectIdList) def get_Page(self): return self.get_query_params().get('Page') def set_Page(self,Page): self.add_query_param('Page',Page) def get_AssigneeCodeupIdList(self): return self.get_query_params().get('AssigneeCodeupIdList') def set_AssigneeCodeupIdList(self,AssigneeCodeupIdList): self.add_query_param('AssigneeCodeupIdList',AssigneeCodeupIdList) def get_State(self): return self.get_query_params().get('State') def set_State(self,State): self.add_query_param('State',State) def get_Order(self): return self.get_query_params().get('Order') def set_Order(self,Order): self.add_query_param('Order',Order)
py
1a51423d85c9374c50bef1603c9ef810b380cd00
from django.urls import path from .consumers import AnalysisConsumer, ServiceConsumer websocket_urlpatterns = [ path(r"ws/service/", ServiceConsumer), path(r"ws/analyses/", AnalysisConsumer), path(r"ws/analyses/<uuid:analysis_id>/", AnalysisConsumer), ]
py
1a5143f0b8bb49d0a84397a46ddcad0a35409169
# Generated by Django 3.0.5 on 2020-04-30 23:57 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('weblog', '0001_initial'), ] operations = [ migrations.CreateModel( name='Category', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255)), ], ), migrations.AddField( model_name='post', name='category', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='weblog.Category'), ), ]
py
1a51454f84341f65aced0452196c5e6a35b9d324
# -*- coding: utf-8 -*- """ Created on Tue Jun 26 11:50:02 2018 @author: Andrija Master """ import numpy as np import pandas as pd import warnings warnings.filterwarnings('ignore') from scipy.optimize import minimize import scipy as sp from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split from sklearn.metrics import roc_auc_score import math """ CLASS GCRFCNB """ class GCRFCNB: def __init__(self): pass def muKov(alfa, R, Precison, Noinst, NodeNo): mu = np.zeros([Noinst,NodeNo]) bv = 2*np.matmul(R,alfa) bv = bv.reshape([Noinst,NodeNo]) Kov = np.linalg.inv(Precison) for m in range(Noinst): mu[m,:] = Kov[m,:,:].dot(bv[m,:]) return mu,Kov def Prec(alfa,beta,NodeNo,Se,Noinst): alfasum = np.sum(alfa) Q1 = np.identity(NodeNo)*alfasum Q2 = np.zeros([Noinst,NodeNo,NodeNo]) Prec = np.zeros([Noinst,NodeNo,NodeNo]) pomocna = np.zeros(Se.shape) for j in range(Se.shape[1]): pomocna[:,j,:,:] = Se[:,j,:,:] * beta[j] Q2 = -np.sum(pomocna,axis = 1) for m in range(Noinst): Prec[m,:,:] = 2*(Q2[m,:,:]+np.diag(-Q2[m,:,:].sum(axis=0))+Q1) return Prec def sigmaCal(ceta): # Provereno Sigma=1/(1 + np.exp(-ceta)) Sigma[Sigma>0.99999999] = 0.99999999 Sigma[Sigma<1e-10] = 1e-10 return Sigma """ PREDICT """ def predict(self,R,Se): NodeNo = Se.shape[3] Noinst = Se.shape[0] Precison = GCRFCNB.Prec(self.alfa, self.beta, NodeNo, Se, Noinst) mu, Kovmat = GCRFCNB.muKov(self.alfa, R, Precison, Noinst, NodeNo) Prob = GCRFCNB.sigmaCal(mu) Class = np.round(Prob,0) self.Prob = Prob self.Class = Class return self.Prob, self.Class """ FIT """ def fit(self,R,Se,Y,x0 = None, learn = 'SLSQP', maxiter = 1000, learnrate = 0.1): def L(x,Y,ModelUNNo,ModelSTNo,NodeNo,Noinst,R): alfa=x[:ModelUNNo] beta=x[-ModelSTNo:] print(alfa) Precison = GCRFCNB.Prec(alfa, beta, NodeNo, Se, Noinst) mu,kovMat = GCRFCNB.muKov(alfa,R,Precison,Noinst,NodeNo) sigma = GCRFCNB.sigmaCal(mu) L = np.sum(Y*np.log(sigma)+(1-Y)*np.log(1-sigma)) print('skor je {}'.format(L)) return -1*L def DLdx(x,Y,ModelUNNo,ModelSTNo,NodeNo,Noinst,R): def sigmaFUN(Y,mu): sigma = GCRFCNB.sigmaCal(mu) sigmafun=Y-sigma return sigmafun def dPrecdbeta(Noinst,ModelSTNo,NodeNo,Se): # PROVERENO dPrecdbeta = np.zeros([Noinst,ModelSTNo,NodeNo,NodeNo]) dPrecdbeta = -Se for m in range(Noinst): for L in range(ModelSTNo): dPrecdbeta[m,L,:,:]=2*(dPrecdbeta[m,L,:,:] + np.diag(-dPrecdbeta[m,L,:,:].sum(axis=1))) return dPrecdbeta def dLdalfadbeta(sigmafun,dmudalfa,dmudbeta,ModelUNNo,ModelSTNo): dLdalfa = np.zeros(ModelUNNo) dLdbeta = np.zeros(ModelSTNo) for i in range(ModelUNNo): dLdalfa[i] = np.sum(sigmafun*dmudalfa[:,i,:]) for i in range(ModelSTNo): dLdbeta[i] = np.sum(sigmafun*dmudbeta[:,i,:]) return dLdalfa,dLdbeta def dPrecdalfa(NodeNo,ModelUNNo): # Provereno dPrecdalfa=np.zeros([ModelUNNo,NodeNo,NodeNo]) dQ1dalfa=np.identity(NodeNo) for p in range(ModelUNNo): dPrecdalfa[p,:,:]=dQ1dalfa*2 return dPrecdalfa def dbdalfa(ModelUNNo,Noinst,R,NodeNo): # Provereno 1 dbdalfa = np.zeros([Noinst,ModelUNNo,NodeNo]) for m in range(ModelUNNo): dbdalfa[:,m,:] = 2*R[:,m].reshape([Noinst, NodeNo]) return dbdalfa def dmutdalfa(dbdalfa,DPrecdalfa,Kov,ModelUNNo,Noinst,mu): # Provereno dmutdalfa=np.zeros([Noinst,ModelUNNo,NodeNo]) for m in range(Noinst): for p in range(ModelUNNo): dmutdalfa[m,p,:]=(dbdalfa[m,p,:]-DPrecdalfa[p,:,:].dot(mu[m,:])).T.dot(Kov[m,:,:]) return dmutdalfa def dmutdbeta(dPrecdbeta,mu,Kov,Noinst,ModelSTNo,NodeNo): # Provereno dmutdbeta=np.zeros([Noinst,ModelSTNo,NodeNo]) for m in range(0,Noinst): for p in range(0,ModelSTNo): dmutdbeta[m,p,:]=(-dPrecdbeta[m,p,:,:].dot(mu[m,:])).T.dot(Kov[m,:,:]) return dmutdbeta alfa=x[:ModelUNNo] beta=x[-ModelSTNo:] DPrecdalfa=dPrecdalfa(NodeNo,ModelUNNo) # Nezavisno od alfa i iteracija Precison = GCRFCNB.Prec(alfa, beta, NodeNo, Se, Noinst) DPrecdbeta = dPrecdbeta(Noinst,ModelSTNo,NodeNo,Se) mu,kovMat = GCRFCNB.muKov(alfa,R,Precison,Noinst,NodeNo) mu[np.isnan(mu)] = 0 Dbdalfa = dbdalfa(ModelUNNo,Noinst,R,NodeNo) # Dbdalfa[Dbdalfa == -np.inf] = -1e12 Dmudalfa = dmutdalfa(Dbdalfa,DPrecdalfa,kovMat,ModelUNNo,Noinst,mu) Dmudbeta = dmutdbeta(DPrecdbeta,mu,kovMat,Noinst,ModelSTNo,NodeNo) sigmafun = sigmaFUN(Y,mu) DLdalfa,DLdbeta = dLdalfadbeta(sigmafun,Dmudalfa,Dmudbeta,ModelUNNo,ModelSTNo) DLdx = -np.concatenate((DLdalfa,DLdbeta)) print(DLdx) return DLdx ModelUNNo = R.shape[1] NodeNo = Se.shape[2] Noinst = Se.shape[0] ModelSTNo = Se.shape[1] bnd = ((1e-8,None),)*(ModelSTNo+ModelUNNo) if x0 is None: x0 = np.abs(np.random.randn(ModelUNNo + ModelSTNo))*100 if learn == 'SLSQP': res = minimize(L, x0, method='SLSQP', jac=DLdx, args=(Y,ModelUNNo,ModelSTNo,NodeNo,Noinst,R),\ options={'disp': True,'maxiter': maxiter,'ftol': 1e-8},bounds=bnd) self.alfa = res.x[:ModelUNNo] self.beta = res.x[ModelUNNo:ModelSTNo+ModelUNNo] elif learn == 'TNC': bnd = ((1e-6,None),)*(ModelSTNo+ModelUNNo) res = sp.optimize.fmin_tnc(L, x0, fprime = DLdx, \ args=(Y,ModelUNNo,ModelSTNo,NodeNo,Noinst,R),\ bounds = bnd) self.alfa = res[0][:ModelUNNo] self.beta = res[0][ModelUNNo:ModelSTNo+ModelUNNo] elif learn == 'EXP': x = x0 u1 = np.log(x0) for i in range(maxiter): dLdx = -DLdx(x,Y,ModelUNNo,ModelSTNo,NodeNo,Noinst,R) u1 = u1 + learnrate*x*dLdx x = np.exp(u1) L1 = -L(x,Y,ModelUNNo,ModelSTNo,NodeNo,Noinst,R) print('U iteciji {} DLDX je {}'.format(i,dLdx)) print('U iteciji {} L je {}'.format(i,L1)) self.alfa = x[:ModelUNNo] self.beta = x[ModelUNNo:ModelSTNo+ModelUNNo] self.x = x #""" Proba na SIN podacima """ #import time #start_time = time.time() #def S(connect,Se,Xst): # for j in range(NoGraph): # for k,l in connect[j]: # if j == 0: # Se[:,j,k,l] = np.exp(np.abs(Xst.iloc[:,j].unstack().values[:,k] - # Xst.iloc[:,j].unstack().values[:,l]))*0.1 # Se[:,j,l,k] = Se[:,j,k,l] # elif j == 1: # Se[:,j,k,l] = np.exp(np.abs(Xst.iloc[:,j].unstack().values[:,k] - # Xst.iloc[:,j].unstack().values[:,l]))*0.3 # Se[:,j,l,k] = Se[:,j,k,l] # return Se # #path = 'D:\Dokumenti\Programi Python\Proba.xlsx' #df = pd.read_excel(path) ##R = df.iloc[:,:2].values ##R=np.random.rand(5200,2)*2-1 #R = np.load('R_sinteticki.npy') #NodeNo = 4 #Nopoint = R.shape[0] #Noinst = np.round(Nopoint/NodeNo).astype(int) #i1 = np.arange(NodeNo) #i2 = np.arange(Noinst) #Xst = np.load('Xst.npy') #Xst =pd.DataFrame(data=Xst) #Xst['Node'] = np.tile(i1, Noinst) #Xst['Inst'] = np.repeat(i2,NodeNo) #Xst = Xst.set_index(['Inst','Node']) #connect1=np.array([[0,1],[1,2]]) #connect2=np.array([[0,1],[2,3]]) #connect=[connect1,connect2] #NoGraph = len(connect) ##Se = np.zeros([Noinst,NoGraph,NodeNo,NodeNo]) ##Se = S(connect,Se,Xst) #Se = np.load('Se.npy') # #Notrain = (Noinst*0.8).astype(int) #Notest = (Noinst*0.2).astype(int) # # #mod1 = GCRFCNB() #mod1.alfa = np.array([1,18]) #mod1.beta = np.array([0.2,0.2]) #prob, Y = mod1.predict(R,Se) #Se_train = Se[:Notrain,:,:,:] #R_train = R[:Notrain*NodeNo,:] #Y_test = Y[Notrain:Noinst,:] #Y_train = Y[:Notrain,:] # #mod1.fit(R_train, Se_train, Y_train, learn = 'TNC') # #R_test = R[Notrain*NodeNo:Noinst*NodeNo,:] #Se_test = Se[Notrain:Noinst,:,:,:] #prob2, Y2, Var = mod1.predict(R_test,Se_test) #Prob1 = prob2.copy() #Prob1[Y2==0] = 1 - Prob1[Y2==0] #Y21 = Y2.reshape([Y2.shape[0]*Y2.shape[1]]) #Y_test1 = Y_test.reshape([Y_test.shape[0]*Y_test.shape[1]]) #probr = prob2.reshape([prob2.shape[0]*prob2.shape[1]]) #probr1 = Prob1.reshape([Prob1.shape[0]*Prob1.shape[1]]) #print('AUC je {}'.format(roc_auc_score(Y_test1,probr))) ##print('Skor je {}'.format(accuracy_score(Y21,Y_test1))) #print('LogPRob je {}'.format(np.sum(np.log(probr1)))) #print("--- %s seconds ---" % (time.time() - start_time)) #""" Stvarni podaci Skijasi """ #Spom = np.load('Se.npy') #R_train = np.load('Z_train_com.npy') #R_test = np.load('Z_test_com.npy') #Y_train = np.load('Y_train.npy') #Y_test = np.load('Y_test.npy') #Se_train_inst = np.load('Se_train.npy') #Se_test_inst = np.load('Se_test.npy') # #NodeNo = 7 #Noinst_train = np.round(R_train.shape[0]/NodeNo).astype(int) #Noinst_test = np.round(R_test.shape[0]/NodeNo).astype(int) # #ModelSTNo = 6 #Se_train = np.zeros([Noinst_train,ModelSTNo,NodeNo,NodeNo]) #Se_test = np.zeros([Noinst_test,ModelSTNo,NodeNo,NodeNo]) # #for i in range(Noinst_train): # Se_train[i,:5,:,:] = Spom # #for i in range(Noinst_test): # Se_test[i,:5,:,:] = Spom # #Se_train[:,5,:,:] = np.squeeze(Se_train_inst) #Se_test[:,5,:,:] = np.squeeze(Se_test_inst) # # #mod1 = GCRFCNB() # # #mod1.fit(R_train, Se_train, Y_train, learn = 'SLSQP', learnrate = 6e-4, maxiter = 300) # ##mod1.alfa = np.array([0.1043126 , 0.06905401, 0.08689079]) ##mod1.beta = np.array([1.00008728e-08, 2.88191498e+02, 1.00000563e-08, 1.00000000e-08, ## 8.74943190e+01, 3.48984028e-03]) # #prob2, Y2 = mod1.predict(R_test,Se_test) #Y2 = Y2.reshape([Y2.shape[0]*Y2.shape[1]]) #Y_test = Y_test.reshape([Y_test.shape[0]*Y_test.shape[1]]) #prob2 = prob2.reshape([prob2.shape[0]*prob2.shape[1]]) # #print('AUC GCRFCNB prediktora je {}'.format(roc_auc_score(Y_test,prob2))) #print('Skor GCRFCNB prediktora je {}'.format(accuracy_score(Y2,Y_test))) ##Skor_com = np.load('Skor_com.npy') #Skor_com_AUC = np.load('Skor_com_AUC.npy') #print('AUC nestruktuiranih prediktora je {}'.format(Skor_com_AUC)) ##print('Skor nestruktuiranih prediktora je {}'.format(Skor_com)) #print('Logprob je {}'.format(np.sum(np.log(prob2)))) #""" Stvarni podaci Debeli """ # #import time #Spom = np.load('Se.npy') #R_train = np.load('Z_train_com.npy') #R_train[R_train == -np.inf] = -10 #R_train[R_train == -np.inf] = np.min(R_train)-100 #R_test = np.load('Z_test_com.npy') #R_test[R_test == -np.inf] = -10 #R_test[R_test == -np.inf] = np.min(R_test)-100 #Y_train = np.load('Y_train.npy') #Y_test = np.load('Y_test.npy') #for i in range(R_train.shape[1]): # Range = np.abs(np.max(R_train[:,i]) + np.min(R_train[:,i])) # faktor = int(math.log10(Range)) # R_train[:,i] = R_train[:,i]*10**(-faktor) # R_test[:,i] = R_test[:,i]*10**(-faktor) # #NodeNo = 10 #Noinst_train = np.round(R_train.shape[0]/NodeNo).astype(int) #Noinst_test = np.round(R_test.shape[0]/NodeNo).astype(int) # #ModelSTNo = 4 #Se_train = np.zeros([Noinst_train,ModelSTNo,NodeNo,NodeNo]) #Se_test = np.zeros([Noinst_test,ModelSTNo,NodeNo,NodeNo]) # #for i in range(Noinst_train): # Se_train[i,:,:,:] = Spom # #for i in range(Noinst_test): # Se_test[i,:,:,:] = Spom # #mod1 = GCRFCNB() # #start_time = time.time() #mod1.fit(R_train, Se_train, Y_train, learn = 'SLSQP', learnrate = 6e-4, maxiter = 5000) # # ##mod1.alfa = np.array([1-10, 1e-10, 1e-10, 3000]) ##mod1.beta = np.array([1.0000000e-10, 1.0000000e-10, 1e-10, 1e-10]) # #prob2, Y2 = mod1.predict(R_test,Se_test) #Y2 = Y2.reshape([Y2.shape[0]*Y2.shape[1]]) #Y_test = Y_test.reshape([Y_test.shape[0]*Y_test.shape[1]]) #prob2 = prob2.reshape([prob2.shape[0]*prob2.shape[1]]) # ##Y_train = Y_train.reshape([Y_train.shape[0]*Y_train.shape[1]]) #print('AUC GCRFCNB prediktora je {}'.format(roc_auc_score(Y_test,prob2))) ##print('Skor GCRFCNB prediktora je {}'.format(accuracy_score(Y2,Y_test))) ##Skor_com = np.load('Skor_com.npy') #Skor_com_AUC = np.load('Skor_com_AUC.npy') #print('AUC nestruktuiranih prediktora je {}'.format(Skor_com_AUC)) ##print('Skor nestruktuiranih prediktora je {}'.format(Skor_com)) #print('Logprob je {}'.format(np.sum(np.log(prob2)))) #print("--- %s seconds ---" % (time.time() - start_time))
py
1a51457df9621ba280d1136ceb609f143a19ec9f
"""The tests for the Switch component.""" # pylint: disable=protected-access import unittest from homeassistant.setup import setup_component, async_setup_component from homeassistant import core, loader from homeassistant.components import switch from homeassistant.const import STATE_ON, STATE_OFF, CONF_PLATFORM from tests.common import get_test_home_assistant from tests.components.switch import common class TestSwitch(unittest.TestCase): """Test the switch module.""" # pylint: disable=invalid-name def setUp(self): """Set up things to be run when tests are started.""" self.hass = get_test_home_assistant() platform = loader.get_component(self.hass, 'switch.test') platform.init() # Switch 1 is ON, switch 2 is OFF self.switch_1, self.switch_2, self.switch_3 = \ platform.DEVICES # pylint: disable=invalid-name def tearDown(self): """Stop everything that was started.""" self.hass.stop() def test_methods(self): """Test is_on, turn_on, turn_off methods.""" assert setup_component( self.hass, switch.DOMAIN, {switch.DOMAIN: {CONF_PLATFORM: 'test'}} ) assert switch.is_on(self.hass) assert STATE_ON == \ self.hass.states.get(switch.ENTITY_ID_ALL_SWITCHES).state assert switch.is_on(self.hass, self.switch_1.entity_id) assert not switch.is_on(self.hass, self.switch_2.entity_id) assert not switch.is_on(self.hass, self.switch_3.entity_id) common.turn_off(self.hass, self.switch_1.entity_id) common.turn_on(self.hass, self.switch_2.entity_id) self.hass.block_till_done() assert switch.is_on(self.hass) assert not switch.is_on(self.hass, self.switch_1.entity_id) assert switch.is_on(self.hass, self.switch_2.entity_id) # Turn all off common.turn_off(self.hass) self.hass.block_till_done() assert not switch.is_on(self.hass) assert STATE_OFF == \ self.hass.states.get(switch.ENTITY_ID_ALL_SWITCHES).state assert not switch.is_on(self.hass, self.switch_1.entity_id) assert not switch.is_on(self.hass, self.switch_2.entity_id) assert not switch.is_on(self.hass, self.switch_3.entity_id) # Turn all on common.turn_on(self.hass) self.hass.block_till_done() assert switch.is_on(self.hass) assert STATE_ON == \ self.hass.states.get(switch.ENTITY_ID_ALL_SWITCHES).state assert switch.is_on(self.hass, self.switch_1.entity_id) assert switch.is_on(self.hass, self.switch_2.entity_id) assert switch.is_on(self.hass, self.switch_3.entity_id) def test_setup_two_platforms(self): """Test with bad configuration.""" # Test if switch component returns 0 switches test_platform = loader.get_component(self.hass, 'switch.test') test_platform.init(True) loader.set_component(self.hass, 'switch.test2', test_platform) test_platform.init(False) assert setup_component( self.hass, switch.DOMAIN, { switch.DOMAIN: {CONF_PLATFORM: 'test'}, '{} 2'.format(switch.DOMAIN): {CONF_PLATFORM: 'test2'}, } ) async def test_switch_context(hass): """Test that switch context works.""" assert await async_setup_component(hass, 'switch', { 'switch': { 'platform': 'test' } }) state = hass.states.get('switch.ac') assert state is not None await hass.services.async_call('switch', 'toggle', { 'entity_id': state.entity_id, }, True, core.Context(user_id='abcd')) state2 = hass.states.get('switch.ac') assert state2 is not None assert state.state != state2.state assert state2.context.user_id == 'abcd'
py
1a5145b57a2c50b8cd5caf6dd3588ca0eab7b127
from .siammask import SiamMask def get_tracker_class(): return SiamMask
py
1a5145d29c78d73316a45feccab5cd777784329a
from io import StringIO from .dvexpansion import * class YMLConfigPP: def __init__(self, pathes): self.out_fd = StringIO() self.include_files = set() self.pp_pathes = [] for p in pathes: self.pp_pathes.append(evaluate_dollar_var_expr(p)) def find_yml_file(self, yml): ret = None for pp_path in self.pp_pathes: print("pp_path: ", pp_path) yml_fn = os.path.join(pp_path, yml) if os.path.exists(yml_fn): ret = yml_fn break return ret def get_pp_content(self): return self.out_fd.getvalue() def run_pp(self, yml_fn): fd = open(yml_fn, "r") self.out_fd.write(f"# {yml_fn}\n") while 1: l = fd.readline() if not l: break if l.find("!include") != -1: self.out_fd.write(f"# {l}") self.process_include(l) else: self.out_fd.write(l) self.out_fd.write("\n#\n") self.out_fd.write(f"# end of file {yml_fn}\n") def process_include(self, include_line): include_re = r"!include\s+<([\w+/\.\-]+)>" m = re.match(include_re, include_line) if m == None or len(m.groups()) != 1: raise Exception(f"YMLConfigPP::process_include: malformed line {include_line}") include_file = self.find_yml_file(m.groups()[0]) if include_file == None: raise Exception(f"YMLConfigPP::process_include: can't resolve {include_line}") if not include_file in self.include_files: self.include_files.add(include_file) self.run_pp(include_file)
py
1a514602721a586fd848443cae6d91b496b5b642
"""Metrics related to messages.""" from prometheus_client import Counter, Gauge msgs_sent = Counter("msg_sent", "Number of messages sent between nodes", ["node_id", "msg_type"]) msg_rtt = Gauge("msg_rtt", "Time taken to send a message to a node and get an ACK", ["node_id", "receiver_id", "receiver_hostname"]) msgs_in_queue = Gauge("msgs_in_queue", "The amount of messages waiting to be sent over channel", ["node_id", "receiver_id", "receiver_hostname"]) allow_service_rtt = Gauge("allow_service_rtt", "Time taken from declining service to allowing", ["node_id", "view_from"]) msg_sent_size = Gauge("msg_sent_size", "Size of a message sent from node over com_mod of type \ msg_type", ["node_id", "msg_type", "com_mod"]) bytes_sent = Counter("bytes_sent", "Number of bytes sent from node over com_mod", ["node_id", "com_mod"]) run_method_time = Gauge("run_method_time", "Time taken to run the run-forever-loop", ["node_id", "module"]) msgs_during_exp = Gauge("msgs_during_exp", "Number of messages sent during an experiment", ["node_id", "exp_param", "view_est_msgs", "rep_msgs", "prim_mon_msgs", "fd_msgs"]) bytes_during_exp = Gauge("bytes_during_exp", "Number of bytes sent during an experiment", ["node_id", "exp_param", "view_est_bytes", "rep_bytes", "prim_mon_bytes", "fd_bytes"])
py
1a51463e2f5587d16ec27c5aed93eb03320fed72
import sys import studentdirectory as sd import gui def main_for_command_line(): stud_dir = sd.StudentDirectory() while(1): print("\nSTUDENT DIRECTORY MENU") print(" [a] Add New Student") print(" [b] View Student Details") print(" [c] Show Student Directory") print(" [d] Edit Student Details") print(" [e] Delete Student") print(" [f] Clear Student Directory") print(" [g] Exit") choice = input("Enter choice: ") if choice == "a": print("\nADD NEW Student") key = input(" Enter new student's student number: ") detail0 = input(" Enter new student's name: ") detail1 = input(" Enter new student's course and year: ") detail2 = input(" Enter new student's age: ") detail3 = input(" Enter new student's email address: ") detail4 = input(" Enter new student's contact number: ") value = [detail0, detail1, detail2, detail3, detail4] stud_dir.add_new_student(key, value) print("\nNew student added to directory successfully.\n") elif choice == "b": print("\nVIEW STUDENT DETAILS") key = input(" Enter student number: ") stud_dir.view_student_details(key) print(" ") elif choice == "c": print("\nSHOW STUDENT DIRECTORY") stud_dir.show_student_directory() print(" ") elif choice == "d": print("\nEDIT STUDENT DETAILS") key = input(" Enter student number: ") if stud_dir.check_if_student_exist(key): detail0 = input(" Enter student's new name: ") detail1 = input(" Enter student's new course and year: ") detail2 = input(" Enter student's new age: ") detail3 = input(" Enter student's new email address: ") detail4 = input(" Enter student's new contact number: ") value = [detail0, detail1, detail2, detail3, detail4] stud_dir.edit_student_details(key, value) print("\nStudent's details edited successfully.\n") else: print("Student number does not exist in " + "the student directory.") elif choice == "e": print("\nDELETE STUDENT") key = input(" Enter student number: ") if stud_dir.check_if_student_exist(key): stud_dir.delete_student(key) print("\nStudent removed from the student " + "directory successfully.\n") else: print("Student number does not exist in " + "the student directory.") elif choice == "f": print("\nCLEAR STUDENT DIRECTORY") print(" WARNING! This will delete all entries in the " + "student directory. Do you really want to proceed?") decision = input(" [y]es or [n]o: ") if decision == "y": print("\nClearing student directory...") stud_dir.clear_student_directory() print("Clearing student directory successful.\n") elif decision == "n": print("\n Good call. Going back to the menu...") else: print("\nNonexistent decision. Going back to the menu...") elif choice == "g": print("\nSaving student directory changes to JSON file.") stud_dir.save_changes() print("Done. Bye.") sys.exit(0) else: print("\nNonexistent choice.") def main(): # main_for_command_line() gui.GUI() if __name__ == "__main__": main()
py
1a51473887ae8165ee792b8146895262fec46c33
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- # Generated file, DO NOT EDIT # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------------------------- from msrest.serialization import Model class InputFilterCondition(Model): """InputFilterCondition. :param case_sensitive: Whether or not to do a case sensitive match :type case_sensitive: bool :param input_id: The Id of the input to filter on :type input_id: str :param input_value: The "expected" input value to compare with the actual input value :type input_value: str :param operator: The operator applied between the expected and actual input value :type operator: object """ _attribute_map = { 'case_sensitive': {'key': 'caseSensitive', 'type': 'bool'}, 'input_id': {'key': 'inputId', 'type': 'str'}, 'input_value': {'key': 'inputValue', 'type': 'str'}, 'operator': {'key': 'operator', 'type': 'object'} } def __init__(self, case_sensitive=None, input_id=None, input_value=None, operator=None): super(InputFilterCondition, self).__init__() self.case_sensitive = case_sensitive self.input_id = input_id self.input_value = input_value self.operator = operator
py
1a51481358b4bbfcf4af11dbfecaa6ae6d9388af
from __future__ import absolute_import, division, print_function, unicode_literals class context(object): ''' Autograd context object to wrap forward and backward passes when using distributed autograd. The context_id generated in the 'with' is required to uniquely identify a distributed autograd pass on all workers. Each worker stores metadata associated with this context_id, which is required to correctly execute a distributed autograd pass. This is only needed in the "FAST" mode for distributed autograd, where we assume all RPC communication is would also be part of the backward pass. Example:: >> import torch.distributed.autograd as dist_autograd >> with dist_autograd.context() as context_id: >> forward pass... >> backward pass... >> optimizer step... ''' # TODO: Update the above example to a working solution. def __enter__(self): self.autograd_context = _new_context() return self.autograd_context._context_id() def __exit__(self, type, value, traceback): _release_context(self.autograd_context._context_id())
py
1a5148606bb63dd0b47cf26a3ea745cde3845755
"""Test cases for symbolic_expressions module.""" from pyquil import quil, quilatom import sympy import pytest from .sympy_expressions import expression_from_sympy, SYMPY_DIALECT from .translations import translate_expression from .pyquil_expressions import QUIL_DIALECT, expression_from_pyquil @pytest.mark.parametrize( "sympy_expression, quil_expression", [ (sympy.Symbol("theta"), quil.Parameter("theta")), ( sympy.Mul(sympy.Symbol("theta"), sympy.Symbol("gamma"), evaluate=False), quil.Parameter("theta") * quil.Parameter("gamma"), ), (sympy.cos(sympy.Symbol("theta")), quilatom.quil_cos(quil.Parameter("theta"))), ( sympy.cos(2 * sympy.Symbol("theta")), quilatom.quil_cos(2 * quil.Parameter("theta")), ), ( sympy.exp(sympy.Symbol("x") - sympy.Symbol("y")), quilatom.quil_exp(quil.Parameter("x") - quil.Parameter("y")), ), ( sympy.Add( sympy.cos(sympy.Symbol("phi")), sympy.I * sympy.sin(sympy.Symbol("phi")), evaluate=False, ), quilatom.quil_cos(quil.Parameter("phi")) + 1j * quilatom.quil_sin(quil.Parameter("phi")), ), ( sympy.Add( sympy.Symbol("x"), sympy.Mul(sympy.Symbol("y"), (2 + 3j), evaluate=False), evaluate=False, ), quil.Parameter("x") + quil.Parameter("y") * (2 + 3j), ), ( sympy.cos(sympy.sin(sympy.Symbol("tau"))), quilatom.quil_cos(quilatom.quil_sin(quil.Parameter("tau"))), ), ( sympy.Symbol("x") / sympy.Symbol("y"), quil.Parameter("x") / quil.Parameter("y"), ), ( sympy.tan(sympy.Symbol("theta")), quilatom.quil_sin(quil.Parameter("theta")) / quilatom.quil_cos(quil.Parameter("theta")), ), (2 ** sympy.Symbol("x"), 2 ** quil.Parameter("x")), ( sympy.Symbol("y") ** sympy.Symbol("x"), quil.Parameter("y") ** quil.Parameter("x"), ), (sympy.Symbol("x") ** 2, quil.Parameter("x") ** 2), ( sympy.sqrt(sympy.Symbol("x") - sympy.Symbol("y")), quilatom.quil_sqrt(quil.Parameter("x") - quil.Parameter("y")), ), (-5 * sympy.Symbol("x") * sympy.Symbol("y"), -5 * quil.Parameter("x") * quil.Parameter("y")), ], ) def test_translating_tree_from_sympy_to_quil_gives_expected_result( sympy_expression, quil_expression ): expression = expression_from_sympy(sympy_expression) assert translate_expression(expression, QUIL_DIALECT) == quil_expression @pytest.mark.parametrize( "quil_expression, sympy_expression", [ (quil.Parameter("theta"), sympy.Symbol("theta")), ( quil.Parameter("theta") * quil.Parameter("gamma"), sympy.Symbol("theta") * sympy.Symbol("gamma"), ), ( quilatom.quil_cos(quil.Parameter("theta")), sympy.cos(sympy.Symbol("theta")), ), ( quilatom.quil_cos(2 * quil.Parameter("theta")), sympy.cos(2 * sympy.Symbol("theta")), ), ( quilatom.quil_exp(quil.Parameter("x") - quil.Parameter("y")), sympy.exp(sympy.Symbol("x") - sympy.Symbol("y")), ), ( quilatom.quil_cos(quil.Parameter("phi")) + 1j * quilatom.quil_sin(quil.Parameter("phi")), (sympy.cos(sympy.Symbol("phi")) + sympy.I * sympy.sin(sympy.Symbol("phi"))), ), ( quil.Parameter("x") + quil.Parameter("y") * (2 + 3j), sympy.Symbol("x") + sympy.Symbol("y") * (2 + 3j), ), ( quilatom.quil_cos(quilatom.quil_sin(quil.Parameter("tau"))), sympy.cos(sympy.sin(sympy.Symbol("tau"))), ), ( quil.Parameter("x") / quil.Parameter("y"), sympy.Symbol("x") / sympy.Symbol("y"), ), (2 ** quil.Parameter("x"), 2 ** sympy.Symbol("x")), ( quil.Parameter("y") ** quil.Parameter("x"), sympy.Symbol("y") ** sympy.Symbol("x"), ), (quil.Parameter("x") ** 2, sympy.Symbol("x") ** 2), ( quilatom.quil_sqrt(quil.Parameter("x") - quil.Parameter("y")), sympy.sqrt(sympy.Symbol("x") - sympy.Symbol("y")), ), ], ) def test_translating_tree_from_quil_to_sympy_gives_expected_result( quil_expression, sympy_expression ): expression = expression_from_pyquil(quil_expression) assert translate_expression(expression, SYMPY_DIALECT) - sympy_expression == 0
py
1a51494c79c2b9bd89af44c07939f26a24820170
#!/usr/bin/env python2.7 # -*- coding: utf-8 -*- # Copyright (C) Canux CHENG <[email protected]> # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES # OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, # DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, # TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE # OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """Plugin that checks the XML validity.""" import plugin from plugin.xml import PluginXMLValidity PluginXMLValidity( version=plugin.version, description='Check XML validity.' ).run()
py
1a5149ff4a14d8f820f222159244ce4018c3bd52
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from caffe2.proto import caffe2_pb2 from caffe2.python import core from hypothesis import assume, given import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial import hypothesis.strategies as st import numpy as np class TestReductionOps(serial.SerializedTestCase): @serial.given(n=st.integers(5, 8), **hu.gcs) def test_elementwise_sum(self, n, gc, dc): X = np.random.rand(n).astype(np.float32) def sum_op(X): return [np.sum(X)] op = core.CreateOperator( "SumElements", ["X"], ["y"] ) self.assertReferenceChecks( device_option=gc, op=op, inputs=[X], reference=sum_op, ) self.assertGradientChecks( device_option=gc, op=op, inputs=[X], outputs_to_check=0, outputs_with_grads=[0], ) @serial.given(n=st.integers(5, 8), **hu.gcs) def test_elementwise_int_sum(self, n, gc, dc): X = np.random.rand(n).astype(np.int32) def sum_op(X): return [np.sum(X)] op = core.CreateOperator( "SumElementsInt", ["X"], ["y"] ) self.assertReferenceChecks( device_option=gc, op=op, inputs=[X], reference=sum_op, ) @serial.given(n=st.integers(1, 65536), dtype=st.sampled_from([np.float32, np.float16]), **hu.gcs) def test_elementwise_sqrsum(self, n, dtype, gc, dc): if dtype == np.float16: # fp16 is only supported with CUDA assume(gc.device_type == caffe2_pb2.CUDA) dc = [d for d in dc if d.device_type == caffe2_pb2.CUDA] X = np.random.rand(n).astype(dtype) def sumsqr_op(X): return [np.sum(X * X)] op = core.CreateOperator( "SumSqrElements", ["X"], ["y"] ) threshold = 0.01 if dtype == np.float16 else 0.005 self.assertReferenceChecks( device_option=gc, op=op, inputs=[X], reference=sumsqr_op, threshold=threshold, ) @given(n=st.integers(5, 8), **hu.gcs) def test_elementwise_avg(self, n, gc, dc): X = np.random.rand(n).astype(np.float32) def avg_op(X): return [np.mean(X)] op = core.CreateOperator( "SumElements", ["X"], ["y"], average=1 ) self.assertReferenceChecks( device_option=gc, op=op, inputs=[X], reference=avg_op, ) self.assertGradientChecks( device_option=gc, op=op, inputs=[X], outputs_to_check=0, outputs_with_grads=[0], ) @serial.given(batch_size=st.integers(1, 3), m=st.integers(1, 3), n=st.integers(1, 4), **hu.gcs) def test_rowwise_max(self, batch_size, m, n, gc, dc): X = np.random.rand(batch_size, m, n).astype(np.float32) def rowwise_max(X): return [np.max(X, axis=2)] op = core.CreateOperator( "RowwiseMax", ["x"], ["y"] ) self.assertReferenceChecks( device_option=gc, op=op, inputs=[X], reference=rowwise_max, ) @serial.given(batch_size=st.integers(1, 3), m=st.integers(1, 3), n=st.integers(1, 4), **hu.gcs) def test_columnwise_max(self, batch_size, m, n, gc, dc): X = np.random.rand(batch_size, m, n).astype(np.float32) def columnwise_max(X): return [np.max(X, axis=1)] op = core.CreateOperator( "ColwiseMax", ["x"], ["y"] ) self.assertReferenceChecks( device_option=gc, op=op, inputs=[X], reference=columnwise_max, )
py
1a514a9ead659e3dc203e8f8a33e830c544d6722
# Copyright (c) OpenMMLab. All rights reserved. import torch.nn as nn from mmcls.models.builder import NECKS from mmcls.models.necks import GlobalAveragePooling as _GlobalAveragePooling @NECKS.register_module(force=True) class GlobalAveragePooling(_GlobalAveragePooling): """Global Average Pooling neck. Note that we use `view` to remove extra channel after pooling. We do not use `squeeze` as it will also remove the batch dimension when the tensor has a batch dimension of size 1, which can lead to unexpected errors. """ def __init__(self, kernel_size=None, stride=None): super(GlobalAveragePooling, self).__init__() if kernel_size is None and stride is None: self.gap = nn.AdaptiveAvgPool2d((1, 1)) else: self.gap = nn.AvgPool2d(kernel_size, stride)
py
1a514acece7677392e86c3f26e32cf93351c6fc0
# Copyright 2019 Capital One Services, LLC # Copyright The Cloud Custodian Authors. # SPDX-License-Identifier: Apache-2.0 from gcp_common import BaseTest, event_data class MLModelTest(BaseTest): def test_models_query(self): project_id = "cloud-custodian" session_factory = self.replay_flight_data( 'ml-models-query', project_id) policy = self.load_policy( { 'name': 'ml-models-query', 'resource': 'gcp.ml-model' }, session_factory=session_factory) resources = policy.run() self.assertEqual(len(resources), 1) def test_models_get(self): project_id = 'cloud-custodian' name = "test_model" factory = self.replay_flight_data('ml-model-get', project_id=project_id) p = self.load_policy({ 'name': 'ml-model-get', 'resource': 'gcp.ml-model', 'mode': { 'type': 'gcp-audit', 'methods': ['google.cloud.ml.v1.ModelService.CreateModel'] } }, session_factory=factory) exec_mode = p.get_execution_mode() event = event_data('ml-model-create.json') models = exec_mode.run(event, None) self.assertIn(name, models[0]['name']) class MLJobTest(BaseTest): def test_jobs_query(self): project_id = 'cloud-custodian' session_factory = self.replay_flight_data( 'ml-jobs-query', project_id) policy = self.load_policy( { 'name': 'ml-jobs-query', 'resource': 'gcp.ml-job' }, session_factory=session_factory) resources = policy.run() self.assertEqual(len(resources), 1) def test_jobs_get(self): project_id = 'cloud-custodian' name = "test_job" factory = self.replay_flight_data('ml-job-get', project_id=project_id) p = self.load_policy({ 'name': 'ml-job-get', 'resource': 'gcp.ml-job', 'mode': { 'type': 'gcp-audit', 'methods': ['google.cloud.ml.v1.JobService.CreateJob'] } }, session_factory=factory) exec_mode = p.get_execution_mode() event = event_data('ml-job-create.json') jobs = exec_mode.run(event, None) self.assertIn(name, jobs[0]['jobId'])
py
1a514afc1395fc91f516352eb75b2f8685867817
#!/usr/bin/env python3 # coding=utf-8 # date 2021-10-23 13:27:29 # author calllivecn <[email protected]> # ๆŸไฝ“้”ฎ๏ผš้Ÿณ้‡่ฐƒ่Š‚ # type 01 EV_KEY code 073 KEY_VOLUMEUP # type 01 EV_KEY code 072 KEY_VOLUMEDOWN
py
1a514b32789dff3133032364ea11f5c9b3738f5e
# -*- coding: utf-8 -*- """ Django settings """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os, sys BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.8/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'vqje&(s$kn!osyitq#y%y1)g7-63#ia#+45(d&c%7x7u)d!pn3' # SECURITY WARNING: don't run with debug turned on in production! # PYTHON version PYTHON_VERSION = sys.version_info TESTING = sys.argv[1:2] == ['test'] if TESTING: DEBUG = False else: DEBUG = True DEBUG_PROPAGATE_EXCEPTIONS = True DEBUG = DEBUG_PROPAGATE_EXCEPTIONS ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = ( # 'django_admin_bootstrapped', 'bedjango_master', 'base', 'users', 'cachalot', 'debug_toolbar', 'material', 'material.admin', 'material.frontend', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django_countries', 'rosetta', 'cookielaw', ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.locale.LocaleMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'django.middleware.security.SecurityMiddleware', 'debug_toolbar.middleware.DebugToolbarMiddleware', ) ROOT_URLCONF = 'base.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')], # 'DIRS': ['../templates'], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', 'base.context_processors.breadcrumbs', 'base.context_processors.add_login_form' ], 'debug': DEBUG, }, }, ] # WSGI_APPLICATION = 'base.wsgi.application' # Database # https://docs.djangoproject.com/en/1.8/ref/settings/#databases DATABASES = { # 'default': { # 'ENGINE': 'django.db.backends.postgresql', # 'NAME': 'skeleton_database', # 'USER': 'project', # 'PASSWORD': 'project', # 'HOST': '127.0.0.1', # 'PORT': '5432', # } 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Cache: http://django-cachalot.readthedocs.io/en/latest/quickstart.html CACHES = { 'default': { 'BACKEND': 'django.core.cache.backends.memcached.MemcachedCache', 'LOCATION': '127.0.0.1:11211', } } CACHALOT_ENABLED = True CACHALOT_CACHE = 'default' # Django toolbar https://django-debug-toolbar.readthedocs.io/en/stable/configuration.html DEBUG_TOOLBAR_PANELS = [ 'debug_toolbar.panels.versions.VersionsPanel', 'debug_toolbar.panels.timer.TimerPanel', 'debug_toolbar.panels.settings.SettingsPanel', 'debug_toolbar.panels.headers.HeadersPanel', 'debug_toolbar.panels.request.RequestPanel', 'debug_toolbar.panels.sql.SQLPanel', 'debug_toolbar.panels.staticfiles.StaticFilesPanel', 'debug_toolbar.panels.templates.TemplatesPanel', 'debug_toolbar.panels.cache.CachePanel', 'debug_toolbar.panels.signals.SignalsPanel', 'debug_toolbar.panels.logging.LoggingPanel', 'debug_toolbar.panels.redirects.RedirectsPanel', 'cachalot.panels.CachalotPanel', ] def show_toolbar(request): return DEBUG DEBUG_TOOLBAR_CONFIG = { "SHOW_TOOLBAR_CALLBACK": show_toolbar, } # Internationalization # https://docs.djangoproject.com/en/1.8/topics/i18n/ LOCALE_PATHS = [ # '/django-app/locale', os.path.join(BASE_DIR, 'locale') ] AUTH_USER_MODEL = 'users.User' AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'base.validators.CustomPasswordValidator', }, ] LANGUAGE_CODE = 'es-es' LANGUAGES = ( ('es', 'Espanol (Espana)'), ('en', 'English'), ) TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.8/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'static/') MEDIA_ROOT = os.path.join(BASE_DIR, 'media/') MEDIA_URL = '/media/' LOGIN_URL = '/' PROJECT_ROOT = os.path.dirname(os.path.realpath(__file__)) FIXTURE_DIRS = ('bedjango_master/fixtures',) EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend' # Django registration # To indicate if the register its open. REGISTRATION_OPEN = True # https://django-registration.readthedocs.io/en/2.1.1/settings.html#django.conf.settings.REGISTRATION_OPEN # Configuring the HMAC activation workflow # To specify the days that the user must be activate his register. ACCOUNT_ACTIVATION_DAYS = 1 # https://django-registration.readthedocs.io/en/2.1.1/settings.html#django.conf.settings.ACCOUNT_ACTIVATION_DAYS # To specify a str to construct the activation code REGISTRATION_SALT = 'registration' # https://django-registration.readthedocs.io/en/2.1.1/settings.html#django.conf.settings.REGISTRATION_SALT # Email config EMAIL_FROM = '[email protected]' EMAIL_TO = '[email protected]'
py
1a514d23ebaf813ddee749d7e4824207327e9b03
""" Provides install path infomation. """ import os from esys.lsm.util.pathSearcher import PathSearcher installDir = "/home/daniel/Documents/fing/esys-particle/src/danielfrascarelli-git/esys-particle" binDir = os.path.join(installDir, "bin") libDir = os.path.join(installDir, "lib") pythonPkgDir = "/home/daniel/Documents/fing/esys-particle/src/danielfrascarelli-git/esys-particle/lib/python2.7/site-packages" esysPkgDir = os.path.join(pythonPkgDir, "esys") lsmPkgDir = os.path.join(esysPkgDir, "lsm") pkgName = "ESyS-Particle" version = "2.3.5" pkgHomePageUrl = "https://launchpad.net/esys-particle/" pkgDataDir = "/home/daniel/Documents/fing/esys-particle/src/danielfrascarelli-git/esys-particle/share/esys-particle" povrayExe = "no" _haveVtk = False _havePovray = False def getPovrayExePath(): """ Attempts to return the absolute path of the "povray" executable using the "PATH" environment variable. If the exe can't be found on the "PATH" then this function returns the "povray" path which was found during installation. This function is a workaround for for the SGI MPT mpirun, which seems to alter the user "PATH" environment. """ absPath=PathSearcher().find("povray") if ((absPath == None) or (absPath == "")): absPath = povrayExe return absPath def getDataFilePath(dataFileName): """ Returns path for specified data file. Looks on path C{L{pkgDataDir}:Data:.} """ return PathSearcher(pkgDataDir+":Data:.").which(dataFileName) def haveVtk(): return _haveVtk def havePovray(): return _havePovray
py
1a514e64b225e638152d71b2c9960a550e5ffeb6
from raptiformica.actions.slave import assimilate_machine from tests.testcase import TestCase class TestAssimilateMachine(TestCase): def setUp(self): self.log = self.set_up_patch('raptiformica.actions.slave.log') self.download_artifacts = self.set_up_patch('raptiformica.actions.slave.download_artifacts') self.advertise = self.set_up_patch('raptiformica.actions.slave.advertise') self.ensure_route_to_new_neighbour = self.set_up_patch( 'raptiformica.actions.slave.ensure_route_to_new_neighbour' ) def test_assimilate_machine_logs_assimilating_machine_message(self): assimilate_machine('1.2.3.4', port=2222) self.assertTrue(self.log.info.called) def test_assimilate_machine_downloads_artifacts(self): assimilate_machine('1.2.3.4', port=2222) self.download_artifacts.assert_called_once_with('1.2.3.4', port=2222) def test_assimilate_machine_sets_advertised_host_and_port_on_remote_machine(self): assimilate_machine('1.2.3.4', port=2222) self.advertise.assert_called_once_with('1.2.3.4', port=2222) def test_assimilate_machine_ensures_route_to_new_neighbour(self): assimilate_machine('1.2.3.4', port=2222) self.ensure_route_to_new_neighbour.assert_called_once_with( '1.2.3.4', port=2222, compute_checkout_uuid=None ) def test_assimilate_machine_update_ensures_route_to_new_neighbour_with_optional_uuid(self): assimilate_machine('1.2.3.4', port=2222, uuid='some_uuid_1234') self.ensure_route_to_new_neighbour.assert_called_once_with( '1.2.3.4', port=2222, compute_checkout_uuid='some_uuid_1234' )
py
1a514ea075ee795f945b6c8b6ee0bd96df05ed18
import unittest from six.moves import StringIO import time from robot import utils from robot.utils.asserts import * from robot.output.filelogger import FileLogger from robot.utils.robottime import TimestampCache class _FakeTimeCache(TimestampCache): def __init__(self): self.fake = time.mktime((2006, 6, 13, 8, 37, 42, 0, 0, 1)) + 0.123 TimestampCache.__init__(self) def _get_epoch(self): return self.fake class TestFileLogger(unittest.TestCase): def setUp(self): utils.robottime.TIMESTAMP_CACHE = _FakeTimeCache() FileLogger._get_writer = lambda *args: StringIO() self.logger = FileLogger('whatever', 'INFO') def tearDown(self): utils.robottime.TIMESTAMP_CACHE = TimestampCache() def test_write(self): self.logger.write('my message', 'INFO') expected = '20060613 08:37:42.123 | INFO | my message\n' self._verify_message(expected) self.logger.write('my 2nd msg\nwith 2 lines', 'ERROR') expected += '20060613 08:37:42.123 | ERROR | my 2nd msg\nwith 2 lines\n' self._verify_message(expected) def test_write_helpers(self): self.logger.info('my message') expected = '20060613 08:37:42.123 | INFO | my message\n' self._verify_message(expected) self.logger.warn('my 2nd msg\nwith 2 lines') expected += '20060613 08:37:42.123 | WARN | my 2nd msg\nwith 2 lines\n' self._verify_message(expected) def test_set_level(self): self.logger.write('msg', 'DEBUG') self._verify_message('') self.logger.set_level('DEBUG') self.logger.write('msg', 'DEBUG') self._verify_message('20060613 08:37:42.123 | DEBUG | msg\n') def _verify_message(self, expected): assert_equals(self.logger._writer.getvalue(), expected) if __name__ == "__main__": unittest.main()
py
1a51516b5ea8f70c8cab9732abc98557d1eafc0b
#!/usr/bin/env python3 _DEFAULT_DEPENDENCIES = [ "packages/data/**/*", "packages/common/**/*", "packages/course-landing/**/*", "packages/{{site}}/**/*", "yarn.lock", ] _COURSE_LANDING_DEPENDENCIES = [ "packages/data/training/sessions.yml", "packages/data/training/recommendations/**/*", "packages/data/training/recommendations/**/*", "packages/data/training/pictures/**/*", "packages/common/**/*", "packages/course-landing/**/*", "packages/{{site}}/**/*", "yarn.lock", ] _ONDREJSIKA_THEME_DEPENDENCIES = [ "packages/data/**/*", "packages/common/**/*", "packages/ondrejsika-theme/**/*", "packages/{{site}}/**/*", "yarn.lock", ] _ONDREJSIKA_SINGLEPAGE_DEPENDENCIES = _ONDREJSIKA_THEME_DEPENDENCIES + [ "packages/ondrejsika-singlepage/**/*", ] PROD_SITES = { "trainera.de": { "dependencies": _ONDREJSIKA_THEME_DEPENDENCIES, "cloudflare_workers": True, }, "ondrej-sika.com": { "dependencies": _ONDREJSIKA_THEME_DEPENDENCIES, "cloudflare_workers": True, }, "ondrej-sika.cz": { "dependencies": _ONDREJSIKA_THEME_DEPENDENCIES, "cloudflare_workers": True, }, "ondrej-sika.de": { "dependencies": _ONDREJSIKA_SINGLEPAGE_DEPENDENCIES, "cloudflare_workers": True, }, "trainera.cz": { "dependencies": _ONDREJSIKA_THEME_DEPENDENCIES, "cloudflare_workers": True, }, "skolenie.kubernetes.sk": { "dependencies": _COURSE_LANDING_DEPENDENCIES, }, "training.kubernetes.is": { "dependencies": _COURSE_LANDING_DEPENDENCIES, }, "training.kubernetes.lu": { "dependencies": _COURSE_LANDING_DEPENDENCIES, }, "cal-api.sika.io": { "dependencies": _DEFAULT_DEPENDENCIES, }, "ccc.oxs.cz": { "dependencies": _DEFAULT_DEPENDENCIES, }, "sika.blog": { "dependencies": _DEFAULT_DEPENDENCIES, }, "static.sika.io": { "dependencies": _DEFAULT_DEPENDENCIES, }, "sikahq.com": { "dependencies": _DEFAULT_DEPENDENCIES, }, "ondrejsika.is": { "dependencies": _ONDREJSIKA_SINGLEPAGE_DEPENDENCIES, "cloudflare_workers": True, }, "skoleni.io": { "dependencies": _DEFAULT_DEPENDENCIES, "cloudflare_workers": True, }, } ALL_SITES = {} ALL_SITES.update(PROD_SITES) PRIORITY_SITES = ( "ondrej-sika.cz", "ondrej-sika.com", "trainera.cz", "skoleni.io", "trainera.de", ) SUFFIX = ".panda.k8s.oxs.cz" SITES = ALL_SITES.keys() out = [] out.append( """# Don't edit this file maually # This file is generated by ./generate-gitlab-ci.py image: sikalabs/ci stages: - start - build_docker_priority - deploy_dev_priority - deploy_prod_priority - build_docker - deploy_dev - deploy_prod variables: DOCKER_BUILDKIT: '1' GIT_CLEAN_FLAGS: "-ffdx -e node_modules -e .yarn-cache" start: stage: start script: echo "start job - you can't create empty child pipeline" """ ) def generate_dependencies(site): if site not in ALL_SITES: return """ - packages/data/**/* - packages/common/**/* - packages/course-landing/**/* - packages/{{site}}/**/* - yarn.lock""".replace( "{{site}}", site ) return "\n".join( (" - " + line).replace("{{site}}", site) for line in ALL_SITES[site]["dependencies"] ) for site in SITES: if site in ALL_SITES and ALL_SITES[site].get("cloudflare_workers"): pass else: out.append( """ %(site)s build docker: stage: build_docker%(priority_suffix)s image: sikalabs/ci-node needs: [] variables: GIT_CLEAN_FLAGS: -ffdx -e node_modules -e .yarn-cache script: - yarn --cache-folder .yarn-cache - rm -rf packages/%(site)s/out - mkdir -p packages/%(site)s/public/api - slu static-api version --set-git-clean --set-git-ref $CI_COMMIT_REF_NAME -e CI_PIPELINE_ID=$CI_PIPELINE_ID -e "GITLAB_USER_LOGIN=$GITLAB_USER_LOGIN" -e "CI_COMMIT_TITLE=$CI_COMMIT_TITLE" > packages/%(site)s/public/api/version.json - yarn run static-%(site)s - docker login $CI_REGISTRY -u $CI_REGISTRY_USER -p $CI_REGISTRY_PASSWORD - cp ci/docker/* packages/%(site)s/ - docker build -t $CI_REGISTRY_IMAGE/%(site)s:$CI_COMMIT_SHORT_SHA packages/%(site)s - rm packages/%(site)s/Dockerfile - rm packages/%(site)s/nginx-site.conf - docker push $CI_REGISTRY_IMAGE/%(site)s:$CI_COMMIT_SHORT_SHA except: variables: - $EXCEPT_BUILD - $EXCEPT_BUILD_DOCKER only: changes: %(dependencies)s """ % { "site": site, "priority_suffix": "_priority" if site in PRIORITY_SITES else "", "dependencies": generate_dependencies(site), } ) if site in PROD_SITES: if PROD_SITES[site].get("cloudflare_workers"): out.append( """ %(site)s prod deploy cloudflare: image: sikalabs/ci-node stage: deploy_prod%(priority_suffix)s script: - yarn --cache-folder .yarn-cache - yarn --cache-folder .yarn-cache add @cloudflare/wrangler -W - rm -rf packages/%(site)s/out - mkdir -p packages/%(site)s/public/api - git status - slu static-api version --set-git-clean --set-git-ref $CI_COMMIT_REF_NAME -e CI_PIPELINE_ID=$CI_PIPELINE_ID -e "GITLAB_USER_LOGIN=$GITLAB_USER_LOGIN" -e "CI_COMMIT_TITLE=$CI_COMMIT_TITLE" > packages/%(site)s/public/api/version.json - yarn run deploy-%(site)s except: variables: - $EXCEPT_DEPLOY - $EXCEPT_DEPLOY_CLOUDFLARE - $EXCEPT_DEPLOY_K8S - $EXCEPT_DEPLOY_PROD - $EXCEPT_DEPLOY_PROD_K8S only: refs: - master changes: %(dependencies)s environment: name: k8s/prod/%(site)s url: https://%(site)s dependencies: [] """ % { "site": site, "suffix": SUFFIX, "name": site.replace(".", "-"), "priority_suffix": "_priority" if site in PRIORITY_SITES else "", "dependencies": generate_dependencies(site), } ) else: out.append( """ %(site)s prod deploy k8s: needs: - %(site)s build docker stage: deploy_prod%(priority_suffix)s variables: GIT_STRATEGY: none KUBECONFIG: .kubeconfig script: - docker login $CI_REGISTRY -u $CI_REGISTRY_USER -p $CI_REGISTRY_PASSWORD - docker pull $CI_REGISTRY_IMAGE/%(site)s:$CI_COMMIT_SHORT_SHA - docker tag $CI_REGISTRY_IMAGE/%(site)s:$CI_COMMIT_SHORT_SHA $CI_REGISTRY_IMAGE/%(site)s - docker push $CI_REGISTRY_IMAGE/%(site)s except: variables: - $EXCEPT_DEPLOY - $EXCEPT_DEPLOY_K8S - $EXCEPT_DEPLOY_PROD - $EXCEPT_DEPLOY_PROD_K8S only: refs: - master changes: %(dependencies)s environment: name: k8s/prod/%(site)s url: https://%(site)s kubernetes: namespace: default dependencies: [] """ % { "site": site, "suffix": SUFFIX, "name": site.replace(".", "-"), "priority_suffix": "_priority" if site in PRIORITY_SITES else "", "dependencies": generate_dependencies(site), } ) with open(".gitlab-ci.generated.yml", "w") as f: f.write("".join(out))
py
1a5151ce0ccff335ed9a958889c9e08273b0fa12
# Copyright (C) 2003-2007 Robey Pointer <[email protected]> # # This file is part of paramiko. # # Paramiko is free software; you can redistribute it and/or modify it under the # terms of the GNU Lesser General Public License as published by the Free # Software Foundation; either version 2.1 of the License, or (at your option) # any later version. # # Paramiko is distrubuted in the hope that it will be useful, but WITHOUT ANY # WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR # A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more # details. # # You should have received a copy of the GNU Lesser General Public License # along with Paramiko; if not, write to the Free Software Foundation, Inc., # 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. """ Implementation of an SSH2 "message". """ import struct import cStringIO from paramiko import util class Message (object): """ An SSH2 I{Message} is a stream of bytes that encodes some combination of strings, integers, bools, and infinite-precision integers (known in python as I{long}s). This class builds or breaks down such a byte stream. Normally you don't need to deal with anything this low-level, but it's exposed for people implementing custom extensions, or features that paramiko doesn't support yet. """ def __init__(self, content=None): """ Create a new SSH2 Message. @param content: the byte stream to use as the Message content (passed in only when decomposing a Message). @type content: string """ if content != None: self.packet = cStringIO.StringIO(content) else: self.packet = cStringIO.StringIO() def __str__(self): """ Return the byte stream content of this Message, as a string. @return: the contents of this Message. @rtype: string """ return self.packet.getvalue() def __repr__(self): """ Returns a string representation of this object, for debugging. @rtype: string """ return 'paramiko.Message(' + repr(self.packet.getvalue()) + ')' def rewind(self): """ Rewind the message to the beginning as if no items had been parsed out of it yet. """ self.packet.seek(0) def get_remainder(self): """ Return the bytes of this Message that haven't already been parsed and returned. @return: a string of the bytes not parsed yet. @rtype: string """ position = self.packet.tell() remainder = self.packet.read() self.packet.seek(position) return remainder def get_so_far(self): """ Returns the bytes of this Message that have been parsed and returned. The string passed into a Message's constructor can be regenerated by concatenating C{get_so_far} and L{get_remainder}. @return: a string of the bytes parsed so far. @rtype: string """ position = self.packet.tell() self.rewind() return self.packet.read(position) def get_bytes(self, n): """ Return the next C{n} bytes of the Message, without decomposing into an int, string, etc. Just the raw bytes are returned. @return: a string of the next C{n} bytes of the Message, or a string of C{n} zero bytes, if there aren't C{n} bytes remaining. @rtype: string """ b = self.packet.read(n) if len(b) < n: return '\x00'*n return b def get_byte(self): """ Return the next byte of the Message, without decomposing it. This is equivalent to L{get_bytes(1)<get_bytes>}. @return: the next byte of the Message, or C{'\000'} if there aren't any bytes remaining. @rtype: string """ return self.get_bytes(1) def get_boolean(self): """ Fetch a boolean from the stream. @return: C{True} or C{False} (from the Message). @rtype: bool """ b = self.get_bytes(1) return b != '\x00' def get_int(self): """ Fetch an int from the stream. @return: a 32-bit unsigned integer. @rtype: int """ return struct.unpack('>I', self.get_bytes(4))[0] def get_int64(self): """ Fetch a 64-bit int from the stream. @return: a 64-bit unsigned integer. @rtype: long """ return struct.unpack('>Q', self.get_bytes(8))[0] def get_mpint(self): """ Fetch a long int (mpint) from the stream. @return: an arbitrary-length integer. @rtype: long """ return util.inflate_long(self.get_string()) def get_string(self): """ Fetch a string from the stream. This could be a byte string and may contain unprintable characters. (It's not unheard of for a string to contain another byte-stream Message.) @return: a string. @rtype: string """ return self.get_bytes(self.get_int()) def get_list(self): """ Fetch a list of strings from the stream. These are trivially encoded as comma-separated values in a string. @return: a list of strings. @rtype: list of strings """ return self.get_string().split(',') def add_bytes(self, b): """ Write bytes to the stream, without any formatting. @param b: bytes to add @type b: str """ self.packet.write(b) return self def add_byte(self, b): """ Write a single byte to the stream, without any formatting. @param b: byte to add @type b: str """ self.packet.write(b) return self def add_boolean(self, b): """ Add a boolean value to the stream. @param b: boolean value to add @type b: bool """ if b: self.add_byte('\x01') else: self.add_byte('\x00') return self def add_int(self, n): """ Add an integer to the stream. @param n: integer to add @type n: int """ self.packet.write(struct.pack('>I', n)) return self def add_int64(self, n): """ Add a 64-bit int to the stream. @param n: long int to add @type n: long """ self.packet.write(struct.pack('>Q', n)) return self def add_mpint(self, z): """ Add a long int to the stream, encoded as an infinite-precision integer. This method only works on positive numbers. @param z: long int to add @type z: long """ self.add_string(util.deflate_long(z)) return self def add_string(self, s): """ Add a string to the stream. @param s: string to add @type s: str """ self.add_int(len(s)) self.packet.write(s) return self def add_list(self, l): """ Add a list of strings to the stream. They are encoded identically to a single string of values separated by commas. (Yes, really, that's how SSH2 does it.) @param l: list of strings to add @type l: list(str) """ self.add_string(','.join(l)) return self def _add(self, i): if type(i) is str: return self.add_string(i) elif type(i) is int: return self.add_int(i) elif type(i) is long: if i > 0xffffffffL: return self.add_mpint(i) else: return self.add_int(i) elif type(i) is bool: return self.add_boolean(i) elif type(i) is list: return self.add_list(i) else: raise Exception('Unknown type') def add(self, *seq): """ Add a sequence of items to the stream. The values are encoded based on their type: str, int, bool, list, or long. @param seq: the sequence of items @type seq: sequence @bug: longs are encoded non-deterministically. Don't use this method. """ for item in seq: self._add(item)
py
1a5151e388ea281bd20a69712c137040005a9b9c
#!/usr/bin/env python3.4 """ kill_python.py, copyright (c) 2015 by Stefan Lehmann """ import os import psutil PROC = "python.exe" my_pid = os.getpid() i = 0 for p in psutil.process_iter(): if p.name() == PROC and p.pid != my_pid: i += 1 p.kill() print("Killed {} instances of process '{}'.".format(i, PROC))
py
1a51526cb67accf3b7913712410b52b529e69465
"""Common configure functions for vlan""" # Python import logging # Unicon from unicon.core.errors import SubCommandFailure # Genie from genie.metaparser.util.exceptions import SchemaEmptyParserError log = logging.getLogger(__name__) def config_vlan(device, vlanid): """ Configures a VLAN on Interface or Device e.g. vlan 666 Args: device (`obj`): Device object vlanid (`str`): Vlan id Return: None Raise: SubCommandFailure: Failed configuring interface """ configs = [] configs.append("vlan {vlanid}".format(vlanid=vlanid)) configs.append("no shutdown") try: device.configure(configs) except SubCommandFailure as e: raise SubCommandFailure( 'Could not configure vlan {vlanid}, Error: {error}'.format( vlanid=vlanid, error=e) ) def config_ip_on_vlan(device, vlan_id, ipv4_address=None, subnetmask=None, ipv6_address=None, ipv6_prefix_len=None): """Configure an IPv4/IPv6 address on a vlan Args: device (`obj`): Device object vlanid (`str`): Vlan id ipv4_address (`str`): IPv4 address subnetmask (`str`): Subnet mask to be used for IPv4 address ipv6_address (`str`): Ipv6 address ipv6_prefix_len (`int`): length of IPv6 prefix Return: None Raise: SubCommandFailure: Failed to configure Ipv4/Ipv6 address on vlan """ try: if ipv4_address and subnetmask: device.configure([f'interface vlan {vlan_id}', f'ip address {ipv4_address} {subnetmask}']) if ipv6_address and ipv6_prefix_len: device.configure([f'interface vlan {vlan_id}', 'ipv6 enable', f'ipv6 address {ipv6_address}/{ipv6_prefix_len}']) except SubCommandFailure as e: raise SubCommandFailure( f'Could not configure Ipv4/Ipv6 address on vlan {vlan_id}, ' f'Error: {e}' ) def unconfig_vlan(device, vlanid): """ vlan on Interface or Device configuration removal Args: device (`obj`): Device object vlanid (`str`): Vlan id Return: None Raise: SubCommandFailure: Failed configuring interface """ try: device.configure("no vlan {vlanid}".format(vlanid=vlanid)) except SubCommandFailure as e: raise SubCommandFailure( 'Could not remove vlan {vlanid}, Error: {error}'.format( vlanid=vlanid, error=e) ) def config_vlan_tag_native(device): """ Configure vlan dot1q tag native Args: device (`obj`): Device object Return: None Raise: SubCommandFailure: Failed configuring device """ try: device.configure("vlan dot1q tag native") except SubCommandFailure as e: raise SubCommandFailure( 'Could not configure vlan dot1q tag native, Error: {error}'.format( error=e) ) def configure_vlan_vpls(device, vlanid): """ Config vpls on vlan Args: device (`obj`): Device object vlanid (`str`): Vlan id Return: None Raise: SubCommandFailure: Failed configuring interface """ try: device.configure( [ "vlan configuration {vlanid}".format(vlanid=vlanid), "member vfi vpls", "vlan dot1q tag native", ] ) except SubCommandFailure as e: raise SubCommandFailure( 'Could not configure vpls on vlan {vlanid}, Error: {error}'.format( vlanid=vlanid, error=e) ) def configure_vtp_mode(device,mode): """ Configures global VTP mode Args: device ('obj'): device to use mode ('str'): VTP mode (i.e transparent, client, server) Returns: None Raises: SubCommandFailure """ try: device.configure('vtp mode {mode}'.format(mode=mode)) except SubCommandFailure: raise SubCommandFailure( 'Could not configure VTP mode' ) def configure_pvlan_svi_mapping(device, svi_vlan, mapping_vlan): """ Configures Private Vlan Mapping on SVI Args: device ('obj'): device to use svi_vlan ('str'): SVI interface mapping_vlan ('str'): Private vlan to map to Returns: None Raises: SubCommandFailure """ # Initialize list variable config_list = [] config_list.append("interface {svi_vlan}".format(svi_vlan=svi_vlan)) config_list.append("private-vlan mapping {mapping_vlan}".format(mapping_vlan=mapping_vlan)) try: device.configure(config_list) except SubCommandFailure: raise SubCommandFailure( 'Could not configure PVLAN-mapping' ) def configure_pvlan_primary(device, primary_vlan, secondary_vlan=None): """ Configures Primary Private Vlan Args: device ('obj'): device to use primary_vlan ('str'): Primary private vlan secondary_vlan ('str',optional): Secondary isolated/community vlan Returns: None Raises: SubCommandFailure """ config_list = [] # vlan 100 # private-vlan primary config_list.append("vlan {primary_vlan} \n" "private-vlan primary".format(primary_vlan=primary_vlan)) # private-vlan association 101 if secondary_vlan != None: config_list.append("private-vlan association {secondary_vlan}".format(secondary_vlan=secondary_vlan)) try: device.configure(config_list) except SubCommandFailure: raise SubCommandFailure( 'Could not configure Primary Pvlan' ) def configure_pvlan_type(device,vlan,pvlan_type): """ Configures Isolated Private Vlan Args: device ('obj'): device to use vlan ('str'): Vlan id pvlan_type ('str'): Private vlan type (i.e isolated, primary, community) Returns: None Raises: SubCommandFailure """ # Initialize list variable config_list = [] config_list.append("vlan {vlan}".format(vlan=vlan)) config_list.append("private-vlan {pvlan_type}".format(pvlan_type=pvlan_type)) try: device.configure(config_list) except SubCommandFailure: raise SubCommandFailure( 'Could not configure Primary Pvlan' )
py
1a5153335984538f4c53cb74eacbb21a24bc1761
# Copyright 2016 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Creates a VM with user specified disks attached to it.""" COMPUTE_URL_BASE = 'https://www.googleapis.com/compute/v1/' def DiskName(context, diskobj): return context.env['deployment'] + '-disk-' + diskobj['name'] def GenerateConfig(context): """Creates configuration.""" resources = [] project = context.env['project'] # create disks resources for disk_obj in context.properties['disks']: resources.append({'name': DiskName(context, disk_obj), 'type': 'compute.v1.disk', 'properties': { 'zone': context.properties['zone'], 'sizeGb': str(disk_obj['sizeGb']), 'type': ''.join([COMPUTE_URL_BASE, 'projects/', project, '/zones/', context.properties['zone'], '/diskTypes/', disk_obj['diskType']]) } }) disks = [] disks.append({'deviceName': 'boot', 'type': 'PERSISTENT', 'boot': True, 'autoDelete': True, 'initializeParams': { 'diskName': project + '-boot', 'sourceImage': ''.join([COMPUTE_URL_BASE, 'projects/', 'debian-cloud/global/images/', 'family/debian-8']) } }) for disk_obj in context.properties['disks']: disks.append({'deviceName': DiskName(context, disk_obj), 'type': 'PERSISTENT', 'source': ''.join(['$(ref.', DiskName(context, disk_obj), '.selfLink)']), 'autoDelete': True}) # create vm with disks resources.append({'name': context.env['deployment'] + '-vm', 'type': 'compute.v1.instance', 'properties': { 'zone': context.properties['zone'], 'machineType': ''.join([COMPUTE_URL_BASE, 'projects/', project, '/zones/', context.properties['zone'], '/machineTypes/f1-micro']), 'networkInterfaces': [{ 'network': ''.join([COMPUTE_URL_BASE, 'projects/', project, '/global/networks/default']), 'accessConfigs': [{ 'name': 'External NAT', 'type': 'ONE_TO_ONE_NAT'}], }], 'disks': disks } }) return {'resources': resources}
py
1a51537b06b9f225a554fa99fb7823584832c85c
#!/usr/bin/env python2 # -*- coding: utf-8 -*- import keras import numpy as np from model.skin_resnet import skin_resnet from keras.preprocessing import image from keras.preprocessing.image import transform_matrix_offset_center, apply_transform def img_rotation(x, theta,row_axis=0, col_axis=1, channel_axis=2, fill_mode='nearest', cval=0.): """modifed from keras random_rotation # Arguments x: Input tensor. Must be 3D. theta: Rotation range, in degrees. row_axis: Index of axis for rows in the input tensor. col_axis: Index of axis for columns in the input tensor. channel_axis: Index of axis for channels in the input tensor. fill_mode: Points outside the boundaries of the input are filled according to the given mode (one of `{'constant', 'nearest', 'reflect', 'wrap'}`). cval: Value used for points outside the boundaries of the input if `mode='constant'`. # Returns Rotated Numpy image tensor. """ # theta = np.pi / 180 * np.random.uniform(-rg, rg) rotation_matrix = np.array([[np.cos(theta), -np.sin(theta), 0], [np.sin(theta), np.cos(theta), 0], [0, 0, 1]]) h, w = x.shape[row_axis], x.shape[col_axis] transform_matrix = transform_matrix_offset_center(rotation_matrix, h, w) x = apply_transform(x, transform_matrix, channel_axis, fill_mode, cval) return x def img_norm(img_array): """tensorflow tensor form """ img_array = img_array.reshape((1,) + img_array.shape) # normalization: for i in range(img_array.shape[0]): for k in range(3): img_array[i,::,::,k] -= np.mean(img_array[i,::,::,k]) img_array[i,::,::,k] /= np.std(img_array[i,::,::,k]) + 1e-7 return img_array def pred(image_path): sz = 224 # resize image into (224,224,3) theta = [0,-90,90,120,270] preds = np.ndarray(shape=(5), dtype=float) model = skin_resnet() # ๅฏผๅ…ฅ็ฝ‘็ปœ model.load_weights("model_weight/resnet50_turnable_152_d2_3.h5") # ๅฏผๅ…ฅๆƒ้‡ img = image.load_img(image_path, target_size = (sz,sz)) img_array = image.img_to_array(img) i = 0 for thet in theta: img_array2 = img_rotation(img_array, thet) img_array2 = img_norm(img_array2) results = model.predict(img_array2) * 100 preds[i] = results[0,0] i = i + 1 pred_f = np.median(preds) # pred_fๆ˜ฏ้ข„ๆต‹็ป“ๆžœ print ("*"*50) print "็šฎ่‚ค็™Œ็›ธไผผๅบฆ๏ผš" + str("%.2f") %pred_f +"%" print ("*"*50) return pred_f if __name__ == '__main__': print ("่ฏท่พ“ๅ…ฅๅ›พๅƒๆ‰€ๅœจไฝ็ฝฎ:") image_path = raw_input() # ่พ“ๅ…ฅๅ›พ็‰‡ pred(image_path)
py
1a5153d903f64f05201f1f9e962b80998744aaa1
""" -*- coding: utf-8 -*- @github{ title = {KoSpeech: Open Source Project for Korean End-to-End Automatic Speech Recognition in PyTorch}, author = {Soohwan Kim, Seyoung Bae, Cheolhwang Won, Suwon Park}, link = {https://github.com/sooftware/KoSpeech}, year = {2020} } """ import sys import argparse import random import warnings import torch from torch import optim, nn sys.path.append('..') from kospeech.data.data_loader import split_dataset, load_data_list from kospeech.optim.loss import CrossEntrypyLoss from kospeech.optim.lr_scheduler import RampUpLR from kospeech.optim.optimizer import Optimizer from kospeech.trainer.supervised_trainer import SupervisedTrainer from kospeech.model_builder import build_model from kospeech.opts import print_opts, build_train_opts, build_model_opts, build_preprocess_opts from kospeech.utils import PAD_token, char2id, check_envirionment def train(opt): random.seed(opt.seed) torch.manual_seed(opt.seed) torch.cuda.manual_seed_all(opt.seed) device = check_envirionment(opt.use_cuda) if not opt.resume: audio_paths, script_paths = load_data_list(opt.data_list_path, opt.dataset_path) epoch_time_step, trainset_list, validset = split_dataset(opt, audio_paths, script_paths) model = build_model(opt, device) optimizer = optim.Adam(model.module.parameters(), lr=opt.init_lr, weight_decay=1e-05) if opt.rampup_period > 0: scheduler = RampUpLR(optimizer, opt.init_lr, opt.high_plateau_lr, opt.rampup_period) optimizer = Optimizer(optimizer, scheduler, opt.rampup_period, opt.max_grad_norm) else: optimizer = Optimizer(optimizer, None, 0, opt.max_grad_norm) criterion = CrossEntrypyLoss(len(char2id), PAD_token, opt.label_smoothing, dim=-1).to(device) else: trainset_list = None validset = None model = None optimizer = None criterion = None epoch_time_step = None trainer = SupervisedTrainer(optimizer=optimizer, criterion=criterion, trainset_list=trainset_list, validset=validset, num_workers=opt.num_workers, high_plateau_lr=opt.high_plateau_lr, low_plateau_lr=opt.low_plateau_lr, decay_threshold=opt.decay_threshold, exp_decay_period=opt.exp_decay_period, device=device, teacher_forcing_step=opt.teacher_forcing_step, min_teacher_forcing_ratio=opt.min_teacher_forcing_ratio, print_every=opt.print_every, save_result_every=opt.save_result_every, checkpoint_every=opt.checkpoint_every, architecture=opt.architecture) model = trainer.train(model=model, batch_size=opt.batch_size, epoch_time_step=epoch_time_step, num_epochs=opt.num_epochs, teacher_forcing_ratio=opt.teacher_forcing_ratio, resume=opt.resume) return model def _get_parser(): """ Get arguments parser """ parser = argparse.ArgumentParser(description='KoSpeech') parser.add_argument('--mode', type=str, default='train') build_preprocess_opts(parser) build_model_opts(parser) build_train_opts(parser) return parser def main(): warnings.filterwarnings('ignore') parser = _get_parser() opt = parser.parse_args() print_opts(opt, opt.mode) train(opt) if __name__ == '__main__': main()
py
1a51544cda139c5fc9e21e09682b8a3773281835
#!/usr/bin/env python # -*- coding: iso-8859-15 -*- from google.appengine.api import users from google.appengine.ext import webapp from google.appengine.api.urlfetch import DownloadError from library import login from boto.ec2.connection import * class AlleVolumesLoeschenDefinitiv(webapp.RequestHandler): def get(self): mobile = self.request.get('mobile') if mobile != "true": mobile = "false" # Den Usernamen erfahren username = users.get_current_user() conn_region, regionname = login(username) try: # Liste mit den Volumes liste_volumes = conn_region.get_all_volumes() except EC2ResponseError: # Wenn es nicht klappt... fehlermeldung = "10" self.redirect('/volumes?mobile='+str(mobile)+'&message='+fehlermeldung) except DownloadError: # Diese Exception hilft gegen diese beiden Fehler: # DownloadError: ApplicationError: 2 timed out # DownloadError: ApplicationError: 5 fehlermeldung = "8" self.redirect('/volumes?mobile='+str(mobile)+'&message='+fehlermeldung) else: # Wenn es geklappt hat... # Anzahl der Volumes in der Liste laenge_liste_volumes = len(liste_volumes) for i in range(laenge_liste_volumes): try: # Volume entfernen conn_region.delete_volume(liste_volumes[i].id) except EC2ResponseError: # Wenn es nicht klappt... fehlermeldung = "26" self.redirect('/volumes?mobile='+str(mobile)+'&message='+fehlermeldung) except DownloadError: # Diese Exception hilft gegen diese beiden Fehler: # DownloadError: ApplicationError: 2 timed out # DownloadError: ApplicationError: 5 fehlermeldung = "8" self.redirect('/volumes?mobile='+str(mobile)+'&message='+fehlermeldung) fehlermeldung = "27" self.redirect('/volumes?mobile='+str(mobile)+'&message='+fehlermeldung)
py
1a515464769cb988dca585fcc3dd4765dda8bc8e
from __future__ import annotations from enum import Enum, auto as _auto import typing from dataclasses import dataclass from dianascript.chexpr import * from dianascript.chlhs import * @dataclass class SFunc: name:str args:list[str] body:list[Chstmt] loc: tuple[int, int] | None = None def __or__(self, loc): self.loc = loc return self @dataclass class SDecl: vars:list[str] loc: tuple[int, int] | None = None def __or__(self, loc): self.loc = loc return self @dataclass class SAssign: targets:list[Chlhs] value:Chexpr loc: tuple[int, int] | None = None def __or__(self, loc): self.loc = loc return self @dataclass class SExpr: expr:Chexpr loc: tuple[int, int] | None = None def __or__(self, loc): self.loc = loc return self @dataclass class SFor: target:Chlhs|None iter:Chexpr body:list[Chstmt] loc: tuple[int, int] | None = None def __or__(self, loc): self.loc = loc return self @dataclass class SLoop: block:list[Chstmt] loc: tuple[int, int] | None = None def __or__(self, loc): self.loc = loc return self @dataclass class SIf: cond:Chexpr then:list[Chstmt] orelse:list[Chstmt]|None loc: tuple[int, int] | None = None def __or__(self, loc): self.loc = loc return self @dataclass class SBreak: loc: tuple[int, int] | None = None def __or__(self, loc): self.loc = loc return self @dataclass class SContinue: loc: tuple[int, int] | None = None def __or__(self, loc): self.loc = loc return self @dataclass class SReturn: val:Chexpr|None loc: tuple[int, int] | None = None def __or__(self, loc): self.loc = loc return self Chstmt = SFunc | SDecl | SAssign | SExpr | SFor | SLoop | SIf | SBreak | SContinue | SReturn
py
1a5154a2bf609a261dbfd43b0acb8557f5b0cdc2
import json from collections import defaultdict from typing import List from sqlalchemy import desc from sqlalchemy.future import select from app.crud.test_case.ConstructorDao import ConstructorDao from app.crud.test_case.TestCaseAssertsDao import TestCaseAssertsDao from app.crud.test_case.TestCaseDirectory import PityTestcaseDirectoryDao from app.crud.test_case.TestcaseDataDao import PityTestcaseDataDao from app.models import Session, DatabaseHelper, async_session from app.models.constructor import Constructor from app.models.schema.testcase_schema import TestCaseForm from app.models.test_case import TestCase from app.utils.logger import Log class TestCaseDao(object): log = Log("TestCaseDao") @staticmethod async def list_test_case(directory_id: int = None, name: str = "", create_user: str = None): try: filters = [TestCase.deleted_at == None] if directory_id: parents = await PityTestcaseDirectoryDao.get_directory_son(directory_id) filters = [TestCase.deleted_at == None, TestCase.directory_id.in_(parents)] if name: filters.append(TestCase.name.like(f"%{name}%")) if create_user: filters.append(TestCase.create_user == create_user) async with async_session() as session: sql = select(TestCase).where(*filters).order_by(TestCase.name.asc()) result = await session.execute(sql) return result.scalars().all() except Exception as e: TestCaseDao.log.error(f"่Žทๅ–ๆต‹่ฏ•็”จไพ‹ๅคฑ่ดฅ: {str(e)}") raise Exception(f"่Žทๅ–ๆต‹่ฏ•็”จไพ‹ๅคฑ่ดฅ: {str(e)}") @staticmethod async def get_test_case_by_directory_id(directory_id: int): try: async with async_session() as session: sql = select(TestCase).where(TestCase.deleted_at == None, TestCase.directory_id == directory_id).order_by(TestCase.name.asc()) result = await session.execute(sql) ans = [] case_map = dict() for item in result.scalars(): ans.append({"title": item.name, "key": "testcase_{}".format(item.id), "children": []}) case_map[item.id]=item.name return ans, case_map except Exception as e: TestCaseDao.log.error(f"่Žทๅ–ๆต‹่ฏ•็”จไพ‹ๅคฑ่ดฅ: {str(e)}") raise Exception(f"่Žทๅ–ๆต‹่ฏ•็”จไพ‹ๅคฑ่ดฅ: {str(e)}") @staticmethod def get_tree(case_list): result = defaultdict(list) # ่Žทๅ–็›ฎๅฝ•->็”จไพ‹็š„ๆ˜ ๅฐ„ๅ…ณ็ณป for cs in case_list: result[cs.catalogue].append(cs) keys = sorted(result.keys()) tree = [dict(key=f"cat_{key}", children=[{"key": f"case_{child.id}", "title": child.name, "total": TestCaseDao.get_case_children_length(child.id), "children": TestCaseDao.get_case_children(child.id)} for child in result[key]], title=key, total=len(result[key])) for key in keys] return tree @staticmethod def get_case_children(case_id: int): data, err = TestCaseAssertsDao.list_test_case_asserts(case_id) if err: raise err return [dict(key=f"asserts_{d.id}", title=d.name, case_id=case_id) for d in data] @staticmethod def get_case_children_length(case_id: int): data, err = TestCaseAssertsDao.list_test_case_asserts(case_id) if err: raise err return len(data) @staticmethod def insert_test_case(test_case, user): """ :param user: ๅˆ›ๅปบไบบ :param test_case: ๆต‹่ฏ•็”จไพ‹ :return: """ try: with Session() as session: data = session.query(TestCase).filter_by(name=test_case.get("name"), directory_id=test_case.get("directory_id"), deleted_at=None).first() if data is not None: raise Exception("็”จไพ‹ๅทฒๅญ˜ๅœจ") cs = TestCase(**test_case, create_user=user) session.add(cs) session.commit() session.refresh(cs) return cs.id except Exception as e: TestCaseDao.log.error(f"ๆทปๅŠ ็”จไพ‹ๅคฑ่ดฅ: {str(e)}") raise Exception(f"ๆทปๅŠ ็”จไพ‹ๅคฑ่ดฅ: {str(e)}") @staticmethod def update_test_case(test_case: TestCaseForm, user): """ :param user: ไฟฎๆ”นไบบ :param test_case: ๆต‹่ฏ•็”จไพ‹ :return: """ try: with Session() as session: data = session.query(TestCase).filter_by(id=test_case.id, deleted_at=None).first() if data is None: raise Exception("็”จไพ‹ไธๅญ˜ๅœจ") DatabaseHelper.update_model(data, test_case, user) session.commit() session.refresh(data) return data except Exception as e: TestCaseDao.log.error(f"็ผ–่พ‘็”จไพ‹ๅคฑ่ดฅ: {str(e)}") raise Exception(f"็ผ–่พ‘็”จไพ‹ๅคฑ่ดฅ: {str(e)}") @staticmethod async def query_test_case(case_id: int) -> dict: try: async with async_session() as session: sql = select(TestCase).where(TestCase.id == case_id, TestCase.deleted_at == None) result = await session.execute(sql) data = result.scalars().first() if data is None: raise Exception("็”จไพ‹ไธๅญ˜ๅœจ") # ่Žทๅ–ๆ–ญ่จ€้ƒจๅˆ† asserts, _ = await TestCaseAssertsDao.async_list_test_case_asserts(data.id) # ่Žทๅ–ๆ•ฐๆฎๆž„้€ ๅ™จ constructors = await ConstructorDao.list_constructor(case_id) constructors_case = await TestCaseDao.query_test_case_by_constructors(constructors) test_data = await PityTestcaseDataDao.list_testcase_data(case_id) return dict(asserts=asserts, constructors=constructors, case=data, constructors_case=constructors_case, test_data=test_data) except Exception as e: TestCaseDao.log.error(f"ๆŸฅ่ฏข็”จไพ‹ๅคฑ่ดฅ: {str(e)}") raise Exception(f"ๆŸฅ่ฏข็”จไพ‹ๅคฑ่ดฅ: {str(e)}") @staticmethod async def query_test_case_by_constructors(constructors: List[Constructor]): try: # ๆ‰พๅˆฐๆ‰€ๆœ‰็”จไพ‹ๅ็งฐไธบ constructors = [json.loads(x.constructor_json).get("case_id") for x in constructors if x.type == 0] async with async_session() as session: sql = select(TestCase).where(TestCase.id.in_(constructors), TestCase.deleted_at == None) result = await session.execute(sql) data = result.scalars().all() return {x.id: x for x in data} except Exception as e: TestCaseDao.log.error(f"ๆŸฅ่ฏข็”จไพ‹ๅคฑ่ดฅ: {str(e)}") raise Exception(f"ๆŸฅ่ฏข็”จไพ‹ๅคฑ่ดฅ: {str(e)}") @staticmethod async def async_query_test_case(case_id) -> [TestCase, str]: try: async with async_session() as session: result = await session.execute( select(TestCase).where(TestCase.id == case_id, TestCase.deleted_at == None)) data = result.scalars().first() if data is None: return None, "็”จไพ‹ไธๅญ˜ๅœจ" return data, None except Exception as e: TestCaseDao.log.error(f"ๆŸฅ่ฏข็”จไพ‹ๅคฑ่ดฅ: {str(e)}") return None, f"ๆŸฅ่ฏข็”จไพ‹ๅคฑ่ดฅ: {str(e)}" @staticmethod def list_testcase_tree(projects) -> [List, dict]: try: result = [] project_map = {} project_index = {} for p in projects: project_map[p.id] = p.name result.append({ "label": p.name, "value": p.id, "key": p.id, "children": [], }) project_index[p.id] = len(result) - 1 with Session() as session: data = session.query(TestCase).filter(TestCase.project_id.in_(project_map.keys()), TestCase.deleted_at == None).all() for d in data: result[project_index[d.project_id]]["children"].append({ "label": d.name, "value": d.id, "key": d.id, }) return result except Exception as e: TestCaseDao.log.error(f"่Žทๅ–็”จไพ‹ๅˆ—่กจๅคฑ่ดฅ: {str(e)}") raise Exception("่Žทๅ–็”จไพ‹ๅˆ—่กจๅคฑ่ดฅ") @staticmethod def select_constructor(case_id: int): """ ้€š่ฟ‡case_id่Žทๅ–็”จไพ‹ๆž„้€ ๆ•ฐๆฎ :param case_id: :return: """ try: with Session() as session: data = session.query(Constructor).filter_by(case_id=case_id, deleted_at=None).order_by( desc(Constructor.created_at)).all() return data except Exception as e: TestCaseDao.log.error(f"ๆŸฅ่ฏขๆž„้€ ๆ•ฐๆฎๅคฑ่ดฅ: {str(e)}") @staticmethod async def async_select_constructor(case_id: int) -> List[Constructor]: """ ๅผ‚ๆญฅ่Žทๅ–็”จไพ‹ๆž„้€ ๆ•ฐๆฎ :param case_id: :return: """ try: async with async_session() as session: sql = select(Constructor).where(Constructor.case_id == case_id, Constructor.deleted_at == None).order_by(Constructor.created_at) data = await session.execute(sql) return data.scalars().all() except Exception as e: TestCaseDao.log.error(f"ๆŸฅ่ฏขๆž„้€ ๆ•ฐๆฎๅคฑ่ดฅ: {str(e)}") @staticmethod async def collect_data(case_id: int, data: List): """ ๆ”ถ้›†ไปฅcase_idไธบๅ‰็ฝฎๆกไปถ็š„ๆ•ฐๆฎ(ๅŽ็ฝฎๆš‚ๆ—ถไธๆ”ฏๆŒ) :param data: :param case_id: :return: """ # ๅ…ˆ่Žทๅ–ๆ•ฐๆฎๆž„้€ ๅ™จ๏ผˆๅ‰็ฝฎๆกไปถ๏ผ‰ pre = dict(id=f"pre_{case_id}", label="ๅ‰็ฝฎๆกไปถ", children=list()) await TestCaseDao.collect_constructor(case_id, pre) data.append(pre) # ่Žทๅ–ๆ–ญ่จ€ asserts = dict(id=f"asserts_{case_id}", label="ๆ–ญ่จ€", children=list()) await TestCaseDao.collect_asserts(case_id, asserts) data.append(asserts) @staticmethod async def collect_constructor(case_id, parent): constructors = await TestCaseDao.async_select_constructor(case_id) for c in constructors: temp = dict(id=f"constructor_{c.id}", label=f"{c.name}", children=list()) if c.type == 0: # ่ฏดๆ˜Žๆ˜ฏ็”จไพ‹๏ผŒ็ปง็ปญ้€’ๅฝ’ temp["label"] = "[CASE]: " + temp["label"] json_data = json.loads(c.constructor_json) await TestCaseDao.collect_data(json_data.get("case_id"), temp.get("children")) elif c.type == 1: temp["label"] = "[SQL]: " + temp["label"] elif c.type == 2: temp["label"] = "[REDIS]: " + temp["label"] # ๅฆๅˆ™ๆญฃๅธธๆทปๅŠ ๆ•ฐๆฎ parent.get("children").append(temp) @staticmethod async def collect_asserts(case_id, parent): asserts, err = await TestCaseAssertsDao.async_list_test_case_asserts(case_id) if err: raise Exception("่Žทๅ–ๆ–ญ่จ€ๆ•ฐๆฎๅคฑ่ดฅ") for a in asserts: temp = dict(id=f"assert_{a.id}", label=f"{a.name}", children=list()) parent.get("children").append(temp) @staticmethod async def get_xmind_data(case_id: int): result = dict() data = await TestCaseDao.query_test_case(case_id) cs = data.get("case") # ๅผ€ๅง‹่งฃๆžๆต‹่ฏ•ๆ•ฐๆฎ result.update(dict(id=f"case_{case_id}", label=f"{cs.name}({cs.id})")) children = list() await TestCaseDao.collect_data(case_id, children) result["children"] = children return result
py
1a5155bd82fb2fb85a5117acd1f270e6f2f5b424
from django.conf.urls.defaults import * # Uncomment the next two lines to enable the admin: #from django.contrib import admin #admin.autodiscover() urlpatterns = patterns('', # Example: # (r'^blog/', include('blog.foo.urls')), (r'^$', 'Account.views.index'), (r'^test/$', 'Account.views.test'), (r'^random_number/$', 'Account.views.random_number'), # Uncomment the admin/doc line below and add 'django.contrib.admindocs' # to INSTALLED_APPS to enable admin documentation: # (r'^admin/doc/', include('django.contrib.admindocs.urls')), # Uncomment the next line to enable the admin: # (r'^admin/(.*)', admin.site.root), )
py
1a5156203cc10b2d002654070a8d01f796da1d1a
import pandas as pd import numpy as np import os import json from datetime import date def getFilename(subject_data): """ Given the subject_data field from a row of one of our SpaceFluff dataframes, extract the name of the object being classified by extracting the 'Filename'|'image'|'IMAGE' field". To be used with df[column].apply() @returns {string} filename of the object being classified, including the extension '_insp.png' """ keys = list(subject_data.values())[0].keys() accessKey = ( "Filename" if "Filename" in keys else "image" if "image" in keys else "IMAGE" if "IMAGE" in keys else None) if accessKey: return list(subject_data.values())[0][accessKey][:-9] else: print("No filename found!") def getMetadataValue(metadata, field): ''' @param metadata metadata column from a row in a SpaceFluff dataframe @param {string} field: 'retired' | 'already_seen' @returns {boolean} value of `field` within the row's metadata column ''' return metadata['subject_selection_state'][field] def parseTime(created_at): ''' @param {df column} created_at: df['created_at'] column ''' return pd.to_datetime(created_at, format="%Y-%m-%d %H:%M:%S %Z") def getGroupSize(group): ''' @param {pd.core.frame.DataFrame} pandas dataframe group @returns number of rows in group (corresponds to number of columns in case of parsed SpaceFluff dataframe) ''' return group.shape[0] def extract_task_value(task_index, row): try: return row[task_index]['value'] except: return def percentageVotesForAnswer(counts, answer): ''' @param counts: a df column like {galaxy: 15, group of objects (cluster): 10, something else/empty center: 2} @paramanswer: one of the keys of `counts` ''' totalVotes = sum(counts.values()) if not answer in counts.keys(): return 0 votesForAnswer = counts[answer] return round(100*votesForAnswer/totalVotes, 1) def extractTaskValue(annotations, task): ''' @param {list} annotations: annotations column for a row in a SpaceFluff dataframe @param {string} task: one of 'Ti', where i \in 0,2,1,3,4,5,9 @returns {string | None} value the user provided for the given task, or None ''' filtered = list(filter(lambda x: x['task'] == task, annotations)) if len(filtered) > 0: return filtered[0]['value'] def extract_retired_info(subject_data): ''' @param subject_data: (dataframe 'subject_data' column) ''' return list(subject_data.values())[0]["retired"] def get_power_users(df, vote_count_threshold): """ @param df: parsed dataframe where each row is a single classification @param {int} vote_count_threshold: return only users that made at least this many valid classifications """ groupby_username = df[['user_name']].groupby(['user_name']) groupby_username_filtered = groupby_username.filter(lambda x: x.shape[0] >= vote_count_threshold) grouped = groupby_username_filtered.groupby(['user_name']) filtered_usernames_and_votes = [] for username, vote_count in grouped: filtered_usernames_and_votes.append({ "username": username, "votes": len(vote_count) }) return filtered_usernames_and_votes def get_task_0_value_counts(row): "Get task 0 value counts for one row of a group of classifications" row = list(row) # value_counts = {answer: 0 for answer in answer_types} value_counts = {} for vote in row: if value_counts.get(vote): value_counts[vote] += 1 else: value_counts[vote] = 1 return value_counts, len(row) def as_array(lst): 'Turn a Python list into a NumPy array' if type(lst) == np.ndarray: return lst return np.array(lst) def get_running_vote_fraction(df): """ Returns a list of (% votes by users that case <= n votes)/total votes as a function of n @param df: `df`-like dataframe, where each row corresponds to a single classification made by a single user """ users_and_classification_counts = [] for k, v in df.groupby('user_name').groups.items(): users_and_classification_counts.append({ 'username': k, 'classifications': len(v) }) cls_per_user = [entry['classifications'] for entry in users_and_classification_counts] total_votes = sum(cls_per_user) # total number of votes made sorted_vote_counts = sorted(cls_per_user) # sorted list of number of classifications per user # create dictionary with keys: # votes per user, values: # users that cast that amount of votes countDict = {} for entry in sorted_vote_counts: countDict[entry] = countDict.get(entry, 0) + 1 fractions = [] for vote_count, occurrence_rate in countDict.items(): fractions.append([vote_count, vote_count*occurrence_rate/total_votes, occurrence_rate]) counts, fractions, users_included = as_array(fractions).T # create a running fraction of total votes cast in a single loop running_fraction = [] for i, fr in enumerate(fractions): if i == 0: val = fr else: val = fr+running_fraction[i-1] running_fraction.append(val) return [ users_and_classification_counts, cls_per_user, counts, running_fraction ]
py
1a51565e052250be0e4cd95b7260ddc458534b44
from __future__ import absolute_import, print_function, unicode_literals import re import sys from django.conf import settings as django_settings from django.http import Http404, HttpResponseRedirect from django.utils.cache import add_never_cache_headers def redirect_request_processor(page, request): """ Returns a ``HttpResponseRedirect`` instance if the current page says a redirect should happen. """ target = page.get_redirect_to_target(request) if target: if request._feincms_extra_context.get('extra_path', '/') == '/': return HttpResponseRedirect(target) raise Http404() def extra_context_request_processor(page, request): """ Fills ``request._feincms_extra_context`` with a few useful variables. """ request._feincms_extra_context.update({ # XXX This variable name isn't accurate anymore. 'in_appcontent_subpage': False, 'extra_path': '/', }) url = page.get_absolute_url() if request.path != url: request._feincms_extra_context.update({ 'in_appcontent_subpage': True, 'extra_path': re.sub( '^' + re.escape(url.rstrip('/')), '', request.path, ), }) def frontendediting_request_processor(page, request): """ Sets the frontend editing state in the cookie depending on the ``frontend_editing`` GET parameter and the user's permissions. """ if not 'frontend_editing' in request.GET: return response = HttpResponseRedirect(request.path) if request.user.has_module_perms('page'): try: enable_fe = int(request.GET['frontend_editing']) > 0 except ValueError: enable_fe = False if enable_fe: response.set_cookie(str('frontend_editing'), enable_fe) else: response.delete_cookie(str('frontend_editing')) # Redirect to cleanup URLs return response def frontendediting_response_processor(page, request, response): # Add never cache headers in case frontend editing is active if (hasattr(request, 'COOKIES') and request.COOKIES.get('frontend_editing', False)): if hasattr(response, 'add_post_render_callback'): response.add_post_render_callback(add_never_cache_headers) else: add_never_cache_headers(response) def etag_request_processor(page, request): """ Short-circuits the request-response cycle if the ETag matches. """ # XXX is this a performance concern? Does it create a new class # every time the processor is called or is this optimized to a static # class?? class DummyResponse(dict): """ This is a dummy class with enough behaviour of HttpResponse so we can use the condition decorator without too much pain. """ def has_header(page, what): return False def dummy_response_handler(*args, **kwargs): return DummyResponse() def etagger(request, page, *args, **kwargs): etag = page.etag(request) return etag def lastmodifier(request, page, *args, **kwargs): lm = page.last_modified() return lm # Unavailable in Django 1.0 -- the current implementation of ETag support # requires Django 1.1 unfortunately. from django.views.decorators.http import condition # Now wrap the condition decorator around our dummy handler: # the net effect is that we will be getting a DummyResponse from # the handler if processing is to continue and a non-DummyResponse # (should be a "304 not modified") if the etag matches. rsp = condition(etag_func=etagger, last_modified_func=lastmodifier)( dummy_response_handler)(request, page) # If dummy then don't do anything, if a real response, return and # thus shortcut the request processing. if not isinstance(rsp, DummyResponse): return rsp def etag_response_processor(page, request, response): """ Response processor to set an etag header on outgoing responses. The Page.etag() method must return something valid as etag content whenever you want an etag header generated. """ etag = page.etag(request) if etag is not None: response['ETag'] = '"' + etag + '"' def debug_sql_queries_response_processor(verbose=False, file=sys.stderr): """ Attaches a handler which prints the query count (and optionally all individual queries which have been executed) on the console. Does nothing if ``DEBUG = False``. Example:: from feincms.module.page import models, processors models.Page.register_response_processor( processors.debug_sql_queries_response_processor(verbose=True), ) """ if not django_settings.DEBUG: return lambda page, request, response: None def processor(page, request, response): from django.db import connection print_sql = lambda x: x try: import sqlparse print_sql = lambda x: sqlparse.format( x, reindent=True, keyword_case='upper') except: pass if verbose: print("-" * 60, file=file) time = 0.0 i = 0 for q in connection.queries: i += 1 if verbose: print("%d : [%s]\n%s\n" % ( i, q['time'], print_sql(q['sql'])), file=file) time += float(q['time']) print("-" * 60, file=file) print("Total: %d queries, %.3f ms" % (i, time), file=file) print("-" * 60, file=file) return processor
py
1a5156e83a6f34b8e56723f9e38845d74dc9bdc3
import requests from data import ui def consultar(token='25d800a8b8e8b99d77c809567aa291b8',self=0): Sair = False while(Sair == False): if self == 1: ip_input = '' else: ip_input = ui.input_dialog() if len(ip_input) < 1: ui.error_dialog('Insira algo para consultar.');break try: api=requests.get('http://ipwhois.app/json/'+ip_input).json() #lat = api['latitude'] #lon = api['longitude'] #api2 = requests.get('http://api.openweathermap.org/data/2.5/weather?lat={lat}&lon={lon}&appid={token[2]}') except: msg = "erro no servidor" try: msg=f''' IP: {api['ip']} TIPO: {api['type']} CONTINENTE: {api['continent']} C?DIGO DO CONTINENTE: {api['continent_code']} PAIS: {api['country']} C?DIGO DO PA?S: {api['country']} CAPITAL DO PAIS: {api['country_capital']} C?DIGO TELEF?NICO DO PA?S: {api['country_phone']} PAISES VIZINHOS: {api['country_neighbours']} REGI?O: {api['region']} CIDADE: {api['city']} LATITUDE: {api['latitude']} LONGITUDE: {api['longitude']} ASN: {api['asn']} ORG: {api['org']} ISP: {api['isp']} HOR?RIO PADR?O: {api['timezone']} NOME DO HOR?RIO PADR?O: {api['timezone_name']} GMT: {api['timezone_gmt']} MOEDA: {api['currency']} CODIGO DA MOEDA: {api['currency_code']} SIMBOLO DA MOEDA: {api['currency_symbol']} ''' #TEMPERATURA: {api2["weather"][0]["main"]} except: msg = 'Ip invalido.' choice = int(ui.dialog_choice(msg)) if choice == 1: pass elif choice == 2: Sair = True else: ui.error_dialog()
py
1a515735cc20a640744e25d5e8617faccc8edd43
from typing import List, Tuple from chiabip158 import PyBIP158 from cryptodoge.types.blockchain_format.coin import Coin from cryptodoge.types.blockchain_format.sized_bytes import bytes32 from cryptodoge.types.full_block import FullBlock from cryptodoge.types.header_block import HeaderBlock from cryptodoge.types.name_puzzle_condition import NPC from cryptodoge.util.condition_tools import created_outputs_for_conditions_dict def get_block_header(block: FullBlock, tx_addition_coins: List[Coin], removals_names: List[bytes32]) -> HeaderBlock: # Create filter byte_array_tx: List[bytes32] = [] addition_coins = tx_addition_coins + list(block.get_included_reward_coins()) if block.is_transaction_block(): for coin in addition_coins: byte_array_tx.append(bytearray(coin.puzzle_hash)) for name in removals_names: byte_array_tx.append(bytearray(name)) bip158: PyBIP158 = PyBIP158(byte_array_tx) encoded_filter: bytes = bytes(bip158.GetEncoded()) return HeaderBlock( block.finished_sub_slots, block.reward_chain_block, block.challenge_chain_sp_proof, block.challenge_chain_ip_proof, block.reward_chain_sp_proof, block.reward_chain_ip_proof, block.infused_challenge_chain_ip_proof, block.foliage, block.foliage_transaction_block, encoded_filter, block.transactions_info, ) def additions_for_npc(npc_list: List[NPC]) -> List[Coin]: additions: List[Coin] = [] for npc in npc_list: for coin in created_outputs_for_conditions_dict(npc.condition_dict, npc.coin_name): additions.append(coin) return additions def tx_removals_and_additions(npc_list: List[NPC]) -> Tuple[List[bytes32], List[Coin]]: """ Doesn't return farmer and pool reward. """ removals: List[bytes32] = [] additions: List[Coin] = [] # build removals list if npc_list is None: return [], [] for npc in npc_list: removals.append(npc.coin_name) additions.extend(additions_for_npc(npc_list)) return removals, additions
py
1a51579014857a4090840548239cd7866dd37dd0
class A: def __init__(self, gpioPort): self.gpioPort = gpioPort def p(self): print(self.gpioPort) class B(A): pass B(12).p() C = type('C', (A,), dict({})) print(C) C(14).p() def value(value=None): if value == None: return 'get_value' else: print(value) def m(a, b, c=None, d=None): print(a, b, c, d) m(1, 2) print(value('set_value')) print(value()) class A1: @property def p(self): return {"a": 10} class AA(A1): @property def p(self): return super().p a = AA() print(a.p)
py
1a515897bcef9f45a6c36d6464be10bfcec0bd47
#!/usr/bin/python # -*- coding: utf-8 -*- """ Basic classes to contain rstWeb objects and methods to calculate their attributes Author: Amir Zeldes """ class NODE: def __init__(self, id, left, right, parent, depth, kind, text, relname, relkind): """Basic class to hold all nodes (EDU, span and multinuc) in structure.py and while importing""" self.id = id self.parent = parent self.left = left self.right = right self.depth = depth self.kind = kind #edu, multinuc or span node self.text = text #text of an edu node; empty for spans/multinucs self.relname = relname self.relkind = relkind #rst (a.k.a. satellite), multinuc or span relation self.sortdepth = depth class SEGMENT: def __init__(self, id, text): """ Class used by segment.py to represent EDUs, NOT used by the structurer in structure.py""" self.id = id self.text = text self.tokens = text.split(" ") def get_depth(orig_node, probe_node, nodes, doc=None, project=None, user=None): """ Calculate graphical nesting depth of a node based on the node list graph. Note that RST parentage without span/multinuc does NOT increase depth. """ if probe_node.parent != "0": try: parent = nodes[probe_node.parent] except KeyError: # Parent node does not exist, set parent to 0 from modules.rstweb_sql import update_parent if doc is not None and project is not None and user is not None: update_parent(probe_node.id,"0",doc,project,user) return else: raise KeyError("Node ID " + probe_node.id + " has non existing parent " + probe_node.parent + " and user not set in function\n") if parent.kind != "edu" and (probe_node.relname == "span" or parent.kind == "multinuc" and probe_node.relkind =="multinuc"): orig_node.depth += 1 orig_node.sortdepth +=1 elif parent.kind == "edu": orig_node.sortdepth += 1 get_depth(orig_node, parent, nodes, doc=doc, project=project, user=user) def get_left_right(node_id, nodes, min_left, max_right, rel_hash): """ Calculate leftmost and rightmost EDU covered by a NODE object. For EDUs this is the number of the EDU itself. For spans and multinucs, the leftmost and rightmost child dominated by the NODE is found recursively. """ if nodes[node_id].parent != "0" and node_id != "0": parent = nodes[nodes[node_id].parent] if min_left > nodes[node_id].left or min_left == 0: if nodes[node_id].left != 0: min_left = nodes[node_id].left if max_right < nodes[node_id].right or max_right == 0: max_right = nodes[node_id].right if nodes[node_id].relname == "span": if parent.left > min_left or parent.left == 0: parent.left = min_left if parent.right < max_right: parent.right = max_right elif nodes[node_id].relname in rel_hash: if parent.kind == "multinuc" and rel_hash[nodes[node_id].relname] =="multinuc": if parent.left > min_left or parent.left == 0: parent.left = min_left if parent.right < max_right: parent.right = max_right get_left_right(parent.id, nodes, min_left, max_right, rel_hash)
py
1a51590ae35f35828c066cdfd788a2c894ff813e
import json import argparse import os import re import sys import time import commands import tarfile import urllib2 import cStringIO from tar_utils import Local_Tarutils from tar_utils import Http_Tarutils #from eutester.machine import Machine ''' class file(): @classmethod def from_json(self, json): parse json here? def to_json: output json here? def get_path(self): tbd def print_path(self): tbd def verify_md5(self): tbd def get_md5(self): tbd def download(self): tbd type uri name checksum date version size class users(): @classmethod def from_json(self, json): parse json here? def to_json: output json here? name login groups homedir class packages(): @classmethod def from_json(self, json): parse json here? def to_json: output json here? list file class hypervisors(): @classmethod def from_json(self, json): parse json here? def to_json: output json here? xen kvm vmware class image_set(): @classmethod def from_json(self, json): parse json here? def to_json: output json here? roofs = file() ramdisk = file() kernel = file() class os_info(): xen = image_set() kvm = image_set() ''' class emi_image_set(): def __init__(self, uri, headersize=512, manifestname='manifest.json'): self.uri = uri self.manifestname=manifestname self.tar = self.get_tar_file(self.uri, headersize=headersize) def sys(self, cmd, listformat=True): status,output = commands.getstatusoutput(cmd) if status != 0: raise Exception('sys, cmd"'+str(cmd)+'" failed, code:'+str(status)+', output:'+str(output)) else: if listformat: return str(output).splitlines() else: return str(output) def found(self,cmd,string): out = self.sys(cmd) if re.search(string, out): return True else: return False def get_tar_file(self,uri, headersize=512): if re.search('http://', uri): return Http_Tarutils(uri, headersize=headersize) else: return Local_Tarutils(uri, headersize=headersize) def extract_file(self, fpath, destpath=None): return self.tar.extract_member(fpath, destpath=destpath) def list_tar_contents(self): return self.tar.list() def extract_all(self, destdir=None): return self.tar.extract_member(destpath=destdir) def get_manifest(self): print "getting manifest"
py
1a51592593fd953fbde1219bcf653869b9935674
"""recipe_app URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path urlpatterns = [ path('admin/', admin.site.urls), ]
py
1a515afcf9104b33ec9d7873c541e4a7eabb6c9a
n, m = list(map(int, input().split())) def find_out(gg): nn = len(gg) mm = len(gg[0]) x, y, tx, ty = None, None, None, None need_keys = set() D = {'A': 'a', 'B': 'b', 'C': 'c', 'D': 'd', 'E': 'e'} doors = [] for i in range(nn): for j in range(mm): if gg[i][j] == 'S': x, y = i, j if gg[i][j] == 'X': tx, ty = i, j if gg[i][j] in D: doors.append([i, j]) need_keys.add(D[gg[i][j]]) direcs = [(-1, 0), (1, 0), (0, -1), (0, 1)] dp = [[0 for _ in range(mm)] for _ in range(nn)] ac = {(x, y)} have_keys = set() while ac: cx, cy = ac.pop() for dx, dy in direcs: nx, ny = cx + dx, cy + dy if 0 <= nx < nn and 0 <= ny < mm: if nx == tx and nx == ty: return 'YES' else: if gg[nx][ny] == 'X' or gg[nx][ny] in D: pass else: if dp[nx][ny] == 1: pass else: if gg[nx][ny] in need_keys: have_keys.add(gg[nx][ny]) if have_keys == need_keys: for i, j in doors: gg[i][j] = '.' for i in range(nn): for j in range(mm): dp[i][j] = 0 if gg[nx][ny] == 1: pass else: gg[nx][ny] = 1 ac.add((nx, ny)) return 'NO' while n + m != 0: print(n, m) grid = [] input_str = input() while len(input_str.split()) == 1: grid.append(list(input_str)) input_str = input() print(find_out(grid)) n, m = list(map(int, input_str.split())) print(n, m) """ 7 20 ......G..X...dX.X... .b.......bXX.X..Xb.D dX.X.....X.aXe..c... X...D..XX..X..D....c a..X.Xc.c..bXDXac... .......C..X.X.c...Xb b.....eXA..SA..X.dX. 15 11 Xd...E.XaE. D.E..X..DXB ..A.E...DBb DX.X..DX.ED ..XX.DXAc.. ..XE.X..X.X c...B...X.B .X.DX..Xa.b GcXE.B....B ..A..A..Xea BX.EdEa..ab e..XSE.B... .XA...X.X.C Cc.X..XeBcb CXXCC...bX. 0 0 """
py
1a515b9444087aa4e5cddb2c3ebc247c1e7d1af5
import jax from jax import numpy as jnp # import numpy as np from tabcorr.tabcorr import * class JaxTabCorr(TabCorr): def predict(self, model, separate_gal_type=False, **occ_kwargs): """ Predicts the number density and correlation function for a certain model. Parameters ---------- model : HodModelFactory Instance of ``halotools.empirical_models.HodModelFactory`` describing the model for which predictions are made. separate_gal_type : boolean, optional If True, the return values are dictionaries divided by each galaxy types contribution to the output result. **occ_kwargs : dict, optional Keyword arguments passed to the ``mean_occupation`` functions of the model. Returns ------- ngal : numpy.array or dict Array or dictionary of arrays containing the number densities for each galaxy type stored in self.gal_type. The total galaxy number density is the sum of all elements of this array. xi : numpy.array or dict Array or dictionary of arrays storing the prediction for the correlation function. """ try: assert (sorted(model.gal_types) == sorted( ['centrals', 'satellites'])) except AssertionError: raise RuntimeError('The model instance must only have centrals ' + 'and satellites as galaxy types. Check the ' + 'gal_types attribute of the model instance.') try: assert (model._input_model_dictionary['centrals_occupation'] .prim_haloprop_key == self.attrs['prim_haloprop_key']) assert (model._input_model_dictionary['satellites_occupation'] .prim_haloprop_key == self.attrs['prim_haloprop_key']) except AssertionError: raise RuntimeError('Mismatch in the primary halo properties of ' + 'the model and the TabCorr instance.') try: if hasattr(model._input_model_dictionary['centrals_occupation'], 'sec_haloprop_key'): assert (model._input_model_dictionary['centrals_occupation'] .sec_haloprop_key == self.attrs['sec_haloprop_key']) if hasattr(model._input_model_dictionary['satellites_occupation'], 'sec_haloprop_key'): assert (model._input_model_dictionary['satellites_occupation'] .sec_haloprop_key == self.attrs['sec_haloprop_key']) except AssertionError: raise RuntimeError('Mismatch in the secondary halo properties ' + 'of the model and the TabCorr instance.') # TODO: Figure out how to add back in the redshift sanity check in a JAX-friendly way? # ==================================================================================== # try: # assert abs(model.redshift - self.attrs['redshift']) < 0.05 # except AssertionError: # raise RuntimeError('Mismatch in the redshift of the model and ' + # 'the TabCorr instance.') mean_occupation = jnp.zeros(len(self.gal_type["gal_type"])) mask = self.gal_type["gal_type"] == "centrals" mean_occupation = jax.ops.index_update( mean_occupation, mask, model.mean_occupation_centrals( prim_haloprop=self.gal_type["prim_haloprop"][mask], sec_haloprop_percentile=self.gal_type["sec_haloprop_percentile"][mask], **occ_kwargs) ) mean_occupation = jax.ops.index_update( mean_occupation, ~mask, model.mean_occupation_satellites( prim_haloprop=self.gal_type["prim_haloprop"][~mask], sec_haloprop_percentile=self.gal_type["sec_haloprop_percentile"][~mask], **occ_kwargs) ) return jaxtabcorr_predict( mean_occupation, self.gal_type["gal_type"] == "centrals", self.gal_type["prim_haloprop"].data, self.gal_type["sec_haloprop_percentile"].data, self.gal_type["n_h"].data, self.tpcf_matrix, self.tpcf_shape, self.attrs["mode"] == "cross", separate_gal_type) def jaxtabcorr_predict(mean_occupation, is_centrals, prim_haloprop, sec_haloprop_percentile, n_h, tpcf_matrix, tpcf_shape, do_cross, separate_gal_type): ngal = mean_occupation * n_h if not do_cross: ngal_sq = jnp.outer(ngal, ngal) ngal_sq = 2 * ngal_sq - jnp.diag(jnp.diag(ngal_sq)) ngal_sq = jax_symmetric_matrix_to_array(ngal_sq) xi = tpcf_matrix * ngal_sq / jnp.sum(ngal_sq) else: xi = tpcf_matrix * ngal / jnp.sum(ngal) if not separate_gal_type: ngal = jnp.sum(ngal) xi = jnp.sum(xi, axis=1).reshape(tpcf_shape) return ngal, xi else: ngal_dict = {} xi_dict = {} for gal_type, key in [(True, "centrals"), (False, "satellites")]: mask = is_centrals == gal_type ngal_type = jnp.where(mask, ngal, 0) ngal_dict[key] = jnp.sum(ngal_type) # <-- TODO: this will break if not do_cross: for gal_type_1, gal_type_2, name in [(True, True, "centrals-centrals"), (True, False, "centrals-satellites"), (False, False, "satellites-satellites")]: mask = jax_symmetric_matrix_to_array(jnp.outer( gal_type_1 == is_centrals, gal_type_2 == is_centrals) | jnp.outer( gal_type_2 == is_centrals, gal_type_1 == is_centrals)) xi_dict[name] = jnp.sum(xi * mask, axis=1).reshape(tpcf_shape) else: for gal_type, key in [(True, "centrals"), (False, "satellites")]: mask = is_centrals == gal_type xi_dict[gal_type] = jnp.sum( xi * mask, axis=1).reshape(tpcf_shape) return ngal_dict, xi_dict static_args = ["tpcf_shape", "do_cross", "separate_gal_type"] jaxtabcorr_predict = jax.jit(jaxtabcorr_predict, static_argnames=static_args) def jax_symmetric_matrix_to_array(matrix): # Assertions not allowed by jit :( # try: # assert matrix.shape[0] == matrix.shape[1] # assert np.all(matrix == matrix.T) # except AssertionError: # raise RuntimeError('The matrix you provided is not symmetric.') n_dim = matrix.shape[0] sel = jnp.zeros((n_dim**2 + n_dim) // 2, dtype=int) for i in range(matrix.shape[0]): sel = jax.ops.index_update( sel, slice((i*(i+1))//2, (i*(i+1))//2+(i+1)), jnp.arange(i*n_dim, i*n_dim + i + 1)) # sel[(i*(i+1))//2:(i*(i+1))//2+(i+1)] = jnp.arange( # i*n_dim, i*n_dim + i + 1) return matrix.ravel()[sel]
py
1a515bd983d713b5eb65e4330fd062dba57d1082
import datetime class Employee: raise_amount = 1.04 # Class variable num_of_employees = 0 def __init__(self, first, last, pay): self.first = first self.last = last self.pay = pay self.email = first + '.' + last + '@company.com' Employee.num_of_employees += 1 def fullname(self): return self.first + ' ' + self.last def apply_raise(self): # Can also use Employee.raise_amount self.pay = int(self.pay * self.raise_amount) @classmethod def set_raise_amount(cls, amount): cls.raise_amount = amount # class method as alternative constructor @classmethod def from_string(cls, emp_str): "construct a new employee from string kebab case" first_name, last_name, pay = emp_str.split('-') # calling constructor with cls keyword, denoting class return cls(first_name, last_name, pay) @staticmethod def is_work_day_with_string(day): work_days = ['monday', 'tuesday', 'wednesday', 'thursday', 'friday'] for d in work_days: if d.upper() == day.upper(): print('work day') return True print('not a work day') return False @staticmethod def is_work_day(day): if day.weekday() == 5 or day.weekday() == 6: print('not a work day') return False else: print('work day') return True # creating employees by parsing kebab-case string emp_str1 = 'John-Doe-7000' # parsing emp1 = Employee.from_string(emp_str1) emp2 = Employee('Burak', 'Aksoy', 3000) print(emp1.__dict__) print(emp2.__dict__) # regular methods pass self def my_func(self), # class methods pass cls def class_func(cls), # However, static methods do not pass anyhting print(Employee.is_work_day_with_string('monday')) print(Employee.is_work_day_with_string('saturday')) my_date = datetime.date.today() print(my_date) print(Employee.is_work_day(my_date))
py
1a515c5fa8e43f634f08e9b3264157af83371433
a.b -= 2 a[0] += 1 a[0:2] += 1
py
1a515c624523fbb8bdc6d6bf4f73767813676918
# # Handler library for Linux IaaS # # Copyright 2014 Microsoft Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ JSON def: HandlerEnvironment.json [{ "name": "ExampleHandlerLinux", "seqNo": "seqNo", "version": "1.0", "handlerEnvironment": { "logFolder": "<your log folder location>", "configFolder": "<your config folder location>", "statusFolder": "<your status folder location>", "heartbeatFile": "<your heartbeat file location>", } }] Example ./config/1.settings "{"runtimeSettings":[{"handlerSettings":{"protectedSettingsCertThumbprint":"1BE9A13AA1321C7C515EF109746998BAB6D86FD1","protectedSettings": "MIIByAYJKoZIhvcNAQcDoIIBuTCCAbUCAQAxggFxMIIBbQIBADBVMEExPzA9BgoJkiaJk/IsZAEZFi9XaW5kb3dzIEF6dXJlIFNlcnZpY2UgTWFuYWdlbWVudCBmb3IgR+nhc6VHQTQpCiiV2zANBgkqhkiG9w0BAQEFAASCAQCKr09QKMGhwYe+O4/a8td+vpB4eTR+BQso84cV5KCAnD6iUIMcSYTrn9aveY6v6ykRLEw8GRKfri2d6tvVDggUrBqDwIgzejGTlCstcMJItWa8Je8gHZVSDfoN80AEOTws9Fp+wNXAbSuMJNb8EnpkpvigAWU2v6pGLEFvSKC0MCjDTkjpjqciGMcbe/r85RG3Zo21HLl0xNOpjDs/qqikc/ri43Y76E/Xv1vBSHEGMFprPy/Hwo3PqZCnulcbVzNnaXN3qi/kxV897xGMPPC3IrO7Nc++AT9qRLFI0841JLcLTlnoVG1okPzK9w6ttksDQmKBSHt3mfYV+skqs+EOMDsGCSqGSIb3DQEHATAUBggqhkiG9w0DBwQITgu0Nu3iFPuAGD6/QzKdtrnCI5425fIUy7LtpXJGmpWDUA==","publicSettings":{"port":"3000"}}}]}" Example HeartBeat { "version": 1.0, "heartbeat" : { "status": "ready", "code": 0, "Message": "Sample Handler running. Waiting for a new configuration from user." } } Example Status Report: [{"version":"1.0","timestampUTC":"2014-05-29T04:20:13Z","status":{"name":"Chef Extension Handler","operation":"chef-client-run","status":"success","code":0,"formattedMessage":{"lang":"en-US","message":"Chef-client run success"}}}] """ import os import os.path import sys import re import imp import base64 import json import tempfile import time from os.path import join import Utils.WAAgentUtil from Utils.WAAgentUtil import waagent import logging import logging.handlers try: import ConfigParser as ConfigParsers except ImportError: import configparser as ConfigParsers from common import CommonVariables import platform import subprocess import datetime import Utils.Status from MachineIdentity import MachineIdentity import ExtensionErrorCodeHelper import traceback DateTimeFormat = "%Y-%m-%dT%H:%M:%SZ" class HandlerContext: def __init__(self,name): self._name = name self._version = '0.0' return class HandlerUtility: telemetry_data = {} serializable_telemetry_data = [] ExtErrorCode = ExtensionErrorCodeHelper.ExtensionErrorCodeEnum.success SnapshotConsistency = Utils.Status.SnapshotConsistencyType.none HealthStatusCode = -1 def __init__(self, log, error, short_name): self._log = log self._error = error self.log_message = "" self._short_name = short_name self.patching = None self.storageDetailsObj = None self.partitioncount = 0 self.logging_file = None def _get_log_prefix(self): return '[%s-%s]' % (self._context._name, self._context._version) def _get_current_seq_no(self, config_folder): seq_no = -1 cur_seq_no = -1 freshest_time = None for subdir, dirs, files in os.walk(config_folder): for file in files: try: if(file.endswith('.settings')): cur_seq_no = int(os.path.basename(file).split('.')[0]) if(freshest_time == None): freshest_time = os.path.getmtime(join(config_folder,file)) seq_no = cur_seq_no else: current_file_m_time = os.path.getmtime(join(config_folder,file)) if(current_file_m_time > freshest_time): freshest_time = current_file_m_time seq_no = cur_seq_no except ValueError: continue return seq_no def get_last_seq(self): if(os.path.isfile('mrseq')): seq = waagent.GetFileContents('mrseq') if(seq): return int(seq) return -1 def exit_if_same_seq(self): current_seq = int(self._context._seq_no) last_seq = self.get_last_seq() if(current_seq == last_seq): self.log("the sequence number are same, so skip, current:" + str(current_seq) + "== last:" + str(last_seq)) self.update_settings_file() sys.exit(0) def log(self, message,level='Info'): try: self.log_with_no_try_except(message, level) except IOError: pass except Exception as e: try: errMsg='Exception in hutil.log' self.log_with_no_try_except(errMsg, 'Warning') except Exception as e: pass def log_with_no_try_except(self, message, level='Info'): WriteLog = self.get_strvalue_from_configfile('WriteLog','True') if (WriteLog == None or WriteLog == 'True'): if sys.version_info > (3,): if self.logging_file is not None: self.log_py3(message) else: pass else: self._log(self._get_log_prefix() + message) message = "{0} {1} {2} \n".format(str(datetime.datetime.now()) , level , message) self.log_message = self.log_message + message def log_py3(self, msg): if type(msg) is not str: msg = str(msg, errors="backslashreplace") msg = str(datetime.datetime.now()) + " " + str(self._get_log_prefix()) + msg + "\n" try: with open(self.logging_file, "a+") as C : C.write(msg) except IOError: pass def error(self, message): self._error(self._get_log_prefix() + message) def fetch_log_message(self): return self.log_message def _parse_config(self, ctxt): config = None try: config = json.loads(ctxt) except: self.error('JSON exception decoding ' + ctxt) if config == None: self.error("JSON error processing settings file:" + ctxt) else: handlerSettings = config['runtimeSettings'][0]['handlerSettings'] if 'protectedSettings' in handlerSettings and \ "protectedSettingsCertThumbprint" in handlerSettings and \ handlerSettings['protectedSettings'] is not None and \ handlerSettings["protectedSettingsCertThumbprint"] is not None: protectedSettings = handlerSettings['protectedSettings'] thumb = handlerSettings['protectedSettingsCertThumbprint'] cert = waagent.LibDir + '/' + thumb + '.crt' pkey = waagent.LibDir + '/' + thumb + '.prv' f = tempfile.NamedTemporaryFile(delete=False) f.close() waagent.SetFileContents(f.name,config['runtimeSettings'][0]['handlerSettings']['protectedSettings']) cleartxt = None if 'NS-BSD' in platform.system(): # base64 tool is not available with NSBSD, use openssl cleartxt = waagent.RunGetOutput(self.patching.openssl_path + " base64 -d -A -in " + f.name + " | " + self.patching.openssl_path + " smime -inform DER -decrypt -recip " + cert + " -inkey " + pkey)[1] else: cleartxt = waagent.RunGetOutput(self.patching.base64_path + " -d " + f.name + " | " + self.patching.openssl_path + " smime -inform DER -decrypt -recip " + cert + " -inkey " + pkey)[1] jctxt = {} try: jctxt = json.loads(cleartxt) except: self.error('JSON exception decoding ' + cleartxt) handlerSettings['protectedSettings'] = jctxt self.log('Config decoded correctly.') return config def do_parse_context(self, operation): self.operation = operation _context = self.try_parse_context() getWaagentPathUsed = Utils.WAAgentUtil.GetPathUsed() if(getWaagentPathUsed == 0): self.log("waagent old path is used") else: self.log("waagent new path is used") if not _context: self.log("maybe no new settings file found") sys.exit(0) return _context def try_parse_context(self): self._context = HandlerContext(self._short_name) handler_env = None config = None ctxt = None code = 0 try: # get the HandlerEnvironment.json. According to the extension handler # spec, it is always in the ./ directory self.log('cwd is ' + os.path.realpath(os.path.curdir)) handler_env_file = './HandlerEnvironment.json' if not os.path.isfile(handler_env_file): self.error("Unable to locate " + handler_env_file) return None ctxt = waagent.GetFileContents(handler_env_file) if ctxt == None : self.error("Unable to read " + handler_env_file) try: handler_env = json.loads(ctxt) except: pass if handler_env == None : self.log("JSON error processing " + handler_env_file) return None if type(handler_env) == list: handler_env = handler_env[0] self._context._name = handler_env['name'] self._context._version = str(handler_env['version']) self._context._config_dir = handler_env['handlerEnvironment']['configFolder'] self._context._log_dir = handler_env['handlerEnvironment']['logFolder'] self._context._log_file = os.path.join(handler_env['handlerEnvironment']['logFolder'],'extension.log') self.logging_file=self._context._log_file self._context._shell_log_file = os.path.join(handler_env['handlerEnvironment']['logFolder'],'shell.log') self._change_log_file() self._context._status_dir = handler_env['handlerEnvironment']['statusFolder'] self._context._heartbeat_file = handler_env['handlerEnvironment']['heartbeatFile'] self._context._seq_no = self._get_current_seq_no(self._context._config_dir) if self._context._seq_no < 0: self.error("Unable to locate a .settings file!") return None self._context._seq_no = str(self._context._seq_no) self.log('sequence number is ' + self._context._seq_no) self._context._status_file = os.path.join(self._context._status_dir, self._context._seq_no + '.status') self._context._settings_file = os.path.join(self._context._config_dir, self._context._seq_no + '.settings') self.log("setting file path is" + self._context._settings_file) ctxt = None ctxt = waagent.GetFileContents(self._context._settings_file) if ctxt == None : error_msg = 'Unable to read ' + self._context._settings_file + '. ' self.error(error_msg) return None else: if(self.operation is not None and self.operation.lower() == "enable"): # we should keep the current status file self.backup_settings_status_file(self._context._seq_no) self._context._config = self._parse_config(ctxt) except Exception as e: errorMsg = "Unable to parse context, error: %s, stack trace: %s" % (str(e), traceback.format_exc()) self.log(errorMsg, 'Error') raise return self._context def _change_log_file(self): self.log("Change log file to " + self._context._log_file) waagent.LoggerInit(self._context._log_file,'/dev/stdout') self._log = waagent.Log self._error = waagent.Error def save_seq(self): self.set_last_seq(self._context._seq_no) self.log("set most recent sequence number to " + self._context._seq_no) def set_last_seq(self,seq): waagent.SetFileContents('mrseq', str(seq)) ''' Sample /etc/azure/vmbackup.conf [SnapshotThread] seqsnapshot = 1 isanysnapshotfailed = False UploadStatusAndLog = True WriteLog = True seqsnapshot valid values(0-> parallel snapshot, 1-> programatically set sequential snapshot , 2-> customer set it for sequential snapshot) ''' def get_value_from_configfile(self, key): global backup_logger value = None configfile = '/etc/azure/vmbackup.conf' try : if os.path.exists(configfile): config = ConfigParsers.ConfigParser() config.read(configfile) if config.has_option('SnapshotThread',key): value = config.get('SnapshotThread',key) except Exception as e: pass return value def get_strvalue_from_configfile(self, key, default): value = self.get_value_from_configfile(key) if value == None or value == '': value = default try : value_str = str(value) except ValueError : self.log('Not able to parse the read value as string, falling back to default value', True, 'Warning') value = default return value def get_intvalue_from_configfile(self, key, default): value = default value = self.get_value_from_configfile(key) if value == None or value == '': value = default try : value_int = int(value) except ValueError : self.log('Not able to parse the read value as int, falling back to default value', True, 'Warning') value = default return int(value) def set_value_to_configfile(self, key, value): configfile = '/etc/azure/vmbackup.conf' try : self.log('setting ' + str(key) + 'in config file to ' + str(value) , 'Info') if not os.path.exists(os.path.dirname(configfile)): os.makedirs(os.path.dirname(configfile)) config = ConfigParsers.RawConfigParser() if os.path.exists(configfile): config.read(configfile) if config.has_section('SnapshotThread'): if config.has_option('SnapshotThread', key): config.remove_option('SnapshotThread', key) else: config.add_section('SnapshotThread') else: config.add_section('SnapshotThread') config.set('SnapshotThread', key, value) with open(configfile, 'w') as config_file: config.write(config_file) except Exception as e: errorMsg = " Unable to set config file.key is "+ key +"with error: %s, stack trace: %s" % (str(e), traceback.format_exc()) self.log(errorMsg, 'Warning') return value def get_machine_id(self): machine_id_file = "/etc/azure/machine_identity_FD76C85E-406F-4CFA-8EB0-CF18B123358B" machine_id = "" try: if not os.path.exists(os.path.dirname(machine_id_file)): os.makedirs(os.path.dirname(machine_id_file)) if os.path.exists(machine_id_file): file_pointer = open(machine_id_file, "r") machine_id = file_pointer.readline() file_pointer.close() else: mi = MachineIdentity() machine_id = mi.stored_identity()[1:-1] file_pointer = open(machine_id_file, "w") file_pointer.write(machine_id) file_pointer.close() except Exception as e: errMsg = 'Failed to retrieve the unique machine id with error: %s, stack trace: %s' % (str(e), traceback.format_exc()) self.log(errMsg, 'Error') self.log("Unique Machine Id : {0}".format(machine_id)) return machine_id def get_total_used_size(self): try: df = subprocess.Popen(["df" , "-k" , "--output=source,fstype,size,used,avail,pcent,target"], stdout=subprocess.PIPE) ''' Sample output of the df command Filesystem Type 1K-blocks Used Avail Use% Mounted on /dev/sda2 xfs 52155392 3487652 48667740 7% / devtmpfs devtmpfs 7170976 0 7170976 0% /dev tmpfs tmpfs 7180624 0 7180624 0% /dev/shm tmpfs tmpfs 7180624 760496 6420128 11% /run tmpfs tmpfs 7180624 0 7180624 0% /sys/fs/cgroup /dev/sda1 ext4 245679 151545 76931 67% /boot /dev/sdb1 ext4 28767204 2142240 25140628 8% /mnt/resource /dev/mapper/mygroup-thinv1 xfs 1041644 33520 1008124 4% /bricks/brick1 /dev/mapper/mygroup-85197c258a54493da7880206251f5e37_0 xfs 1041644 33520 1008124 4% /run/gluster/snaps/85197c258a54493da7880206251f5e37/brick2 /dev/mapper/mygroup2-thinv2 xfs 15717376 5276944 10440432 34% /tmp/test /dev/mapper/mygroup2-63a858543baf4e40a3480a38a2f232a0_0 xfs 15717376 5276944 10440432 34% /run/gluster/snaps/63a858543baf4e40a3480a38a2f232a0/brick2 tmpfs tmpfs 1436128 0 1436128 0% /run/user/1000 //Centos72test/cifs_test cifs 52155392 4884620 47270772 10% /mnt/cifs_test2 ''' process_wait_time = 30 while(process_wait_time >0 and df.poll() is None): time.sleep(1) process_wait_time -= 1 output = df.stdout.read() output = output.split("\n") total_used = 0 total_used_network_shares = 0 total_used_gluster = 0 network_fs_types = [] for i in range(1,len(output)-1): device, fstype, size, used, available, percent, mountpoint = output[i].split() self.log("Device name : {0} fstype : {1} size : {2} used space in KB : {3} available space : {4} mountpoint : {5}".format(device,fstype,size,used,available,mountpoint)) if "fuse" in fstype.lower() or "nfs" in fstype.lower() or "cifs" in fstype.lower(): if fstype not in network_fs_types : network_fs_types.append(fstype) self.log("Not Adding as network-drive, Device name : {0} used space in KB : {1} fstype : {2}".format(device,used,fstype)) total_used_network_shares = total_used_network_shares + int(used) elif (mountpoint.startswith('/run/gluster/snaps/')): self.log("Not Adding Device name : {0} used space in KB : {1} mount point : {2}".format(device,used,mountpoint)) total_used_gluster = total_used_gluster + int(used) else: self.log("Adding Device name : {0} used space in KB : {1} mount point : {2}".format(device,used,mountpoint)) total_used = total_used + int(used) #return in KB if not len(network_fs_types) == 0: HandlerUtility.add_to_telemetery_data("networkFSTypeInDf",str(network_fs_types)) HandlerUtility.add_to_telemetery_data("totalUsedNetworkShare",str(total_used_network_shares)) self.log("Total used space in Bytes of network shares : {0}".format(total_used_network_shares * 1024)) if total_used_gluster !=0 : HandlerUtility.add_to_telemetery_data("glusterFSSize",str(total_used_gluster)) self.log("Total used space in Bytes : {0}".format(total_used * 1024)) return total_used * 1024,False #Converting into Bytes except Exception as e: errMsg = 'Unable to fetch total used space with error: %s, stack trace: %s' % (str(e), traceback.format_exc()) self.log(errMsg) return 0,True def get_storage_details(self,total_size,failure_flag): self.storageDetailsObj = Utils.Status.StorageDetails(self.partitioncount, total_size, False, failure_flag) self.log("partition count : {0}, total used size : {1}, is storage space present : {2}, is size computation failed : {3}".format(self.storageDetailsObj.partitionCount, self.storageDetailsObj.totalUsedSizeInBytes, self.storageDetailsObj.isStoragespacePresent, self.storageDetailsObj.isSizeComputationFailed)) return self.storageDetailsObj def SetExtErrorCode(self, extErrorCode): if self.ExtErrorCode == ExtensionErrorCodeHelper.ExtensionErrorCodeEnum.success : self.ExtErrorCode = extErrorCode def SetSnapshotConsistencyType(self, snapshotConsistency): self.SnapshotConsistency = snapshotConsistency def SetHealthStatusCode(self, healthStatusCode): self.HealthStatusCode = healthStatusCode def do_status_json(self, operation, status, sub_status, status_code, message, telemetrydata, taskId, commandStartTimeUTCTicks, snapshot_info, vm_health_obj,total_size,failure_flag): tstamp = time.strftime(DateTimeFormat, time.gmtime()) formattedMessage = Utils.Status.FormattedMessage("en-US",message) stat_obj = Utils.Status.StatusObj(self._context._name, operation, status, sub_status, status_code, formattedMessage, telemetrydata, self.get_storage_details(total_size,failure_flag), self.get_machine_id(), taskId, commandStartTimeUTCTicks, snapshot_info, vm_health_obj) top_stat_obj = Utils.Status.TopLevelStatus(self._context._version, tstamp, stat_obj) return top_stat_obj def get_extension_version(self): try: cur_dir = os.getcwd() cur_extension = cur_dir.split("/")[-1] extension_version = cur_extension.split("-")[-1] return extension_version except Exception as e: errMsg = 'Failed to retrieve the Extension version with error: %s, stack trace: %s' % (str(e), traceback.format_exc()) self.log(errMsg) extension_version="Unknown" return extension_version def get_wala_version(self): try: file_pointer = open('/var/log/waagent.log','r') waagent_version = '' for line in file_pointer: if 'Azure Linux Agent Version' in line: waagent_version = line.split(':')[-1] if waagent_version[:-1]=="": #for removing the trailing '\n' character waagent_version = self.get_wala_version_from_command() return waagent_version else: waagent_version = waagent_version[:-1].split("-")[-1] #getting only version number return waagent_version except Exception as e: errMsg = 'Failed to retrieve the wala version with error: %s, stack trace: %s' % (str(e), traceback.format_exc()) self.log(errMsg) waagent_version="Unknown" return waagent_version def get_wala_version_from_command(self): try: cur_dir = os.getcwd() os.chdir("..") p = subprocess.Popen(['/usr/sbin/waagent', '-version'], stdout=subprocess.PIPE) process_wait_time = 30 while(process_wait_time > 0 and p.poll() is None): time.sleep(1) process_wait_time -= 1 out = p.stdout.read() out = str(out) if "Goal state agent: " in out: waagent_version = out.split("Goal state agent: ")[1].strip() else: out = out.split(" ") waagent = out[0] waagent_version = waagent.split("-")[-1] #getting only version number os.chdir(cur_dir) return waagent_version except Exception as e: errMsg = 'Failed to retrieve the wala version with error: %s, stack trace: %s' % (str(e), traceback.format_exc()) self.log(errMsg) waagent_version="Unknown" return waagent_version def get_dist_info(self): try: if 'FreeBSD' in platform.system(): release = re.sub('\-.*\Z', '', str(platform.release())) return "FreeBSD",release if 'NS-BSD' in platform.system(): release = re.sub('\-.*\Z', '', str(platform.release())) return "NS-BSD", release if 'linux_distribution' in dir(platform): distinfo = list(platform.linux_distribution(full_distribution_name=0)) # remove trailing whitespace in distro name if(distinfo[0] == ''): osfile= open("/etc/os-release", "r") for line in osfile: lists=str(line).split("=") if(lists[0]== "NAME"): distroname = lists[1].split("\"") if(lists[0]=="VERSION"): distroversion = lists[1].split("\"") osfile.close() return distroname[1]+"-"+distroversion[1],platform.release() distinfo[0] = distinfo[0].strip() return distinfo[0]+"-"+distinfo[1],platform.release() else: distinfo = platform.dist() return distinfo[0]+"-"+distinfo[1],platform.release() except Exception as e: errMsg = 'Failed to retrieve the distinfo with error: %s, stack trace: %s' % (str(e), traceback.format_exc()) self.log(errMsg) return "Unkonwn","Unkonwn" def substat_new_entry(self,sub_status,code,name,status,formattedmessage): sub_status_obj = Utils.Status.SubstatusObj(code,name,status,formattedmessage) sub_status.append(sub_status_obj) return sub_status def timedelta_total_seconds(self, delta): if not hasattr(datetime.timedelta, 'total_seconds'): return delta.days * 86400 + delta.seconds else: return delta.total_seconds() @staticmethod def add_to_telemetery_data(key,value): HandlerUtility.telemetry_data[key]=value def add_telemetry_data(self): os_version,kernel_version = self.get_dist_info() HandlerUtility.add_to_telemetery_data("guestAgentVersion",self.get_wala_version_from_command()) HandlerUtility.add_to_telemetery_data("extensionVersion",self.get_extension_version()) HandlerUtility.add_to_telemetery_data("osVersion",os_version) HandlerUtility.add_to_telemetery_data("kernelVersion",kernel_version) def convert_telemetery_data_to_bcm_serializable_format(self): HandlerUtility.serializable_telemetry_data = [] for k,v in HandlerUtility.telemetry_data.items(): each_telemetry_data = {} each_telemetry_data["Value"] = v each_telemetry_data["Key"] = k HandlerUtility.serializable_telemetry_data.append(each_telemetry_data) def do_status_report(self, operation, status, status_code, message, taskId = None, commandStartTimeUTCTicks = None, snapshot_info = None,total_size = 0,failure_flag = True ): self.log("{0},{1},{2},{3}".format(operation, status, status_code, message)) sub_stat = [] stat_rept = [] self.add_telemetry_data() snapshotTelemetry = "" if CommonVariables.snapshotCreator in HandlerUtility.telemetry_data.keys(): snapshotTelemetry = "{0}{1}={2}, ".format(snapshotTelemetry , CommonVariables.snapshotCreator , HandlerUtility.telemetry_data[CommonVariables.snapshotCreator]) if CommonVariables.hostStatusCodePreSnapshot in HandlerUtility.telemetry_data.keys(): snapshotTelemetry = "{0}{1}={2}, ".format(snapshotTelemetry , CommonVariables.hostStatusCodePreSnapshot , HandlerUtility.telemetry_data[CommonVariables.hostStatusCodePreSnapshot]) if CommonVariables.hostStatusCodeDoSnapshot in HandlerUtility.telemetry_data.keys(): snapshotTelemetry = "{0}{1}={2}, ".format(snapshotTelemetry , CommonVariables.hostStatusCodeDoSnapshot , HandlerUtility.telemetry_data[CommonVariables.hostStatusCodeDoSnapshot]) if CommonVariables.statusBlobUploadError in HandlerUtility.telemetry_data.keys(): message = "{0} {1}={2}, ".format(message , CommonVariables.statusBlobUploadError , HandlerUtility.telemetry_data[CommonVariables.statusBlobUploadError]) message = message + snapshotTelemetry vm_health_obj = Utils.Status.VmHealthInfoObj(ExtensionErrorCodeHelper.ExtensionErrorCodeHelper.ExtensionErrorCodeDict[self.ExtErrorCode], int(self.ExtErrorCode)) consistencyTypeStr = CommonVariables.consistency_crashConsistent if (self.SnapshotConsistency != Utils.Status.SnapshotConsistencyType.crashConsistent): if (status_code == CommonVariables.success_appconsistent): self.SnapshotConsistency = Utils.Status.SnapshotConsistencyType.applicationConsistent consistencyTypeStr = CommonVariables.consistency_applicationConsistent elif (status_code == CommonVariables.success): self.SnapshotConsistency = Utils.Status.SnapshotConsistencyType.fileSystemConsistent consistencyTypeStr = CommonVariables.consistency_fileSystemConsistent else: self.SnapshotConsistency = Utils.Status.SnapshotConsistencyType.none consistencyTypeStr = CommonVariables.consistency_none HandlerUtility.add_to_telemetery_data("consistencyType", consistencyTypeStr) extensionResponseObj = Utils.Status.ExtensionResponse(message, self.SnapshotConsistency, "") message = str(json.dumps(extensionResponseObj, cls = ComplexEncoder)) self.convert_telemetery_data_to_bcm_serializable_format() stat_rept = self.do_status_json(operation, status, sub_stat, status_code, message, HandlerUtility.serializable_telemetry_data, taskId, commandStartTimeUTCTicks, snapshot_info, vm_health_obj, total_size,failure_flag) time_delta = datetime.datetime.utcnow() - datetime.datetime(1970, 1, 1) time_span = self.timedelta_total_seconds(time_delta) * 1000 date_place_holder = 'e2794170-c93d-4178-a8da-9bc7fd91ecc0' stat_rept.timestampUTC = date_place_holder date_string = r'\/Date(' + str((int)(time_span)) + r')\/' stat_rept = "[" + json.dumps(stat_rept, cls = ComplexEncoder) + "]" stat_rept = stat_rept.replace(date_place_holder,date_string) # Add Status as sub-status for Status to be written on Status-File sub_stat = self.substat_new_entry(sub_stat,'0',stat_rept,'success',None) if self.get_public_settings()[CommonVariables.vmType].lower() == CommonVariables.VmTypeV2.lower() and CommonVariables.isTerminalStatus(status) : status = CommonVariables.status_success stat_rept_file = self.do_status_json(operation, status, sub_stat, status_code, message, None, taskId, commandStartTimeUTCTicks, None, None,total_size,failure_flag) stat_rept_file = "[" + json.dumps(stat_rept_file, cls = ComplexEncoder) + "]" # rename all other status files, or the WALA would report the wrong # status file. # because the wala choose the status file with the highest sequence # number to report. return stat_rept, stat_rept_file def write_to_status_file(self, stat_rept_file): try: if self._context._status_file: with open(self._context._status_file,'w+') as f: f.write(stat_rept_file) except Exception as e: errMsg = 'Status file creation failed with error: %s, stack trace: %s' % (str(e), traceback.format_exc()) self.log(errMsg) def is_status_file_exists(self): try: if os.path.exists(self._context._status_file): return True else: return False except Exception as e: self.log("exception is getting status file" + traceback.format_exc()) return False def backup_settings_status_file(self, _seq_no): self.log("current seq no is " + _seq_no) for subdir, dirs, files in os.walk(self._context._config_dir): for file in files: try: if(file.endswith('.settings') and file != (_seq_no + ".settings")): new_file_name = file.replace(".","_") os.rename(join(self._context._config_dir,file), join(self._context._config_dir,new_file_name)) except Exception as e: self.log("failed to rename the status file.") for subdir, dirs, files in os.walk(self._context._status_dir): for file in files: try: if(file.endswith('.status') and file != (_seq_no + ".status")): new_file_name = file.replace(".","_") os.rename(join(self._context._status_dir,file), join(self._context._status_dir, new_file_name)) except Exception as e: self.log("failed to rename the status file.") def do_exit(self, exit_code, operation,status,code,message): try: HandlerUtility.add_to_telemetery_data("extErrorCode", str(ExtensionErrorCodeHelper.ExtensionErrorCodeHelper.ExtensionErrorCodeDict[self.ExtErrorCode])) self.do_status_report(operation, status,code,message) except Exception as e: self.log("Can't update status: " + str(e)) sys.exit(exit_code) def get_handler_settings(self): return self._context._config['runtimeSettings'][0]['handlerSettings'] def get_protected_settings(self): return self.get_handler_settings().get('protectedSettings') def get_public_settings(self): return self.get_handler_settings().get('publicSettings') def is_prev_in_transition(self): curr_seq = self.get_last_seq() last_seq = curr_seq - 1 if last_seq >= 0: self.log("previous status and path: " + str(last_seq) + " " + str(self._context._status_dir)) status_file_prev = os.path.join(self._context._status_dir, str(last_seq) + '_status') if os.path.isfile(status_file_prev) and os.access(status_file_prev, os.R_OK): searchfile = open(status_file_prev, "r") for line in searchfile: if "Transition" in line: self.log("transitioning found in the previous status file") searchfile.close() return True searchfile.close() return False def get_prev_log(self): with open(self._context._log_file, "r") as f: lines = f.readlines() if(len(lines) > 300): lines = lines[-300:] return ''.join(str(x) for x in lines) else: return ''.join(str(x) for x in lines) def get_shell_script_log(self): lines = "" try: with open(self._context._shell_log_file, "r") as f: lines = f.readlines() if(len(lines) > 10): lines = lines[-10:] return ''.join(str(x) for x in lines) except Exception as e: self.log("Can't receive shell log file: " + str(e)) return lines def update_settings_file(self): if(self._context._config['runtimeSettings'][0]['handlerSettings'].get('protectedSettings') != None): del self._context._config['runtimeSettings'][0]['handlerSettings']['protectedSettings'] self.log("removing the protected settings") waagent.SetFileContents(self._context._settings_file,json.dumps(self._context._config)) def UriHasSpecialCharacters(self, blobs): uriHasSpecialCharacters = False if blobs is not None: for blob in blobs: blobUri = str(blob.split("?")[0]) if '%' in blobUri: self.log(blobUri + " URI has special characters") uriHasSpecialCharacters = True return uriHasSpecialCharacters class ComplexEncoder(json.JSONEncoder): def default(self, obj): if hasattr(obj,'convertToDictionary'): return obj.convertToDictionary() else: return obj.__dict__
py
1a515c6692cec976409fb224f4dafa5b084ffe2d
""" Contains all the config for the Flask App """ import os class BaseConfig: """ Base configuration """ TESTING = False SQLALCHEMY_TRACK_MODIFICATIONS = False SECRET_KEY = os.environ.get('SECRET_KEY') DEBUG_TB_ENABLED = False DEBUG_TB_INTERCEPT_REDIRECTS = False BCRYPT_LOG_ROUNDS = 13 TOKEN_EXPIRATION_DAYS = 1 TOKEN_EXPIRATION_SECONDS = 0 class DevelopmentConfig(BaseConfig): """ Development configuration """ SQLALCHEMY_DATABASE_URI = os.environ.get("DATABASE_URL") DEBUG_TB_ENABLED = True BCRYPT_LOG_ROUNDS = 4 class TestingConfig(BaseConfig): """ Testing Configuration """ TESTING = True SQLALCHEMY_DATABASE_URI = os.environ.get("DATABASE_TEST_URL") DEBUG_TB_ENABLED = True BCRYPT_LOG_ROUNDS = 4 TOKEN_EXPIRATION_DAYS = 0 TOKEN_EXPIRATION_SECONDS = 3 class ProductionConfig(BaseConfig): """ Production configuration """ SQLALCHEMY_DATABASE_URI = os.environ.get("DATABASE_URL")
py
1a515e9634dbf020ec90926f8f8fa0f15a427763
from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.keras import backend as K from tensorflow.keras import initializers, regularizers, constraints from tensorflow.keras.layers import Layer, InputSpec from tensorflow.python.keras.utils import conv_utils from tensorflow_addons.layers import InstanceNormalization, SpectralNormalization import tensorflow as tf from tensorflow.keras.layers import * from tensorflow.keras.models import * from tensorflow.keras.optimizers import * from tensorflow.keras.initializers import * from tensorflow.keras.utils import to_categorical import matplotlib.pyplot as plt import os import numpy as np import time from PIL import Image from math import log2 import random from datagen import dataGenerator, printProgressBar from models import makeGen, makeDisc class GAN: def __init__(self, data, test_data, image_size, model_name = "StarGAN", channels=16, size="normal", verbose=False, batch_size = 6, learning_rate = 0.0001): #data: A list of folder names inside of the data folder to generate data from for training. #test_data: A list of folder names inside of the data folder to generate data for testing. Can be the same as data. Should be different so that you can more easily see collapse. #image_size: A tuple or int (if square) depicting the size of the desired size of the images for training. The data generator will resize the images to this size, and the model will train on this size. #model_name: A name for the model. Used for the folder in which results and checkpoints are saved. #channels: The number of channels to be used at each step in the model before multiplication. Recommended 16. #verbose: Whether or not the data generators will create output showing their status while generating the data. #batch_Size: The batch size for the model. #learning_rate: The learning rate for the model. The discriminator's will be double this value. self.MODELNAME = model_name self.CKPT = os.path.dirname(os.path.realpath(__file__)) + "\\" + self.MODELNAME + "\\checkpoints\\" self.imagedir = os.path.dirname(os.path.realpath(__file__)) + "\\" + self.MODELNAME self.verbose = verbose #Converts an integer into a tuple, ensures an integer or tuple is given. if((type(image_size) is not tuple)): if(type(image_size) is int): self.image_size = (image_size, image_size) else: print("Expected tuple (x,y) or int for image size.") exit() else: self.image_size = image_size #Prints an error message if the dimensions are incompatible with the training of the model. if((self.image_size[0] % 8 != 0) or (self.image_size[1] % 8 != 0)): print("Image dimensions must be divisible by 8 for the model to train! Please adjust your image sizes.") exit() #Try making each directory, if it fails it generally means the folder already exists, so continue regardless. try: os.makedirs(self.imagedir) except OSError as error: pass try: os.makedirs(self.CKPT) except OSError as error: pass #Create both the training and testing datagenerators using a list of strings #containing the folder names inside of the data folder. #The first string will have the first label, and so on. self.datagens = [] for item in data: self.datagens.append(dataGenerator(item, self.image_size, verbose = self.verbose, resize=True)) self.testData= [] for item in test_data: self.testData.append(dataGenerator(item, self.image_size, verbose = self.verbose, resize=True)) #Determine the number of labels in the model. self.NUMLABELS = len(self.datagens) #Make the generator and discriminator as specified in models.py either normal or large sized. self.cha = channels self.BATCH_SIZE = batch_size self.gen = makeGen(self.cha, self.NUMLABELS, self.image_size) self.disc = makeDisc(self.cha, self.NUMLABELS, self.image_size) #Setup the optimizers self.discOpt = tf.keras.optimizers.Adam(learning_rate=learning_rate*2, beta_1=0.0, beta_2=0.99)# self.genOpt = tf.keras.optimizers.Adam(learning_rate=learning_rate, beta_1=0.0, beta_2=0.99)# @tf.function def trainStep(self, images, labels): #function to train the model. def grad_loss(samples, output, k=1.0): #An implementation of a two-sided local gradient penalty. #Helps to smooth out gradients in the discriminator. #Not strictly necessary, used to improve stability of discirminator. init_grad = tf.gradients(output, samples)[0] squared_grad = tf.square(init_grad) sum_grad = tf.sqrt(K.sum(squared_grad, axis=[1,2,3])) penalty = tf.maximum(sum_grad-k, tf.keras.backend.zeros_like(sum_grad)) return tf.reduce_mean(penalty) with tf.GradientTape() as genTape, tf.GradientTape() as discTape: #Running data through models generatedImage = self.gen([images,labels[1]],training=True) restoredImage = self.gen([generatedImage,labels[0]], training=True) genfakeOut = K.sum(self.disc([generatedImage],training=True) * labels[1], axis=1) #Multiply by label due to multi-task discriminator. discRealOut = K.sum(self.disc([images],training=True) * labels[0], axis=1) #Multiply by label due to multi-task discriminator. #Loss functions cycleLoss = K.mean(K.abs(images - restoredImage)) * 5 genLoss = K.mean(genfakeOut) + cycleLoss #Due to multi-task discriminator, label comparison and real/fake are done in one with genfakeout. discLoss = K.mean(K.relu(1.0 - genfakeOut) + K.relu(1.0 + discRealOut)) + K.mean(grad_loss(images, discRealOut)) * 10 #Hinge loss plust gradient penalty. #Calculate and apply gradients. genGradients = genTape.gradient(genLoss,self.gen.trainable_variables) discGradients = discTape.gradient(discLoss,self.disc.trainable_variables) self.genOpt.apply_gradients(zip(genGradients,self.gen.trainable_variables)) self.discOpt.apply_gradients(zip(discGradients,self.disc.trainable_variables)) return (genLoss, discLoss) def labelMaker(self, index, maxSize=None, batch=None): #Creates a one hot vector for the label of the image. #Index: the index for where the value will be one. #maxSize: typically the number of labels. How long to make the vector. #batch: the batch size, or how many labels to produce. if maxSize == None: maxSize = self.NUMLABELS if batch == None: batch = self.BATCH_SIZE labels = np.ones([batch]) * index return to_categorical(labels, num_classes = maxSize) def train(self, steps = 100000, curStep = 1): #The train function repeats the training step to train the model. #steps: The number of steps to train. #curStep: The step to begin training on. (e.g. In case you load weights from 50000 steps and want to retrain from 50000 steps onward.) #Setup some variables to compute train time and store loss values. genLoss = 0 discLoss = 0 trainTime = time.time() start = time.time() for step in range(curStep,steps+1): #Randomly select a source and target label and batch. randInt = random.randint(0, self.NUMLABELS-1) batch = self.datagens[randInt].get_batch(self.BATCH_SIZE) smalllabelsReal = self.labelMaker(randInt) #Selects a class to convert to. randInt = (random.randint(1,self.NUMLABELS-1)+randInt) % self.NUMLABELS smalllabelsNew = self.labelMaker(randInt) labels = [smalllabelsReal,smalllabelsNew] stepGenLoss, stepDiscLoss = self.trainStep(batch, labels) #Print the progress bar so that you may see how far along the model is. printProgressBar(step % 1000, 999, decimals=2) #Save variables to compute the average. genLoss += stepGenLoss discLoss += stepDiscLoss if (step) % 1000 == 0: #At every 1000 steps, generate an image containing all possible conversions, and show the average loss values for the previous 1000 steps. self.makeImages(step) print("At step {}. Time for 1000 steps was {} seconds".format(step,time.time()-start)) print("Average generator loss: {}, Average discriminator loss: {}".format((genLoss / 1000.0),(discLoss / 1000.0))) genLoss = 0 discLoss = 0 start = time.time() if (step) % 10000 == 0: #At every 10000 steps, save the weights of the generator and discriminator so they may be loaded. self.gen.save_weights(self.CKPT + f"{step}GEN.ckpt") self.disc.save_weights(self.CKPT + f"{step}DISC.ckpt") print("Gan saved!") #At the end of training, show the total amount of time it took. print(f"Time for training was {(time.time() - trainTime) / 60.0} minutes") return def makeImages(self, step, numEx = 5): #A function to create an array of images. The first row is real, the second row is converted to the first class, the third row is converted to the second class, and so on. #Step: A only used in naming. Typically used to show what step the image was generated on. imageRows = [] #For each class, translate to each other class. #Original images will be on the top row in order of label. #Every row beneath will be a different label. for i in range(self.NUMLABELS): batch = self.testData[i].get_batch(numEx) #Place all of the original images on one row. rowstart = batch[0] for k in range(1,numEx): rowstart = np.append(rowstart, batch[k], 1) for j in range(self.NUMLABELS): results = self.gen([batch, self.labelMaker(j, self.NUMLABELS, numEx)], training=False) if i == j: #Don't convert to your own class! Instead show a black box. results = np.zeros_like(results) rowAdd = results[0] for k in range(1,numEx): rowAdd = np.append(rowAdd, results[k], 1) rowstart = np.append(rowstart, rowAdd, 0) imageRows.append(rowstart) output = imageRows[0] for i in range(1,len(imageRows)): output = np.append(output, imageRows[i], 1) #All originals will be on output = np.clip(np.squeeze(output), 0.0, 1.0) plt.imsave(self.imagedir + f"\\{step}.png", output) def loadSave(self, step): #A function to load the weights of a trained model. Must be the same size and channels as initialized model. #Step: What step to laod from. self.gen.load_weights(self.CKPT + f"{step}GEN.ckpt") self.disc.load_weights(self.CKPT + f"{step}DISC.ckpt") def translate(self, image, target): #Converts a single image to the target class. Returns the translated image. #image: an array of (imageSize1,imageSize2,channels). #target: an index for what class to convert to (starting at 0) image = np.expand_dims(image, 0) label = self.labelMaker(target, batch=1) return np.squeeze(self.gen([image, label], training=False), axis=0) #An example of how you could run the model using class folders "/data/classA_folder/", etc image size 256, model name "StarGAN", channel coefficient of 16, and normal size. # if __name__ == "__main__": # data = ["classA_folder", "classB_folder", "classC_folder"] #In this case, class A has an index of 0, B 1, C 2. # testdata = ["classA_testfolder", "classB_testfolder", "classC_testfolder"] # starGAN = GAN(data, testdata, 128, "StarGAN", 24) # starGAN.makeImages(-999) # starGAN.train(200000) # exit()
py
1a515eb72e0a9db57520e6963df3af843799f2ea
import numpy as np from keras_cn_parser_and_analyzer.library.classifiers.cnn_lstm import WordVecCnnLstm from keras_cn_parser_and_analyzer.library.utility.simple_data_loader import load_text_label_pairs from keras_cn_parser_and_analyzer.library.utility.text_fit import fit_text def main(): random_state = 42 np.random.seed(random_state) output_dir_path = './models' data_file_path = '../data/training_data' text_data_model = fit_text(data_file_path, label_type='line_label') text_label_pairs = load_text_label_pairs(data_file_path, label_type='line_label') classifier = WordVecCnnLstm() batch_size = 64 epochs = 20 history = classifier.fit(text_data_model=text_data_model, model_dir_path=output_dir_path, text_label_pairs=text_label_pairs, batch_size=batch_size, epochs=epochs, test_size=0.3, random_state=random_state) if __name__ == '__main__': main()
py
1a515ec9344220e518ea9d8e8660d6851503bd2a
# https://www.hackerrank.com/challenges/xor-se/problem # An array, , is defined as follows: # A[0] = 0 # A[x] = A[x-1]^x # for , where is the symbol for XOR # You will be given a left and right index . You must determine the XOR sum of the segment of A as # A[l]^A[l+1]...^A[r]. # For example, A = [0,1,3,0,4,1,7,0,8] . The segment from l=1 to r=4 sums to 1^3^0^4 = 6. # Print the answer to each question. # Function Description # Complete the xorSequence function in the editor below. It should return the integer value calculated. # xorSequence has the following parameter(s): # l: the lower index of the range to sum # r: the higher index of the range to sum # Input Format # The first line contains an integer , the number of questions. # Each of the next lines contains two space-separated integers, and , the inclusive left and right indexes of the # segment to query. # Constraints # 1<=q<=10e5 # 1<l[i]<r[i]<10e15 # Output Format # On a new line for each test case, print the XOR-Sum of 's elements in the inclusive range between indices and . # Sample Input 0 # 3 # 2 4 # 2 8 # 5 9 # Sample Output 0 # 7 # 9 # 15 # Explanation 0 # The beginning of our array looks like this: [0,1,3,0,4,1,7,0,8,...] import math import os import random import re import sys # Complete the xorSequence function below. def xorSequence(l, r): def A(x): a = x%8 if(a == 0 or a == 1): return x if(a == 2 or a == 3): return 2 if(a == 4 or a == 5): return x+2 if(a == 6 or a == 7): return 0; ans = A(l-1)^A(r) if __name__ == '__main__': fptr = open(os.environ['OUTPUT_PATH'], 'w') q = int(input()) for q_itr in range(q): lr = input().split() l = int(lr[0]) r = int(lr[1]) result = xorSequence(l, r) fptr.write(str(result) + '\n') fptr.close()
py
1a515ecbe268dc4c4da7a3313541eba01bddd073
from . import DATABASE, log import os from flask import Blueprint, render_template, flash from flask_login import login_required, current_user views = Blueprint("views", __name__) @views.route("/") @views.route("/home") @login_required def home(): log.debug("Received a GET request at `/home`") return render_template("home.html", user=current_user) @views.route("/files/username=<username>") @login_required def get_files(username: str): # check whether the folder already exists files = {} if os.path.isdir(f"{DATABASE}\\{username}"): os.chdir(f"{DATABASE}\\{username}") files = {i: f"{DATABASE}\\{username}\\{i}" for i in os.listdir()} else: # creating the folder os.mkdir(f"{DATABASE}/{username}") return files @views.route("/get_file/filename=<filename>&username=<username>") @login_required def get_specific_file(filename: str, username: str): if os.path.isdir(f"{DATABASE}\\{username}"): os.chdir(f"{DATABASE}\\{username}") if os.path.isfile(filename): with open(filename, "r") as file: return file.read() else: flash("File not found!", category="error")
py
1a51606879e13ba77a0d88ef2d3e27c1c546e6b3
from django.contrib import admin from django.urls import path, include urlpatterns = [ path('admin/', admin.site.urls), path('', include('userauth.urls')), ]
py
1a516089e76e2ed2431f2ee9a70acf667f1c74b1
"""MLP Merge Model. A model composed only of a multi-layer perceptron (MLP), which maps real-valued inputs to real-valued outputs. This model is called an MLP Merge Model because it takes two inputs and concatenates the second input with the layer at a specified index. It can be merged with any layer from the input layer to the last hidden layer. """ import tensorflow as tf from garage.tf.models.mlp import mlp from garage.tf.models.model import Model class MLPMergeModel(Model): """MLP Merge Model. Args: output_dim (int): Dimension of the network output. name (str): Model name, also the variable scope. hidden_sizes (list[int]): Output dimension of dense layer(s). For example, (32, 32) means this MLP consists of two hidden layers, each with 32 hidden units. concat_layer (int): The index of layers at which to concatenate input_var2 with the network. The indexing works like standard python list indexing. Index of 0 refers to the input layer (input_var1) while an index of -1 points to the last hidden layer. Default parameter points to second layer from the end. hidden_nonlinearity (callable): Activation function for intermediate dense layer(s). It should return a tf.Tensor. Set it to None to maintain a linear activation. hidden_w_init (callable): Initializer function for the weight of intermediate dense layer(s). The function should return a tf.Tensor. hidden_b_init (callable): Initializer function for the bias of intermediate dense layer(s). The function should return a tf.Tensor. output_nonlinearity (callable): Activation function for output dense layer. It should return a tf.Tensor. Set it to None to maintain a linear activation. output_w_init (callable): Initializer function for the weight of output dense layer(s). The function should return a tf.Tensor. output_b_init (callable): Initializer function for the bias of output dense layer(s). The function should return a tf.Tensor. layer_normalization (bool): Bool for using layer normalization or not. """ def __init__(self, output_dim, name='MLPMergeModel', hidden_sizes=(32, 32), concat_layer=-2, hidden_nonlinearity=tf.nn.relu, hidden_w_init=tf.initializers.glorot_uniform(), hidden_b_init=tf.zeros_initializer(), output_nonlinearity=None, output_w_init=tf.initializers.glorot_uniform(), output_b_init=tf.zeros_initializer(), layer_normalization=False): super().__init__(name) self._output_dim = output_dim self._hidden_sizes = hidden_sizes self._concat_layer = concat_layer self._hidden_nonlinearity = hidden_nonlinearity self._hidden_w_init = hidden_w_init self._hidden_b_init = hidden_b_init self._output_nonlinearity = output_nonlinearity self._output_w_init = output_w_init self._output_b_init = output_b_init self._layer_normalization = layer_normalization def network_input_spec(self): """Network input spec. Return: list[str]: List of key(str) for the network outputs. """ return ['input_var1', 'input_var2'] # pylint: disable=arguments-differ def _build(self, state_input, action_input, name=None): """Build model given input placeholder(s). Args: state_input (tf.Tensor): Tensor input for state. action_input (tf.Tensor): Tensor input for action. name (str): Inner model name, also the variable scope of the inner model, if exist. One example is garage.tf.models.Sequential. Return: tf.Tensor: Tensor output of the model. """ del name return mlp(input_var=state_input, output_dim=self._output_dim, hidden_sizes=self._hidden_sizes, input_var2=action_input, concat_layer=self._concat_layer, name='mlp_concat', hidden_nonlinearity=self._hidden_nonlinearity, hidden_w_init=self._hidden_w_init, hidden_b_init=self._hidden_b_init, output_nonlinearity=self._output_nonlinearity, output_w_init=self._output_w_init, output_b_init=self._output_b_init, layer_normalization=self._layer_normalization)
py
1a5161061c03cdea64f46cba1c246a8f60cb521a
"""A setuptools based setup module. See: https://packaging.python.org/en/latest/distributing.html https://github.com/pypa/sampleproject """ # Always prefer setuptools over distutils from setuptools import setup, find_packages # To use a consistent encoding from codecs import open from os import path import os import sys # Which CoAPthon version to use if sys.version_info.major == 2: COAPTHON="CoAPThon" ZEROCONF="zeroconf2" else: COAPTHON="CoAPThon3" ZEROCONF="zeroconf" here = path.abspath(path.dirname(__file__)) long_description = """ Control program (and module) for iotsa devices. Allows finding of iotsa devices on the local WiFi network or in the physical vicinity, inspecting and changing configuration of those devices and uploading new firmware over the air. """ # Get the version number from the iotsa module VERSION="2.1" setup( name='iotsaControl', # Versions should comply with PEP440. For a discussion on single-sourcing # the version across setup.py and the project code, see # https://packaging.python.org/en/latest/single_source_version.html version=VERSION, description='Control iotsa devices', long_description=long_description, # The project's main homepage. url='http://www.cwi.nl', # Author details author='Jack Jansen', author_email='[email protected]', # Choose your license license='MIT', # See https://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers=[ # How mature is this project? Common values are # 3 - Alpha # 4 - Beta # 5 - Production/Stable 'Development Status :: 3 - Alpha', # Indicate who your project is intended for 'Intended Audience :: End Users/Desktop', 'Intended Audience :: Developers', 'Topic :: Communications', 'Topic :: Home Automation', 'Topic :: Internet' # Pick your license as you wish (should match "license" above) 'License :: OSI Approved :: MIT License', # Specify the Python versions you support here. In particular, ensure # that you indicate whether you support Python 2, Python 3 or both. 'Programming Language :: Python :: 2.7', ], # What does your project relate to? #keywords='sample setuptools development', # You can just specify the packages manually here if your project is # simple. Or you can use find_packages(). packages=["iotsaControl"], # List run-time dependencies here. These will be installed by pip when # your project is installed. For an analysis of "install_requires" vs pip's # requirements files see: # https://packaging.python.org/en/latest/requirements.html install_requires=["future", "requests", "esptool", ZEROCONF, COAPTHON], # List additional groups of dependencies here (e.g. development # dependencies). You can install these using the following syntax, # for example: # $ pip install -e .[dev,test] #extras_require={ # 'dev': ['check-manifest'], # 'test': ['coverage'], #}, # If there are data files included in your packages that need to be # installed, specify them here. If using Python 2.6 or less, then these # have to be included in MANIFEST.in as well. #package_data=package_data, #include_package_data=True, # Although 'package_data' is the preferred approach, in some case you may # need to place data files outside of your packages. See: # http://docs.python.org/3.4/distutils/setupscript.html#installing-additional-files # noqa # In this case, 'data_file' will be installed into '<sys.prefix>/my_data' #data_files=[('my_data', ['data/data_file'])], # To provide executable scripts, use entry points in preference to the # "scripts" keyword. Entry points provide cross-platform support and allow # pip to create the appropriate form of executable for the target platform. entry_points={ 'console_scripts': [ 'iotsaControl=iotsaControl.__main__:main', ], }, )
py
1a51611ebb27b011d5d1df75a82d7962eca753fa
import random import pytest import numpy as np import os from ray import cloudpickle as pickle from ray import ray_constants from ray.actor import ActorClassInheritanceException try: import pytest_timeout except ImportError: pytest_timeout = None import sys import tempfile import datetime from ray._private.test_utils import ( client_test_enabled, wait_for_condition, wait_for_pid_to_exit, ) from ray.tests.client_test_utils import create_remote_signal_actor import ray # NOTE: We have to import setproctitle after ray because we bundle setproctitle # with ray. import setproctitle # noqa @pytest.mark.parametrize("set_enable_auto_connect", ["1", "0"], indirect=True) def test_caching_actors(shutdown_only, set_enable_auto_connect): # Test defining actors before ray.init() has been called. @ray.remote class Foo: def __init__(self): pass def get_val(self): return 3 if set_enable_auto_connect == "0": # Check that we can't actually create actors before ray.init() has # been called. with pytest.raises(Exception): f = Foo.remote() ray.init(num_cpus=1) else: # Actor creation should succeed here because ray.init() auto connection # is (by default) enabled. f = Foo.remote() f = Foo.remote() assert ray.get(f.get_val.remote()) == 3 # https://github.com/ray-project/ray/issues/20554 def test_not_reusing_task_workers(shutdown_only): @ray.remote def create_ref(): ref = ray.put(np.zeros(100_000_000)) return ref @ray.remote class Actor: def __init__(self): return def foo(self): return ray.init(num_cpus=1, object_store_memory=1000_000_000) wrapped_ref = create_ref.remote() print(ray.get(ray.get(wrapped_ref))) # create_ref worker gets reused as an actor. a = Actor.remote() ray.get(a.foo.remote()) # Actor will get force-killed. del a # Flush the object store. for _ in range(10): ray.put(np.zeros(100_000_000)) # Object has been evicted and owner has died. Throws OwnerDiedError. print(ray.get(ray.get(wrapped_ref))) def test_remote_function_within_actor(ray_start_10_cpus): # Make sure we can use remote funtions within actors. # Create some values to close over. val1 = 1 val2 = 2 @ray.remote def f(x): return val1 + x @ray.remote def g(x): return ray.get(f.remote(x)) @ray.remote class Actor: def __init__(self, x): self.x = x self.y = val2 self.object_refs = [f.remote(i) for i in range(5)] self.values2 = ray.get([f.remote(i) for i in range(5)]) def get_values(self): return self.x, self.y, self.object_refs, self.values2 def f(self): return [f.remote(i) for i in range(5)] def g(self): return ray.get([g.remote(i) for i in range(5)]) def h(self, object_refs): return ray.get(object_refs) actor = Actor.remote(1) values = ray.get(actor.get_values.remote()) assert values[0] == 1 assert values[1] == val2 assert ray.get(values[2]) == list(range(1, 6)) assert values[3] == list(range(1, 6)) assert ray.get(ray.get(actor.f.remote())) == list(range(1, 6)) assert ray.get(actor.g.remote()) == list(range(1, 6)) assert ray.get(actor.h.remote([f.remote(i) for i in range(5)])) == list(range(1, 6)) def test_define_actor_within_actor(ray_start_10_cpus): # Make sure we can use remote funtions within actors. @ray.remote class Actor1: def __init__(self, x): self.x = x def new_actor(self, z): @ray.remote class Actor2: def __init__(self, x): self.x = x def get_value(self): return self.x self.actor2 = Actor2.remote(z) def get_values(self, z): self.new_actor(z) return self.x, ray.get(self.actor2.get_value.remote()) actor1 = Actor1.remote(3) assert ray.get(actor1.get_values.remote(5)) == (3, 5) def test_use_actor_within_actor(ray_start_10_cpus): # Make sure we can use actors within actors. @ray.remote class Actor1: def __init__(self, x): self.x = x def get_val(self): return self.x @ray.remote class Actor2: def __init__(self, x, y): self.x = x self.actor1 = Actor1.remote(y) def get_values(self, z): return self.x, ray.get(self.actor1.get_val.remote()) actor2 = Actor2.remote(3, 4) assert ray.get(actor2.get_values.remote(5)) == (3, 4) def test_use_actor_twice(ray_start_10_cpus): # Make sure we can call the same actor using different refs. @ray.remote class Actor1: def __init__(self): self.count = 0 def inc(self): self.count += 1 return self.count @ray.remote class Actor2: def __init__(self): pass def inc(self, handle): return ray.get(handle.inc.remote()) a = Actor1.remote() a2 = Actor2.remote() assert ray.get(a2.inc.remote(a)) == 1 assert ray.get(a2.inc.remote(a)) == 2 def test_define_actor_within_remote_function(ray_start_10_cpus): # Make sure we can define and actors within remote funtions. @ray.remote def f(x, n): @ray.remote class Actor1: def __init__(self, x): self.x = x def get_value(self): return self.x actor = Actor1.remote(x) return ray.get([actor.get_value.remote() for _ in range(n)]) assert ray.get(f.remote(3, 1)) == [3] assert ray.get([f.remote(i, 20) for i in range(10)]) == [ 20 * [i] for i in range(10) ] def test_use_actor_within_remote_function(ray_start_10_cpus): # Make sure we can create and use actors within remote funtions. @ray.remote class Actor1: def __init__(self, x): self.x = x def get_values(self): return self.x @ray.remote def f(x): actor = Actor1.remote(x) return ray.get(actor.get_values.remote()) assert ray.get(f.remote(3)) == 3 def test_actor_import_counter(ray_start_10_cpus): # This is mostly a test of the export counters to make sure that when # an actor is imported, all of the necessary remote functions have been # imported. # Export a bunch of remote functions. num_remote_functions = 50 for i in range(num_remote_functions): @ray.remote def f(): return i @ray.remote def g(): @ray.remote class Actor: def __init__(self): # This should use the last version of f. self.x = ray.get(f.remote()) def get_val(self): return self.x actor = Actor.remote() return ray.get(actor.get_val.remote()) assert ray.get(g.remote()) == num_remote_functions - 1 @pytest.mark.skipif(client_test_enabled(), reason="internal api") def test_actor_method_metadata_cache(ray_start_regular): class Actor(object): pass # The cache of ActorClassMethodMetadata. cache = ray.actor.ActorClassMethodMetadata._cache cache.clear() # Check cache hit during ActorHandle deserialization. A1 = ray.remote(Actor) a = A1.remote() assert len(cache) == 1 cached_data_id = [id(x) for x in list(cache.items())[0]] for x in range(10): a = pickle.loads(pickle.dumps(a)) assert len(ray.actor.ActorClassMethodMetadata._cache) == 1 assert [id(x) for x in list(cache.items())[0]] == cached_data_id @pytest.mark.skipif(client_test_enabled(), reason="internal api") def test_actor_class_name(ray_start_regular): @ray.remote class Foo: def __init__(self): pass Foo.remote() g = ray.worker.global_worker.gcs_client actor_keys = g.internal_kv_keys( b"ActorClass", ray_constants.KV_NAMESPACE_FUNCTION_TABLE ) assert len(actor_keys) == 1 actor_class_info = pickle.loads( g.internal_kv_get(actor_keys[0], ray_constants.KV_NAMESPACE_FUNCTION_TABLE) ) assert actor_class_info["class_name"] == "Foo" assert "test_actor" in actor_class_info["module"] def test_actor_exit_from_task(ray_start_regular_shared): @ray.remote class Actor: def __init__(self): print("Actor created") def f(self): return 0 @ray.remote def f(): a = Actor.remote() x_id = a.f.remote() return [x_id] x_id = ray.get(f.remote())[0] print(ray.get(x_id)) # This should not hang. def test_actor_init_error_propagated(ray_start_regular_shared): @ray.remote class Actor: def __init__(self, error=False): if error: raise Exception("oops") def foo(self): return "OK" actor = Actor.remote(error=False) ray.get(actor.foo.remote()) actor = Actor.remote(error=True) with pytest.raises(Exception, match=".*oops.*"): ray.get(actor.foo.remote()) def test_keyword_args(ray_start_regular_shared): @ray.remote class Actor: def __init__(self, arg0, arg1=1, arg2="a"): self.arg0 = arg0 self.arg1 = arg1 self.arg2 = arg2 def get_values(self, arg0, arg1=2, arg2="b"): return self.arg0 + arg0, self.arg1 + arg1, self.arg2 + arg2 actor = Actor.remote(0) assert ray.get(actor.get_values.remote(1)) == (1, 3, "ab") actor = Actor.remote(1, 2) assert ray.get(actor.get_values.remote(2, 3)) == (3, 5, "ab") actor = Actor.remote(1, 2, "c") assert ray.get(actor.get_values.remote(2, 3, "d")) == (3, 5, "cd") actor = Actor.remote(1, arg2="c") assert ray.get(actor.get_values.remote(0, arg2="d")) == (1, 3, "cd") assert ray.get(actor.get_values.remote(0, arg2="d", arg1=0)) == (1, 1, "cd") actor = Actor.remote(1, arg2="c", arg1=2) assert ray.get(actor.get_values.remote(0, arg2="d")) == (1, 4, "cd") assert ray.get(actor.get_values.remote(0, arg2="d", arg1=0)) == (1, 2, "cd") assert ray.get(actor.get_values.remote(arg2="d", arg1=0, arg0=2)) == (3, 2, "cd") # Make sure we get an exception if the constructor is called # incorrectly. with pytest.raises(TypeError): actor = Actor.remote() with pytest.raises(TypeError): actor = Actor.remote(0, 1, 2, arg3=3) with pytest.raises(TypeError): actor = Actor.remote(0, arg0=1) # Make sure we get an exception if the method is called incorrectly. actor = Actor.remote(1) with pytest.raises(Exception): ray.get(actor.get_values.remote()) def test_actor_name_conflict(ray_start_regular_shared): @ray.remote class A(object): def foo(self): return 100000 a = A.remote() r = a.foo.remote() results = [r] for x in range(10): @ray.remote class A(object): def foo(self): return x a = A.remote() r = a.foo.remote() results.append(r) assert ray.get(results) == [100000, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def test_variable_number_of_args(ray_start_regular_shared): @ray.remote class Actor: def __init__(self, arg0, arg1=1, *args): self.arg0 = arg0 self.arg1 = arg1 self.args = args def get_values(self, arg0, arg1=2, *args): return self.arg0 + arg0, self.arg1 + arg1, self.args, args actor = Actor.remote(0) assert ray.get(actor.get_values.remote(1)) == (1, 3, (), ()) actor = Actor.remote(1, 2) assert ray.get(actor.get_values.remote(2, 3)) == (3, 5, (), ()) actor = Actor.remote(1, 2, "c") assert ray.get(actor.get_values.remote(2, 3, "d")) == (3, 5, ("c",), ("d",)) actor = Actor.remote(1, 2, "a", "b", "c", "d") assert ray.get(actor.get_values.remote(2, 3, 1, 2, 3, 4)) == ( 3, 5, ("a", "b", "c", "d"), (1, 2, 3, 4), ) @ray.remote class Actor: def __init__(self, *args): self.args = args def get_values(self, *args): return self.args, args a = Actor.remote() assert ray.get(a.get_values.remote()) == ((), ()) a = Actor.remote(1) assert ray.get(a.get_values.remote(2)) == ((1,), (2,)) a = Actor.remote(1, 2) assert ray.get(a.get_values.remote(3, 4)) == ((1, 2), (3, 4)) def test_no_args(ray_start_regular_shared): @ray.remote class Actor: def __init__(self): pass def get_values(self): pass actor = Actor.remote() assert ray.get(actor.get_values.remote()) is None def test_no_constructor(ray_start_regular_shared): @ray.remote class Actor: def get_values(self): pass actor = Actor.remote() assert ray.get(actor.get_values.remote()) is None def test_custom_classes(ray_start_regular_shared): class Foo: def __init__(self, x): self.x = x @ray.remote class Actor: def __init__(self, f2): self.f1 = Foo(1) self.f2 = f2 def get_values1(self): return self.f1, self.f2 def get_values2(self, f3): return self.f1, self.f2, f3 actor = Actor.remote(Foo(2)) results1 = ray.get(actor.get_values1.remote()) assert results1[0].x == 1 assert results1[1].x == 2 results2 = ray.get(actor.get_values2.remote(Foo(3))) assert results2[0].x == 1 assert results2[1].x == 2 assert results2[2].x == 3 def test_actor_class_attributes(ray_start_regular_shared): class Grandparent: GRANDPARENT = 2 class Parent1(Grandparent): PARENT1 = 6 class Parent2: PARENT2 = 7 @ray.remote class TestActor(Parent1, Parent2): X = 3 @classmethod def f(cls): assert TestActor.GRANDPARENT == 2 assert TestActor.PARENT1 == 6 assert TestActor.PARENT2 == 7 assert TestActor.X == 3 return 4 def g(self): assert TestActor.GRANDPARENT == 2 assert TestActor.PARENT1 == 6 assert TestActor.PARENT2 == 7 assert TestActor.f() == 4 return TestActor.X t = TestActor.remote() assert ray.get(t.g.remote()) == 3 def test_actor_static_attributes(ray_start_regular_shared): class Grandparent: GRANDPARENT = 2 @staticmethod def grandparent_static(): assert Grandparent.GRANDPARENT == 2 return 1 class Parent1(Grandparent): PARENT1 = 6 @staticmethod def parent1_static(): assert Parent1.PARENT1 == 6 return 2 def parent1(self): assert Parent1.PARENT1 == 6 class Parent2: PARENT2 = 7 def parent2(self): assert Parent2.PARENT2 == 7 @ray.remote class TestActor(Parent1, Parent2): X = 3 @staticmethod def f(): assert TestActor.GRANDPARENT == 2 assert TestActor.PARENT1 == 6 assert TestActor.PARENT2 == 7 assert TestActor.X == 3 return 4 def g(self): assert TestActor.GRANDPARENT == 2 assert TestActor.PARENT1 == 6 assert TestActor.PARENT2 == 7 assert TestActor.f() == 4 return TestActor.X t = TestActor.remote() assert ray.get(t.g.remote()) == 3 def test_decorator_args(ray_start_regular_shared): # This is an invalid way of using the actor decorator. with pytest.raises(Exception): @ray.remote() class Actor: def __init__(self): pass # This is an invalid way of using the actor decorator. with pytest.raises(Exception): @ray.remote(invalid_kwarg=0) # noqa: F811 class Actor: # noqa: F811 def __init__(self): pass # This is an invalid way of using the actor decorator. with pytest.raises(Exception): @ray.remote(num_cpus=0, invalid_kwarg=0) # noqa: F811 class Actor: # noqa: F811 def __init__(self): pass # This is a valid way of using the decorator. @ray.remote(num_cpus=1) # noqa: F811 class Actor: # noqa: F811 def __init__(self): pass # This is a valid way of using the decorator. @ray.remote(num_gpus=1) # noqa: F811 class Actor: # noqa: F811 def __init__(self): pass # This is a valid way of using the decorator. @ray.remote(num_cpus=1, num_gpus=1) # noqa: F811 class Actor: # noqa: F811 def __init__(self): pass def test_random_id_generation(ray_start_regular_shared): @ray.remote class Foo: def __init__(self): pass # Make sure that seeding numpy does not interfere with the generation # of actor IDs. np.random.seed(1234) random.seed(1234) f1 = Foo.remote() np.random.seed(1234) random.seed(1234) f2 = Foo.remote() assert f1._actor_id != f2._actor_id @pytest.mark.skipif(client_test_enabled(), reason="differing inheritence structure") def test_actor_inheritance(ray_start_regular_shared): class NonActorBase: def __init__(self): pass # Test that an actor class can inherit from a non-actor class. @ray.remote class ActorBase(NonActorBase): def __init__(self): pass # Test that you can't instantiate an actor class directly. with pytest.raises(Exception, match="cannot be instantiated directly"): ActorBase() # Test that you can't inherit from an actor class. with pytest.raises( ActorClassInheritanceException, match="Inheriting from actor classes is not " "currently supported.", ): class Derived(ActorBase): def __init__(self): pass def test_multiple_return_values(ray_start_regular_shared): @ray.remote class Foo: def method0(self): return 1 @ray.method(num_returns=1) def method1(self): return 1 @ray.method(num_returns=2) def method2(self): return 1, 2 @ray.method(num_returns=3) def method3(self): return 1, 2, 3 f = Foo.remote() id0 = f.method0.remote() assert ray.get(id0) == 1 id1 = f.method1.remote() assert ray.get(id1) == 1 id2a, id2b = f.method2.remote() assert ray.get([id2a, id2b]) == [1, 2] id3a, id3b, id3c = f.method3.remote() assert ray.get([id3a, id3b, id3c]) == [1, 2, 3] def test_options_num_returns(ray_start_regular_shared): @ray.remote class Foo: def method(self): return 1, 2 f = Foo.remote() obj = f.method.remote() assert ray.get(obj) == (1, 2) obj1, obj2 = f.method.options(num_returns=2).remote() assert ray.get([obj1, obj2]) == [1, 2] def test_options_name(ray_start_regular_shared): @ray.remote class Foo: def method(self, name): assert setproctitle.getproctitle() == f"ray::{name}" f = Foo.remote() ray.get(f.method.options(name="foo").remote("foo")) ray.get(f.method.options(name="bar").remote("bar")) def test_define_actor(ray_start_regular_shared): @ray.remote class Test: def __init__(self, x): self.x = x def f(self, y): return self.x + y t = Test.remote(2) assert ray.get(t.f.remote(1)) == 3 # Make sure that calling an actor method directly raises an exception. with pytest.raises(Exception): t.f(1) def test_actor_deletion(ray_start_regular_shared): # Make sure that when an actor handles goes out of scope, the actor # destructor is called. @ray.remote class Actor: def getpid(self): return os.getpid() a = Actor.remote() pid = ray.get(a.getpid.remote()) a = None wait_for_pid_to_exit(pid) actors = [Actor.remote() for _ in range(10)] pids = ray.get([a.getpid.remote() for a in actors]) a = None actors = None [wait_for_pid_to_exit(pid) for pid in pids] def test_actor_method_deletion(ray_start_regular_shared): @ray.remote class Actor: def method(self): return 1 # Make sure that if we create an actor and call a method on it # immediately, the actor doesn't get killed before the method is # called. assert ray.get(Actor.remote().method.remote()) == 1 def test_distributed_actor_handle_deletion(ray_start_regular_shared): @ray.remote class Actor: def method(self): return 1 def getpid(self): return os.getpid() @ray.remote def f(actor, signal): ray.get(signal.wait.remote()) return ray.get(actor.method.remote()) SignalActor = create_remote_signal_actor(ray) signal = SignalActor.remote() a = Actor.remote() pid = ray.get(a.getpid.remote()) # Pass the handle to another task that cannot run yet. x_id = f.remote(a, signal) # Delete the original handle. The actor should not get killed yet. del a # Once the task finishes, the actor process should get killed. ray.get(signal.send.remote()) assert ray.get(x_id) == 1 wait_for_pid_to_exit(pid) def test_multiple_actors(ray_start_regular_shared): @ray.remote class Counter: def __init__(self, value): self.value = value def increase(self): self.value += 1 return self.value def reset(self): self.value = 0 num_actors = 5 num_increases = 50 # Create multiple actors. actors = [Counter.remote(i) for i in range(num_actors)] results = [] # Call each actor's method a bunch of times. for i in range(num_actors): results += [actors[i].increase.remote() for _ in range(num_increases)] result_values = ray.get(results) for i in range(num_actors): v = result_values[(num_increases * i) : (num_increases * (i + 1))] assert v == list(range(i + 1, num_increases + i + 1)) # Reset the actor values. [actor.reset.remote() for actor in actors] # Interweave the method calls on the different actors. results = [] for j in range(num_increases): results += [actor.increase.remote() for actor in actors] result_values = ray.get(results) for j in range(num_increases): v = result_values[(num_actors * j) : (num_actors * (j + 1))] assert v == num_actors * [j + 1] def test_inherit_actor_from_class(ray_start_regular_shared): # Make sure we can define an actor by inheriting from a regular class. # Note that actors cannot inherit from other actors. class Foo: def __init__(self, x): self.x = x def f(self): return self.x def g(self, y): return self.x + y @ray.remote class Actor(Foo): def __init__(self, x): Foo.__init__(self, x) def get_value(self): return self.f() actor = Actor.remote(1) assert ray.get(actor.get_value.remote()) == 1 assert ray.get(actor.g.remote(5)) == 6 def test_get_non_existing_named_actor(ray_start_regular_shared): with pytest.raises(ValueError): _ = ray.get_actor("non_existing_actor") # https://github.com/ray-project/ray/issues/17843 def test_actor_namespace(ray_start_regular_shared): @ray.remote class Actor: def f(self): return "ok" a = Actor.options(name="foo", namespace="f1").remote() with pytest.raises(ValueError): ray.get_actor(name="foo", namespace="f2") a1 = ray.get_actor(name="foo", namespace="f1") assert ray.get(a1.f.remote()) == "ok" del a def test_named_actor_cache(ray_start_regular_shared): """Verify that named actor cache works well.""" @ray.remote(max_restarts=-1) class Counter: def __init__(self): self.count = 0 def inc_and_get(self): self.count += 1 return self.count a = Counter.options(name="hi").remote() first_get = ray.get_actor("hi") assert ray.get(first_get.inc_and_get.remote()) == 1 second_get = ray.get_actor("hi") assert ray.get(second_get.inc_and_get.remote()) == 2 ray.kill(a, no_restart=True) def actor_removed(): try: ray.get_actor("hi") return False except ValueError: return True wait_for_condition(actor_removed) get_after_restart = Counter.options(name="hi").remote() assert ray.get(get_after_restart.inc_and_get.remote()) == 1 get_by_name = ray.get_actor("hi") assert ray.get(get_by_name.inc_and_get.remote()) == 2 def test_named_actor_cache_via_another_actor(ray_start_regular_shared): """Verify that named actor cache works well with another actor.""" @ray.remote(max_restarts=0) class Counter: def __init__(self): self.count = 0 def inc_and_get(self): self.count += 1 return self.count # The third actor to get named actor. To indicates this cache doesn't # break getting from the third party. @ray.remote(max_restarts=0) class ActorGetter: def get_actor_count(self, name): actor = ray.get_actor(name) return ray.get(actor.inc_and_get.remote()) # Start a actor and get it by name in driver. a = Counter.options(name="foo").remote() first_get = ray.get_actor("foo") assert ray.get(first_get.inc_and_get.remote()) == 1 # Start another actor as the third actor to get named actor. actor_getter = ActorGetter.remote() assert ray.get(actor_getter.get_actor_count.remote("foo")) == 2 ray.kill(a, no_restart=True) def actor_removed(): try: ray.get_actor("foo") return False except ValueError: return True wait_for_condition(actor_removed) # Restart the named actor. get_after_restart = Counter.options(name="foo").remote() assert ray.get(get_after_restart.inc_and_get.remote()) == 1 # Get the named actor from the third actor again. assert ray.get(actor_getter.get_actor_count.remote("foo")) == 2 # Get the named actor by name in driver again. get_by_name = ray.get_actor("foo") assert ray.get(get_by_name.inc_and_get.remote()) == 3 def test_wrapped_actor_handle(ray_start_regular_shared): @ray.remote class B: def doit(self): return 2 @ray.remote class A: def __init__(self): self.b = B.remote() def get_actor_ref(self): return [self.b] a = A.remote() b_list = ray.get(a.get_actor_ref.remote()) assert ray.get(b_list[0].doit.remote()) == 2 @pytest.mark.skip("This test is just used to print the latency of creating 100 actors.") def test_actor_creation_latency(ray_start_regular_shared): # This test is just used to test the latency of actor creation. @ray.remote class Actor: def get_value(self): return 1 start = datetime.datetime.now() actor_handles = [Actor.remote() for _ in range(100)] actor_create_time = datetime.datetime.now() for actor_handle in actor_handles: ray.get(actor_handle.get_value.remote()) end = datetime.datetime.now() print( "actor_create_time_consume = {}, total_time_consume = {}".format( actor_create_time - start, end - start ) ) @pytest.mark.parametrize( "exit_condition", [ # "out_of_scope", TODO(edoakes): enable this once fixed. "__ray_terminate__", "ray.actor.exit_actor", "ray.kill", ], ) def test_atexit_handler(ray_start_regular_shared, exit_condition): @ray.remote class A: def __init__(self, tmpfile, data): import atexit def f(*args, **kwargs): with open(tmpfile, "w") as f: f.write(data) f.flush() atexit.register(f) def ready(self): pass def exit(self): ray.actor.exit_actor() data = "hello" tmpfile = tempfile.NamedTemporaryFile("w+", suffix=".tmp", delete=False) tmpfile.close() a = A.remote(tmpfile.name, data) ray.get(a.ready.remote()) if exit_condition == "out_of_scope": del a elif exit_condition == "__ray_terminate__": ray.wait([a.__ray_terminate__.remote()]) elif exit_condition == "ray.actor.exit_actor": ray.wait([a.exit.remote()]) elif exit_condition == "ray.kill": ray.kill(a) else: assert False, "Unrecognized condition" def check_file_written(): with open(tmpfile.name, "r") as f: if f.read() == data: return True return False # ray.kill() should not trigger atexit handlers, all other methods should. if exit_condition == "ray.kill": assert not check_file_written() else: wait_for_condition(check_file_written) os.unlink(tmpfile.name) def test_return_actor_handle_from_actor(ray_start_regular_shared): @ray.remote class Inner: def ping(self): return "pong" @ray.remote class Outer: def __init__(self): self.inner = Inner.remote() def get_ref(self): return self.inner outer = Outer.remote() inner = ray.get(outer.get_ref.remote()) assert ray.get(inner.ping.remote()) == "pong" def test_actor_autocomplete(ray_start_regular_shared): """ Test that autocomplete works with actors by checking that the builtin dir() function works as expected. """ @ray.remote class Foo: def method_one(self) -> None: pass class_calls = [fn for fn in dir(Foo) if not fn.startswith("_")] assert set(class_calls) == {"method_one", "options", "remote"} f = Foo.remote() methods = [fn for fn in dir(f) if not fn.startswith("_")] assert methods == ["method_one"] all_methods = set(dir(f)) assert all_methods == {"__init__", "method_one", "__ray_terminate__"} method_options = [fn for fn in dir(f.method_one) if not fn.startswith("_")] assert set(method_options) == {"options", "remote"} def test_actor_mro(ray_start_regular_shared): @ray.remote class Foo: def __init__(self, x): self.x = x @classmethod def factory_f(cls, x): return cls(x) def get_x(self): return self.x obj = Foo.factory_f(1) assert obj.get_x() == 1 if __name__ == "__main__": sys.exit(pytest.main(["-v", __file__]))
py
1a516147b256e8d494ba43ccab974f64c95e329d
#!/usr/bin/env python # --------------------------------------------------------------------------------------- # configure.py: Athena++ configuration script in python. Original version by CJW. # # When configure.py is run, it uses the command line options and default settings to # create custom versions of the files Makefile and src/defs.hpp from the template files # Makefile.in and src/defs.hpp.in respectively. # # The following options are implememted: # -h --help help message # --prob=name use src/pgen/name.cpp as the problem generator # --coord=xxx use xxx as the coordinate system # --eos=xxx use xxx as the equation of state # --flux=xxx use xxx as the Riemann solver # --nghost=xxx set NGHOST=xxx # --nscalars=xxx set NSCALARS=xxx # -eos_table enable EOS table # -b enable magnetic fields # -s enable special relativity # -g enable general relativity # -t enable interface frame transformations for GR # -debug enable debug flags (-g -O0); override other compiler options # -coverage enable compiler-dependent code coverage flags # -float enable single precision (default is double) # -mpi enable parallelization with MPI # -omp enable parallelization with OpenMP # -hdf5 enable HDF5 output (requires the HDF5 library) # --hdf5_path=path path to HDF5 libraries (requires the HDF5 library) # -fft enable FFT (requires the FFTW library) # --fftw_path=path path to FFTW libraries (requires the FFTW library) # --grav=xxx use xxx as the self-gravity solver # --cxx=xxx use xxx as the C++ compiler (works w/ or w/o -mpi) # --ccmd=name use name as the command to call the (non-MPI) C++ compiler # --mpiccmd=name use name as the command to call the MPI C++ compiler # --gcovcmd=name use name as the command to call the gcov utility # --cflag=string append string whenever invoking compiler/linker # --include=path use -Ipath when compiling # --lib_path=path use -Lpath when linking # --lib=xxx use -lxxx when linking # ---------------------------------------------------------------------------------------- # Modules import argparse import glob import re # Set template and output filenames makefile_input = 'Makefile.in' makefile_output = 'Makefile' defsfile_input = 'src/defs.hpp.in' defsfile_output = 'src/defs.hpp' # --- Step 1. Prepare parser, add each of the arguments ------------------ athena_description = ( "Prepare custom Makefile and defs.hpp for compiling Athena++ solver" ) athena_epilog = ( "Full documentation of options available at " "https://github.com/PrincetonUniversity/athena-public-version/wiki/Configuring" ) parser = argparse.ArgumentParser(description=athena_description, epilog=athena_epilog) # --prob=[name] argument pgen_directory = 'src/pgen/' # set pgen_choices to list of .cpp files in src/pgen/ pgen_choices = glob.glob(pgen_directory + '*.cpp') # remove 'src/pgen/' prefix and '.cpp' extension from each filename pgen_choices = [choice[len(pgen_directory):-4] for choice in pgen_choices] parser.add_argument('--prob', default='shock_tube', choices=pgen_choices, help='select problem generator') # --coord=[name] argument parser.add_argument( '--coord', default='cartesian', choices=[ 'cartesian', 'cylindrical', 'spherical_polar', 'minkowski', 'sinusoidal', 'tilted', 'schwarzschild', 'kerr-schild', 'gr_user'], help='select coordinate system') # --eos=[name] argument parser.add_argument('--eos', default='adiabatic', choices=['adiabatic', 'isothermal', 'general/eos_table', 'general/hydrogen', 'general/ideal'], help='select equation of state') # --flux=[name] argument parser.add_argument('--flux', default='default', choices=['default', 'hlle', 'hllc', 'lhllc', 'hlld', 'lhlld', 'roe', 'llf'], # noqa help='select Riemann solver') # --nghost=[value] argument parser.add_argument('--nghost', default='2', help='set number of ghost zones') # --nscalars=[value] argument parser.add_argument('--nscalars', default='0', help='set number of passive scalars') # -b argument parser.add_argument('-b', action='store_true', default=False, help='enable magnetic field') # -sts argument parser.add_argument('-sts', action='store_true', default=False, help='enable super-time-stepping') # -s argument parser.add_argument('-s', action='store_true', default=False, help='enable special relativity') # -g argument parser.add_argument('-g', action='store_true', default=False, help='enable general relativity') # -t argument parser.add_argument('-t', action='store_true', default=False, help='enable interface frame transformations for GR') # -debug argument parser.add_argument('-debug', action='store_true', default=False, help='enable debug flags; override other compiler options') # -coverage argument parser.add_argument('-coverage', action='store_true', default=False, help='enable compiler-dependent code coverage flag') # -float argument parser.add_argument('-float', action='store_true', default=False, help='enable single precision') # -mpi argument parser.add_argument('-mpi', action='store_true', default=False, help='enable parallelization with MPI') # -omp argument parser.add_argument('-omp', action='store_true', default=False, help='enable parallelization with OpenMP') # --grav=[name] argument parser.add_argument('--grav', default='none', choices=['none', 'fft'], help='select self-gravity solver') # -fft argument parser.add_argument('-fft', action='store_true', default=False, help='enable FFT') # --fftw_path argument parser.add_argument('--fftw_path', default='', help='path to FFTW libraries') # -hdf5 argument parser.add_argument('-hdf5', action='store_true', default=False, help='enable HDF5 Output') # -h5double argument parser.add_argument('-h5double', action='store_true', default=False, help='enable double precision HDF5 output') # --hdf5_path argument parser.add_argument('--hdf5_path', default='', help='path to HDF5 libraries') # The main choices for --cxx flag, using "ctype[-suffix]" formatting, where "ctype" is the # major family/suite/group of compilers and "suffix" may represent variants of the # compiler version and/or predefined sets of compiler options. The C++ compiler front ends # are the main supported/documented options and are invoked on the command line, but the C # front ends are also acceptable selections and are mapped to the matching C++ front end: # gcc -> g++, clang -> clang++, icc-> icpc cxx_choices = [ 'g++', 'g++-simd', 'icpx', 'icpc', 'icpc-debug', 'icpc-phi', 'cray', 'bgxlc++', 'clang++', 'clang++-simd', 'clang++-apple', ] def c_to_cpp(arg): arg = arg.replace('gcc', 'g++', 1) arg = arg.replace('icc', 'icpc', 1) arg = arg.replace('icx', 'icpx', 1) if arg == 'bgxl' or arg == 'bgxlc': arg = 'bgxlc++' if arg == 'clang': arg = 'clang++' else: arg = arg.replace('clang-', 'clang++-', 1) return arg # --cxx=[name] argument parser.add_argument( '--cxx', default='g++', type=c_to_cpp, choices=cxx_choices, help='select C++ compiler and default set of flags (works w/ or w/o -mpi)') # --ccmd=[name] argument parser.add_argument('--ccmd', default=None, help='override for command to use to call (non-MPI) C++ compiler') # --mpiccmd=[name] argument parser.add_argument('--mpiccmd', default=None, help='override for command to use to call MPI C++ compiler') # --gcovcmd=[name] argument parser.add_argument('--gcovcmd', default=None, help='override for command to use to call Gcov utility in Makefile') # --cflag=[string] argument parser.add_argument('--cflag', default=None, help='additional string of flags to append to compiler/linker calls') # --include=[name] arguments parser.add_argument( '--include', default=[], action='append', help=('extra path for included header files (-I<path>); can be specified multiple ' 'times')) # --lib_path=[name] arguments parser.add_argument( '--lib_path', default=[], action='append', help=('extra path for linked library files (-L<path>); can be specified multiple ' 'times')) # --lib=[name] arguments parser.add_argument( '--lib', default=[], action='append', help='name of library to link against (-l<lib>); can be specified multiple times') # Parse command-line inputs args = vars(parser.parse_args()) # --- Step 2. Test for incompatible arguments ---------------------------- # Set default flux; HLLD for MHD, HLLC for hydro, HLLE for isothermal hydro or any GR if args['flux'] == 'default': if args['g']: args['flux'] = 'hlle' elif args['b']: args['flux'] = 'hlld' elif args['eos'] == 'isothermal': args['flux'] = 'hlle' else: args['flux'] = 'hllc' # Check Riemann solver compatibility if args['flux'] == 'hllc' and args['eos'] == 'isothermal': raise SystemExit('### CONFIGURE ERROR: HLLC flux cannot be used with isothermal EOS') if args['flux'] == 'hllc' and args['b']: raise SystemExit('### CONFIGURE ERROR: HLLC flux cannot be used with MHD') if args['flux'] == 'lhllc' and args['eos'] == 'isothermal': raise SystemExit('### CONFIGURE ERROR: LHLLC flux cannot be used with isothermal EOS') # noqa if args['flux'] == 'lhllc' and args['b']: raise SystemExit('### CONFIGURE ERROR: LHLLC flux cannot be used with MHD') if args['flux'] == 'hlld' and not args['b']: raise SystemExit('### CONFIGURE ERROR: HLLD flux can only be used with MHD') if args['flux'] == 'lhlld' and args['eos'] == 'isothermal': raise SystemExit('### CONFIGURE ERROR: LHLLD flux cannot be used with isothermal EOS') # noqa if args['flux'] == 'lhlld' and not args['b']: raise SystemExit('### CONFIGURE ERROR: LHLLD flux can only be used with MHD') # Check relativity if args['s'] and args['g']: raise SystemExit('### CONFIGURE ERROR: ' + 'GR implies SR; the -s option is restricted to pure SR') if args['t'] and not args['g']: raise SystemExit('### CONFIGURE ERROR: Frame transformations only apply to GR') if args['g'] and not args['t'] and args['flux'] not in ('llf', 'hlle'): raise SystemExit('### CONFIGURE ERROR: Frame transformations required for {0}' .format(args['flux'])) if args['g'] and args['coord'] in ('cartesian', 'cylindrical', 'spherical_polar'): raise SystemExit('### CONFIGURE ERROR: GR cannot be used with {0} coordinates' .format(args['coord'])) if not args['g'] and args['coord'] not in ('cartesian', 'cylindrical', 'spherical_polar'): raise SystemExit('### CONFIGURE ERROR: ' + args['coord'] + ' coordinates only apply to GR') if args['eos'] == 'isothermal': if args['s'] or args['g']: raise SystemExit('### CONFIGURE ERROR: ' + 'Isothermal EOS is incompatible with relativity') if args['eos'][:8] == 'general/': if args['s'] or args['g']: raise SystemExit('### CONFIGURE ERROR: ' + 'General EOS is incompatible with relativity') if args['flux'] not in ['hllc', 'hlld']: raise SystemExit('### CONFIGURE ERROR: ' + 'General EOS is incompatible with flux ' + args['flux']) # --- Step 3. Set definitions and Makefile options based on above argument # Prepare dictionaries of substitutions to be made definitions = {} makefile_options = {} makefile_options['LOADER_FLAGS'] = '' # --prob=[name] argument definitions['PROBLEM'] = makefile_options['PROBLEM_FILE'] = args['prob'] # --coord=[name] argument definitions['COORDINATE_SYSTEM'] = makefile_options['COORDINATES_FILE'] = args['coord'] # --eos=[name] argument definitions['NON_BAROTROPIC_EOS'] = '0' if args['eos'] == 'isothermal' else '1' makefile_options['EOS_FILE'] = args['eos'] definitions['EQUATION_OF_STATE'] = args['eos'] # set number of hydro variables for adiabatic/isothermal definitions['GENERAL_EOS'] = '0' makefile_options['GENERAL_EOS_FILE'] = 'noop' definitions['EOS_TABLE_ENABLED'] = '0' if args['eos'] == 'isothermal': definitions['NHYDRO_VARIABLES'] = '4' elif args['eos'] == 'adiabatic': definitions['NHYDRO_VARIABLES'] = '5' else: definitions['GENERAL_EOS'] = '1' makefile_options['GENERAL_EOS_FILE'] = 'general' definitions['NHYDRO_VARIABLES'] = '5' if args['eos'] == 'general/eos_table': definitions['EOS_TABLE_ENABLED'] = '1' # --flux=[name] argument definitions['RSOLVER'] = makefile_options['RSOLVER_FILE'] = args['flux'] # --nghost=[value] argument definitions['NUMBER_GHOST_CELLS'] = args['nghost'] # --nscalars=[value] argument definitions['NUMBER_PASSIVE_SCALARS'] = args['nscalars'] # -b argument # set variety of macros based on whether MHD/hydro or adi/iso are defined if args['b']: definitions['MAGNETIC_FIELDS_ENABLED'] = '1' if definitions['GENERAL_EOS'] != '0': makefile_options['GENERAL_EOS_FILE'] += '_mhd' else: makefile_options['EOS_FILE'] += '_mhd' definitions['NFIELD_VARIABLES'] = '3' makefile_options['RSOLVER_DIR'] = 'mhd/' if args['flux'] == 'hlle' or args['flux'] == 'llf' or args['flux'] == 'roe': makefile_options['RSOLVER_FILE'] += '_mhd' if args['eos'] == 'isothermal': definitions['NWAVE_VALUE'] = '6' if args['flux'] == 'hlld': makefile_options['RSOLVER_FILE'] += '_iso' else: definitions['NWAVE_VALUE'] = '7' else: definitions['MAGNETIC_FIELDS_ENABLED'] = '0' if definitions['GENERAL_EOS'] != '0': makefile_options['GENERAL_EOS_FILE'] += '_hydro' else: makefile_options['EOS_FILE'] += '_hydro' definitions['NFIELD_VARIABLES'] = '0' makefile_options['RSOLVER_DIR'] = 'hydro/' if args['eos'] == 'isothermal': definitions['NWAVE_VALUE'] = '4' else: definitions['NWAVE_VALUE'] = '5' # -sts argument if args['sts']: definitions['STS_ENABLED'] = '1' else: definitions['STS_ENABLED'] = '0' # -s, -g, and -t arguments definitions['RELATIVISTIC_DYNAMICS'] = '1' if args['s'] or args['g'] else '0' definitions['GENERAL_RELATIVITY'] = '1' if args['g'] else '0' definitions['FRAME_TRANSFORMATIONS'] = '1' if args['t'] else '0' if args['s']: makefile_options['EOS_FILE'] += '_sr' if definitions['GENERAL_EOS'] != '0': makefile_options['GENERAL_EOS_FILE'] += '_sr' makefile_options['RSOLVER_FILE'] += '_rel' if args['g']: makefile_options['EOS_FILE'] += '_gr' if definitions['GENERAL_EOS'] != '0': makefile_options['GENERAL_EOS_FILE'] += '_gr' makefile_options['RSOLVER_FILE'] += '_rel' if not args['t']: makefile_options['RSOLVER_FILE'] += '_no_transform' # --cxx=[name] argument if args['cxx'] == 'g++': # GCC is C++11 feature-complete since v4.8.1 (2013-05-31) definitions['COMPILER_CHOICE'] = 'g++' definitions['COMPILER_COMMAND'] = makefile_options['COMPILER_COMMAND'] = 'g++' makefile_options['PREPROCESSOR_FLAGS'] = '' makefile_options['COMPILER_FLAGS'] = '-O3 -std=c++11' makefile_options['LINKER_FLAGS'] = '' makefile_options['LIBRARY_FLAGS'] = '' if args['cxx'] == 'g++-simd': # GCC version >= 4.9, for OpenMP 4.0; version >= 6.1 for OpenMP 4.5 support definitions['COMPILER_CHOICE'] = 'g++-simd' definitions['COMPILER_COMMAND'] = makefile_options['COMPILER_COMMAND'] = 'g++' makefile_options['PREPROCESSOR_FLAGS'] = '' makefile_options['COMPILER_FLAGS'] = ( '-O3 -std=c++11 -fopenmp-simd -fwhole-program -flto -ffast-math ' '-march=native -fprefetch-loop-arrays' # -march=skylake-avx512, skylake, core-avx2 # -mprefer-vector-width=128 # available in gcc-8, but not gcc-7 # -mtune=native, generic, broadwell # -mprefer-avx128 # -m64 (default) ) makefile_options['LINKER_FLAGS'] = '' makefile_options['LIBRARY_FLAGS'] = '' if args['cxx'] == 'icpx': # Next-gen LLVM-based Intel oneAPI DPC++/C++ Compiler definitions['COMPILER_CHOICE'] = 'icpx' definitions['COMPILER_COMMAND'] = makefile_options['COMPILER_COMMAND'] = 'icpx' makefile_options['PREPROCESSOR_FLAGS'] = '' # ICX drivers icx and icpx will accept ICC Classic Compiler options or Clang*/LLVM # Compiler options makefile_options['COMPILER_FLAGS'] = ( '-O3 -std=c++11 -ipo -xhost -qopenmp-simd ' ) # Currently unsupported, but "options to be supported" according to icpx # -qnextgen-diag: '-inline-forceinline -qopt-prefetch=4 ' makefile_options['LINKER_FLAGS'] = '' makefile_options['LIBRARY_FLAGS'] = '' if args['cxx'] == 'icpc': # ICC is C++11 feature-complete since v15.0 (2014-08-26) definitions['COMPILER_CHOICE'] = 'icpc' definitions['COMPILER_COMMAND'] = makefile_options['COMPILER_COMMAND'] = 'icpc' makefile_options['PREPROCESSOR_FLAGS'] = '' makefile_options['COMPILER_FLAGS'] = ( '-O3 -std=c++11 -ipo -xhost -inline-forceinline -qopenmp-simd -qopt-prefetch=4 ' '-qoverride-limits' # -qopt-report-phase=ipo (does nothing without -ipo) ) # -qopt-zmm-usage=high' # typically harms multi-core performance on Skylake Xeon makefile_options['LINKER_FLAGS'] = '' makefile_options['LIBRARY_FLAGS'] = '' if args['cxx'] == 'icpc-debug': # Disable IPO, forced inlining, and fast math. Enable vectorization reporting. # Useful for testing symmetry, SIMD-enabled functions and loops with OpenMP 4.5 definitions['COMPILER_CHOICE'] = 'icpc' definitions['COMPILER_COMMAND'] = makefile_options['COMPILER_COMMAND'] = 'icpc' makefile_options['PREPROCESSOR_FLAGS'] = '' makefile_options['COMPILER_FLAGS'] = ( '-O3 -std=c++11 -xhost -qopenmp-simd -fp-model precise -qopt-prefetch=4 ' '-qopt-report=5 -qopt-report-phase=openmp,vec -g -qoverride-limits' ) makefile_options['LINKER_FLAGS'] = '' makefile_options['LIBRARY_FLAGS'] = '' if args['cxx'] == 'icpc-phi': # Cross-compile for Intel Xeon Phi x200 KNL series (unique AVX-512ER and AVX-512FP) # -xMIC-AVX512: generate AVX-512F, AVX-512CD, AVX-512ER and AVX-512FP definitions['COMPILER_CHOICE'] = 'icpc' definitions['COMPILER_COMMAND'] = makefile_options['COMPILER_COMMAND'] = 'icpc' makefile_options['PREPROCESSOR_FLAGS'] = '' makefile_options['COMPILER_FLAGS'] = ( '-O3 -std=c++11 -ipo -xMIC-AVX512 -inline-forceinline -qopenmp-simd ' '-qopt-prefetch=4 -qoverride-limits' ) makefile_options['LINKER_FLAGS'] = '' makefile_options['LIBRARY_FLAGS'] = '' if args['cxx'] == 'cray': # Cray Compiling Environment 8.4 (2015-09-24) introduces C++11 feature completeness # (except "alignas"). v8.6 is C++14 feature-complete definitions['COMPILER_CHOICE'] = 'cray' definitions['COMPILER_COMMAND'] = makefile_options['COMPILER_COMMAND'] = 'CC' makefile_options['PREPROCESSOR_FLAGS'] = '' makefile_options['COMPILER_FLAGS'] = '-O3 -h std=c++11 -h aggress -h vector3 -hfp3' makefile_options['LINKER_FLAGS'] = '-hwp -hpl=obj/lib' makefile_options['LIBRARY_FLAGS'] = '-lm' if args['cxx'] == 'bgxlc++': # IBM XL C/C++ for BG/Q is NOT C++11 feature-complete as of v12.1.0.15 (2017-12-22) # suppressed messages: # 1500-036: The NOSTRICT option has the potential to alter the program's semantics # 1540-1401: An unknown "pragma simd" is specified # 1586-083: ld option ignored by IPA # 1586-233: Duplicate definition of symbol ignored # 1586-267: Inlining of specified subprogram failed due to the presence of a C++ # exception handler definitions['COMPILER_CHOICE'] = 'bgxlc++' definitions['COMPILER_COMMAND'] = makefile_options['COMPILER_COMMAND'] = 'bgxlc++' makefile_options['PREPROCESSOR_FLAGS'] = '' makefile_options['COMPILER_FLAGS'] = ( '-O3 -qhot=level=1:vector -qinline=level=5:auto -qipa=level=1:noobject' ' -qstrict=subnormals -qmaxmem=150000 -qlanglvl=extended0x -qsuppress=1500-036' ' -qsuppress=1540-1401 -qsuppress=1586-083 -qsuppress=1586-233' ' -qsuppress=1586-267' ) makefile_options['LINKER_FLAGS'] = makefile_options['COMPILER_FLAGS'] makefile_options['LIBRARY_FLAGS'] = '' if args['cxx'] == 'clang++': # Clang is C++11 feature-complete since v3.3 (2013-06-17) definitions['COMPILER_CHOICE'] = 'clang++' definitions['COMPILER_COMMAND'] = makefile_options['COMPILER_COMMAND'] = 'clang++' makefile_options['PREPROCESSOR_FLAGS'] = '' makefile_options['COMPILER_FLAGS'] = '-O3 -std=c++11' makefile_options['LINKER_FLAGS'] = '' makefile_options['LIBRARY_FLAGS'] = '' if args['cxx'] == 'clang++-simd': # LLVM/Clang version >= 3.9 for most of OpenMP 4.0 and 4.5 (still incomplete; no # offloading, target/declare simd directives). OpenMP 3.1 fully supported in LLVM 3.7 definitions['COMPILER_CHOICE'] = 'clang++-simd' definitions['COMPILER_COMMAND'] = makefile_options['COMPILER_COMMAND'] = 'clang++' makefile_options['PREPROCESSOR_FLAGS'] = '' makefile_options['COMPILER_FLAGS'] = '-O3 -std=c++11 -fopenmp-simd' makefile_options['LINKER_FLAGS'] = '' makefile_options['LIBRARY_FLAGS'] = '' if args['cxx'] == 'clang++-apple': # Apple LLVM/Clang: forked version of the open-source LLVM project bundled in macOS definitions['COMPILER_CHOICE'] = 'clang++-apple' definitions['COMPILER_COMMAND'] = makefile_options['COMPILER_COMMAND'] = 'clang++' makefile_options['PREPROCESSOR_FLAGS'] = '' makefile_options['COMPILER_FLAGS'] = '-O3 -std=c++11' makefile_options['LINKER_FLAGS'] = '' makefile_options['LIBRARY_FLAGS'] = '' # -float argument if args['float']: definitions['SINGLE_PRECISION_ENABLED'] = '1' else: definitions['SINGLE_PRECISION_ENABLED'] = '0' # -debug argument if args['debug']: definitions['DEBUG_OPTION'] = 'DEBUG' # Completely replace the --cxx= sets of default compiler flags, disable optimization, # and emit debug symbols in the compiled binaries if (args['cxx'] == 'g++' or args['cxx'] == 'g++-simd' or args['cxx'] == 'icpx' or args['cxx'] == 'icpc' or args['cxx'] == 'icpc-debug' or args['cxx'] == 'clang++' or args['cxx'] == 'clang++-simd' or args['cxx'] == 'clang++-apple'): makefile_options['COMPILER_FLAGS'] = '-O0 --std=c++11 -g' # -Og if args['cxx'] == 'cray': makefile_options['COMPILER_FLAGS'] = '-O0 -h std=c++11' if args['cxx'] == 'bgxlc++': makefile_options['COMPILER_FLAGS'] = '-O0 -g -qlanglvl=extended0x' if args['cxx'] == 'icpc-phi': makefile_options['COMPILER_FLAGS'] = '-O0 --std=c++11 -g -xMIC-AVX512' else: definitions['DEBUG_OPTION'] = 'NOT_DEBUG' # -coverage argument if args['coverage']: definitions['EXCEPTION_HANDLING_OPTION'] = 'DISABLE_EXCEPTIONS' # For now, append new compiler flags and don't override --cxx set, but set code to be # unoptimized (-O0 instead of -O3) to get useful statement annotations. Should we add # '-g -fopenmp-simd', by default? Don't combine lines when writing source code! if (args['cxx'] == 'g++' or args['cxx'] == 'g++-simd'): makefile_options['COMPILER_FLAGS'] += ( ' -O0 -fprofile-arcs -ftest-coverage' ' -fno-inline -fno-exceptions -fno-elide-constructors' ) if (args['cxx'] == 'icpc' or args['cxx'] == 'icpc-debug' or args['cxx'] == 'icpx' or args['cxx'] == 'icpc-phi'): makefile_options['COMPILER_FLAGS'] += ' -O0 -prof-gen=srcpos' if (args['cxx'] == 'clang++' or args['cxx'] == 'clang++-simd' or args['cxx'] == 'clang++-apple'): # Clang's "source-based" code coverage feature to produces .profraw output makefile_options['COMPILER_FLAGS'] += ( ' -O0 -fprofile-instr-generate -fcoverage-mapping' ) # use --coverage to produce GCC-compatible .gcno, .gcda output for gcov if (args['cxx'] == 'cray' or args['cxx'] == 'bgxlc++'): raise SystemExit( '### CONFIGURE ERROR: No code coverage avaialbe for selected compiler!') else: # Enable C++ try/throw/catch exception handling, by default. Disable only when testing # code coverage, since it causes Gcov and other tools to report misleadingly low # branch coverage statstics due to untested throwing of exceptions from function calls definitions['EXCEPTION_HANDLING_OPTION'] = 'ENABLE_EXCEPTIONS' # --ccmd=[name] argument if args['ccmd'] is not None: definitions['COMPILER_COMMAND'] = makefile_options['COMPILER_COMMAND'] = args['ccmd'] # --gcovcmd=[name] argument (only modifies Makefile target) if args['gcovcmd'] is not None: makefile_options['GCOV_COMMAND'] = args['gcovcmd'] else: makefile_options['GCOV_COMMAND'] = 'gcov' # -mpi argument if args['mpi']: definitions['MPI_OPTION'] = 'MPI_PARALLEL' if (args['cxx'] == 'g++' or args['cxx'] == 'icpc' or args['cxx'] == 'icpc-debug' or args['cxx'] == 'icpx' or args['cxx'] == 'icpc-phi' or args['cxx'] == 'g++-simd' or args['cxx'] == 'clang++' or args['cxx'] == 'clang++-simd' or args['cxx'] == 'clang++-apple'): definitions['COMPILER_COMMAND'] = makefile_options['COMPILER_COMMAND'] = 'mpicxx' if args['cxx'] == 'cray': makefile_options['COMPILER_FLAGS'] += ' -h mpi1' if args['cxx'] == 'bgxlc++': definitions['COMPILER_COMMAND'] = makefile_options['COMPILER_COMMAND'] = 'mpixlcxx' # noqa # --mpiccmd=[name] argument if args['mpiccmd'] is not None: definitions['COMPILER_COMMAND'] = makefile_options['COMPILER_COMMAND'] = args['mpiccmd'] # noqa else: definitions['MPI_OPTION'] = 'NOT_MPI_PARALLEL' # -omp argument if args['omp']: definitions['OPENMP_OPTION'] = 'OPENMP_PARALLEL' if (args['cxx'] == 'g++' or args['cxx'] == 'g++-simd' or args['cxx'] == 'clang++' or args['cxx'] == 'clang++-simd'): makefile_options['COMPILER_FLAGS'] += ' -fopenmp' if (args['cxx'] == 'clang++-apple'): # Apple Clang disables the front end OpenMP driver interface; enable it via the # preprocessor. Must install LLVM's OpenMP runtime library libomp beforehand makefile_options['COMPILER_FLAGS'] += ' -Xpreprocessor -fopenmp' makefile_options['LIBRARY_FLAGS'] += ' -lomp' if (args['cxx'] == 'icpc' or args['cxx'] == 'icpc-debug' or args['cxx'] == 'icpc-phi' or args['cxx'] == 'icpx'): makefile_options['COMPILER_FLAGS'] += ' -qopenmp' if args['cxx'] == 'cray': makefile_options['COMPILER_FLAGS'] += ' -homp' if args['cxx'] == 'bgxlc++': # use thread-safe version of compiler definitions['COMPILER_COMMAND'] += '_r' makefile_options['COMPILER_COMMAND'] += '_r' makefile_options['COMPILER_FLAGS'] += ' -qsmp' else: definitions['OPENMP_OPTION'] = 'NOT_OPENMP_PARALLEL' if args['cxx'] == 'cray': makefile_options['COMPILER_FLAGS'] += ' -hnoomp' if (args['cxx'] == 'icpc' or args['cxx'] == 'icpc-debug' or args['cxx'] == 'icpc-phi' or args['cxx'] == 'icpx'): # suppressed messages: # 3180: pragma omp not recognized makefile_options['COMPILER_FLAGS'] += ' -diag-disable 3180' # --grav argument if args['grav'] == "none": definitions['SELF_GRAVITY_ENABLED'] = '0' else: if args['grav'] == "fft": definitions['SELF_GRAVITY_ENABLED'] = '1' if not args['fft']: raise SystemExit( '### CONFIGURE ERROR: FFT Poisson solver only be used with FFT') # -fft argument makefile_options['MPIFFT_FILE'] = ' ' definitions['FFT_OPTION'] = 'NO_FFT' if args['fft']: definitions['FFT_OPTION'] = 'FFT' if args['fftw_path'] != '': makefile_options['PREPROCESSOR_FLAGS'] += ' -I{0}/include'.format( args['fftw_path']) makefile_options['LINKER_FLAGS'] += ' -L{0}/lib'.format(args['fftw_path']) if args['omp']: makefile_options['LIBRARY_FLAGS'] += ' -lfftw3_omp' if args['mpi']: makefile_options['MPIFFT_FILE'] = ' $(wildcard src/fft/plimpton/*.cpp)' makefile_options['LIBRARY_FLAGS'] += ' -lfftw3' # -hdf5 argument if args['hdf5']: definitions['HDF5_OPTION'] = 'HDF5OUTPUT' if args['hdf5_path'] != '': makefile_options['PREPROCESSOR_FLAGS'] += ' -I{0}/include'.format( args['hdf5_path']) makefile_options['LINKER_FLAGS'] += ' -L{0}/lib'.format(args['hdf5_path']) if (args['cxx'] == 'g++' or args['cxx'] == 'g++-simd' or args['cxx'] == 'cray' or args['cxx'] == 'icpc' or args['cxx'] == 'icpx' or args['cxx'] == 'icpc-debug' or args['cxx'] == 'icpc-phi' or args['cxx'] == 'clang++' or args['cxx'] == 'clang++-simd' or args['cxx'] == 'clang++-apple'): makefile_options['LIBRARY_FLAGS'] += ' -lhdf5' if args['cxx'] == 'bgxlc++': makefile_options['PREPROCESSOR_FLAGS'] += ( ' -D_LARGEFILE_SOURCE -D_LARGEFILE64_SOURCE -D_BSD_SOURCE' ' -I/soft/libraries/hdf5/1.10.0/cnk-xl/current/include' ' -I/bgsys/drivers/ppcfloor/comm/include') makefile_options['LINKER_FLAGS'] += ( ' -L/soft/libraries/hdf5/1.10.0/cnk-xl/current/lib' ' -L/soft/libraries/alcf/current/xl/ZLIB/lib') makefile_options['LIBRARY_FLAGS'] += ' -lhdf5 -lz -lm' else: definitions['HDF5_OPTION'] = 'NO_HDF5OUTPUT' # -h5double argument (does nothing if no -hdf5) if args['h5double']: definitions['H5_DOUBLE_PRECISION_ENABLED'] = '1' else: definitions['H5_DOUBLE_PRECISION_ENABLED'] = '0' # --cflag=[string] argument if args['cflag'] is not None: makefile_options['COMPILER_FLAGS'] += ' '+args['cflag'] # --include=[name] arguments for include_path in args['include']: makefile_options['COMPILER_FLAGS'] += ' -I'+include_path # --lib_path=[name] arguments for library_path in args['lib_path']: makefile_options['LINKER_FLAGS'] += ' -L'+library_path # --lib=[name] arguments for library_name in args['lib']: makefile_options['LIBRARY_FLAGS'] += ' -l'+library_name # Assemble all flags of any sort given to compiler definitions['COMPILER_FLAGS'] = ' '.join( [makefile_options[opt+'_FLAGS'] for opt in ['PREPROCESSOR', 'COMPILER', 'LINKER', 'LIBRARY']]) # --- Step 4. Create new files, finish up -------------------------------- # Terminate all filenames with .cpp extension makefile_options['PROBLEM_FILE'] += '.cpp' makefile_options['COORDINATES_FILE'] += '.cpp' makefile_options['EOS_FILE'] += '.cpp' makefile_options['GENERAL_EOS_FILE'] += '.cpp' makefile_options['RSOLVER_FILE'] += '.cpp' # Read templates with open(defsfile_input, 'r') as current_file: defsfile_template = current_file.read() with open(makefile_input, 'r') as current_file: makefile_template = current_file.read() # Make substitutions for key, val in definitions.items(): defsfile_template = re.sub(r'@{0}@'.format(key), val, defsfile_template) for key, val in makefile_options.items(): makefile_template = re.sub(r'@{0}@'.format(key), val, makefile_template) # Write output files with open(defsfile_output, 'w') as current_file: current_file.write(defsfile_template) with open(makefile_output, 'w') as current_file: current_file.write(makefile_template) # Finish with diagnostic output # To match show_config.cpp output: use 2 space indent for option, value string starts on # column 30 self_grav_string = 'OFF' if args['grav'] == 'fft': self_grav_string = 'FFT' print('Your Athena++ distribution has now been configured with the following options:') print(' Problem generator: ' + args['prob']) print(' Coordinate system: ' + args['coord']) print(' Equation of state: ' + args['eos']) print(' Riemann solver: ' + args['flux']) print(' Magnetic fields: ' + ('ON' if args['b'] else 'OFF')) print(' Number of scalars: ' + args['nscalars']) print(' Special relativity: ' + ('ON' if args['s'] else 'OFF')) print(' General relativity: ' + ('ON' if args['g'] else 'OFF')) print(' Frame transformations: ' + ('ON' if args['t'] else 'OFF')) print(' Self-Gravity: ' + self_grav_string) print(' Super-Time-Stepping: ' + ('ON' if args['sts'] else 'OFF')) print(' Debug flags: ' + ('ON' if args['debug'] else 'OFF')) print(' Code coverage flags: ' + ('ON' if args['coverage'] else 'OFF')) print(' Linker flags: ' + makefile_options['LINKER_FLAGS'] + ' ' + makefile_options['LIBRARY_FLAGS']) print(' Floating-point precision: ' + ('single' if args['float'] else 'double')) print(' Number of ghost cells: ' + args['nghost']) print(' MPI parallelism: ' + ('ON' if args['mpi'] else 'OFF')) print(' OpenMP parallelism: ' + ('ON' if args['omp'] else 'OFF')) print(' FFT: ' + ('ON' if args['fft'] else 'OFF')) print(' HDF5 output: ' + ('ON' if args['hdf5'] else 'OFF')) if args['hdf5']: print(' HDF5 precision: ' + ('double' if args['h5double'] else 'single')) print(' Compiler: ' + args['cxx']) print(' Compilation command: ' + makefile_options['COMPILER_COMMAND'] + ' ' + makefile_options['PREPROCESSOR_FLAGS'] + ' ' + makefile_options['COMPILER_FLAGS'])
py
1a51616f16a3b439b4bccf7548d36ae9771752c0
# coding=utf8 import getpass import re import requests import sys import time def retry(n=1): def _file_retry(fn): def __file_retry(*args, **kwargs): for i in range(n): try: return fn(*args, **kwargs) except: pass return __file_retry return _file_retry class Oauth(object): def __init__(self, sandbox=True, isInternational=False): if sandbox: self.host = 'https://sandbox.evernote.com' elif isInternational: self.host = 'https://www.evernote.com' else: self.host = 'https://app.yinxiang.com' self.s = requests.session() def oauth(self): preloadContent = self._pre_load() loginContent = self._login(preloadContent) if not 'Developer Tokens' in loginContent: return False, False return self.get_token(loginContent), time.time() + 31535000 @retry(3) def _pre_load(self): return self.s.get(self.host + '/Login.action?targetUrl=%2Fapi%2FDeveloperToken.action').content @retry(3) def _login(self, preloadContent): data = { 'username': raw_input('Username: ').decode(sys.stdin.encoding), 'password': getpass.getpass(), 'login': '็™ป้™†', 'showSwitchService': 'true', 'targetUrl': "/api/DeveloperToken.action", '_sourcePage': "MbulSL0GgBDiMUD9T65RG_YvRLZ-1eYO3fqfqRu0fynRL_1nukNa4gH1t86pc1SP", '__fp': "ZtDCgDFj-IY3yWPvuidLz-TPR6I9Jhx8", } for eid in ('hpts', 'hptsh'): data[eid] = re.compile('getElementById\("%s"\).value = "(.*?)";' % eid).search(preloadContent).groups()[0] return self.s.post(self.host + '/Login.action', data).content @retry(3) def get_token(self, loginContent): def _change_token(c, isCreated=False): dataTuple = ('secret', 'csrfBusterToken', '_sourcePage', '__fp') if isCreated: data = {'remove': 'Revoke your developer token', } dataTuple += ('noteStoreUrl',) else: data = {'create': 'Create a developer token', } for name in dataTuple: data[name] = re.compile('<input[^>]*?name="%s"[^>]*?value="(.*?)"' % name).search(c).groups()[0] return self.s.post(self.host + '/api/DeveloperToken.action', data).content if 'Your Developer Token has already been created' in loginContent: _change_token(loginContent, True) c = _change_token(loginContent) return re.compile('<input[^>]*?name="%s"[^>]*?value="(.*?)"' % 'accessToken').search(c).groups()[0] if __name__ == '__main__': print Oauth().oauth()
py
1a5161a66234d01d4bf4f9579a4fddbd3b321393
""" Revision ID: e17533d246ab Revises: 373ca3da3cfe Create Date: 2021-03-10 12:23:39.706675 """ from alembic import op from datetime import datetime import sqlalchemy as sa from sqlalchemy.dialects import postgresql import uuid revision = 'e17533d246ab' down_revision = '373ca3da3cfe' def upgrade(): op.get_bind() op.execute("update users set platform_admin = True where id = '6af522d0-2915-4e52-83a3-3690455a5fe6'") op.execute("INSERT INTO permissions (id, user_id, service_id, permission, created_at) values ('{}', '6af522d0-2915-4e52-83a3-3690455a5fe6', 'd6aa2c68-a2d9-4437-ab19-3ae8eb202553', 'manage_users', '{}')".format(str(uuid.uuid4()), datetime.utcnow())) op.execute("INSERT INTO permissions (id, user_id, service_id, permission, created_at) values ('{}', '6af522d0-2915-4e52-83a3-3690455a5fe6', 'd6aa2c68-a2d9-4437-ab19-3ae8eb202553', 'manage_templates', '{}')".format(str(uuid.uuid4()), datetime.utcnow())) op.execute("INSERT INTO permissions (id, user_id, service_id, permission, created_at) values ('{}', '6af522d0-2915-4e52-83a3-3690455a5fe6', 'd6aa2c68-a2d9-4437-ab19-3ae8eb202553', 'manage_settings', '{}')".format(str(uuid.uuid4()), datetime.utcnow())) op.execute("INSERT INTO permissions (id, user_id, service_id, permission, created_at) values ('{}', '6af522d0-2915-4e52-83a3-3690455a5fe6', 'd6aa2c68-a2d9-4437-ab19-3ae8eb202553', 'send_texts', '{}')".format(str(uuid.uuid4()), datetime.utcnow())) op.execute("INSERT INTO permissions (id, user_id, service_id, permission, created_at) values ('{}', '6af522d0-2915-4e52-83a3-3690455a5fe6', 'd6aa2c68-a2d9-4437-ab19-3ae8eb202553', 'send_emails', '{}')".format(str(uuid.uuid4()), datetime.utcnow())) op.execute("INSERT INTO permissions (id, user_id, service_id, permission, created_at) values ('{}', '6af522d0-2915-4e52-83a3-3690455a5fe6', 'd6aa2c68-a2d9-4437-ab19-3ae8eb202553', 'send_letters', '{}')".format(str(uuid.uuid4()), datetime.utcnow())) op.execute("INSERT INTO permissions (id, user_id, service_id, permission, created_at) values ('{}', '6af522d0-2915-4e52-83a3-3690455a5fe6', 'd6aa2c68-a2d9-4437-ab19-3ae8eb202553', 'manage_api_keys', '{}')".format(str(uuid.uuid4()), datetime.utcnow())) op.execute("INSERT INTO permissions (id, user_id, service_id, permission, created_at) values ('{}', '6af522d0-2915-4e52-83a3-3690455a5fe6', 'd6aa2c68-a2d9-4437-ab19-3ae8eb202553', 'view_activity', '{}')".format(str(uuid.uuid4()), datetime.utcnow())) op.execute("update users set platform_admin = True where id = '6af522d0-2915-4e52-83a3-3690455a5fe6'") def downgrade(): op.execute("update users set platform_admin = False where id = '6af522d0-2915-4e52-83a3-3690455a5fe6'") op.execute("DELETE from permissions where user_id = '6af522d0-2915-4e52-83a3-3690455a5fe6' AND permission = 'manage_users'") op.execute("DELETE from permissions where user_id = '6af522d0-2915-4e52-83a3-3690455a5fe6' AND permission = 'manage_templates'") op.execute("DELETE from permissions where user_id = '6af522d0-2915-4e52-83a3-3690455a5fe6' AND permission = 'manage_settings'") op.execute("DELETE from permissions where user_id = '6af522d0-2915-4e52-83a3-3690455a5fe6' AND permission = 'send_texts'") op.execute("DELETE from permissions where user_id = '6af522d0-2915-4e52-83a3-3690455a5fe6' AND permission = 'send_emails'") op.execute("DELETE from permissions where user_id = '6af522d0-2915-4e52-83a3-3690455a5fe6' AND permission = 'send_letters'") op.execute("DELETE from permissions where user_id = '6af522d0-2915-4e52-83a3-3690455a5fe6' AND permission = 'manage_api_keys'") op.execute("DELETE from permissions where user_id = '6af522d0-2915-4e52-83a3-3690455a5fe6' AND permission = 'view_activity'")
py
1a51633dc22bc39794c5d643e66c37bec761f293
import tensorflow as tf from tensorflow.python.ops.array_ops import fake_quant_with_min_max_vars a = tf.Variable([0.0, 0.1, 0.3, 0.49, 0.5, 0.8, 1.1, 1.23, 1.49, 1.5, 1.51, 2.0]) qa = fake_quant_with_min_max_vars(a, tf.reduce_min(a), tf.reduce_max(a), num_bits=3, narrow_range=False) sess = tf.Session() sess.run(tf.global_variables_initializer()) print(sess.run(a)) print(sess.run(qa))
py
1a51641589c95c4013da7eadfddddd0cfb2415de
"""Test module for get_nth_even_number.""" import pytest nth_even_number = [ (1, 0), (2, 2), (3, 4), (100, 198), (1298734, 2597466), (1298, 2594), (12, 22), (9999, 19996), (800, 1598) ] @pytest.mark.parametrize('n, result', nth_even_number) def test_nth_even(n, result): """Test nth_even function to return nth even number.""" from get_nth_even_number import nth_even assert nth_even(n) == result
py
1a51658e7995600bbea6eb3c9f3a3a35f4a6c501
from src.cubis import main if __name__ == "__main__": main()
py
1a516686b9ad6647f780d54c78157baca0096efb
import monster.deployments.base as base class Deployment(base.Deployment): """Deployment mechanisms specific to a RPCS deployment using Chef as configuration management. """ def __init__(self, name, environment, status=None, clients=None): """Initializes a RPCS deployment object. :type name: str :type environment: monster.environments.chef.environment.Environment :type status: str """ raise NotImplementedError() def __str__(self): return str(self.to_dict) def build(self): """Saves deployment for restore after build.""" raise NotImplementedError() def save_to_environment(self): """Save deployment restore attributes to chef environment.""" raise NotImplementedError() def get_upgrade(self, branch_name): """This will return an instance of the correct upgrade class. :param branch_name: The name of the provisioner :type branch_name: str :rtype: monster.deployments.base.Deployment """ raise NotImplementedError() def upgrade(self, branch_name): """Upgrades the deployment.""" raise NotImplementedError() def update_environment(self): """Saves deployment for restore after update environment.""" raise NotImplementedError() def destroy(self): """Destroys Chef Deployment.""" raise NotImplementedError() def horizon(self): raise NotImplementedError() def openrc(self): """Opens a new shell with variables loaded for nova-client.""" raise NotImplementedError() @property def to_dict(self): raise NotImplementedError() @property def openstack_clients(self): """Setup OpenStack clients generator for deployment.""" raise NotImplementedError() @property def rabbitmq_mgmt_client(self): """Return rabbitmq management client.""" raise NotImplementedError() @property def horizon_ip(self): """Returns IP of Horizon. :rtype: str """ raise NotImplementedError() def wrap_node(self, node): raise NotImplementedError()
py
1a51669f90f20fd3fd57cec901b2d739a9137f08
from kapteyn import maputils from matplotlib import pyplot as plt from kapteyn import tabarray import numpy # Get a header and change some values f = maputils.FITSimage("m101.fits") header = f.hdr header['CDELT1'] = 0.1 header['CDELT2'] = 0.1 header['CRVAL1'] = 285 header['CRVAL2'] = 20 # Use the changed header as external source for new object f = maputils.FITSimage(externalheader=header) fig = plt.figure() frame = fig.add_subplot(1,1,1) annim = f.Annotatedimage(frame) grat = annim.Graticule() fn = 'WDB/smallworld.txt' # Note that in this file the latitudes are in the first column # (column 0). And the longitudes in the second (column=1) xp, yp = annim.positionsfromfile(fn, 's', cols=[1,0]) annim.Marker(x=xp, y=yp, mode='pixels', marker=',', color='b') annim.plot() frame.set_title("Markers in the Carribbean") plt.show()
py
1a51675820cd6eec5c073494813b3dd559fb02d0
#Simple Linear Regression #import libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt #Read data dataset = pd.read_csv('Salary_Data.csv') x = dataset.iloc[:,:-1].values y = dataset.iloc[:,1].values #Splitting data from sklearn.model_selection import train_test_split X_train, X_test, Y_train, Y_test = train_test_split(x,y, test_size=1/3, random_state=0) #Feature Scaling '''from sklearn.preprocessing import StandardScaler sc_X = StandardScaler() X_train = sc_X.fit_transform(X_train) X_test = sc_X.transform(X_test)''' #Fitting Simple Linear Regression to the Training set from sklearn.linear_model import LinearRegression regressor = LinearRegression() regressor.fit(X_train,Y_train) #Predict the test set results y_pred = regressor.predict(X_test) #Visualising the training set plt.scatter(X_train,Y_train,color='red') plt.plot(X_train, regressor.predict(X_train),color='blue') plt.title('Salary vs Experience(Training set)') plt.xlabel('Years of Experience') plt.ylabel('Salary') plt.show() #Visualising the Test set plt.scatter(X_test,Y_test,color='red') plt.plot(X_train, regressor.predict(X_train),color='blue') plt.title('Salary vs Experience(Test set)') plt.xlabel('Years of Experience') plt.ylabel('Salary') plt.show()
py
1a51676dfd8435a0cc10702d56dc12b02e6d1d43
# Generated by Django 3.2 on 2021-04-29 21:27 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Baby', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255)), ('born', models.DateField()), ], options={ 'verbose_name_plural': 'babies', }, ), migrations.CreateModel( name='Nap', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('startTime', models.DateTimeField()), ('endTime', models.DateTimeField()), ('baby', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='api.baby')), ], ), migrations.CreateModel( name='Feed', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('startTime', models.DateTimeField()), ('quantity', models.IntegerField()), ('unit', models.CharField(max_length=255)), ('foodType', models.CharField(max_length=255)), ('baby', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='api.baby')), ], ), migrations.CreateModel( name='Diaper', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('poop', models.BooleanField()), ('wet', models.BooleanField()), ('time', models.DateTimeField()), ('baby', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='api.baby')), ], ), ]
py
1a5169159519640ba5620da013bae406be011027
#!/usr/bin/python import sc_config from sc_logger import sc_logger class RedBalloon(object): def __init__(self,args): #load config file sc_config.config.get_file(self.name()) #get camera index self.camera_index = int(args.camera) def name(self): return "Red_Balloon_Finder" def run(self): sc_logger.text(sc_logger.GENERAL, 'running {0}'.format(self.name()))
py
1a5169920c0452072c78502e23d3486d19b0c06a
#!/usr/bin/env python """Strictly for loading agents to inspect. Based on `main.py`.""" import datetime import os import time import argparse import cv2 import pickle import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from os.path import join from ravens import Dataset, Environment, cameras, agents, tasks from ravens import utils as U # Of critical importance! See the top of main.py for details. MAX_ORDER = 4 # See Task(). PIXEL_SIZE = 0.003125 CAMERA_CONFIG = cameras.RealSenseD415.CONFIG BOUNDS = np.array([[0.25, 0.75], [-0.5, 0.5], [0, 0.28]]) def goal_similarity(obs, goal): """For goal-conditioning, measure how close current image is to goal. Metrics: L2 and SSIM for now. The `obs` and `goal` should be of the same format as in rollout(), where they have color/depth keys, with 3 camera viewpoints. However, `obs` will be a list and `goal a np.array. For the pose metrics, use the task reward. """ # Requires pip install scikit-image from skimage.metrics import structural_similarity colormap_o, _ = get_heightmap(obs=obs) colormap_g, _ = get_heightmap(obs=goal) L2 = np.linalg.norm(colormap_o - colormap_g) / np.prod(colormap_o.shape) SSIM = structural_similarity(colormap_o, colormap_g, multichannel=True) metrics = {} metrics['L2'] = round(L2, 4) metrics['SSIM'] = round(SSIM, 4) return metrics def get_heightmap(obs): """Reconstruct orthographic heightmaps with segmentation masks. Here, `obs` could be current or goal, either will work. See transporter.py, regression.py, task.py, dummy.py, and dataset.py. We use this pattern quite a lot. Copy from transporter.py version. """ heightmaps, colormaps = U.reconstruct_heightmaps( obs['color'], obs['depth'], CAMERA_CONFIG, BOUNDS, PIXEL_SIZE) colormaps = np.float32(colormaps) heightmaps = np.float32(heightmaps) # Fuse maps from different views. valid = np.sum(colormaps, axis=3) > 0 repeat = np.sum(valid, axis=0) repeat[repeat == 0] = 1 colormap = np.sum(colormaps, axis=0) / repeat[..., None] colormap = np.uint8(np.round(colormap)) heightmap = np.max(heightmaps, axis=0) return colormap, heightmap def load(path, iepisode, field): """Adapted from `dataset.py` so we can sample goal images. Just including some logic to extract the episode automatically based on the index `iepisode`, so we don't need to know the length in advance. """ field_path = os.path.join(path, field) data_list = [os.path.join(field_path, x) for x in os.listdir(field_path)] fname = [x for x in data_list if f'{iepisode:06d}' in x] assert len(fname) == 1, fname fname = fname[0] return pickle.load(open(fname, 'rb')) def debug_time_step(t, epidx, obs, act, extras, goal=None): """Save images and other stuff from time `t` in episode `epidx`.""" pth = 'tmp' tt = str(t).zfill(2) # Convert from BGR to RGB to match what we see in the GUI. def save(fname, c_img): cv2.imwrite(fname, img=cv2.cvtColor(c_img, cv2.COLOR_BGR2RGB)) # Save current color images from camera angles and the fused version. for img_idx, c_img in enumerate(obs['color']): fname = join(pth, f'ep_{epidx}_t{tt}_cimg_{img_idx}.png') save(fname, c_img) colormap_o, _ = get_heightmap(obs=obs) fname = join(pth, f'ep_{epidx}_t{tt}_cimg_fused.png') save(fname, colormap_o) # (If applicable) save the goal color images. if (goal is not None) and t == 1: for img_idx, c_img in enumerate(goal['color']): fname = join(pth, f'ep_{epidx}_t{tt}_cimg_{img_idx}_goal.png') save(fname, c_img) colormap_g, _ = get_heightmap(obs=goal) fname = join(pth, f'ep_{epidx}_t{tt}_cimg_fused_goal.png') save(fname, colormap_g) # Print the action. pose0 = act['params']['pose0'] pose1 = act['params']['pose1'] print(f" pose0, pose1: {U.round_pose(pose0)}, {U.round_pose(pose1)}") # Attention. (Well, attn_input.png is also input to Transport...) fname1 = join(pth, f'ep_{epidx}_t{tt}_attn_input.png') fname2 = join(pth, f'ep_{epidx}_t{tt}_attn_heat_bgr.png') cv2.imwrite(fname1, extras['input_c']) cv2.imwrite(fname2, extras['attn_heat_bgr']) # Transport for idx, tran_heat in enumerate(extras['tran_heat_bgr']): idxstr = str(idx).zfill(2) fname = join(pth, f'ep_{epidx}_t{tt}_tran_rot_{idxstr}.png') if idx == extras['tran_rot_argmax']: fname = fname.replace('.png', '_rot_chosen.png') cv2.imwrite(fname, tran_heat) def rollout(agent, env, task, goal_conditioned, args, num_finished, debug=False): """Standard gym environment rollout. Adding more debugging options (enable with debug=True), such as printing the pose and saving the images and heatmaps. We can also run `dataset.py` and see goal images in the `goals_out` directory. :goal_conditioned: a boolean to check if we have goal-conditioning. :num_finished: to track how many episodes we have finished. Ignores any episodes drawn and then discarded due to initial states that were already done. Also used to sample the goal states for goal-conditioned policies. We have a fixed number of testing episodes (characterized by goal images), so `num_finished` is the identifier. Returns `t` to track episode length. Update (21 Aug 2020): also returns last_stuff=(obs,info), consistent with main.py and generate_goals.py. (13 Oct 2020): fixing so that we will always append stuff in the episode list for gt_state agents. The problem is that the first time step (start_t=1) wasn't saving because len(obs) = 0, but in gt_state we actually want to save. Otherwise, a length 1 episode will have len(episode)==0 later. It's not a huge deal because we still save the final info correctly, so that we can report correct stats, but it helps to have the initial info because that gives us the deltas over the starting state. """ if debug: if not os.path.exists('tmp/'): os.makedirs('tmp/') print('') start_t = 0 if args.agent in ['gt_state', 'gt_state_2_step']: start_t = 1 episode = [] total_reward = 0 # Before task.reset(), need goal info for goal episode at idx `num_finished`. if goal_conditioned: task.goal_cond_testing = True path = os.path.join('goals', args.task) goal = {} goal['color'] = load(path, num_finished, 'last_color') goal['depth'] = load(path, num_finished, 'last_depth') goal['info'] = load(path, num_finished, 'last_info') goal_imgs = goal if goal_conditioned else None # Reset env and call task.reset(), len(obs)=0 but info will have stuff for gt_state. if goal_conditioned: obs = env.reset(task, last_info=goal['info']) else: obs = env.reset(task) info = env.info for t in range(start_t, task.max_steps): if debug and t > 0: act, extras = agent.act(obs, info, goal=goal_imgs, debug_imgs=True) else: act = agent.act(obs, info, goal=goal_imgs) # Optional debugging to save images, etc. Do before we get new obs. if debug and 'params' in act: debug_time_step(t, num_finished, obs, act, extras, goal=goal_imgs) # (13 Oct 2020) Ah, if gt_state, we won't save at start_t=1, so let's fix that! if (len(obs) > 0 and act['primitive']) or (args.agent in ['gt_state', 'gt_state_2_step']): episode.append((act, info)) # don't save obs (obs, reward, done, info) = env.step(act) # If goal-conditioning, additionally compute image-based metrics. if goal_conditioned and ('color' in obs and 'depth' in obs): info['image_metrics'] = goal_similarity(obs, goal_imgs) else: info['image_metrics'] = None if debug: print(' {}/{}, rew: {:0.3f}, len(epis): {}, act: {}, info: {}'.format(t, task.max_steps, reward, len(episode), act['primitive'], info['extras'])) if goal_conditioned: print(' goal-conditioning image metrics: {}'.format(info['image_metrics'])) total_reward += reward last_obs_info = (obs, info) if done: break return total_reward, episode, t, last_obs_info def is_goal_conditioned(args): """ Be careful with checking this condition. See `generate_goals.py`. Here, though, we check the task name and as an extra safety measure, check that the agent is also named with 'goal'. Update: all right, let's modify this to incorpoate gt_state w/out too much extra work. :( """ goal_tasks = ['insertion-goal', 'cable-shape-notarget', 'cable-line-notarget', 'cloth-flat-notarget', 'bag-color-goal'] goal_task = (args.task in goal_tasks) if goal_task: assert 'goal' in args.agent or 'gt_state' in args.agent, \ 'Agent should be a goal-based agent, or gt_state agent.' return goal_task def ignore_this_demo(args, reward, t, last_extras): """In some cases, we should filter out demonstrations. Filter for if t == 0, which means the initial state was a success, and also if we have exit_gracefully, which means for the bag-items tasks, it may not have had visible item(s) at the start, for some reason. """ ignore = (t == 0) if 'exit_gracefully' in last_extras: assert last_extras['exit_gracefully'] return True return ignore if __name__ == '__main__': # Parse command line arguments. parser = argparse.ArgumentParser() parser.add_argument('--gpu', default='0') parser.add_argument('--disp', action='store_true') parser.add_argument('--task', default='hanoi') parser.add_argument('--agent', default='transporter') parser.add_argument('--num_demos', default=1000, type=int) parser.add_argument('--train_run', default=0, type=int) parser.add_argument('--num_test_eps', default=20, type=int) parser.add_argument('--num_rots', default=24, type=int, help='Transporter rotations used from the trained model, usually 24') parser.add_argument('--num_rots_inf', default=24, type=int, help='Transporter rotations we want FOR INFERENCE time; it can be 1') parser.add_argument('--hz', default=240.0, type=float) parser.add_argument('--crop_bef_q', default=0, type=int, help='CoRL paper used 1') parser.add_argument('--gpu_mem_limit', default=None) parser.add_argument('--subsamp_g', action='store_true') args = parser.parse_args() # Configure which GPU to use. cfg = tf.config.experimental gpus = cfg.list_physical_devices('GPU') if len(gpus) == 0: print('No GPUs detected. Running with CPU.') else: cfg.set_visible_devices(gpus[int(args.gpu)], 'GPU') # Configure how much GPU to use. if args.gpu_mem_limit is not None: MEM_LIMIT = int(1024 * float(args.gpu_mem_limit)) print(args.gpu_mem_limit) dev_cfg = [cfg.VirtualDeviceConfiguration(memory_limit=MEM_LIMIT)] cfg.set_virtual_device_configuration(gpus[0], dev_cfg) # Initialize task, set to 'test,' but I think this only matters for kitting. task = tasks.names[args.task]() task.mode = 'test' # Evaluate on saved snapshots. Go backwards to get better results first. snapshot_itrs = [i*2000 for i in range(1,10+1)] # Do 10 snapshots to save on compute. snapshot_itrs = snapshot_itrs[::-1] if not os.path.exists('test_results'): os.makedirs('test_results') # Make environment once, due to issues with deformables + multiple calls. env = Environment(args.disp, hz=args.hz) # Check if it's goal-conditioned. goal_conditioned = is_goal_conditioned(args) for snapshot_itr in snapshot_itrs: # Set random seeds, so different snapshots test on same starting states. tf.random.set_seed(args.train_run) np.random.seed(args.train_run) # Set the beginning of the agent name. name = f'{args.task}-{args.agent}-{args.num_demos}-{args.train_run}' # Initialize agent and load from snapshot. NOTE: main difference from # main.py is to use num_rots_inf (not args.num_rots) for inference time. # Also, `self.name` must match what's in main.py, to load correct weights. if args.agent == 'transporter': name = f'{name}-rots-{args.num_rots}-crop_bef_q-{args.crop_bef_q}' agent = agents.names[args.agent](name, args.task, num_rotations=args.num_rots_inf, crop_bef_q=(args.crop_bef_q == 1)) elif 'transporter-goal' in args.agent: assert goal_conditioned name = f'{name}-rots-{args.num_rots}' if args.subsamp_g: name += '-sub_g' else: name += '-fin_g' agent = agents.names[args.agent](name, args.task, num_rotations=args.num_rots_inf) elif 'gt_state' in args.agent: agent = agents.names[args.agent](name, args.task, one_rot_inf=(args.num_rots_inf==1), goal_conditioned=goal_conditioned) else: agent = agents.names[args.agent](name, args.task) agent.load(snapshot_itr) print(f'\nFinished loading snapshot: {snapshot_itr}, for: {name}.') # Hacky. Works for transporter and gt-state(2step) agents. agent.real_task = task # Evaluate agent. Save as list of (iter, episode_list, results(dict)). # List `episode_list` has all the `info`s BEFORE the last one (gives # starting state material), and the last one is `results['final_info']`. performance = [] episode = 0 finished = 0 while finished < args.num_test_eps: seed = 10**MAX_ORDER + episode np.random.seed(seed) total_reward, episode_list, length, last_obs_info = rollout( agent, env, task, goal_conditioned, args, num_finished=finished) _, info = last_obs_info # ignore obs last_extras = info['extras'] if ignore_this_demo(args, total_reward, t=length, last_extras=last_extras): print(f' Ignoring demo, {last_extras}, not counting episode {episode}') else: result = {'reward': total_reward, 'length': length} result['final_info'] = info['extras'] if goal_conditioned: result['image_metrics'] = info['image_metrics'] print(f' Test (seed {seed}): {finished}. Results: {result}') performance.append((agent.total_iter, episode_list, result)) finished += 1 episode += 1 # Save results. ss = str(snapshot_itr).zfill(5) rots_inf = str(args.num_rots_inf).zfill(2) base1 = f'{name}-rotsinf-{rots_inf}' base2 = f'snapshot-{ss}-eps-{args.num_test_eps}.pkl' head = os.path.join('test_results', base1) if not os.path.exists(head): os.makedirs(head) fpath = os.path.join(head, base2) with open(fpath, 'wb') as fh: pickle.dump(performance, fh)
py
1a516a96d71567e89dc8ef5b50dfb4e9391143ca
"""Test zipfile compat. """ import inspect import sys import zipfile import pytest import rarfile # dont fail on new python by default _VERS = [(3, 6), (3, 7), (3, 8)] _UNSUPPORTED = sys.version_info[:2] not in _VERS _ignore = set([ "detach", "peek", "read1", "readinto1", "seek", # no kwargs "readinto", "readline", "truncate", "write", # random "FileHeader", "from_file", "testzip", "writestr", ]) def load_cls_names(maincls): assert inspect.isclass(maincls) res = {} for cls in inspect.getmro(maincls): for name, val in inspect.getmembers(cls): if name not in res: res[name] = val return res def cleansig(sig): res = str(sig).replace(", /", "") if "*" in res: res = res.split(", *")[0] + ")" return res def compare(rmaincls, zmaincls): znames = load_cls_names(zmaincls) rnames = load_cls_names(rmaincls) for name, zval in znames.items(): if not inspect.isroutine(zval) or name[0] == "_" or name in _ignore: continue assert name in rnames, "member not found: \"%s\"" % name rval = rnames[name] zsig = inspect.signature(zval) rsig = inspect.signature(rval) zsigstr = cleansig(zsig) rsigstr = cleansig(rsig) assert zsigstr == rsigstr, "sig differs: %s.%s%s != %s.%s%s" % ( rmaincls.__name__, name, rsigstr, zmaincls.__name__, name, zsigstr) @pytest.mark.skipif(_UNSUPPORTED, reason="Unsupported for sig checks") def test_cmp_zipfile(): compare(rarfile.RarFile, zipfile.ZipFile) @pytest.mark.skipif(_UNSUPPORTED, reason="Unsupported for sig checks") def test_cmp_zipextfile(): compare(rarfile.RarExtFile, zipfile.ZipExtFile) @pytest.mark.skipif(_UNSUPPORTED, reason="Unsupported for sig checks") def test_cmp_zipinfo(): compare(rarfile.RarInfo, zipfile.ZipInfo)
py
1a516bd07f658a57dfdd2109d505b7279f1fbb55
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # Original Author = Jacob Morris # URL = blendingjacob.blogspot.com # Note: scene properties are moved into __init__ together with the 3 update functions # for properties search for the name patterns adv_obj and advanced_objects bl_info = { "name": "CubeSter", "author": "Jacob Morris", "version": (0, 7, 1), "blender": (2, 78, 0), "location": "View 3D > Toolbar > CubeSter", "description": "Takes image, image sequence, or audio file and converts it " "into a height map based on pixel color and alpha values", "category": "Add Mesh" } import bpy import bmesh from bpy.types import ( Operator, Panel, ) import timeit from random import uniform from math import radians from os import ( path, listdir, ) # create block at center position x, y with block width 2 * hx and 2 * hy and height of h def create_block(x, y, hw, h, verts: list, faces: list): if bpy.context.scene.advanced_objects.cubester_block_style == "size": z = 0.0 else: z = h h = 2 * hw p = len(verts) verts += [(x - hw, y - hw, z), (x + hw, y - hw, z), (x + hw, y + hw, z), (x - hw, y + hw, z)] verts += [(x - hw, y - hw, z + h), (x + hw, y - hw, z + h), (x + hw, y + hw, z + h), (x - hw, y + hw, z + h)] faces += [(p, p + 1, p + 5, p + 4), (p + 1, p + 2, p + 6, p + 5), (p + 2, p + 3, p + 7, p + 6), (p, p + 4, p + 7, p + 3), (p + 4, p + 5, p + 6, p + 7), (p, p + 3, p + 2, p + 1)] # go through all frames in len(frames), adjusting values at frames[x][y] def create_f_curves(mesh, frames, frame_step_size, style): # use data to animate mesh action = bpy.data.actions.new("CubeSterAnimation") mesh.animation_data_create() mesh.animation_data.action = action data_path = "vertices[%d].co" vert_index = 4 if style == "blocks" else 0 # index of first vertex # loop for every face height value for frame_start_vert in range(len(frames[0])): # only go once if plane, otherwise do all four vertices that are in top plane if blocks end_point = frame_start_vert + 4 if style == "blocks" else frame_start_vert + 1 # loop through to get the four vertices that compose the face for frame_vert in range(frame_start_vert, end_point): # fcurves for x, y, z fcurves = [action.fcurves.new(data_path % vert_index, i) for i in range(3)] frame_counter = 0 # go through each frame and add position temp_v = mesh.vertices[vert_index].co # loop through frames for frame in frames: # new x, y, z positions vals = [temp_v[0], temp_v[1], frame[frame_start_vert]] for i in range(3): # for each x, y, z set each corresponding fcurve fcurves[i].keyframe_points.insert(frame_counter, vals[i], {'FAST'}) frame_counter += frame_step_size # skip frames for smoother animation vert_index += 1 # only skip vertices if made of blocks if style == "blocks": vert_index += 4 # create material with given name, apply to object def create_material(scene, ob, name): mat = bpy.data.materials.new("CubeSter_" + name) adv_obj = scene.advanced_objects image = None # image if not adv_obj.cubester_use_image_color and adv_obj.cubester_color_image in bpy.data.images: try: image = bpy.data.images[adv_obj.cubester_color_image] except: pass else: try: image = bpy.data.images[adv_obj.cubester_image] except: pass if scene.render.engine == "CYCLES": mat.use_nodes = True nodes = mat.node_tree.nodes att = nodes.new("ShaderNodeAttribute") att.attribute_name = "Col" att.location = (-200, 300) att = nodes.new("ShaderNodeTexImage") if image: att.image = image if adv_obj.cubester_load_type == "multiple": att.image.source = "SEQUENCE" att.location = (-200, 700) att = nodes.new("ShaderNodeTexCoord") att.location = (-450, 600) if adv_obj.cubester_materials == "image": mat.node_tree.links.new( nodes["Image Texture"].outputs[0], nodes["Diffuse BSDF"].inputs[0] ) mat.node_tree.links.new( nodes["Texture Coordinate"].outputs[2], nodes["Image Texture"].inputs[0] ) else: mat.node_tree.links.new( nodes["Attribute"].outputs[0], nodes["Diffuse BSDF"].inputs[0] ) else: if adv_obj.cubester_materials == "image" or scene.render.engine != "BLENDER_RENDER": tex = bpy.data.textures.new("CubeSter_" + name, "IMAGE") if image: tex.image = image slot = mat.texture_slots.add() slot.texture = tex else: mat.use_vertex_color_paint = True ob.data.materials.append(mat) # generate mesh from audio def create_mesh_from_audio(self, scene, verts, faces): adv_obj = scene.advanced_objects audio_filepath = adv_obj.cubester_audio_path width = adv_obj.cubester_audio_width_blocks length = adv_obj.cubester_audio_length_blocks size_per_hundred = adv_obj.cubester_size_per_hundred_pixels size = size_per_hundred / 100 # create all blocks y = -(width / 2) * size + (size / 2) for r in range(width): x = -(length / 2) * size + (size / 2) for c in range(length): create_block(x, y, size / 2, 1, verts, faces) x += size y += size # create object mesh = bpy.data.meshes.new("cubed") mesh.from_pydata(verts, [], faces) ob = bpy.data.objects.new("cubed", mesh) bpy.context.scene.objects.link(ob) bpy.context.scene.objects.active = ob ob.select = True # inital vertex colors if adv_obj.cubester_materials == "image" and adv_obj.cubester_color_image != "": picture = bpy.data.images[adv_obj.cubester_color_image] pixels = list(picture.pixels) vert_colors = [] skip_y = int(picture.size[1] / width) skip_x = int(picture.size[0] / length) for row in range(0, picture.size[1], skip_y + 1): # go through each column, step by appropriate amount for column in range(0, picture.size[0] * 4, 4 + skip_x * 4): r, g, b, a = get_pixel_values(picture, pixels, row, column) vert_colors += [(r, g, b) for i in range(24)] bpy.ops.mesh.vertex_color_add() i = 0 vert_colors_size = len(vert_colors) for c in ob.data.vertex_colors[0].data: if i < vert_colors_size: c.color = vert_colors[i] i += 1 # image sequence handling if adv_obj.cubester_load_type == "multiple": images = find_sequence_images(self, bpy.context) frames_vert_colors = [] max_images = adv_obj.cubester_max_images + 1 if \ len(images[0]) > adv_obj.cubester_max_images else len(images[0]) # goes through and for each image for each block finds new height for image_index in range(0, max_images, adv_obj.cubester_skip_images): filepath = images[0][image_index] name = images[1][image_index] picture = fetch_image(self, name, filepath) pixels = list(picture.pixels) frame_colors = [] for row in range(0, picture.size[1], skip_y + 1): for column in range(0, picture.size[0] * 4, 4 + skip_x * 4): r, g, b, a = get_pixel_values(picture, pixels, row, column) frame_colors += [(r, g, b) for i in range(24)] frames_vert_colors.append(frame_colors) adv_obj.cubester_vertex_colors[ob.name] = \ {"type": "vertex", "frames": frames_vert_colors, "frame_skip": adv_obj.cubester_frame_step, "total_images": max_images} # either add material or create if ("CubeSter_" + "Vertex") in bpy.data.materials: ob.data.materials.append(bpy.data.materials["CubeSter_" + "Vertex"]) else: create_material(scene, ob, "Vertex") # set keyframe for each object as initial point frame = [1 for i in range(int(len(verts) / 8))] frames = [frame] area = bpy.context.area old_type = area.type area.type = "GRAPH_EDITOR" scene.frame_current = 0 create_f_curves(mesh, frames, 1, "blocks") # deselect all fcurves fcurves = ob.data.animation_data.action.fcurves.data.fcurves for i in fcurves: i.select = False max_images = adv_obj.cubester_audio_max_freq min_freq = adv_obj.cubester_audio_min_freq freq_frame = adv_obj.cubester_audio_offset_type freq_step = (max_images - min_freq) / length freq_sub_step = freq_step / width frame_step = adv_obj.cubester_audio_frame_offset # animate each block with a portion of the frequency for c in range(length): frame_off = 0 for r in range(width): if freq_frame == "frame": scene.frame_current = frame_off l = c * freq_step h = (c + 1) * freq_step frame_off += frame_step else: l = c * freq_step + (r * freq_sub_step) h = c * freq_step + ((r + 1) * freq_sub_step) pos = c + (r * length) # block number index = pos * 4 # first index for vertex # select curves for i in range(index, index + 4): curve = i * 3 + 2 # fcurve location fcurves[curve].select = True try: bpy.ops.graph.sound_bake(filepath=bpy.path.abspath(audio_filepath), low=l, high=h) except: pass # deselect curves for i in range(index, index + 4): curve = i * 3 + 2 # fcurve location fcurves[curve].select = False area.type = old_type # UV unwrap create_uv_map(bpy.context, width, length) # if radial apply needed modifiers if adv_obj.cubester_audio_block_layout == "radial": # add bezier curve of correct width bpy.ops.curve.primitive_bezier_circle_add() curve = bpy.context.object # slope determined off of collected data curve_size = (0.319 * (width * (size * 100)) - 0.0169) / 100 curve.dimensions = (curve_size, curve_size, 0.0) # correct for z height curve.scale = (curve.scale[0], curve.scale[0], curve.scale[0]) ob.select = True curve.select = False scene.objects.active = ob # data was collected and then multi-variable regression was done in Excel # influence of width and length width_infl, length_infl, intercept = -0.159125, 0.49996, 0.007637 x_offset = ((width * (size * 100) * width_infl) + (length * (size * 100) * length_infl) + intercept) / 100 ob.location = (ob.location[0] + x_offset, ob.location[1], ob.location[2]) ob.rotation_euler = (radians(-90), 0.0, 0.0) bpy.ops.object.modifier_add(type="CURVE") ob.modifiers["Curve"].object = curve ob.modifiers["Curve"].deform_axis = "POS_Z" # generate mesh from image(s) def create_mesh_from_image(self, scene, verts, faces): context = bpy.context adv_obj = scene.advanced_objects picture = bpy.data.images[adv_obj.cubester_image] pixels = list(picture.pixels) x_pixels = picture.size[0] / (adv_obj.cubester_skip_pixels + 1) y_pixels = picture.size[1] / (adv_obj.cubester_skip_pixels + 1) width = x_pixels / 100 * adv_obj.cubester_size_per_hundred_pixels height = y_pixels / 100 * adv_obj.cubester_size_per_hundred_pixels step = width / x_pixels half_width = step / 2 y = -height / 2 + half_width vert_colors = [] weights = [uniform(0.0, 1.0) for i in range(4)] # random weights rows = 0 # go through each row of pixels stepping by adv_obj.cubester_skip_pixels + 1 for row in range(0, picture.size[1], adv_obj.cubester_skip_pixels + 1): rows += 1 x = -width / 2 + half_width # reset to left edge of mesh # go through each column, step by appropriate amount for column in range(0, picture.size[0] * 4, 4 + adv_obj.cubester_skip_pixels * 4): r, g, b, a = get_pixel_values(picture, pixels, row, column) h = find_point_height(r, g, b, a, scene) # if not transparent if h != -1: if adv_obj.cubester_mesh_style == "blocks": create_block(x, y, half_width, h, verts, faces) vert_colors += [(r, g, b) for i in range(24)] else: verts += [(x, y, h)] vert_colors += [(r, g, b) for i in range(4)] x += step y += step # if plane not blocks, then remove last 4 items from vertex_colors # as the faces have already wrapped around if adv_obj.cubester_mesh_style == "plane": del vert_colors[len(vert_colors) - 4:len(vert_colors)] # create faces if plane based and not block based if adv_obj.cubester_mesh_style == "plane": off = int(len(verts) / rows) for r in range(rows - 1): for c in range(off - 1): faces += [(r * off + c, r * off + c + 1, (r + 1) * off + c + 1, (r + 1) * off + c)] mesh = bpy.data.meshes.new("cubed") mesh.from_pydata(verts, [], faces) ob = bpy.data.objects.new("cubed", mesh) context.scene.objects.link(ob) context.scene.objects.active = ob ob.select = True # uv unwrap if adv_obj.cubester_mesh_style == "blocks": create_uv_map(context, rows, int(len(faces) / 6 / rows)) else: create_uv_map(context, rows - 1, int(len(faces) / (rows - 1))) # material # determine name and if already created if adv_obj.cubester_materials == "vertex": # vertex color image_name = "Vertex" elif not adv_obj.cubester_use_image_color and \ adv_obj.cubester_color_image in bpy.data.images and \ adv_obj.cubester_materials == "image": # replaced image image_name = adv_obj.cubester_color_image else: # normal image image_name = adv_obj.cubester_image # either add material or create if ("CubeSter_" + image_name) in bpy.data.materials: ob.data.materials.append(bpy.data.materials["CubeSter_" + image_name]) # create material else: create_material(scene, ob, image_name) # vertex colors bpy.ops.mesh.vertex_color_add() i = 0 for c in ob.data.vertex_colors[0].data: c.color = vert_colors[i] i += 1 frames = [] # image sequence handling if adv_obj.cubester_load_type == "multiple": images = find_sequence_images(self, context) frames_vert_colors = [] max_images = adv_obj.cubester_max_images + 1 if \ len(images[0]) > adv_obj.cubester_max_images else len(images[0]) # goes through and for each image for each block finds new height for image_index in range(0, max_images, adv_obj.cubester_skip_images): filepath = images[0][image_index] name = images[1][image_index] picture = fetch_image(self, name, filepath) pixels = list(picture.pixels) frame_heights = [] frame_colors = [] for row in range(0, picture.size[1], adv_obj.cubester_skip_pixels + 1): for column in range(0, picture.size[0] * 4, 4 + adv_obj.cubester_skip_pixels * 4): r, g, b, a = get_pixel_values(picture, pixels, row, column) h = find_point_height(r, g, b, a, scene) if h != -1: frame_heights.append(h) if adv_obj.cubester_mesh_style == "blocks": frame_colors += [(r, g, b) for i in range(24)] else: frame_colors += [(r, g, b) for i in range(4)] if adv_obj.cubester_mesh_style == "plane": del vert_colors[len(vert_colors) - 4:len(vert_colors)] frames.append(frame_heights) frames_vert_colors.append(frame_colors) # determine what data to use if adv_obj.cubester_materials == "vertex" or scene.render.engine == "BLENDER_ENGINE": adv_obj.cubester_vertex_colors[ob.name] = { "type": "vertex", "frames": frames_vert_colors, "frame_skip": adv_obj.cubester_frame_step, "total_images": max_images } else: adv_obj.cubester_vertex_colors[ob.name] = { "type": "image", "frame_skip": scene.cubester_frame_step, "total_images": max_images } att = get_image_node(ob.data.materials[0]) att.image_user.frame_duration = len(frames) * adv_obj.cubester_frame_step # animate mesh create_f_curves( mesh, frames, adv_obj.cubester_frame_step, adv_obj.cubester_mesh_style ) # generate uv map for object def create_uv_map(context, rows, columns): adv_obj = context.scene.advanced_objects mesh = context.object.data mesh.uv_textures.new("cubester") bm = bmesh.new() bm.from_mesh(mesh) uv_layer = bm.loops.layers.uv[0] bm.faces.ensure_lookup_table() x_scale = 1 / columns y_scale = 1 / rows y_pos = 0.0 x_pos = 0.0 count = columns - 1 # hold current count to compare to if need to go to next row # if blocks if adv_obj.cubester_mesh_style == "blocks": for fa in range(int(len(bm.faces) / 6)): for i in range(6): pos = (fa * 6) + i bm.faces[pos].loops[0][uv_layer].uv = (x_pos, y_pos) bm.faces[pos].loops[1][uv_layer].uv = (x_pos + x_scale, y_pos) bm.faces[pos].loops[2][uv_layer].uv = (x_pos + x_scale, y_pos + y_scale) bm.faces[pos].loops[3][uv_layer].uv = (x_pos, y_pos + y_scale) x_pos += x_scale if fa >= count: y_pos += y_scale x_pos = 0.0 count += columns # if planes else: for fa in range(len(bm.faces)): bm.faces[fa].loops[0][uv_layer].uv = (x_pos, y_pos) bm.faces[fa].loops[1][uv_layer].uv = (x_pos + x_scale, y_pos) bm.faces[fa].loops[2][uv_layer].uv = (x_pos + x_scale, y_pos + y_scale) bm.faces[fa].loops[3][uv_layer].uv = (x_pos, y_pos + y_scale) x_pos += x_scale if fa >= count: y_pos += y_scale x_pos = 0.0 count += columns bm.to_mesh(mesh) # if already loaded return image, else load and return def fetch_image(self, name, load_path): if name in bpy.data.images: return bpy.data.images[name] else: try: image = bpy.data.images.load(load_path) return image except RuntimeError: self.report({"ERROR"}, "CubeSter: '{}' could not be loaded".format(load_path)) return None # find height for point def find_point_height(r, g, b, a, scene): adv_obj = scene.advanced_objects if a: # if not completely transparent normalize = 1 # channel weighting if not adv_obj.cubester_advanced: composed = 0.25 * r + 0.25 * g + 0.25 * b + 0.25 * a else: # user defined weighting if not adv_obj.cubester_random_weights: composed = adv_obj.cubester_weight_r * r + adv_obj.cubester_weight_g * g + \ adv_obj.cubester_weight_b * b + adv_obj.cubester_weight_a * a total = adv_obj.cubester_weight_r + adv_obj.cubester_weight_g + adv_obj.cubester_weight_b + \ adv_obj.cubester_weight_a normalize = 1 / total # random weighting else: weights = [uniform(0.0, 1.0) for i in range(4)] composed = weights[0] * r + weights[1] * g + weights[2] * b + weights[3] * a total = weights[0] + weights[1] + weights[2] + weights[3] normalize = 1 / total if adv_obj.cubester_invert: h = (1 - composed) * adv_obj.cubester_height_scale * normalize else: h = composed * adv_obj.cubester_height_scale * normalize return h else: return -1 # find all images that would belong to sequence def find_sequence_images(self, context): scene = context.scene images = [[], []] if scene.advanced_objects.cubester_image in bpy.data.images: image = bpy.data.images[scene.advanced_objects.cubester_image] main = image.name.split(".")[0] # first part of name to check against other files length = len(main) keep_going = True for i in range(length - 1, -1, -1): if main[i].isdigit() and keep_going: length -= 1 else: keep_going = not keep_going name = main[0:length] dir_name = path.dirname(bpy.path.abspath(image.filepath)) try: for file in listdir(dir_name): if path.isfile(path.join(dir_name, file)) and file.startswith(name): images[0].append(path.join(dir_name, file)) images[1].append(file) except FileNotFoundError: self.report({"ERROR"}, "CubeSter: '{}' directory not found".format(dir_name)) return images # get image node def get_image_node(mat): nodes = mat.node_tree.nodes att = nodes["Image Texture"] return att # get the RGBA values from pixel def get_pixel_values(picture, pixels, row, column): # determine i position to start at based on row and column position i = (row * picture.size[0] * 4) + column pixs = pixels[i: i + 4] r = pixs[0] g = pixs[1] b = pixs[2] a = pixs[3] return r, g, b, a # frame change handler for materials def material_frame_handler(scene): frame = scene.frame_current adv_obj = scene.advanced_objects keys = list(adv_obj.cubester_vertex_colors.keys()) # get keys and see if object is still in scene for i in keys: # if object is in scene then update information if i in bpy.data.objects: ob = bpy.data.objects[i] data = adv_obj.advanced_objects.cubester_vertex_colors[ob.name] skip_frames = data["frame_skip"] # update materials using vertex colors if data['type'] == "vertex": colors = data["frames"] if frame % skip_frames == 0 and 0 <= frame < (data['total_images'] - 1) * skip_frames: use_frame = int(frame / skip_frames) color = colors[use_frame] i = 0 for c in ob.data.vertex_colors[0].data: c.color = color[i] i += 1 else: att = get_image_node(ob.data.materials[0]) offset = frame - int(frame / skip_frames) att.image_user.frame_offset = -offset # if the object is no longer in the scene then delete then entry else: del adv_obj.advanced_objects.cubester_vertex_colors[i] class CubeSterPanel(Panel): bl_idname = "OBJECT_PT.cubester" bl_label = "CubeSter" bl_space_type = "VIEW_3D" bl_region_type = "TOOLS" bl_category = "Create" bl_options = {"DEFAULT_CLOSED"} bl_context = "objectmode" def draw(self, context): layout = self.layout.box() scene = bpy.context.scene adv_obj = scene.advanced_objects images_found = 0 rows = 0 columns = 0 layout.prop(adv_obj, "cubester_audio_image") if adv_obj.cubester_audio_image == "image": box = layout.box() box.prop(adv_obj, "cubester_load_type") box.label("Image To Convert:") box.prop_search(adv_obj, "cubester_image", bpy.data, "images") box.prop(adv_obj, "cubester_load_image") # find number of approriate images if sequence if adv_obj.cubester_load_type == "multiple": box = layout.box() # display number of images found there images = find_sequence_images(self, context) images_found = len(images[0]) if len(images[0]) <= adv_obj.cubester_max_images \ else adv_obj.cubester_max_images if len(images[0]): box.label(str(len(images[0])) + " Images Found", icon="PACKAGE") box.prop(adv_obj, "cubester_max_images") box.prop(adv_obj, "cubester_skip_images") box.prop(adv_obj, "cubester_frame_step") box = layout.box() col = box.column(align=True) col.prop(adv_obj, "cubester_skip_pixels") col.prop(adv_obj, "cubester_size_per_hundred_pixels") col.prop(adv_obj, "cubester_height_scale") box.prop(adv_obj, "cubester_invert", icon="FILE_REFRESH") box = layout.box() box.prop(adv_obj, "cubester_mesh_style", icon="MESH_GRID") if adv_obj.cubester_mesh_style == "blocks": box.prop(adv_obj, "cubester_block_style") else: # audio file layout.prop(adv_obj, "cubester_audio_path") box = layout.box() col = box.column(align=True) col.prop(adv_obj, "cubester_audio_min_freq") col.prop(adv_obj, "cubester_audio_max_freq") box.separator() box.prop(adv_obj, "cubester_audio_offset_type") if adv_obj.cubester_audio_offset_type == "frame": box.prop(adv_obj, "cubester_audio_frame_offset") box.prop(adv_obj, "cubester_audio_block_layout") box.separator() col = box.column(align=True) col.prop(adv_obj, "cubester_audio_width_blocks") col.prop(adv_obj, "cubester_audio_length_blocks") rows = adv_obj.cubester_audio_width_blocks columns = adv_obj.cubester_audio_length_blocks col.prop(adv_obj, "cubester_size_per_hundred_pixels") # materials box = layout.box() box.prop(adv_obj, "cubester_materials", icon="MATERIAL") if adv_obj.cubester_materials == "image": box.prop(adv_obj, "cubester_load_type") # find number of approriate images if sequence if adv_obj.cubester_load_type == "multiple": # display number of images found there images = find_sequence_images(self, context) images_found = len(images[0]) if len(images[0]) <= adv_obj.cubester_max_images \ else adv_obj.cubester_max_images if len(images[0]): box.label(str(len(images[0])) + " Images Found", icon="PACKAGE") box.prop(adv_obj, "cubester_max_images") box.prop(adv_obj, "cubester_skip_images") box.prop(adv_obj, "cubester_frame_step") box.separator() if adv_obj.cubester_audio_image == "image": box.prop(adv_obj, "cubester_use_image_color", icon="COLOR") if not adv_obj.cubester_use_image_color or adv_obj.cubester_audio_image == "audio": box.label("Image To Use For Colors:") box.prop_search(adv_obj, "cubester_color_image", bpy.data, "images") box.prop(adv_obj, "cubester_load_color_image") if adv_obj.cubester_image in bpy.data.images: rows = int(bpy.data.images[adv_obj.cubester_image].size[1] / (adv_obj.cubester_skip_pixels + 1)) columns = int(bpy.data.images[adv_obj.cubester_image].size[0] / (adv_obj.cubester_skip_pixels + 1)) box = layout.box() if adv_obj.cubester_mesh_style == "blocks": box.label("Approximate Cube Count: " + str(rows * columns)) box.label("Expected Verts/Faces: " + str(rows * columns * 8) + " / " + str(rows * columns * 6)) else: box.label("Approximate Point Count: " + str(rows * columns)) box.label("Expected Verts/Faces: " + str(rows * columns) + " / " + str(rows * (columns - 1))) # blocks and plane generation time values if adv_obj.cubester_mesh_style == "blocks": slope = 0.0000876958 intercept = 0.02501 block_infl, frame_infl, intercept2 = 0.0025934, 0.38507, -0.5840189 else: slope = 0.000017753 intercept = 0.04201 block_infl, frame_infl, intercept2 = 0.000619, 0.344636, -0.272759 # if creating image based mesh points = rows * columns if adv_obj.cubester_audio_image == "image": if adv_obj.cubester_load_type == "single": time = rows * columns * slope + intercept # approximate time count for mesh else: time = (points * slope) + intercept + (points * block_infl) + \ (images_found / adv_obj.cubester_skip_images * frame_infl) + intercept2 box.label("Images To Be Used: " + str(int(images_found / adv_obj.cubester_skip_images))) else: # audio based mesh box.label("Audio Track Length: " + str(adv_obj.cubester_audio_file_length) + " frames") block_infl, frame_infl, intercept = 0.0948, 0.0687566, -25.85985 time = (points * block_infl) + (adv_obj.cubester_audio_file_length * frame_infl) + intercept if time < 0.0: # usually no audio loaded time = 0.0 time_mod = "s" if time > 60: # convert to minutes if needed time /= 60 time_mod = "min" time = round(time, 3) box.label("Expected Time: " + str(time) + " " + time_mod) # advanced if adv_obj.cubester_audio_image == "image": icon_1 = "TRIA_DOWN" if adv_obj.cubester_advanced else "TRIA_RIGHT" # layout.separator() box = layout.box() box.prop(adv_obj, "cubester_advanced", icon=icon_1) if adv_obj.cubester_advanced: box.prop(adv_obj, "cubester_random_weights", icon="RNDCURVE") if not adv_obj.cubester_random_weights: box.label("RGBA Channel Weights", icon="COLOR") col = box.column(align=True) col.prop(adv_obj, "cubester_weight_r") col.prop(adv_obj, "cubester_weight_g") col.prop(adv_obj, "cubester_weight_b") col.prop(adv_obj, "cubester_weight_a") # generate mesh layout.operator("mesh.cubester", icon="OBJECT_DATA") class CubeSter(Operator): bl_idname = "mesh.cubester" bl_label = "Generate Mesh" bl_description = "Generate a mesh from an Image or Sound File" bl_options = {"REGISTER", "UNDO"} def execute(self, context): verts, faces = [], [] start = timeit.default_timer() scene = bpy.context.scene adv_obj = scene.advanced_objects if adv_obj.cubester_audio_image == "image": if adv_obj.cubester_image != "": create_mesh_from_image(self, scene, verts, faces) frames = find_sequence_images(self, context) created = len(frames[0]) else: self.report({'WARNING'}, "Please add an Image for Object generation. Operation Cancelled") return {"CANCELLED"} else: if (adv_obj.cubester_audio_path != "" and path.isfile(adv_obj.cubester_audio_path) and adv_obj.cubester_check_audio is True): create_mesh_from_audio(self, scene, verts, faces) created = adv_obj.cubester_audio_file_length else: self.report({'WARNING'}, "Please add an Sound File for Object generation. Operation Cancelled") return {"CANCELLED"} stop = timeit.default_timer() if adv_obj.cubester_mesh_style == "blocks" or adv_obj.cubester_audio_image == "audio": self.report({"INFO"}, "CubeSter: {} blocks and {} frame(s) " "in {}s".format(str(int(len(verts) / 8)), str(created), str(round(stop - start, 4))) ) else: self.report({"INFO"}, "CubeSter: {} points and {} frame(s) " "in {}s" .format(str(len(verts)), str(created), str(round(stop - start, 4))) ) return {"FINISHED"} def register(): bpy.utils.register_module(__name__) bpy.app.handlers.frame_change_pre.append(material_frame_handler) def unregister(): bpy.utils.unregister_module(__name__) bpy.app.handlers.frame_change_pre.remove(material_frame_handler) if __name__ == "__main__": register()
py
1a516cefa233fd819b30f29a5d2ef951f25ed479
"""Redis cache backend.""" import random import re from django.core.cache.backends.base import DEFAULT_TIMEOUT, BaseCache from django.core.serializers.base import PickleSerializer from django.utils.functional import cached_property from django.utils.module_loading import import_string class RedisSerializer(PickleSerializer): """ Similar to PickSerializer, except integers are serialized as native Redis integers for better incr() and decr() atomicity. """ def dumps(self, obj): # Only skip pickling for integers, a int subclasses as bool should be # pickled. if type(obj) is int: return obj return super().dumps(obj) def loads(self, data): try: return int(data) except ValueError: return super().loads(data) class RedisCacheClient: def __init__( self, servers, serializer=None, db=None, pool_class=None, parser_class=None, ): import redis self._lib = redis self._servers = servers self._pools = {} self._client = self._lib.Redis if isinstance(pool_class, str): pool_class = import_string(pool_class) self._pool_class = pool_class or self._lib.ConnectionPool if isinstance(serializer, str): serializer = import_string(serializer) if callable(serializer): serializer = serializer() self._serializer = serializer or RedisSerializer() if isinstance(parser_class, str): parser_class = import_string(parser_class) parser_class = parser_class or self._lib.connection.DefaultParser self._pool_options = {"parser_class": parser_class, "db": db} def _get_connection_pool_index(self, write): # Write to the first server. Read from other servers if there are more, # otherwise read from the first server. if write or len(self._servers) == 1: return 0 return random.randint(1, len(self._servers) - 1) def _get_connection_pool(self, write): index = self._get_connection_pool_index(write) if index not in self._pools: self._pools[index] = self._pool_class.from_url( self._servers[index], **self._pool_options, ) return self._pools[index] def get_client(self, key=None, *, write=False): # key is used so that the method signature remains the same and custom # cache client can be implemented which might require the key to select # the server, e.g. sharding. pool = self._get_connection_pool(write) return self._client(connection_pool=pool) def add(self, key, value, timeout): client = self.get_client(key, write=True) value = self._serializer.dumps(value) if timeout == 0: if ret := bool(client.set(key, value, nx=True)): client.delete(key) return ret else: return bool(client.set(key, value, ex=timeout, nx=True)) def get(self, key, default): client = self.get_client(key) value = client.get(key) return default if value is None else self._serializer.loads(value) def set(self, key, value, timeout): client = self.get_client(key, write=True) value = self._serializer.dumps(value) if timeout == 0: client.delete(key) else: client.set(key, value, ex=timeout) def touch(self, key, timeout): client = self.get_client(key, write=True) if timeout is None: return bool(client.persist(key)) else: return bool(client.expire(key, timeout)) def delete(self, key): client = self.get_client(key, write=True) return bool(client.delete(key)) def get_many(self, keys): client = self.get_client(None) ret = client.mget(keys) return { k: self._serializer.loads(v) for k, v in zip(keys, ret) if v is not None } def has_key(self, key): client = self.get_client(key) return bool(client.exists(key)) def incr(self, key, delta): client = self.get_client(key) if not client.exists(key): raise ValueError("Key '%s' not found." % key) return client.incr(key, delta) def set_many(self, data, timeout): client = self.get_client(None, write=True) pipeline = client.pipeline() pipeline.mset({k: self._serializer.dumps(v) for k, v in data.items()}) if timeout is not None: # Setting timeout for each key as redis does not support timeout # with mset(). for key in data: pipeline.expire(key, timeout) pipeline.execute() def delete_many(self, keys): client = self.get_client(None, write=True) client.delete(*keys) def clear(self): client = self.get_client(None, write=True) return bool(client.flushdb()) class RedisCache(BaseCache): def __init__(self, server, params): super().__init__(params) if isinstance(server, str): self._servers = re.split("[;,]", server) else: self._servers = server self._class = RedisCacheClient self._options = params.get("OPTIONS", {}) @cached_property def _cache(self): return self._class(self._servers, **self._options) def get_backend_timeout(self, timeout=DEFAULT_TIMEOUT): if timeout == DEFAULT_TIMEOUT: timeout = self.default_timeout # The key will be made persistent if None used as a timeout. # Non-positive values will cause the key to be deleted. return None if timeout is None else max(0, int(timeout)) def add(self, key, value, timeout=DEFAULT_TIMEOUT, version=None): key = self.make_and_validate_key(key, version=version) return self._cache.add(key, value, self.get_backend_timeout(timeout)) def get(self, key, default=None, version=None): key = self.make_and_validate_key(key, version=version) return self._cache.get(key, default) def set(self, key, value, timeout=DEFAULT_TIMEOUT, version=None): key = self.make_and_validate_key(key, version=version) self._cache.set(key, value, self.get_backend_timeout(timeout)) def touch(self, key, timeout=DEFAULT_TIMEOUT, version=None): key = self.make_and_validate_key(key, version=version) return self._cache.touch(key, self.get_backend_timeout(timeout)) def delete(self, key, version=None): key = self.make_and_validate_key(key, version=version) return self._cache.delete(key) def get_many(self, keys, version=None): key_map = { self.make_and_validate_key(key, version=version): key for key in keys } ret = self._cache.get_many(key_map.keys()) return {key_map[k]: v for k, v in ret.items()} def has_key(self, key, version=None): key = self.make_and_validate_key(key, version=version) return self._cache.has_key(key) def incr(self, key, delta=1, version=None): key = self.make_and_validate_key(key, version=version) return self._cache.incr(key, delta) def set_many(self, data, timeout=DEFAULT_TIMEOUT, version=None): safe_data = {} for key, value in data.items(): key = self.make_and_validate_key(key, version=version) safe_data[key] = value self._cache.set_many(safe_data, self.get_backend_timeout(timeout)) return [] def delete_many(self, keys, version=None): safe_keys = [] for key in keys: key = self.make_and_validate_key(key, version=version) safe_keys.append(key) self._cache.delete_many(safe_keys) def clear(self): return self._cache.clear()