ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
1a5247fec4fe61fe14a12f57f03864aab6e91ab3
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Name: PyAnime4K utils Author: TianZerL Editor: TianZerL """ from pyanime4k import ffmpeg_handler import contextlib import os def migrate_audio_streams( upscaled_video: str, original_video: str, output_path: str ) -> None: """ migrate audio streams Args: upscaled_video (str): path of upscaled video. original_video (str): path of original video. output_path (str): path to output result. Raises: FileExistsError: when output path exists and isn't a directory """ ffmpeg_handler.migrate_audio_streams( upscaled_video=upscaled_video, original_video=original_video, output_path=output_path, ) with contextlib.suppress(FileNotFoundError): os.remove(upscaled_video)
py
1a5248489938637fdc7d3a3d5551d3a74ef65f15
"""Experiment data."""
py
1a5248490a77963f006a3f96c43a207bf2992808
# pylint: disable=too-many-lines # coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, Callable, Dict, List, Optional, TypeVar, Union from msrest import Serializer from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator import distributed_trace from azure.mgmt.core.exceptions import ARMErrorFormat from .. import models as _models from .._vendor import _convert_request, _format_url_section T = TypeVar('T') JSONType = Any ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] _SERIALIZER = Serializer() _SERIALIZER.client_side_validation = False def build_list_request( subscription_id: str, resource_group_name: str, resource_name: str, scope_path: Union[str, "_models.ItemScopePath"], *, scope: Optional[Union[str, "_models.ItemScope"]] = None, type: Optional[Union[str, "_models.ItemTypeParameter"]] = "none", include_content: Optional[bool] = None, **kwargs: Any ) -> HttpRequest: api_version = kwargs.pop('api_version', "2015-05-01") # type: str accept = "application/json" # Construct URL _url = kwargs.pop("template_url", "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/microsoft.insights/components/{resourceName}/{scopePath}") # pylint: disable=line-too-long path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str', min_length=1), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1), "resourceName": _SERIALIZER.url("resource_name", resource_name, 'str'), "scopePath": _SERIALIZER.url("scope_path", scope_path, 'str'), } _url = _format_url_section(_url, **path_format_arguments) # Construct parameters _query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] _query_parameters['api-version'] = _SERIALIZER.query("api_version", api_version, 'str') if scope is not None: _query_parameters['scope'] = _SERIALIZER.query("scope", scope, 'str') if type is not None: _query_parameters['type'] = _SERIALIZER.query("type", type, 'str') if include_content is not None: _query_parameters['includeContent'] = _SERIALIZER.query("include_content", include_content, 'bool') # Construct headers _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=_url, params=_query_parameters, headers=_header_parameters, **kwargs ) def build_get_request( subscription_id: str, resource_group_name: str, resource_name: str, scope_path: Union[str, "_models.ItemScopePath"], *, id: Optional[str] = None, name: Optional[str] = None, **kwargs: Any ) -> HttpRequest: api_version = kwargs.pop('api_version', "2015-05-01") # type: str accept = "application/json" # Construct URL _url = kwargs.pop("template_url", "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/microsoft.insights/components/{resourceName}/{scopePath}/item") # pylint: disable=line-too-long path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str', min_length=1), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1), "resourceName": _SERIALIZER.url("resource_name", resource_name, 'str'), "scopePath": _SERIALIZER.url("scope_path", scope_path, 'str'), } _url = _format_url_section(_url, **path_format_arguments) # Construct parameters _query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] _query_parameters['api-version'] = _SERIALIZER.query("api_version", api_version, 'str') if id is not None: _query_parameters['id'] = _SERIALIZER.query("id", id, 'str') if name is not None: _query_parameters['name'] = _SERIALIZER.query("name", name, 'str') # Construct headers _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=_url, params=_query_parameters, headers=_header_parameters, **kwargs ) def build_put_request( subscription_id: str, resource_group_name: str, resource_name: str, scope_path: Union[str, "_models.ItemScopePath"], *, json: JSONType = None, content: Any = None, override_item: Optional[bool] = None, **kwargs: Any ) -> HttpRequest: api_version = kwargs.pop('api_version', "2015-05-01") # type: str content_type = kwargs.pop('content_type', None) # type: Optional[str] accept = "application/json" # Construct URL _url = kwargs.pop("template_url", "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/microsoft.insights/components/{resourceName}/{scopePath}/item") # pylint: disable=line-too-long path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str', min_length=1), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1), "resourceName": _SERIALIZER.url("resource_name", resource_name, 'str'), "scopePath": _SERIALIZER.url("scope_path", scope_path, 'str'), } _url = _format_url_section(_url, **path_format_arguments) # Construct parameters _query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] _query_parameters['api-version'] = _SERIALIZER.query("api_version", api_version, 'str') if override_item is not None: _query_parameters['overrideItem'] = _SERIALIZER.query("override_item", override_item, 'bool') # Construct headers _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] if content_type is not None: _header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str') _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="PUT", url=_url, params=_query_parameters, headers=_header_parameters, json=json, content=content, **kwargs ) def build_delete_request( subscription_id: str, resource_group_name: str, resource_name: str, scope_path: Union[str, "_models.ItemScopePath"], *, id: Optional[str] = None, name: Optional[str] = None, **kwargs: Any ) -> HttpRequest: api_version = kwargs.pop('api_version', "2015-05-01") # type: str # Construct URL _url = kwargs.pop("template_url", "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/microsoft.insights/components/{resourceName}/{scopePath}/item") # pylint: disable=line-too-long path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str', min_length=1), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1), "resourceName": _SERIALIZER.url("resource_name", resource_name, 'str'), "scopePath": _SERIALIZER.url("scope_path", scope_path, 'str'), } _url = _format_url_section(_url, **path_format_arguments) # Construct parameters _query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] _query_parameters['api-version'] = _SERIALIZER.query("api_version", api_version, 'str') if id is not None: _query_parameters['id'] = _SERIALIZER.query("id", id, 'str') if name is not None: _query_parameters['name'] = _SERIALIZER.query("name", name, 'str') return HttpRequest( method="DELETE", url=_url, params=_query_parameters, **kwargs ) class AnalyticsItemsOperations(object): """AnalyticsItemsOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.applicationinsights.v2015_05_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config @distributed_trace def list( self, resource_group_name: str, resource_name: str, scope_path: Union[str, "_models.ItemScopePath"], scope: Optional[Union[str, "_models.ItemScope"]] = None, type: Optional[Union[str, "_models.ItemTypeParameter"]] = "none", include_content: Optional[bool] = None, **kwargs: Any ) -> List["_models.ApplicationInsightsComponentAnalyticsItem"]: """Gets a list of Analytics Items defined within an Application Insights component. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param resource_name: The name of the Application Insights component resource. :type resource_name: str :param scope_path: Enum indicating if this item definition is owned by a specific user or is shared between all users with access to the Application Insights component. :type scope_path: str or ~azure.mgmt.applicationinsights.v2015_05_01.models.ItemScopePath :param scope: Enum indicating if this item definition is owned by a specific user or is shared between all users with access to the Application Insights component. Default value is None. :type scope: str or ~azure.mgmt.applicationinsights.v2015_05_01.models.ItemScope :param type: Enum indicating the type of the Analytics item. Default value is "none". :type type: str or ~azure.mgmt.applicationinsights.v2015_05_01.models.ItemTypeParameter :param include_content: Flag indicating whether or not to return the content of each applicable item. If false, only return the item information. Default value is None. :type include_content: bool :keyword callable cls: A custom type or function that will be passed the direct response :return: list of ApplicationInsightsComponentAnalyticsItem, or the result of cls(response) :rtype: list[~azure.mgmt.applicationinsights.v2015_05_01.models.ApplicationInsightsComponentAnalyticsItem] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[List["_models.ApplicationInsightsComponentAnalyticsItem"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = kwargs.pop('api_version', "2015-05-01") # type: str request = build_list_request( subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, resource_name=resource_name, scope_path=scope_path, api_version=api_version, scope=scope, type=type, include_content=include_content, template_url=self.list.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('[ApplicationInsightsComponentAnalyticsItem]', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized list.metadata = {'url': "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/microsoft.insights/components/{resourceName}/{scopePath}"} # type: ignore @distributed_trace def get( self, resource_group_name: str, resource_name: str, scope_path: Union[str, "_models.ItemScopePath"], id: Optional[str] = None, name: Optional[str] = None, **kwargs: Any ) -> "_models.ApplicationInsightsComponentAnalyticsItem": """Gets a specific Analytics Items defined within an Application Insights component. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param resource_name: The name of the Application Insights component resource. :type resource_name: str :param scope_path: Enum indicating if this item definition is owned by a specific user or is shared between all users with access to the Application Insights component. :type scope_path: str or ~azure.mgmt.applicationinsights.v2015_05_01.models.ItemScopePath :param id: The Id of a specific item defined in the Application Insights component. Default value is None. :type id: str :param name: The name of a specific item defined in the Application Insights component. Default value is None. :type name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ApplicationInsightsComponentAnalyticsItem, or the result of cls(response) :rtype: ~azure.mgmt.applicationinsights.v2015_05_01.models.ApplicationInsightsComponentAnalyticsItem :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ApplicationInsightsComponentAnalyticsItem"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = kwargs.pop('api_version', "2015-05-01") # type: str request = build_get_request( subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, resource_name=resource_name, scope_path=scope_path, api_version=api_version, id=id, name=name, template_url=self.get.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('ApplicationInsightsComponentAnalyticsItem', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/microsoft.insights/components/{resourceName}/{scopePath}/item"} # type: ignore @distributed_trace def put( self, resource_group_name: str, resource_name: str, scope_path: Union[str, "_models.ItemScopePath"], item_properties: "_models.ApplicationInsightsComponentAnalyticsItem", override_item: Optional[bool] = None, **kwargs: Any ) -> "_models.ApplicationInsightsComponentAnalyticsItem": """Adds or Updates a specific Analytics Item within an Application Insights component. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param resource_name: The name of the Application Insights component resource. :type resource_name: str :param scope_path: Enum indicating if this item definition is owned by a specific user or is shared between all users with access to the Application Insights component. :type scope_path: str or ~azure.mgmt.applicationinsights.v2015_05_01.models.ItemScopePath :param item_properties: Properties that need to be specified to create a new item and add it to an Application Insights component. :type item_properties: ~azure.mgmt.applicationinsights.v2015_05_01.models.ApplicationInsightsComponentAnalyticsItem :param override_item: Flag indicating whether or not to force save an item. This allows overriding an item if it already exists. Default value is None. :type override_item: bool :keyword callable cls: A custom type or function that will be passed the direct response :return: ApplicationInsightsComponentAnalyticsItem, or the result of cls(response) :rtype: ~azure.mgmt.applicationinsights.v2015_05_01.models.ApplicationInsightsComponentAnalyticsItem :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ApplicationInsightsComponentAnalyticsItem"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = kwargs.pop('api_version', "2015-05-01") # type: str content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] _json = self._serialize.body(item_properties, 'ApplicationInsightsComponentAnalyticsItem') request = build_put_request( subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, resource_name=resource_name, scope_path=scope_path, api_version=api_version, content_type=content_type, json=_json, override_item=override_item, template_url=self.put.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('ApplicationInsightsComponentAnalyticsItem', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized put.metadata = {'url': "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/microsoft.insights/components/{resourceName}/{scopePath}/item"} # type: ignore @distributed_trace def delete( # pylint: disable=inconsistent-return-statements self, resource_group_name: str, resource_name: str, scope_path: Union[str, "_models.ItemScopePath"], id: Optional[str] = None, name: Optional[str] = None, **kwargs: Any ) -> None: """Deletes a specific Analytics Items defined within an Application Insights component. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param resource_name: The name of the Application Insights component resource. :type resource_name: str :param scope_path: Enum indicating if this item definition is owned by a specific user or is shared between all users with access to the Application Insights component. :type scope_path: str or ~azure.mgmt.applicationinsights.v2015_05_01.models.ItemScopePath :param id: The Id of a specific item defined in the Application Insights component. Default value is None. :type id: str :param name: The name of a specific item defined in the Application Insights component. Default value is None. :type name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = kwargs.pop('api_version', "2015-05-01") # type: str request = build_delete_request( subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, resource_name=resource_name, scope_path=scope_path, api_version=api_version, id=id, name=name, template_url=self.delete.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) delete.metadata = {'url': "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/microsoft.insights/components/{resourceName}/{scopePath}/item"} # type: ignore
py
1a5248dd1c00732eabd60282f65fc481d0d83709
from django import forms from apps.accounts import models as mdl_account class LoginForm(forms.Form): username = forms.CharField(label="Username", widget=forms.TextInput(attrs={ 'class': 'form-control' })) password = forms.CharField(label="Password", widget=forms.TextInput(attrs={ 'class': 'form-control', 'type':'password' })) class RegisterMemberForm(forms.Form): CHOISE_GENDER = ( ("", "---"), ("L", "MALE"), ("F", "FEMALE") ) username = forms.CharField(label="Username", widget=forms.TextInput(attrs={ 'class': 'form-control' })) first_name = forms.CharField(label="First Name", widget=forms.TextInput(attrs={ 'class': 'form-control' })) last_name = forms.CharField(label="Last Name", widget=forms.TextInput(attrs={ 'class': 'form-control' })) member_card = forms.ModelChoiceField(queryset=mdl_account.CardMember.objects.all(), label="Member Card", widget=forms.Select(attrs={ 'class': 'form-control' })) email = forms.CharField(label="Email", widget=forms.TextInput(attrs={ 'class': 'form-control', 'type': 'email' })) gender = forms.CharField(label="Gender", widget=forms.Select(choices=CHOISE_GENDER, attrs={ 'class': 'form-control' })) password = forms.CharField(label="Password", widget=forms.TextInput(attrs={ 'class': 'form-control', 'type': 'password' })) password2 = forms.CharField(label="Confirm Password", widget=forms.TextInput(attrs={ 'class': 'form-control', 'type': 'password' })) photo = forms.ImageField(label='Photo') class CustomerEditForm(forms.Form): GENDER = ( ('m', 'Male'), ('f', "Female") ) username = forms.CharField(label="Username", widget=forms.TextInput(attrs={ 'class': 'form-control' })) first_name = forms.CharField(label="First Name", widget=forms.TextInput(attrs={ 'class': 'form-control' })) last_name = forms.CharField(label="Last Name", widget=forms.TextInput(attrs={ 'class': 'form-control' })) password = forms.CharField(label="Password", widget=forms.TextInput(attrs={ 'class': 'form-control', 'type': 'password', 'placeholder': 'change your password in here' }), required=False) photo = forms.ImageField(label='Photo', required=False) card_member = forms.ModelChoiceField(label='Card Member', queryset=mdl_account.CardMember.objects.all(), widget=forms.Select( attrs={ 'class': 'form-control' } )) gender = forms.CharField(label='Gender', widget=forms.Select(attrs={ 'class': 'form-control' },choices=GENDER)) class CustomersForm(forms.Form): GENDER = ( ('m', 'Male'), ('f', "Female") ) username = forms.CharField(label="Username", widget=forms.TextInput(attrs={ 'class': 'form-control' })) first_name = forms.CharField(label="First Name", widget=forms.TextInput(attrs={ 'class': 'form-control' })) last_name = forms.CharField(label="Last Name", widget=forms.TextInput(attrs={ 'class': 'form-control' })) password = forms.CharField(label="Password", widget=forms.TextInput(attrs={ 'class': 'form-control', 'type': 'password' })) password2 = forms.CharField(label="Confirm Password", widget=forms.TextInput(attrs={ 'class': 'form-control', 'type': 'password' })) card_member = forms.ModelChoiceField(label='Card Member', queryset=mdl_account.CardMember.objects.all(), widget=forms.Select( attrs={ 'class': 'form-control' } )) # gender = forms.CharField(label='Gender', widget=forms.ChoiceField(choices=GENDER)) gender = forms.CharField(label='Gender', widget=forms.Select(attrs={ 'class': 'form-control' },choices=GENDER)) photo = forms.ImageField(required=False) class SalesForm(forms.Form): username = forms.CharField(label="Username", widget=forms.TextInput(attrs={ 'class': 'form-control' })) first_name = forms.CharField(label="First Name", widget=forms.TextInput(attrs={ 'class': 'form-control' })) last_name = forms.CharField(label="Last Name", widget=forms.TextInput(attrs={ 'class': 'form-control' })) password = forms.CharField(label="Password", widget=forms.TextInput(attrs={ 'class': 'form-control', 'type': 'password' })) password2 = forms.CharField(label="Confirm Password", widget=forms.TextInput(attrs={ 'class': 'form-control', 'type': 'password' })) address = forms.CharField(label="Address", widget=forms.TextInput(attrs={ 'class': 'form-control', })) nik_numb = forms.CharField(label="NIK", widget=forms.TextInput(attrs={ 'class': 'form-control', })) ktp_image = forms.ImageField() class SalesEditForm(forms.Form): username = forms.CharField(label="Username", widget=forms.TextInput(attrs={ 'class': 'form-control' })) first_name = forms.CharField(label="First Name", widget=forms.TextInput(attrs={ 'class': 'form-control' })) last_name = forms.CharField(label="Last Name", widget=forms.TextInput(attrs={ 'class': 'form-control' })) password = forms.CharField(label="Password", widget=forms.TextInput(attrs={ 'class': 'form-control', 'type': 'password', 'placeholder': 'change your password in here' }), required=False) address = forms.CharField(label="Address", widget=forms.TextInput(attrs={ 'class': 'form-control', })) nik_numb = forms.CharField(label="NIK", widget=forms.TextInput(attrs={ 'class': 'form-control', })) ktp_image = forms.ImageField(required=False)
py
1a524a0775baad0ed1f4fe8ca089c415c611cc28
# 1- Faça um programa que peça dois números inteiros e imprima a soma de dois números n1 = int(input('Primeiro número: ')) #pede o primeiro número para o usuário n2 = int(input('Segundo número: ')) #pede o segundo número para o usuário soma = n1 + n2 #efetua a soma e guarda ela numa variável print(soma) #mostra na tela o resultado que foi guardado na variável soma
py
1a524a6f3dc6e4f0dadda5d23d0ed98a5a0731bd
from os.path import ( realpath, join, ) from typing import List from hummingbot.core.utils.symbol_fetcher import SymbolFetcher # Global variables required_exchanges: List[str] = [] symbol_fetcher = SymbolFetcher.get_instance() # Global static values KEYFILE_PREFIX = "key_file_" KEYFILE_POSTFIX = ".json" GLOBAL_CONFIG_PATH = "conf/conf_global.yml" TOKEN_ADDRESSES_FILE_PATH = realpath(join(__file__, "../../wallet/ethereum/erc20_tokens.json")) DEFAULT_KEY_FILE_PATH = "conf/" DEFAULT_LOG_FILE_PATH = "logs/" DEFAULT_ETHEREUM_RPC_URL = "https://mainnet.coinalpha.com/hummingbot-test-node" TEMPLATE_PATH = realpath(join(__file__, "../../templates/")) CONF_FILE_PATH = "conf/" CONF_PREFIX = "conf_" CONF_POSTFIX = "_strategy" EXCHANGES = { "bamboo_relay", "binance", "coinbase_pro", "ddex", "idex", "radar_relay", } DEXES = { "bamboo_relay", "ddex", "idex", "radar_relay", } STRATEGIES = { "cross_exchange_market_making", "arbitrage", "discovery", "pure_market_making", } EXAMPLE_PAIRS = { "binance": "ZRXETH", "ddex": "ZRX-WETH", "idex": "ETH_ZRX", "radar_relay": "ZRX-WETH", "bamboo_relay": "ZRX-WETH", "coinbase_pro": "ETH-USDC", } MAXIMUM_OUTPUT_PANE_LINE_COUNT = 1000 MAXIMUM_LOG_PANE_LINE_COUNT = 1000 # Liquidity Bounties: LIQUIDITY_BOUNTY_CONFIG_PATH = "conf/conf_liquidity_bounty.yml" MIN_ETH_STAKED_REQUIREMENT = 0.05
py
1a524b6be8578cda8dc10848f051a0429bd67e58
from __future__ import division from __future__ import absolute_import from __future__ import print_function import tensorflow as tf from dltk.core.modules.base import AbstractModule class TransposedConvolution(AbstractModule): """Tranposed convolution module This build a 2D or 3D transposed convolution based on the dimensionality of the input """ def __init__(self, out_filters, strides=(1, 1, 1), filter_shape=None, use_bias=False, name='conv_transposed'): """Constructs a transposed convolution The kernel shape is defined as 2 * stride for stride > 1 Parameters ---------- out_filters : int number of output filters strides : tuple or list, optional strides used for the transposed convolution use_bias : bool flag to toggle whether a bias is added to the output name : string name of the module """ self.in_shape = None self.in_filters = None self.out_filters = out_filters self.out_shape = None self.strides = strides self.use_bias = use_bias self.filter_shape = filter_shape self.full_strides =[1,] + list(self.strides) + [1,] self._rank = len(list(self.strides)) assert 1 < self._rank < 4, 'Transposed convolutions are only supported in 2D and 3D' super(TransposedConvolution, self).__init__(name=name) def _get_kernel(self): """Builds the kernel for the transposed convolution Returns ------- tf.Variable kernel for the transposed convolution """ kernel_shape = tuple(self.up_spatial_shape + [self.out_filters, self.in_filters]) k = tf.get_variable("k", shape=kernel_shape, initializer=tf.uniform_unit_scaling_initializer(), collections=self.WEIGHT_COLLECTIONS) return k def _build(self, inp): """Applies a transposed convolution to the input tensor Parameters ---------- inp : tf.Tensor input tensor Returns ------- tf.Tensor output of transposed convolution """ assert (len(inp.get_shape().as_list()) - 2) == self._rank, \ 'The input has {} dimensions but this is a {}D convolution'.format( len(inp.get_shape().as_list()), self._rank) self.in_shape = tuple(inp.get_shape().as_list()) if self.in_filters is None: self.in_filters = self.in_shape[-1] assert self.in_filters == self.in_shape[-1], 'Convolution was built for different number of channels' inp_shape = tf.shape(inp) if self.filter_shape is None: self.up_spatial_shape = [2 * s if s > 1 else 1 for s in self.strides] else: self.up_spatial_shape = self.filter_shape self.out_shape = [inp_shape[i] * self.full_strides[i] for i in range(len(self.in_shape) - 1)] + [self.out_filters,] self._k = self._get_kernel() self.variables.append(self._k) conv_op = tf.nn.conv3d_transpose if self._rank == 2: conv_op = tf.nn.conv2d_transpose outp = conv_op(inp, self._k, output_shape=self.out_shape, strides=self.full_strides, padding='SAME', name='conv_tranposed') if self.use_bias: self._b = tf.get_variable("b", shape=(self.out_filters,), initializer=tf.constant_initializer()) self.variables.append(self._b) outp += self._b outp.set_shape([self.in_shape[i] * self.full_strides[i] if isinstance(self.in_shape[i], int) else None for i in range(len(self.in_shape) - 1)] + [self.out_filters,]) return outp
py
1a524b7fa815f15b9e54c7d994169ffe28591f4a
# -*- coding: utf-8 -*- from django.core.management.base import BaseCommand from django.core.exceptions import ObjectDoesNotExist from user.models import User from entities.models import Entity import ucsv as csv class Command(BaseCommand): args = '<members_file>' help = 'import members from a csv file' def handle(self, *args, **options): file_name = args[0] f = open(file_name, 'rb') d = csv.DictReader(f) for row in d: username = row['username'] if User.objects.filter(username=username).exists(): print 'User %s exists.' % (username) else: first_name = row.get('first_name', '') last_name = row.get('last_name', '') email = row.get('email', '') locality = row.get('locality', '') gender = row.get('gender', '') password = row.get('password', '') user = User( username=username, email=email, first_name=first_name, last_name=last_name, ) user.set_password(password) user.save() user.profile.gender = gender try: user.profile.locality = Entity.objects.get(id=locality) except ObjectDoesNotExist: print 'user %s locality id %s does not exist' % (username, locality) user.profile.save()
py
1a524bc43ed63383a99a8045d801cb436631b354
""" Name : c14_13_average_price_call.py Book : Python for Finance (2nd ed.) Publisher: Packt Publishing Ltd. Author : Yuxing Yan Date : 6/6/2017 email : [email protected] [email protected] """ import scipy as sp s0=40. # today stock price x=40. # exercise price T=0.5 # maturity in years r=0.05 # risk-free rate sigma=0.2 # volatility (annualized) sp.random.seed(123) # fix a seed here n_simulation=100 # number of simulations n_steps=100. # number of steps # dt=T/n_steps call=sp.zeros([n_simulation], dtype=float) for j in range(0, n_simulation): sT=s0 total=0 for i in range(0,int(n_steps)): e=sp.random.normal() sT*=sp.exp((r-0.5*sigma*sigma)*dt+sigma*e*sp.sqrt(dt)) total+=sT price_average=total/n_steps call[j]=max(price_average-x,0) # call_price=sp.mean(call)*sp.exp(-r*T) print('call price based on average price = ', round(call_price,3))
py
1a524c0977c8fdb86f847b135137fdc14a66114b
"""MIT License Copyright (c) 2021 Jacopo Schiavon Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import time import jax.numpy as jnp from jax.ops import index_update, index from typing import NamedTuple, Union from .linesearch import wolfe_linesearch, LineSearchParameter class OptimizerParams(NamedTuple): """ Parameters for the optimizer. Arguments: - maxtime (float, default 100) maximum run time - maxiter (int, default 100) maximum number of iterations - mingradnorm (float, default 1e-8) minimum gradient norm - minstepsize (float, default 1e-16) minimum length of the stepsize - maxcostevals (int, default 5000) maximum number of cost evaluations - verbosity (int, default 0) Level of information logged by the solver while it operates, 0 is silent, 1 basic info on status, 2 info per iteration, 3 info per linesearch iteration - logverbosity (bool, default False) Wether to produce a log of the optimization """ maxtime: Union[float, jnp.ndarray] = 100 maxiter: Union[int, jnp.ndarray] = 500 mingradnorm: Union[float, jnp.ndarray] = 1e-6 minstepsize: Union[float, jnp.ndarray] = 1e-16 maxcostevals: Union[int, jnp.ndarray] = 5000 memory: Union[int, jnp.ndarray] = 4 verbosity: Union[int, jnp.ndarray] = 0 logverbosity: Union[bool, jnp.ndarray] = False class OptimizerResult(NamedTuple): """ Object holding optimization results. Components: - name: name of the optimizer - success: True if optimization succeeded. - status: integer solver specific return code. 0 means nominal. - message: solver specific message that explains status. - x: final solution. - fun: final function value. - gr: final gradient array. - grnorm: norm of the gradient. - nfev: integer number of function evaluations. - ngev: integer number of gradient evaluations. - nit: integer number of iterations of the optimization algorithm. - stepsize: length of the final stepsize - time: time used by the optimization """ name: str success: Union[bool, jnp.ndarray] status: Union[int, jnp.ndarray] message: str x: jnp.ndarray fun: jnp.ndarray gr: jnp.ndarray grnorm: jnp.ndarray nfev: Union[int, jnp.ndarray] ngev: Union[int, jnp.ndarray] nit: Union[int, jnp.ndarray] stepsize: jnp.ndarray time: jnp.ndarray def __str__(self): """String representation.""" try: sz = self.x.size except AttributeError: sz = sum(x.size for x in self.x) return ( "{}.\n---\nSuccess: {} with status {} in {:.3f} s.\n" "[{}]\n" " -Iterations {} (cost evaluation: {}, gradient evaluation: {}, " "time/it: {})\n" " \t Function value {:.3f}, gradient norm {}, stepsize {},\n" " \t value of X:\n{}" ).format( self.name, self.success, self.status, self.time, self.message, self.nit, self.nfev, self.ngev, self.time / self.nit, self.fun, self.grnorm, self.stepsize, self.x if sz < 50 else '\t... Too big to show...' ) def pprint(self): """Print a concise summary of the result.""" message = "Optimization {}completed (status {}).".format("" if self.success else "not ", self.status) details = "{} iterations in {:.3f} s".format(self.nit, self.time) print(message + "\t" + details) class OptimizerLog(NamedTuple): """ Object holding optimization log. Components: - name: name of the optimizer - fun: sequence of function value. - x: sequence of data points. - grnorm: sequence of gradient norm. - beta: sequence of computed beta. - fev: sequence of function evaluations. - gev: sequence of gradient evaluations. - it: iterations. - stepsize: sequence of length of stepsize. - time sequence of times. """ name: str = '' fun: jnp.ndarray = jnp.array([]) x: list = [] grnorm: jnp.ndarray = jnp.array([]) fev: jnp.ndarray = jnp.array([], dtype=int) gev: jnp.ndarray = jnp.array([], dtype=int) it: jnp.ndarray = jnp.array([], dtype=int) stepsize: jnp.ndarray = jnp.array([]) time: jnp.ndarray = jnp.array([]) class RL_BFGS(): """L-BFGS optimizer.""" Algo = 'Riemannian Limited memory BFGS' def __init__(self, manifold, **pars): """ Riemannian Limited memory BFGS. Mandatory arguments: - manifold A manifold object that defines the operations on the manifold Optional parameters: - maxtime (float, default 100) maximum run time - maxiter (int, default 100) maximum number of iterations - mingradnorm (float, default 1e-8) minimum gradient norm - minstepsize (float, default 1e-16) minimum length of the stepsize - maxcostevals (int, default 5000) maximum number of cost evaluations - verbosity (int, default 0) Level of information logged by the solver while it operates, 0 is silent, 1 basic info on status, 2 info per iteration - logverbosity (bool, default False) Wether to produce a log of the optimization Optional linesearch parameters: - ls_maxiter (int, default 10) maximum number of iterations - ls_minstepsize (float, default 1e-16) minimum length of the stepsize - ls_optimism (float, default 1.2) optimism of the new step - ls_initial_step (float, default 1) initial stepsize before linesearch - ls_suff_decr (float, default 1e-4) sufficient decrease parameter - ls_contraction (float, default 0.5) contraction factor (must be 0 < c < 1) - ls_verbosity (int, default 0) Level of information to be displayed: < 3 is silent, 3+ basic info """ self.man = manifold self.__name__ = ("{} on {}".format(self.Algo, str(self.man).lower())) self._parms = OptimizerParams( **{k: pars[k] for k in pars if k in OptimizerParams._fields} ) self._ls_pars = LineSearchParameter( **{k: pars[k] for k in pars if k in LineSearchParameter._fields} ) if pars.get('ls_verbosity', None) is None: self._ls_pars = self._ls_pars._replace( ls_verbosity=max(0, self._parms.verbosity - 3) ) def __str__(self): """Representat the optimizer as a string.""" return self.__name__ def _check_stopping_criterion(self, time0, iters=-1, grnorm=float('inf'), stepsize=float('inf'), costevals=-1): status = - 1 if grnorm <= self._parms.mingradnorm: status = 0 elif stepsize <= self._parms.minstepsize: status = 1 elif iters >= self._parms.maxiter: status = 2 elif time.time() >= time0 + self._parms.maxtime: status = 3 elif costevals >= self._parms.maxcostevals: status = 4 return status def _compute_descent_direction(self, l, x, gr, gamma): q = gr m = self._parms.memory H0 = gamma * jnp.identity(gr.shape[0]) alpha = jnp.zeros(shape=(l,)) if self._parms.verbosity >= 3: print('\tm = {}; l = {}'.format(m, l)) for i in jnp.arange(m - l + 1, 0, -1): alpha = index_update(alpha, i-1, self.rhok[i-1] * self.man.inner(x, self.sk[i-1], q)) q = q - alpha[i-1] * self.yk[i-1] r = jnp.matmul(H0, q) for i in jnp.arange(0, l): beta = self.rhok[i] * self.man.inner(x, self.yk[i], r) r = r + (alpha[i] - beta) * self.sk[i] return -r def solve(self, objective, gradient, x=None, key=None): """ Perform optimization using gradient descent with linesearch. This method first computes the gradient (derivative) of obj w.r.t. arg, and then optimizes by moving in the direction of steepest descent (which is the opposite direction to the gradient). Arguments: - objective : callable The cost function to be optimized - gradient : callable The gradient of the cost function - x : array (None) Optional parameter. Starting point on the manifold. If none then a starting point will be randomly generated. - key: array (None) Optional parameter, required if x is not provided to randomly initiate the algorithm Returns: - OptimizerResult object """ msg = ("status meaning: 0=converged, 1=stepsize too small, " "2=max iters reached, 3=max time reached, " "4=max cost evaluations, " "-1=undefined" ) if self._parms.verbosity >= 1: print('Starting {}'.format(self.__name__)) self._costev = 0 self._gradev = 0 def cost(x): self._costev += 1 return objective(x) def grad(x): self._gradev += 1 return self.man.egrad2rgrad(x, gradient(x)) def ls(c_a_g, x, d, f0, df0, g0): return wolfe_linesearch(c_a_g, x, d, f0, df0, g0, self._ls_pars) if x is None: try: x = self.man.rand(key) except TypeError: raise ValueError("Either provide an initial point for" " the algorithm or a valid random key" " to perform random initialization") k = 0 l = 0 gamma = 1. stepsize = 1. memorized_shape = (self._parms.memory,) + x.shape self.sk = jnp.zeros(shape=(memorized_shape)) self.yk = jnp.zeros(shape=(memorized_shape)) self.rhok = jnp.zeros(shape=(self._parms.memory)) f0 = cost(x) gr = grad(x) grnorm = self.man.norm(x, gr) d = - gr df0 = self.man.inner(x, d, gr) t_start = time.time() if self._parms.logverbosity: logs = OptimizerLog( name="log of {}".format(self.__name__), fun=jnp.array([f0]), x=[x], grnorm=jnp.array([grnorm]), fev=jnp.array([self._costev], dtype=int), gev=jnp.array([self._gradev], dtype=int), it=jnp.array([k], dtype=int), stepsize=jnp.array([1.]), time=jnp.array([time.time() - t_start]) ) while True: if self._parms.verbosity >= 2: print('iter: {}\n\tfun value: {:.2f}'.format(k, f0)) print('\tgrad norm: {:.2f}'.format(grnorm)) print('\tdirectional derivative: {:.2f}'.format(df0)) status = self._check_stopping_criterion( t_start, k, grnorm, stepsize, self._costev ) if status >= 0: break def cost_and_grad(t): xnew = self.man.retraction(x, t * d) fn = cost(xnew) gn = grad(xnew) dn = self.man.inner(xnew, - gn, gn) # dn = -jnp.sqrt(jnp.abs(dn)) if dn < 0 else jnp.sqrt(dn) return fn, gn, dn ls_results = ls(cost_and_grad, x, d, f0, df0, gr) alpha = ls_results.a_k stepsize = jnp.abs(alpha * df0) newx = self.man.retraction(x, alpha * d) newf = ls_results.f_k newgr = ls_results.g_k newgrnorm = self.man.norm(x, gr) sk = self.man.vector_transport(x, alpha * d, alpha * d) yk = newgr - self.man.vector_transport(x, alpha * d, gr) a = self.man.inner(newx, yk, sk) b = self.man.norm(newx, sk) ** 2 if ((a / b) >= (grnorm * 1e-4)): c = self.man.norm(newx, yk) ** 2 rhok = 1 / a gamma = a / c if l == self._parms.memory: self.sk = self.sk[1:] self.yk = self.yk[1:] self.rhok = self.rhok[1:] else: l += 1 self.sk = index_update(self.sk, index[l, :, :], sk) self.yk = index_update(self.yk, index[l, :, :], yk) self.rhok = index_update(self.rhok, l, rhok) for i in range(l): self.sk = index_update(self.sk, index[i, :, :], self.man.vector_transport(x, alpha*d, self.sk[i])) self.yk = index_update(self.yk, index[i, :, :], self.man.vector_transport(x, alpha*d, self.yk[i])) if self._parms.verbosity >= 2: print('\talpha: {}'.format(alpha)) print('\tgamma: {}'.format(gamma)) print('\ta / b: {}'.format(a / b)) x = newx f0 = newf gr = newgr grnorm = newgrnorm k += 1 if l > 0: d = self._compute_descent_direction(l, x, gr, gamma) else: d = - gr df0 = self.man.inner(x, d, gr) if self._parms.logverbosity: logs = logs._replace( fun=jnp.append(logs.fun, f0), x=logs.x + [x], grnorm=jnp.append(logs.grnorm, grnorm), fev=jnp.append(logs.fev, self._costev), gev=jnp.append(logs.gev, self._gradev), it=jnp.append(logs.it, k), stepsize=jnp.append(logs.stepsize, stepsize), time=jnp.append(logs.time, time.time() - t_start) ) result = OptimizerResult( name=self.__name__, success=True if status == 0 else False, status=status, message=msg, x=x, fun=f0, gr=gr, grnorm=grnorm, nfev=self._costev, ngev=self._gradev, nit=k, stepsize=stepsize, time=(time.time() - t_start) ) if self._parms.verbosity >= 1: result.pprint() if self._parms.logverbosity: return result, logs return result
py
1a524c2a099f89355cb96968bf3c2974c8f94093
import cv2 from flask import Flask from scipy.spatial import distance from extract_car import extract_car from extract_parking import extract_parking from extract_rectangle import extract_rectangle app = Flask(__name__) def find_parking(show_output): cap = cv2.VideoCapture("http://10.200.9.248:8080/video/mjpeg") accumulator_free = [] accumulator_occupied = [] global available_parking while(True): ret, frame = cap.read() height, width = frame.shape[:2] frame = frame[0:height, 0:2*(width//3)] frame_copy = frame.copy() res = extract_parking(frame) res, positions_free = extract_rectangle(frame, res) res, positions_occupied = extract_car(frame, res) for acc_free in accumulator_free: acc_free[1] -= 1 for pos_free in positions_free: pos_found = False for acc_free in accumulator_free: dist = distance.euclidean(pos_free, acc_free[0]) if dist < 10: acc_free[1] += 2 pos_found = True break if not pos_found: accumulator_free.append([pos_free, 1, False, 'f']) i = 0 while i < len(accumulator_free): if accumulator_free[i][1] >= 5: accumulator_free[i][1] = 5 accumulator_free[i][2] = True elif accumulator_free[i][1] == 0: accumulator_free.pop(i) continue i += 1 total_spots = 0 for acc_free in accumulator_free: if acc_free[2]: cv2.circle(frame_copy, acc_free[0], 30, (0, 200, 0), -1) total_spots += 1 ####### for acc_free in accumulator_occupied: acc_free[1] -= 1 for pos_free in positions_occupied: pos_found = False for acc_free in accumulator_occupied: dist = distance.euclidean(pos_free, acc_free[0]) if dist < 10: acc_free[1] += 2 pos_found = True break if not pos_found: accumulator_occupied.append([pos_free, 1, False, 'o']) i = 0 while i < len(accumulator_occupied): if accumulator_occupied[i][1] >= 5: accumulator_occupied[i][1] = 5 accumulator_occupied[i][2] = True elif accumulator_occupied[i][1] == 0: accumulator_occupied.pop(i) continue i += 1 for acc_free in accumulator_occupied: if acc_free[2]: cv2.circle(frame_copy, acc_free[0], 30, (0, 0, 200), -1) total_spots += 1 if show_output: cv2.imshow('frame', frame_copy) if total_spots == 3: merged_list = accumulator_free + accumulator_occupied spots = sorted(merged_list, key=lambda acc: acc[0][1]) spots = sorted(spots, key=lambda acc: acc[0][0]) available_parking = [] for s in range(len(spots)): if spots[s][-1] == 'f': available_parking.append(s) # print(available_parking) if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() if show_output: cv2.destroyAllWindows() @app.route('/') def main(): """Say hello""" global available_parking print(available_parking) return "Hello World: %s" % str(available_parking) @app.route('/initialize') def initialize(): global available_parking find_parking(False) if __name__ == '__main__': app.run(threaded=True)
py
1a524cbdac517f66b1d961af486db31baea31542
#!/usr/bin/env python -O """ This is the test class for testing Carbon Film resistor module algorithms and models. """ # -*- coding: utf-8 -*- # # tests.unit.TestFilm.py is part of The RTK Project # # All rights reserved. import sys from os.path import dirname sys.path.insert(0, dirname(dirname(dirname(__file__))) + "/rtk", ) import unittest from nose.plugins.attrib import attr from hardware.component.resistor.fixed.Film import * from hardware.component.resistor.variable.Film import * __author__ = 'Andrew Rowland' __email__ = '[email protected]' __organization__ = 'ReliaQual Associates, LLC' __copyright__ = 'Copyright 2015 Andrew "Weibullguy" Rowland' class TestFilmModel(unittest.TestCase): """ Class for testing the Carbon Film resistor data model class. """ def setUp(self): """ Setup the test fixture for the Carbon Film resistor class. """ self.DUT = Film() @attr(all=True, unit=True) def test_create(self): """ (TestCarbonFilm) __init__ should return a Carbon Film resistor model """ self.assertTrue(isinstance(self.DUT, Film)) # Verify Hardware class was properly initialized. self.assertEqual(self.DUT.revision_id, None) self.assertEqual(self.DUT.category_id, 0) # Verify Resistor class was properly initialized. self.assertEqual(self.DUT.quality, 0) # Verify the Carbon Film resistor class was properly # initialized. self.assertEqual(self.DUT._lst_piR, [1.0, 1.1, 1.6, 2.5]) self.assertEqual(self.DUT._lst_piE, [1.0, 2.0, 8.0, 4.0, 14.0, 4.0, 8.0, 10.0, 18.0, 19.0, 0.2, 10.0, 28.0, 510.0]) self.assertEqual(self.DUT._lst_piQ_count, [0.03, 0.1, 0.3, 1.0, 3.0, 10.0]) self.assertEqual(self.DUT._lst_piQ_stress, [0.03, 0.1, 0.3, 1.0, 5.0, 5.0, 15.0]) self.assertEqual(self.DUT._lambdab_count, [[0.0012, 0.0027, 0.011, 0.0054, 0.020, 0.0063, 0.013, 0.018, 0.033, 0.030, 0.00025, 0.014, 0.044, 0.69], [0.0012, 0.0027, 0.011, 0.0054, 0.020, 0.0063, 0.013, 0.018, 0.033, 0.030, 0.00025, 0.014, 0.044, 0.69], [0.0014, 0.0031, 0.013, 0.0061, 0.023, 0.0072, 0.014, 0.021, 0.038, 0.034, 0.00028, 0.016, 0.050, 0.78], [0.0014, 0.0031, 0.013, 0.0061, 0.023, 0.0072, 0.014, 0.021, 0.038, 0.034, 0.00028, 0.016, 0.050, 0.78]]) self.assertEqual(self.DUT.subcategory, 26) self.assertEqual(self.DUT.specification, 0) @attr(all=True, unit=True) def test_set_attributes(self): """ (TestCarbonFilm) set_attributes should return a 0 error code on success """ _values = (0, 32, 'Alt Part #', 'Attachments', 'CAGE Code', 'Comp Ref Des', 0.0, 0.0, 0.0, 'Description', 100.0, 0, 0, 'Figure #', 50.0, 'LCN', 1, 0, 10.0, 'Name', 'NSN', 0, 'Page #', 0, 0, 'Part #', 1, 'Ref Des', 1.0, 0, 'Remarks', 0.0, 'Spec #', 0, 30.0, 30.0, 0.0, 2014, 1.0, 155.0, -25.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1, 0.0, '', 0.0, 0.0, 0.0, 1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0, 0, 0, 1, 0.0, 0, 0, 0.0, 30.0, 0.0, 358.0, 1.0, 125.0, 0.01, 2.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3, 1) (_error_code, _error_msg) = self.DUT.set_attributes(_values) self.assertEqual(_error_code, 0) self.assertEqual(self.DUT.specification, 1) @attr(all=True, unit=True) def test_get_attributes(self): """ (TestResistor) get_attributes should return a tuple of attribute values """ _values = (None, None, '', '', '', '', 0.0, 0.0, 0.0, '', 100.0, 0, 0, '', 50.0, '', 1, 0, 10.0, '', '', 0, '', 0, 0, '', 1, '', 1.0, 0, '', 0.0, '', 0, 30.0, 30.0, 0.0, 2014, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1, 0.0, {}, 0.0, 0.0, 0.0, 1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0, 0, 0, 0.0, 30.0, 0.0, 30.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, '', 0) self.assertEqual(self.DUT.get_attributes(), _values) @attr(all=True, unit=True) def test_calculate_217_count(self): """ (TestCarbonFilm) calculate_part should return False on success when calculating MIL-HDBK-217F parts count results """ self.DUT.quality = 1 self.DUT.environment_active = 5 self.DUT.hazard_rate_type = 1 self.DUT.specification = 2 self.assertFalse(self.DUT.calculate_part()) self.assertEqual(self.DUT.hazard_rate_model['equation'], 'lambdab * piQ') self.assertEqual(self.DUT.hazard_rate_model['lambdab'], 0.02) self.assertEqual(self.DUT.hazard_rate_model['piQ'], 0.03) self.assertAlmostEqual(self.DUT.hazard_rate_active, 6.0E-10) @attr(all=True, unit=True) def test_calculate_217_stress_insulated(self): """ (TestCarbonFilm) calculate_part should return False on success when calculating MIL-HDBK-217F stress results for insulated resistors """ self.DUT.environment_active = 2 self.DUT.hazard_rate_type = 2 self.DUT.quality = 1 self.DUT.temperature_active = 30.0 self.DUT.operating_power = 0.113 self.DUT.rated_power = 0.25 self.DUT.resistance = 1.0E4 self.DUT.specification = 1 self.assertFalse(self.DUT.calculate_part()) self.assertEqual(self.DUT.hazard_rate_model['equation'], 'lambdab * piR * piQ * piE') self.assertAlmostEqual(self.DUT.hazard_rate_model['lambdab'], 0.001069402) self.assertEqual(self.DUT.hazard_rate_model['piR'], 1.0) self.assertEqual(self.DUT.hazard_rate_model['piQ'], 0.03) self.assertEqual(self.DUT.hazard_rate_model['piE'], 2.0) self.assertAlmostEqual(self.DUT.hazard_rate_active, 6.4164103E-11) @attr(all=True, unit=True) def test_calculate_217_stress_non_insulated(self): """ (TestCarbonFilm) calculate_part should return False on success when calculating MIL-HDBK-217F stress results for non-insulated resistors """ self.DUT.environment_active = 2 self.DUT.hazard_rate_type = 2 self.DUT.quality = 1 self.DUT.operating_power = 0.113 self.DUT.rated_power = 0.25 self.DUT.resistance = 3.3E5 self.DUT.specification = 3 self.assertFalse(self.DUT.calculate_part()) self.assertEqual(self.DUT.hazard_rate_model['equation'], 'lambdab * piR * piQ * piE') self.assertAlmostEqual(self.DUT.hazard_rate_model['lambdab'], 0.001818069) self.assertEqual(self.DUT.hazard_rate_model['piR'], 1.1) self.assertEqual(self.DUT.hazard_rate_model['piQ'], 0.03) self.assertEqual(self.DUT.hazard_rate_model['piE'], 2.0) self.assertAlmostEqual(self.DUT.hazard_rate_active, 1.19992554E-10) @attr(all=True, unit=True) def test_calculate_217_stress_mid_resistance(self): """ (TestCarbonFilm) calculate_part should return False on success when calculating MIL-HDBK-217F stress results with mid-range resistance """ self.DUT.environment_active = 2 self.DUT.hazard_rate_type = 2 self.DUT.quality = 1 self.DUT.operating_power = 0.113 self.DUT.rated_power = 0.25 self.DUT.resistance = 3.3E6 self.DUT.specification = 3 self.assertFalse(self.DUT.calculate_part()) self.assertEqual(self.DUT.hazard_rate_model['equation'], 'lambdab * piR * piQ * piE') self.assertAlmostEqual(self.DUT.hazard_rate_model['lambdab'], 0.001818069) self.assertEqual(self.DUT.hazard_rate_model['piR'], 1.6) self.assertEqual(self.DUT.hazard_rate_model['piQ'], 0.03) self.assertEqual(self.DUT.hazard_rate_model['piE'], 2.0) self.assertAlmostEqual(self.DUT.hazard_rate_active, 1.74534624E-10) @attr(all=True, unit=True) def test_calculate_217_stress_high_resistance(self): """ (TestCarbonFilm) calculate_part should return False on success when calculating MIL-HDBK-217F stress results with high resistance """ self.DUT.environment_active = 2 self.DUT.hazard_rate_type = 2 self.DUT.quality = 1 self.DUT.operating_power = 0.113 self.DUT.rated_power = 0.25 self.DUT.resistance = 3.3E7 self.DUT.specification = 1 self.assertFalse(self.DUT.calculate_part()) self.assertEqual(self.DUT.hazard_rate_model['equation'], 'lambdab * piR * piQ * piE') self.assertAlmostEqual(self.DUT.hazard_rate_model['lambdab'], 0.001069402) self.assertEqual(self.DUT.hazard_rate_model['piR'], 2.5) self.assertEqual(self.DUT.hazard_rate_model['piQ'], 0.03) self.assertEqual(self.DUT.hazard_rate_model['piE'], 2.0) self.assertAlmostEqual(self.DUT.hazard_rate_active, 1.604103E-10) @attr(all=True, unit=True) def test_calculate_217_stress_overflow(self): """ (TestCarbonFilm) calculate_part should return True when an OverflowError is raised when calculating MIL-HDBK-217F stress results """ self.DUT.environment_active = 2 self.DUT.hazard_rate_type = 2 self.DUT.quality = 1 self.DUT.operating_power = 1130.0 self.DUT.rated_power = 0.25 self.DUT.resistance = 1.1E4 self.assertTrue(self.DUT.calculate_part()) class TestFilmPowerPowerModel(unittest.TestCase): """ Class for testing the Carbon Film Power resistor data model class. """ def setUp(self): """ Setup the test fixture for the Carbon Film Power resistor class. """ self.DUT = FilmPower() @attr(all=True, unit=True) def test_create(self): """ (TestCarbonFilmPower) __init__ should return a Carbon Film Power resistor model """ self.assertTrue(isinstance(self.DUT, FilmPower)) # Verify Hardware class was properly initialized. self.assertEqual(self.DUT.revision_id, None) self.assertEqual(self.DUT.category_id, 0) # Verify Resistor class was properly initialized. self.assertEqual(self.DUT.quality, 0) # Verify the Carbon Film Power resistor class was properly # initialized. self.assertEqual(self.DUT._lst_piR, [1.0, 1.2, 1.3, 3.5]) self.assertEqual(self.DUT._lst_piE, [1.0, 2.0, 10.0, 5.0, 17.0, 6.0, 8.0, 14.0, 18.0, 25.0, 0.5, 14.0, 36.0, 660.0]) self.assertEqual(self.DUT._lst_piQ_count, [0.03, 0.1, 0.3, 1.0, 3.0, 10.0]) self.assertEqual(self.DUT._lst_piQ_stress, [1.0, 3.0]) self.assertEqual(self.DUT._lst_lambdab_count, [0.012, 0.025, 0.13, 0.062, 0.21, 0.078, 0.10, 0.19, 0.24, 0.32, 0.0060, 0.18, 0.47, 8.2]) self.assertEqual(self.DUT.subcategory, 27) @attr(all=True, unit=True) def test_calculate_217_count(self): """ (TestCarbonFilmPower) calculate_part should return False on success when calculating MIL-HDBK-217F parts count results """ self.DUT.quality = 1 self.DUT.environment_active = 5 self.DUT.hazard_rate_type = 1 self.DUT.specification = 2 self.assertFalse(self.DUT.calculate_part()) self.assertEqual(self.DUT.hazard_rate_model['equation'], 'lambdab * piQ') self.assertEqual(self.DUT.hazard_rate_model['lambdab'], 0.21) self.assertEqual(self.DUT.hazard_rate_model['piQ'], 0.03) self.assertAlmostEqual(self.DUT.hazard_rate_active, 6.3E-9) @attr(all=True, unit=True) def test_calculate_217_stress_low_resistance(self): """ (TestCarbonFilmPower) calculate_part should return False on success when calculating MIL-HDBK-217F stress results with low resistance range """ self.DUT.environment_active = 2 self.DUT.hazard_rate_type = 2 self.DUT.quality = 1 self.DUT.temperature_active = 30.0 self.DUT.operating_power = 0.113 self.DUT.rated_power = 0.25 self.DUT.resistance = 33.0 self.assertFalse(self.DUT.calculate_part()) self.assertEqual(self.DUT.hazard_rate_model['equation'], 'lambdab * piR * piQ * piE') self.assertAlmostEqual(self.DUT.hazard_rate_model['lambdab'], 0.01274247) self.assertEqual(self.DUT.hazard_rate_model['piR'], 1.0) self.assertEqual(self.DUT.hazard_rate_model['piQ'], 1.0) self.assertEqual(self.DUT.hazard_rate_model['piE'], 2.0) self.assertAlmostEqual(self.DUT.hazard_rate_active, 2.548494E-8) @attr(all=True, unit=True) def test_calculate_217_stress_mid1_resistance(self): """ (TestCarbonFilmPower) calculate_part should return False on success when calculating MIL-HDBK-217F stress results with mid-range resistance """ self.DUT.environment_active = 2 self.DUT.hazard_rate_type = 2 self.DUT.quality = 1 self.DUT.operating_power = 0.113 self.DUT.rated_power = 0.25 self.DUT.resistance = 3300.0 self.assertFalse(self.DUT.calculate_part()) self.assertEqual(self.DUT.hazard_rate_model['equation'], 'lambdab * piR * piQ * piE') self.assertAlmostEqual(self.DUT.hazard_rate_model['lambdab'], 0.01274247) self.assertEqual(self.DUT.hazard_rate_model['piR'], 1.2) self.assertEqual(self.DUT.hazard_rate_model['piQ'], 1.0) self.assertEqual(self.DUT.hazard_rate_model['piE'], 2.0) self.assertAlmostEqual(self.DUT.hazard_rate_active, 3.0581928E-08) @attr(all=True, unit=True) def test_calculate_217_stress_mid2_resistance(self): """ (TestCarbonFilmPower) calculate_part should return False on success when calculating MIL-HDBK-217F stress results with mid-range resistance """ self.DUT.environment_active = 2 self.DUT.hazard_rate_type = 2 self.DUT.quality = 1 self.DUT.operating_power = 0.113 self.DUT.rated_power = 0.25 self.DUT.resistance = 3.3E5 self.assertFalse(self.DUT.calculate_part()) self.assertEqual(self.DUT.hazard_rate_model['equation'], 'lambdab * piR * piQ * piE') self.assertAlmostEqual(self.DUT.hazard_rate_model['lambdab'], 0.01274247) self.assertEqual(self.DUT.hazard_rate_model['piR'], 1.3) self.assertEqual(self.DUT.hazard_rate_model['piQ'], 1.0) self.assertEqual(self.DUT.hazard_rate_model['piE'], 2.0) self.assertAlmostEqual(self.DUT.hazard_rate_active, 3.3130422E-08) @attr(all=True, unit=True) def test_calculate_217_stress_high_resistance(self): """ (TestCarbonFilmPower) calculate_part should return False on success when calculating MIL-HDBK-217F stress results with high resistance """ self.DUT.environment_active = 2 self.DUT.hazard_rate_type = 2 self.DUT.quality = 1 self.DUT.operating_power = 0.113 self.DUT.rated_power = 0.25 self.DUT.resistance = 3.3E7 self.assertFalse(self.DUT.calculate_part()) self.assertEqual(self.DUT.hazard_rate_model['equation'], 'lambdab * piR * piQ * piE') self.assertAlmostEqual(self.DUT.hazard_rate_model['lambdab'], 0.01274247) self.assertEqual(self.DUT.hazard_rate_model['piR'], 3.5) self.assertEqual(self.DUT.hazard_rate_model['piQ'], 1.0) self.assertEqual(self.DUT.hazard_rate_model['piE'], 2.0) self.assertAlmostEqual(self.DUT.hazard_rate_active, 8.919729E-08) @attr(all=True, unit=True) def test_calculate_217_stress_overflow(self): """ (TestCarbonFilmPower) calculate_part should return True when an OverflowError is raised when calculating MIL-HDBK-217F stress results """ self.DUT.environment_active = 2 self.DUT.hazard_rate_type = 2 self.DUT.quality = 1 self.DUT.operating_power = 1130.0 self.DUT.rated_power = 0.25 self.DUT.resistance = 1.1E4 self.assertTrue(self.DUT.calculate_part()) class TestFilmNetworkModel(unittest.TestCase): """ Class for testing the Carbon Film Network resistor data model class. """ def setUp(self): """ Setup the test fixture for the Carbon Film Network resistor class. """ self.DUT = FilmNetwork() @attr(all=True, unit=True) def test_create(self): """ (TestCarbonFilmNetwork) __init__ should return a Carbon Film Network resistor model """ self.assertTrue(isinstance(self.DUT, FilmNetwork)) # Verify Hardware class was properly initialized. self.assertEqual(self.DUT.revision_id, None) self.assertEqual(self.DUT.category_id, 0) # Verify Resistor class was properly initialized. self.assertEqual(self.DUT.quality, 0) # Verify the Carbon FilmNetwork resistor class was properly # initialized. self.assertEqual(self.DUT._lst_piE, [1.0, 2.0, 10.0, 5.0, 17.0, 6.0, 8.0, 14.0, 18.0, 25.0, 0.5, 14.0, 36.0, 660.0]) self.assertEqual(self.DUT._lst_piQ_count, [0.03, 0.1, 0.3, 1.0, 3.0, 10.0]) self.assertEqual(self.DUT._lst_piQ_stress, [1.0, 3.0]) self.assertEqual(self.DUT._lst_lambdab_count, [0.0023, 0.0066, 0.031, 0.013, 0.055, 0.022, 0.043, 0.077, 0.15, 0.10, 0.0011, 0.055, 0.15, 1.7]) self.assertEqual(self.DUT.subcategory, 28) self.assertEqual(self.DUT.n_resistors, 1) self.assertEqual(self.DUT.piT, 0.0) self.assertEqual(self.DUT.piNR, 0.0) @attr(all=True, unit=True) def test_set_attributes(self): """ (TestCarbonFilmNetwork) set_attributes should return a 0 error code on success """ _values = (0, 32, 'Alt Part #', 'Attachments', 'CAGE Code', 'Comp Ref Des', 0.0, 0.0, 0.0, 'Description', 100.0, 0, 0, 'Figure #', 50.0, 'LCN', 1, 0, 10.0, 'Name', 'NSN', 0, 'Page #', 0, 0, 'Part #', 1, 'Ref Des', 1.0, 0, 'Remarks', 0.0, 'Spec #', 0, 30.0, 30.0, 0.0, 2014, 1.0, 155.0, -25.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1, 0.0, '', 0.0, 0.0, 0.0, 1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0, 0, 0, 1, 0.0, 0, 0, 0.0, 30.0, 0.0, 358.0, 1.0, 125.0, 0.01, 2.0, 1.0, 1.0, 0.1, 8.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3, 8) (_error_code, _error_msg) = self.DUT.set_attributes(_values) self.assertEqual(_error_code, 0) self.assertEqual(self.DUT.n_resistors, 8) self.assertEqual(self.DUT.piT, 0.1) self.assertEqual(self.DUT.piNR, 8.0) @attr(all=True, unit=True) def test_set_attributes_missing_index(self): """ (TestCarbonFilmNetwork) set_attributes should return a 40 error code with missing inputs """ _values = (0, 32, 'Alt Part #', 'Attachments', 'CAGE Code', 'Comp Ref Des', 0.0, 0.0, 0.0, 'Description', 100.0, 0, 0, 'Figure #', 50.0, 'LCN', 1, 0, 10.0, 'Name', 'NSN', 0, 'Page #', 0, 0, 'Part #', 1, 'Ref Des', 1.0, 0, 'Remarks', 0.0, 'Spec #', 0, 30.0, 30.0, 0.0, 2014, 1.0, 155.0, -25.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1, 0.0, '', 0.0, 0.0, 0.0, 1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0, 0, 0, 1, 0.0, 0, 0, 0.0, 30.0, 0.0, 358.0, 1.0, 125.0, 0.01, 2.0, 1.0, 1.0, 0.1, 8.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3) (_error_code, _error_msg) = self.DUT.set_attributes(_values) self.assertEqual(_error_code, 40) @attr(all=True, unit=True) def test_set_attributes_wrong_type(self): """ (TestCarbonFilmNetwork) set_attributes should return a 10 error code with a wrong data type """ _values = (0, 32, 'Alt Part #', 'Attachments', 'CAGE Code', 'Comp Ref Des', 0.0, 0.0, 0.0, 'Description', 100.0, 0, 0, 'Figure #', 50.0, 'LCN', 1, 0, 10.0, 'Name', 'NSN', 0, 'Page #', 0, 0, 'Part #', 1, 'Ref Des', 1.0, 0, 'Remarks', 0.0, 'Spec #', 0, 30.0, 30.0, 0.0, 2014, 1.0, 155.0, -25.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1, 0.0, '', 0.0, 0.0, 0.0, 1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0, 0, 0, 1, 0.0, 0, 0, 0.0, 30.0, 0.0, 358.0, 1.0, 125.0, 0.01, 2.0, 1.0, 1.0, 0.1, 8.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3, '') (_error_code, _error_msg) = self.DUT.set_attributes(_values) self.assertEqual(_error_code, 10) @attr(all=True, unit=True) def test_get_attributes(self): """ (TestCarbonFilmNetwork) get_attributes should return a tuple of attribute values """ _values = (None, None, '', '', '', '', 0.0, 0.0, 0.0, '', 100.0, 0, 0, '', 50.0, '', 1, 0, 10.0, '', '', 0, '', 0, 0, '', 1, '', 1.0, 0, '', 0.0, '', 0, 30.0, 30.0, 0.0, 2014, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1, 0.0, {}, 0.0, 0.0, 0.0, 1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0, 0, 0, 0.0, 30.0, 0.0, 30.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, '', 1, 0.0, 0.0) self.assertEqual(self.DUT.get_attributes(), _values) @attr(all=True, unit=True) def test_calculate_217_count(self): """ (TestCarbonFilmNetwork) calculate_part should return False on success when calculating MIL-HDBK-217F parts count results """ self.DUT.quality = 1 self.DUT.environment_active = 5 self.DUT.hazard_rate_type = 1 self.assertFalse(self.DUT.calculate_part()) self.assertEqual(self.DUT.hazard_rate_model['equation'], 'lambdab * piQ') self.assertEqual(self.DUT.hazard_rate_model['lambdab'], 0.055) self.assertEqual(self.DUT.hazard_rate_model['piQ'], 0.03) self.assertAlmostEqual(self.DUT.hazard_rate_active, 1.65E-09) @attr(all=True, unit=True) def test_calculate_217_stress_case_temp_known(self): """ (TestCarbonFilmNetwork) calculate_part should return False on success when calculating MIL-HDBK-217F stress results with case temperature known """ self.DUT.environment_active = 2 self.DUT.hazard_rate_type = 2 self.DUT.quality = 1 self.DUT.temperature_active = 30.0 self.DUT.junction_temperature = 30.0 self.DUT.operating_power = 0.113 self.DUT.rated_power = 0.25 self.DUT.n_resistors = 8 self.assertFalse(self.DUT.calculate_part()) self.assertEqual(self.DUT.hazard_rate_model['equation'], 'lambdab * piT * piNR * piQ * piE') self.assertAlmostEqual(self.DUT.hazard_rate_model['lambdab'], 0.00006) self.assertAlmostEqual(self.DUT.hazard_rate_model['piT'], 1.2518214) self.assertEqual(self.DUT.hazard_rate_model['piNR'], 8.0) self.assertEqual(self.DUT.hazard_rate_model['piQ'], 1.0) self.assertEqual(self.DUT.hazard_rate_model['piE'], 2.0) self.assertAlmostEqual(self.DUT.hazard_rate_active, 1.2017485E-09) @attr(all=True, unit=True) def test_calculate_217_stress_case_temp_unknown(self): """ (TestCarbonFilmNetwork) calculate_part should return False on success when calculating MIL-HDBK-217F stress results with case temperature unknown """ self.DUT.environment_active = 2 self.DUT.hazard_rate_type = 2 self.DUT.quality = 1 self.DUT.temperature_active = 30.0 self.DUT.junction_temperature = 0.0 self.DUT.operating_power = 0.113 self.DUT.rated_power = 0.25 self.DUT.n_resistors = 8 self.assertFalse(self.DUT.calculate_part()) self.assertEqual(self.DUT.hazard_rate_model['equation'], 'lambdab * piT * piNR * piQ * piE') self.assertAlmostEqual(self.DUT.hazard_rate_model['lambdab'], 0.00006) self.assertAlmostEqual(self.DUT.hazard_rate_model['piT'], 3.4542461) self.assertEqual(self.DUT.hazard_rate_model['piNR'], 8.0) self.assertEqual(self.DUT.hazard_rate_model['piQ'], 1.0) self.assertEqual(self.DUT.hazard_rate_model['piE'], 2.0) self.assertAlmostEqual(self.DUT.hazard_rate_active, 3.3160763E-09) class TestVarFilmModel(unittest.TestCase): """ Class for testing the VarFilm Variable resistor data model class. """ def setUp(self): """ Setup the test fixture for the VarFilm Variable resistor class. """ self.DUT = VarFilm() @attr(all=True, unit=True) def test_create(self): """ (TestVarFilm) __init__ should return a VarFilm Variable resistor model """ self.assertTrue(isinstance(self.DUT, VarFilm)) # Verify Hardware class was properly initialized. self.assertEqual(self.DUT.revision_id, None) self.assertEqual(self.DUT.category_id, 0) # Verify Resistor class was properly initialized. self.assertEqual(self.DUT.quality, 0) # Verify the VarFilm resistor class was properly # initialized. self.assertEqual(self.DUT._lst_piE, [1.0, 3.0, 14.0, 7.0, 24.0, 6.0, 12.0, 20.0, 30.0, 39.0, 0.5, 22.0, 57.0, 1000.0]) self.assertEqual(self.DUT._lst_piQ_count, [0.03, 0.1, 0.3, 1.0, 3.0, 10.0]) self.assertEqual(self.DUT._lst_piQ_stress, [2.0, 4.0]) self.assertEqual(self.DUT._lst_lambdab_count, [0.048, 0.16, 0.76, 0.36, 1.3, 0.36, 0.72, 1.4, 2.2, 2.3, 0.024, 1.2, 3.4, 52.0]) self.assertEqual(self.DUT.subcategory, 39) self.assertEqual(self.DUT.n_taps, 3) self.assertEqual(self.DUT.specification, 0) self.assertEqual(self.DUT.piTAPS, 0.0) self.assertEqual(self.DUT.piV, 0.0) @attr(all=True, unit=True) def test_set_attributes(self): """ (TestVarFilm) set_attributes should return a 0 error code on success """ _values = (0, 32, 'Alt Part #', 'Attachments', 'CAGE Code', 'Comp Ref Des', 0.0, 0.0, 0.0, 'Description', 100.0, 0, 0, 'Figure #', 50.0, 'LCN', 1, 0, 10.0, 'Name', 'NSN', 0, 'Page #', 0, 0, 'Part #', 1, 'Ref Des', 1.0, 0, 'Remarks', 0.0, 'Spec #', 0, 30.0, 30.0, 0.0, 2014, 1.0, 155.0, -25.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1, 0.0, '', 0.0, 0.0, 0.0, 1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0, 0, 0, 1, 0.0, 0, 0, 0.0, 30.0, 0.0, 358.0, 1.0, 125.0, 0.01, 2.0, 1.0, 1.0, 0.1, 8.0, 0.75, 0.3, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3, 5, 1) (_error_code, _error_msg) = self.DUT.set_attributes(_values) self.assertEqual(_error_code, 0) self.assertEqual(self.DUT.n_taps, 5) self.assertEqual(self.DUT.specification, 1) self.assertEqual(self.DUT.piTAPS, 0.75) self.assertEqual(self.DUT.piV, 0.3) @attr(all=True, unit=True) def test_set_attributes_missing_index(self): """ (TestVarFilm) set_attributes should return a 40 error code with missing inputs """ _values = (0, 32, 'Alt Part #', 'Attachments', 'CAGE Code', 'Comp Ref Des', 0.0, 0.0, 0.0, 'Description', 100.0, 0, 0, 'Figure #', 50.0, 'LCN', 1, 0, 10.0, 'Name', 'NSN', 0, 'Page #', 0, 0, 'Part #', 1, 'Ref Des', 1.0, 0, 'Remarks', 0.0, 'Spec #', 0, 30.0, 30.0, 0.0, 2014, 1.0, 155.0, -25.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1, 0.0, '', 0.0, 0.0, 0.0, 1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0, 0, 0, 1, 0.0, 0, 0, 0.0, 30.0, 0.0, 358.0, 1.0, 125.0, 0.01, 2.0, 1.0, 1.0, 0.1, 8.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3) (_error_code, _error_msg) = self.DUT.set_attributes(_values) self.assertEqual(_error_code, 40) @attr(all=True, unit=True) def test_set_attributes_wrong_type(self): """ (TestVarFilm) set_attributes should return a 10 error code with a wrong data type """ _values = (0, 32, 'Alt Part #', 'Attachments', 'CAGE Code', 'Comp Ref Des', 0.0, 0.0, 0.0, 'Description', 100.0, 0, 0, 'Figure #', 50.0, 'LCN', 1, 0, 10.0, 'Name', 'NSN', 0, 'Page #', 0, 0, 'Part #', 1, 'Ref Des', 1.0, 0, 'Remarks', 0.0, 'Spec #', 0, 30.0, 30.0, 0.0, 2014, 1.0, 155.0, -25.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1, 0.0, '', 0.0, 0.0, 0.0, 1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0, 0, 0, 1, 0.0, 0, 0, 0.0, 30.0, 0.0, 358.0, 1.0, 125.0, 0.01, 2.0, 1.0, 1.0, 0.1, 8.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3, 5, '') (_error_code, _error_msg) = self.DUT.set_attributes(_values) self.assertEqual(_error_code, 10) @attr(all=True, unit=True) def test_get_attributes(self): """ (TestVarFilm) get_attributes should return a tuple of attribute values """ _values = (None, None, '', '', '', '', 0.0, 0.0, 0.0, '', 100.0, 0, 0, '', 50.0, '', 1, 0, 10.0, '', '', 0, '', 0, 0, '', 1, '', 1.0, 0, '', 0.0, '', 0, 30.0, 30.0, 0.0, 2014, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1, 0.0, {}, 0.0, 0.0, 0.0, 1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0, 0, 0, 0.0, 30.0, 0.0, 30.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, '', 3, 0, 0.0, 0.0) self.assertEqual(self.DUT.get_attributes(), _values) @attr(all=True, unit=True) def test_calculate_217_count(self): """ (TestVarFilm) calculate_part should return False on success when calculating MIL-HDBK-217F parts count results """ self.DUT.quality = 1 self.DUT.environment_active = 5 self.DUT.hazard_rate_type = 1 self.assertFalse(self.DUT.calculate_part()) self.assertEqual(self.DUT.hazard_rate_model['equation'], 'lambdab * piQ') self.assertEqual(self.DUT.hazard_rate_model['lambdab'], 1.3) self.assertEqual(self.DUT.hazard_rate_model['piQ'], 0.03) self.assertAlmostEqual(self.DUT.hazard_rate_active, 3.9E-08) @attr(all=True, unit=True) def test_calculate_217_stress_low_resistance(self): """ (TestVarFilm) calculate_part should return False on success when calculating MIL-HDBK-217F stress results for low resistances """ self.DUT.environment_active = 2 self.DUT.hazard_rate_type = 2 self.DUT.quality = 1 self.DUT.temperature_active = 30.0 self.DUT.operating_power = 0.075 self.DUT.rated_power = 0.25 self.DUT.rated_voltage = 200.0 self.DUT.resistance = 3.3E3 self.DUT.n_taps = 5 self.DUT.specification = 1 self.assertFalse(self.DUT.calculate_part()) self.assertEqual(self.DUT.hazard_rate_model['equation'], 'lambdab * piTAPS * piR * piV * piQ * piE') self.assertAlmostEqual(self.DUT.hazard_rate_model['lambdab'], 0.03185164) self.assertAlmostEqual(self.DUT.hazard_rate_model['piTAPS'], 1.2392136) self.assertEqual(self.DUT.hazard_rate_model['piR'], 1.0) self.assertEqual(self.DUT.hazard_rate_model['piV'], 1.0) self.assertEqual(self.DUT.hazard_rate_model['piQ'], 2.0) self.assertEqual(self.DUT.hazard_rate_model['piE'], 3.0) self.assertAlmostEqual(self.DUT.hazard_rate_active, 2.3682591E-07) @attr(all=True, unit=True) def test_calculate_217_stress_mid1_resistance(self): """ (TestVarFilm) calculate_part should return False on success when calculating MIL-HDBK-217F stress results for mid-range resistances """ self.DUT.environment_active = 2 self.DUT.hazard_rate_type = 2 self.DUT.quality = 1 self.DUT.operating_power = 0.075 self.DUT.rated_power = 0.25 self.DUT.rated_voltage = 200.0 self.DUT.resistance = 1.3E5 self.DUT.n_taps = 5 self.DUT.specification = 1 self.assertFalse(self.DUT.calculate_part()) self.assertEqual(self.DUT.hazard_rate_model['equation'], 'lambdab * piTAPS * piR * piV * piQ * piE') self.assertAlmostEqual(self.DUT.hazard_rate_model['lambdab'], 0.03185164) self.assertAlmostEqual(self.DUT.hazard_rate_model['piTAPS'], 1.2392136) self.assertEqual(self.DUT.hazard_rate_model['piR'], 1.2) self.assertEqual(self.DUT.hazard_rate_model['piV'], 1.0) self.assertEqual(self.DUT.hazard_rate_model['piQ'], 2.0) self.assertEqual(self.DUT.hazard_rate_model['piE'], 3.0) self.assertAlmostEqual(self.DUT.hazard_rate_active, 2.8419110E-07) @attr(all=True, unit=True) def test_calculate_217_stress_mid2_resistance(self): """ (TestVarFilm) calculate_part should return False on success when calculating MIL-HDBK-217F stress results with mid-range resistances """ self.DUT.environment_active = 2 self.DUT.hazard_rate_type = 2 self.DUT.quality = 1 self.DUT.operating_power = 0.075 self.DUT.rated_power = 0.25 self.DUT.rated_voltage = 200.0 self.DUT.resistance = 3.3E5 self.DUT.n_taps = 5 self.DUT.specification = 2 self.assertFalse(self.DUT.calculate_part()) self.assertEqual(self.DUT.hazard_rate_model['equation'], 'lambdab * piTAPS * piR * piV * piQ * piE') self.assertAlmostEqual(self.DUT.hazard_rate_model['lambdab'], 0.03495881) self.assertAlmostEqual(self.DUT.hazard_rate_model['piTAPS'], 1.2392136) self.assertEqual(self.DUT.hazard_rate_model['piR'], 1.4) self.assertEqual(self.DUT.hazard_rate_model['piV'], 1.0) self.assertEqual(self.DUT.hazard_rate_model['piQ'], 2.0) self.assertEqual(self.DUT.hazard_rate_model['piE'], 3.0) self.assertAlmostEqual(self.DUT.hazard_rate_active, 3.6390004E-07) @attr(all=True, unit=True) def test_calculate_217_stress_high_resistance(self): """ (TestVarFilm) calculate_part should return False on success when calculating MIL-HDBK-217F stress results with high resistance """ self.DUT.environment_active = 2 self.DUT.hazard_rate_type = 2 self.DUT.quality = 1 self.DUT.operating_power = 0.05 self.DUT.rated_power = 0.25 self.DUT.rated_voltage = 350.0 self.DUT.resistance = 1.6E6 self.DUT.n_taps = 5 self.DUT.specification = 2 self.assertFalse(self.DUT.calculate_part()) self.assertEqual(self.DUT.hazard_rate_model['equation'], 'lambdab * piTAPS * piR * piV * piQ * piE') self.assertAlmostEqual(self.DUT.hazard_rate_model['lambdab'], 0.03279464) self.assertAlmostEqual(self.DUT.hazard_rate_model['piTAPS'], 1.2392136) self.assertEqual(self.DUT.hazard_rate_model['piR'], 1.8) self.assertEqual(self.DUT.hazard_rate_model['piV'], 1.05) self.assertEqual(self.DUT.hazard_rate_model['piQ'], 2.0) self.assertEqual(self.DUT.hazard_rate_model['piE'], 3.0) self.assertAlmostEqual(self.DUT.hazard_rate_active, 4.6085265E-07) @attr(all=True, unit=True) def test_calculate_217_stress_overflow(self): """ (TestVarFilm) calculate_part should return True when an OverflowError is raised when calculating MIL-HDBK-217F stress results """ self.DUT.environment_active = 2 self.DUT.hazard_rate_type = 2 self.DUT.quality = 1 self.DUT.operating_power = 1130.0 self.DUT.rated_power = 0.25 self.DUT.resistance = 1.1E6 self.DUT.specification = 1 self.assertTrue(self.DUT.calculate_part())
bzl
1a524d3552e708df13e8b40bfe61befcbab9c285
"""Provides the repository macro to import LLVM.""" load("//third_party:repo.bzl", "tf_http_archive") def repo(name): """Imports LLVM.""" LLVM_COMMIT = "93183a41b962ce21ea168357172aaf00cdca5bd9" LLVM_SHA256 = "9f212bca2050e2cffa15aa72aa07d89e108b400d15ca541327a829e3d4108fb9" tf_http_archive( name = name, sha256 = LLVM_SHA256, strip_prefix = "llvm-project-" + LLVM_COMMIT, urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/llvm/llvm-project/archive/{commit}.tar.gz".format(commit = LLVM_COMMIT), "https://github.com/llvm/llvm-project/archive/{commit}.tar.gz".format(commit = LLVM_COMMIT), ], link_files = { "//third_party/llvm:llvm.autogenerated.BUILD": "llvm/BUILD", "//third_party/mlir:BUILD": "mlir/BUILD", "//third_party/mlir:test.BUILD": "mlir/test/BUILD", }, patch_file = "//third_party/llvm:disable_parallelism_in_verifier.patch", )
py
1a524d9a245f921fcc09416608b6ea7354d1aa2d
from six import BytesIO, StringIO, text_type, string_types from django.http import HttpResponse from django.contrib.contenttypes.models import ContentType try: from django.db.models.fields.related_descriptors import ManyToManyDescriptor except ImportError: # Django 1.8 compat hack. from django.db.models.fields.related import ( ReverseManyRelatedObjectsDescriptor as ManyToManyDescriptor ) from django.db.models import Avg, Count, Sum, Max, Min from openpyxl.workbook import Workbook from openpyxl.writer.excel import save_virtual_workbook from openpyxl.utils import get_column_letter from openpyxl.styles import Font import csv import re from collections import namedtuple from decimal import Decimal from numbers import Number from functools import reduce import datetime from .utils import ( get_relation_fields_from_model, get_properties_from_model, get_direct_fields_from_model, get_model_from_path_string, get_custom_fields_from_model, ) DisplayField = namedtuple( "DisplayField", "path path_verbose field field_verbose aggregate total group choices field_type", ) def generate_filename(title, ends_with): title = title.split('.')[0] title.replace(' ', '_') title += ('_' + datetime.datetime.now().strftime("%m%d_%H%M")) if not title.endswith(ends_with): title += ends_with return title class DataExportMixin(object): def build_sheet(self, data, ws, sheet_name='report', header=None, widths=None): first_row = 1 column_base = 1 ws.title = re.sub(r'\W+', '', sheet_name)[:30] if header: for i, header_cell in enumerate(header): cell = ws.cell(row=first_row, column=i + column_base) cell.value = header_cell cell.font = Font(bold=True) if widths: ws.column_dimensions[get_column_letter(i + 1)].width = widths[i] for row in data: for i in range(len(row)): item = row[i] # If item is a regular string if isinstance(item, str): # Change it to a unicode string try: row[i] = text_type(item) except UnicodeDecodeError: row[i] = text_type(item.decode('utf-8', 'ignore')) elif type(item) is dict: row[i] = text_type(item) try: ws.append(row) except ValueError as e: ws.append([e.message]) except: ws.append(['Unknown Error']) def build_xlsx_response(self, wb, title="report"): """ Take a workbook and return a xlsx file response """ title = generate_filename(title, '.xlsx') myfile = BytesIO() myfile.write(save_virtual_workbook(wb)) response = HttpResponse( myfile.getvalue(), content_type='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet') response['Content-Disposition'] = 'attachment; filename=%s' % title response['Content-Length'] = myfile.tell() return response def build_csv_response(self, wb, title="report"): """ Take a workbook and return a csv file response """ title = generate_filename(title, '.csv') myfile = StringIO() sh = wb.active c = csv.writer(myfile) for r in sh.rows: c.writerow([cell.value for cell in r]) response = HttpResponse( myfile.getvalue(), content_type='text/csv') response['Content-Disposition'] = 'attachment; filename=%s' % title response['Content-Length'] = myfile.tell() return response def list_to_workbook(self, data, title='report', header=None, widths=None): """ Create just a openpxl workbook from a list of data """ wb = Workbook() title = re.sub(r'\W+', '', title)[:30] if isinstance(data, dict): i = 0 for sheet_name, sheet_data in data.items(): if i > 0: wb.create_sheet() ws = wb.worksheets[i] self.build_sheet( sheet_data, ws, sheet_name=sheet_name, header=header) i += 1 else: ws = wb.worksheets[0] self.build_sheet(data, ws, header=header, widths=widths) return wb def list_to_xlsx_file(self, data, title='report', header=None, widths=None): """ Make 2D list into a xlsx response for download data can be a 2d array or a dict of 2d arrays like {'sheet_1': [['A1', 'B1']]} returns a StringIO file """ wb = self.list_to_workbook(data, title, header, widths) if not title.endswith('.xlsx'): title += '.xlsx' myfile = BytesIO() myfile.write(save_virtual_workbook(wb)) return myfile def list_to_csv_file(self, data, title='report', header=None, widths=None): """ Make a list into a csv response for download. """ wb = self.list_to_workbook(data, title, header, widths) if not title.endswith('.csv'): title += '.csv' myfile = StringIO() sh = wb.active c = csv.writer(myfile) for r in sh.rows: c.writerow([cell.value for cell in r]) return myfile def list_to_xlsx_response(self, data, title='report', header=None, widths=None): """ Make 2D list into a xlsx response for download data can be a 2d array or a dict of 2d arrays like {'sheet_1': [['A1', 'B1']]} """ wb = self.list_to_workbook(data, title, header, widths) return self.build_xlsx_response(wb, title=title) def list_to_csv_response(self, data, title='report', header=None, widths=None): """ Make 2D list into a csv response for download data. """ wb = self.list_to_workbook(data, title, header, widths) return self.build_csv_response(wb, title=title) def add_aggregates(self, queryset, display_fields): agg_funcs = { 'Avg': Avg, 'Min': Min, 'Max': Max, 'Count': Count, 'Sum': Sum } for display_field in display_fields: if display_field.aggregate: func = agg_funcs[display_field.aggregate] full_name = display_field.path + display_field.field queryset = queryset.annotate(func(full_name)) return queryset def report_to_list(self, queryset, display_fields, user=None, property_filters=[], preview=False): """ Create list from a report with all data filtering. queryset: initial queryset to generate results display_fields: list of field references or DisplayField models user: requesting user. If left as None - there will be no permission check property_filters: ??? preview: return only first 50 rows Returns list, message in case of issues. """ model_class = queryset.model def can_change_or_view(model): """ Return True iff `user` has either change or view permission for `model`. """ if user is None: return True model_name = model._meta.model_name app_label = model._meta.app_label can_change = user.has_perm(app_label + '.change_' + model_name) can_view = user.has_perm(app_label + '.view_' + model_name) return can_change or can_view if not can_change_or_view(model_class): return [], 'Permission Denied' if isinstance(display_fields, list): # Convert list of strings to DisplayField objects. new_display_fields = [] for display_field in display_fields: field_list = display_field.split('__') field = field_list[-1] path = '__'.join(field_list[:-1]) if path: path += '__' # Legacy format to append a __ here. new_model = get_model_from_path_string(model_class, path) try: model_field = new_model._meta.get_field_by_name(field)[0] except: try: model_field = new_model._meta.get_field(field) except: model_field = None choices = model_field.choices new_display_fields.append(DisplayField( path, '', field, '', '', None, None, choices, '' )) display_fields = new_display_fields # Build group-by field list. group = [df.path + df.field for df in display_fields if df.group] # To support group-by with multiple fields, we turn all the other # fields into aggregations. The default aggregation is `Max`. if group: for field in display_fields: if (not field.group) and (not field.aggregate): field.aggregate = 'Max' message = "" objects = self.add_aggregates(queryset, display_fields) # Display Values display_field_paths = [] property_list = {} custom_list = {} display_totals = {} for i, display_field in enumerate(display_fields): model = get_model_from_path_string(model_class, display_field.path) if display_field.field_type == "Invalid": continue if not model or can_change_or_view(model): display_field_key = display_field.path + display_field.field if display_field.field_type == "Property": property_list[i] = display_field_key elif display_field.field_type == "Custom Field": custom_list[i] = display_field_key elif display_field.aggregate == "Avg": display_field_key += '__avg' elif display_field.aggregate == "Max": display_field_key += '__max' elif display_field.aggregate == "Min": display_field_key += '__min' elif display_field.aggregate == "Count": display_field_key += '__count' elif display_field.aggregate == "Sum": display_field_key += '__sum' if display_field.field_type not in ('Property', 'Custom Field'): display_field_paths.append(display_field_key) if display_field.total: display_totals[display_field_key] = Decimal(0) else: message += 'Error: Permission denied on access to {0}.'.format( display_field.name ) def increment_total(display_field_key, val): """ Increment display total by `val` if given `display_field_key` in `display_totals`. """ if display_field_key in display_totals: if isinstance(val, bool): # True: 1, False: 0 display_totals[display_field_key] += Decimal(val) elif isinstance(val, Number): display_totals[display_field_key] += Decimal(str(val)) elif val: display_totals[display_field_key] += Decimal(1) # Select pk for primary and m2m relations in order to retrieve objects # for adding properties to report rows. Group-by queries do not support # Property nor Custom Field filters. if not group: display_field_paths.insert(0, 'pk') m2m_relations = [] for position, property_path in property_list.items(): property_root = property_path.split('__')[0] root_class = model_class try: property_root_class = getattr(root_class, property_root) except AttributeError: # django-hstore schema compatibility continue if type(property_root_class) == ManyToManyDescriptor: display_field_paths.insert(1, '%s__pk' % property_root) m2m_relations.append(property_root) if group: values = objects.values(*group) values = self.add_aggregates(values, display_fields) filtered_report_rows = [ [row[field] for field in display_field_paths] for row in values ] for row in filtered_report_rows: for pos, field in enumerate(display_field_paths): increment_total(field, row[pos]) else: filtered_report_rows = [] values_and_properties_list = [] values_list = objects.values_list(*display_field_paths) for row in values_list: row = list(row) values_and_properties_list.append(row[1:]) obj = None # we will get this only if needed for more complex processing # related_objects remove_row = False # filter properties (remove rows with excluded properties) for property_filter in property_filters: if not obj: obj = model_class.objects.get(pk=row.pop(0)) root_relation = property_filter.path.split('__')[0] if root_relation in m2m_relations: pk = row[0] if pk is not None: # a related object exists m2m_obj = getattr(obj, root_relation).get(pk=pk) val = reduce(getattr, [property_filter.field], m2m_obj) else: val = None else: if property_filter.field_type == 'Custom Field': for relation in property_filter.path.split('__'): if hasattr(obj, root_relation): obj = getattr(obj, root_relation) val = obj.get_custom_value(property_filter.field) else: val = reduce(getattr, (property_filter.path + property_filter.field).split('__'), obj) if property_filter.filter_property(val): remove_row = True values_and_properties_list.pop() break if not remove_row: for i, field in enumerate(display_field_paths[1:]): increment_total(field, row[i + 1]) for position, display_property in property_list.items(): if not obj: obj = model_class.objects.get(pk=row.pop(0)) relations = display_property.split('__') root_relation = relations[0] if root_relation in m2m_relations: pk = row.pop(0) if pk is not None: # a related object exists m2m_obj = getattr(obj, root_relation).get(pk=pk) val = reduce(getattr, relations[1:], m2m_obj) else: val = None else: # Could error if a related field doesn't exist try: val = reduce(getattr, relations, obj) except AttributeError: val = None values_and_properties_list[-1].insert(position, val) increment_total(display_property, val) for position, display_custom in custom_list.items(): if not obj: obj = model_class.objects.get(pk=row.pop(0)) val = obj.get_custom_value(display_custom) values_and_properties_list[-1].insert(position, val) increment_total(display_custom, val) filtered_report_rows.append(values_and_properties_list[-1]) if preview and len(filtered_report_rows) == 50: break # Sort results if requested. if hasattr(display_fields, 'filter'): defaults = { None: text_type, datetime.date: lambda: datetime.date(datetime.MINYEAR, 1, 1), datetime.datetime: lambda: datetime.datetime(datetime.MINYEAR, 1, 1), } # Order sort fields in reverse order so that ascending, descending # sort orders work together (based on Python's stable sort). See # http://stackoverflow.com/questions/6666748/ for details. sort_fields = display_fields.filter(sort__gt=0).order_by('-sort') sort_values = sort_fields.values_list('position', 'sort_reverse') for pos, reverse in sort_values: column = (row[pos] for row in filtered_report_rows) type_col = (type(val) for val in column if val is not None) field_type = next(type_col, None) default = defaults.get(field_type, field_type)() filtered_report_rows = sorted( filtered_report_rows, key=lambda row: self.sort_helper(row[pos], default), reverse=reverse, ) values_and_properties_list = filtered_report_rows # Build mapping from display field position to choices list. choice_lists = {} for df in display_fields: if df.choices and hasattr(df, 'choices_dict'): df_choices = df.choices_dict # Insert blank and None as valid choices. df_choices[''] = '' df_choices[None] = '' choice_lists[df.position] = df_choices # Build mapping from display field position to format. display_formats = {} for df in display_fields: if hasattr(df, 'display_format') and df.display_format: display_formats[df.position] = df.display_format def formatter(value, style): # Convert value to Decimal to apply numeric formats. try: value = Decimal(value) except Exception: pass try: return style.string.format(value) except ValueError: return value # Iterate rows and convert values by choice lists and field formats. final_list = [] for row in values_and_properties_list: row = list(row) for position, choice_list in choice_lists.items(): try: row[position] = text_type(choice_list[row[position]]) except Exception: row[position] = text_type(row[position]) for pos, style in display_formats.items(): row[pos] = formatter(row[pos], style) final_list.append(row) values_and_properties_list = final_list if display_totals: display_totals_row = [] fields_and_properties = list(display_field_paths[0 if group else 1:]) for position, value in property_list.items(): fields_and_properties.insert(position, value) for field in fields_and_properties: display_totals_row.append(display_totals.get(field, '')) # Add formatting to display totals. for pos, style in display_formats.items(): display_totals_row[pos] = formatter(display_totals_row[pos], style) values_and_properties_list.append( ['TOTALS'] + (len(fields_and_properties) - 1) * [''] ) values_and_properties_list.append(display_totals_row) return values_and_properties_list, message def sort_helper(self, value, default): if value is None: value = default if isinstance(value, string_types): value = value.lower() return value class GetFieldsMixin(object): def get_fields(self, model_class, field_name='', path='', path_verbose=''): """ Get fields and meta data from a model :param model_class: A django model class :param field_name: The field name to get sub fields from :param path: path of our field in format field_name__second_field_name__ect__ :param path_verbose: Human readable version of above :returns: Returns fields and meta data about such fields fields: Django model fields custom_fields: fields from django-custom-field if installed properties: Any properties the model has path: Our new path path_verbose: Our new human readable path :rtype: dict """ fields = get_direct_fields_from_model(model_class) properties = get_properties_from_model(model_class) custom_fields = get_custom_fields_from_model(model_class) app_label = model_class._meta.app_label model = model_class if field_name != '': field = model_class._meta.get_field(field_name) direct = field.concrete if path_verbose: path_verbose += "::" # TODO: need actual model name to generate choice list (not pluralized field name) # - maybe store this as a separate value? if field.many_to_many and hasattr(field, 'm2m_reverse_field_name'): path_verbose += field.m2m_reverse_field_name() else: path_verbose += field.name path += field_name path += '__' if direct: new_model = field.related_model path_verbose = new_model.__name__.lower() else: # Indirect related field new_model = field.related_model path_verbose = new_model.__name__.lower() fields = get_direct_fields_from_model(new_model) custom_fields = get_custom_fields_from_model(new_model) properties = get_properties_from_model(new_model) app_label = new_model._meta.app_label model = new_model return { 'fields': fields, 'custom_fields': custom_fields, 'properties': properties, 'path': path, 'path_verbose': path_verbose, 'app_label': app_label, 'model': model, } def get_related_fields(self, model_class, field_name, path="", path_verbose=""): """ Get fields for a given model """ if field_name: field = model_class._meta.get_field(field_name) direct = field.concrete if direct: try: related_field = field.remote_field except AttributeError: # Needed for Django < 1.9 related_field = field.related try: new_model = related_field.parent_model() except AttributeError: new_model = related_field.model else: # Indirect related field new_model = field.related_model if path_verbose: path_verbose += "::" path_verbose += field.name path += field_name path += '__' else: new_model = model_class new_fields = get_relation_fields_from_model(new_model) model_ct = ContentType.objects.get_for_model(new_model) return (new_fields, model_ct, path)
py
1a524ddfd62a8cfe95a4080b1139b0a18a216109
""" Django settings for tweetme project. Generated by 'django-admin startproject' using Django 1.10.8. For more information on this file, see https://docs.djangoproject.com/en/1.10/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.10/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) #MANAGE.PY BASE_DIR = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.10/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '=_b*5n+m9osa$5#93m)2-e)v16wzkioq(oyu0k)n4e7fiuojyv' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'crispy_forms', 'rest_framework', 'accounts', 'hashtags', 'tweets', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'tweetme.urls' LOGIN_URL = "/login/" LOGIN_REDIRECT_URL ="/" LOGOUT_REDIRECT_URL = LOGIN_REDIRECT_URL TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, "templates")], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'tweetme.wsgi.application' # Database # https://docs.djangoproject.com/en/1.10/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.10/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.10/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'GMT' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.10/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = [ # will not be served, long term storage os.path.join(BASE_DIR, "static-storage"), ] # will be served STATIC_ROOT = os.path.join(os.path.dirname(BASE_DIR), "static-serve") # STATIC_ROOT = "webapps/abc/static" CRISPY_TEMPLATE_PACK = 'bootstrap3'
py
1a524e36d244d41f114ac6a17775ff906d3d02be
import torch import torch.nn as nn from .bap import BAP try: from torch.hub import load_state_dict_from_url except ImportError: from torch.utils.model_zoo import load_url as load_state_dict_from_url __all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152', 'resnext50_32x4d', 'resnext101_32x8d', 'wide_resnet50_2', 'wide_resnet101_2'] model_urls = { 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', 'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth', 'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth', 'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth', 'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth', } def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation) def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None): super(BasicBlock, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d if groups != 1 or base_width != 64: raise ValueError('BasicBlock only supports groups=1 and base_width=64') if dilation > 1: raise NotImplementedError("Dilation > 1 not supported in BasicBlock") # Both self.conv1 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = norm_layer(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = norm_layer(planes) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class Bottleneck_bk(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None): super(Bottleneck, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d width = int(planes * (base_width / 64.)) * groups # Both self.conv2 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv1x1(inplanes, width) self.bn1 = norm_layer(width) self.conv2 = conv3x3(width, width, stride, groups, dilation) self.bn2 = norm_layer(width) self.conv3 = conv1x1(width, planes * self.expansion) self.bn3 = norm_layer(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None, use_bap=False): super(Bottleneck, self).__init__() ## add by zengh self.use_bap = use_bap if norm_layer is None: norm_layer = nn.BatchNorm2d width = int(planes * (base_width / 64.)) * groups # Both self.conv2 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv1x1(inplanes, width) self.bn1 = norm_layer(width) self.conv2 = conv3x3(width, width, stride, groups, dilation) self.bn2 = norm_layer(width) self.conv3 = conv1x1(width, planes * self.expansion) self.bn3 = norm_layer(planes * self.expansion) self.relu = nn.ReLU(inplace=True) if self.use_bap: self.bap = BAP() self.downsample = downsample self.stride = stride def forward(self, x): identity = x ## feature map if self.downsample is not None: identity = self.downsample(x) out = self.conv1(x) out = self.bn1(out) out = self.relu(out) feature_map = out out = self.conv2(out) out = self.bn2(out) out = self.relu(out) if self.use_bap: attention = out[:,:32,:,:] raw_features,pooling_features = self.bap(feature_map,attention) return attention,raw_features,pooling_features out = self.conv3(out) out = self.bn3(out) out += identity out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, block, layers, num_classes=1000, zero_init_residual=False, groups=1, width_per_group=64, replace_stride_with_dilation=None, norm_layer=None,use_bap = False): super(ResNet, self).__init__() self.use_bap = use_bap if norm_layer is None: norm_layer = nn.BatchNorm2d self._norm_layer = norm_layer self.inplanes = 64 self.dilation = 1 if replace_stride_with_dilation is None: # each element in the tuple indicates if we should replace # the 2x2 stride with a dilated convolution instead replace_stride_with_dilation = [False, False, False] if len(replace_stride_with_dilation) != 3: raise ValueError("replace_stride_with_dilation should be None " "or a 3-element tuple, got {}".format(replace_stride_with_dilation)) self.groups = groups self.base_width = width_per_group self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = norm_layer(self.inplanes) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0]) self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1]) self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2],use_bap=use_bap) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) # self.fc = nn.Linear(512 * block.expansion, num_classes) self.fc_new = nn.Linear(512*32,num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 if zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck): nn.init.constant_(m.bn3.weight, 0) elif isinstance(m, BasicBlock): nn.init.constant_(m.bn2.weight, 0) def _make_layer(self, block, planes, blocks, stride=1, dilate=False, use_bap = False): norm_layer = self._norm_layer downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), norm_layer(planes * block.expansion), ) layers = [] # if use_bap: layers.append(block(self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer)) self.inplanes = planes * block.expansion layers.append(block(self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation, norm_layer=norm_layer,use_bap=use_bap)) if use_bap: return nn.Sequential(*layers) for _ in range(2, blocks): layers.append(block(self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation, norm_layer=norm_layer)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) if self.use_bap: attention,raw_features,x = x # print(attention.shape,raw_features.shape,x.shape) if not self.use_bap: x = self.avgpool(x) x = torch.flatten(x, 1) x = self.fc_new(x) if self.use_bap: return attention,raw_features,x return x def _resnet(arch, block, layers, pretrained, progress, **kwargs): model = ResNet(block, layers, **kwargs) if pretrained: pretrained_dict = load_state_dict_from_url(model_urls[arch], progress=progress) model_dict = model.state_dict() state_dict = {k:v for k,v in pretrained_dict.items() if k in model_dict.keys()} # model.load_state_dict(state_dict) model_dict.update(state_dict) model.load_state_dict(model_dict) return model def resnet18(pretrained=False, progress=True, **kwargs): r"""ResNet-18 model from `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet18', BasicBlock, [2, 2, 2, 2], pretrained, progress, **kwargs) def resnet34(pretrained=False, progress=True, **kwargs): r"""ResNet-34 model from `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet34', BasicBlock, [3, 4, 6, 3], pretrained, progress, **kwargs) def resnet50(pretrained=False, progress=True, **kwargs): r"""ResNet-50 model from `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet50', Bottleneck, [3, 4, 6, 3], pretrained, progress, **kwargs) def resnet101(pretrained=False, progress=True, **kwargs): r"""ResNet-101 model from `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet101', Bottleneck, [3, 4, 23, 3], pretrained, progress, **kwargs) def resnet152(pretrained=False, progress=True, **kwargs): r"""ResNet-152 model from `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet152', Bottleneck, [3, 8, 36, 3], pretrained, progress, **kwargs) def resnext50_32x4d(pretrained=False, progress=True, **kwargs): r"""ResNeXt-50 32x4d model from `"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ kwargs['groups'] = 32 kwargs['width_per_group'] = 4 return _resnet('resnext50_32x4d', Bottleneck, [3, 4, 6, 3], pretrained, progress, **kwargs) def resnext101_32x8d(pretrained=False, progress=True, **kwargs): r"""ResNeXt-101 32x8d model from `"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ kwargs['groups'] = 32 kwargs['width_per_group'] = 8 return _resnet('resnext101_32x8d', Bottleneck, [3, 4, 23, 3], pretrained, progress, **kwargs) def wide_resnet50_2(pretrained=False, progress=True, **kwargs): r"""Wide ResNet-50-2 model from `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_ The model is the same as ResNet except for the bottleneck number of channels which is twice larger in every block. The number of channels in outer 1x1 convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048 channels, and in Wide ResNet-50-2 has 2048-1024-2048. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ kwargs['width_per_group'] = 64 * 2 return _resnet('wide_resnet50_2', Bottleneck, [3, 4, 6, 3], pretrained, progress, **kwargs) def wide_resnet101_2(pretrained=False, progress=True, **kwargs): r"""Wide ResNet-101-2 model from `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_ The model is the same as ResNet except for the bottleneck number of channels which is twice larger in every block. The number of channels in outer 1x1 convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048 channels, and in Wide ResNet-50-2 has 2048-1024-2048. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ kwargs['width_per_group'] = 64 * 2 return _resnet('wide_resnet101_2', Bottleneck, [3, 4, 23, 3], pretrained, progress, **kwargs) if __name__ == '__main__': net = resnet50(use_bap=True,pretrained=True) input = torch.Tensor(4,3,224,224) out = net(input) # print(net)
py
1a524ff782c5f241668a5b5616c5dee44b94e11c
import unittest import numpy as np import pysal #from pysal.spreg.twosls_sp_regimes import GM_Lag_Regimes from pysal.spreg import utils #from pysal.spreg.twosls_sp import GM_Lag from pysal.contrib.handler import Model from functools import partial GM_Lag_Regimes = partial(Model, mtype='GM_Lag_Regimes') GM_Lag = partial(Model, mtype='GM_Lag') class TestGMLag_Regimes(unittest.TestCase): def setUp(self): self.w = pysal.queen_from_shapefile(pysal.examples.get_path("columbus.shp")) self.w.transform = 'r' self.db = pysal.open(pysal.examples.get_path("columbus.dbf"), 'r') y = np.array(self.db.by_col("CRIME")) self.y = np.reshape(y, (49,1)) self.r_var = 'NSA' self.regimes = self.db.by_col(self.r_var) def test___init__(self): #Matches SpaceStat X = [] X.append(self.db.by_col("INC")) X.append(self.db.by_col("HOVAL")) self.X = np.array(X).T reg = GM_Lag_Regimes(self.y, self.X, self.regimes, w=self.w, sig2n_k=True, regime_lag_sep=False, regime_err_sep=False) betas = np.array([[ 45.14892906], [ -1.42593383], [ -0.11501037], [ 40.99023016], [ -0.81498302], [ -0.28391409], [ 0.4736163 ]]) np.testing.assert_array_almost_equal(reg.betas, betas, 7) e_5 = np.array([[ -1.47960519], [ -7.93748769], [ -5.88561835], [-13.37941105], [ 5.2524303 ]]) np.testing.assert_array_almost_equal(reg.e_pred[0:5], e_5, 7) h_0 = np.array([[ 0. , 0. , 0. , 1. , 19.531 , 80.467003 , 0. , 0. , 18.594 , 35.4585005]]) np.testing.assert_array_almost_equal(reg.h[0]*np.eye(10), h_0) self.assertEqual(reg.k, 7) self.assertEqual(reg.kstar, 1) self.assertAlmostEqual(reg.mean_y, 35.128823897959187, 7) self.assertEqual(reg.n, 49) self.assertAlmostEqual(reg.pr2, 0.6572182131915739, 7) self.assertAlmostEqual(reg.pr2_e, 0.5779687278635434, 7) pfora1a2 = np.array([ -2.15017629, -0.30169328, -0.07603704, -22.06541809, 0.45738058, 0.02805828, 0.39073923]) np.testing.assert_array_almost_equal(reg.pfora1a2[0], pfora1a2, 7) predy_5 = np.array([[ 13.93216104], [ 23.46424269], [ 34.43510955], [ 44.32473878], [ 44.39117516]]) np.testing.assert_array_almost_equal(reg.predy[0:5], predy_5, 7) predy_e_5 = np.array([[ 17.20558519], [ 26.73924169], [ 36.51239935], [ 45.76717105], [ 45.4790797 ]]) np.testing.assert_array_almost_equal(reg.predy_e[0:5], predy_e_5, 7) q_5 = np.array([[ 0. , 0. , 18.594 , 35.4585005]]) np.testing.assert_array_almost_equal(reg.q[0]*np.eye(4), q_5) self.assertEqual(reg.robust, 'unadjusted') self.assertAlmostEqual(reg.sig2n_k, 109.76462904625834, 7) self.assertAlmostEqual(reg.sig2n, 94.08396775393571, 7) self.assertAlmostEqual(reg.sig2, 109.76462904625834, 7) self.assertAlmostEqual(reg.std_y, 16.732092091229699, 7) u_5 = np.array([[ 1.79381896], [ -4.66248869], [ -3.80832855], [-11.93697878], [ 6.34033484]]) np.testing.assert_array_almost_equal(reg.u[0:5], u_5, 7) self.assertAlmostEqual(reg.utu, 4610.11441994285, 7) varb = np.array([ 1.23841820e+00, -3.65620114e-02, -1.21919663e-03, 1.00057547e+00, -2.07403182e-02, -1.27232693e-03, -1.77184084e-02]) np.testing.assert_array_almost_equal(reg.varb[0], varb, 7) vm = np.array([ 1.35934514e+02, -4.01321561e+00, -1.33824666e-01, 1.09827796e+02, -2.27655334e+00, -1.39656494e-01, -1.94485452e+00]) np.testing.assert_array_almost_equal(reg.vm[0], vm, 6) x_0 = np.array([[ 0. , 0. , 0. , 1. , 19.531 , 80.467003]]) np.testing.assert_array_almost_equal(reg.x[0]*np.eye(6), x_0, 7) y_5 = np.array([[ 15.72598 ], [ 18.801754], [ 30.626781], [ 32.38776 ], [ 50.73151 ]]) np.testing.assert_array_almost_equal(reg.y[0:5], y_5, 7) yend_5 = np.array([[ 24.7142675 ], [ 26.24684033], [ 29.411751 ], [ 34.64647575], [ 40.4653275 ]]) np.testing.assert_array_almost_equal(reg.yend[0:5]*np.array([[1]]), yend_5, 7) z_0 = np.array([[ 0. , 0. , 0. , 1. , 19.531 , 80.467003 , 24.7142675]]) np.testing.assert_array_almost_equal(reg.z[0]*np.eye(7), z_0, 7) zthhthi = np.array([ 1.00000000e+00, -2.35922393e-16, 5.55111512e-17, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, -4.44089210e-16, 2.22044605e-16, 0.00000000e+00, 0.00000000e+00]) np.testing.assert_array_almost_equal(reg.zthhthi[0], zthhthi, 7) chow_regi = np.array([[ 0.19692667, 0.65721307], [ 0.5666492 , 0.45159351], [ 0.45282066, 0.5009985 ]]) np.testing.assert_array_almost_equal(reg.chow.regi, chow_regi, 7) self.assertAlmostEqual(reg.chow.joint[0], 0.82409867601863462, 7) def test_init_discbd(self): #Matches SpaceStat. X = np.array(self.db.by_col("INC")) X = np.reshape(X, (49,1)) yd = np.array(self.db.by_col("HOVAL")) yd = np.reshape(yd, (49,1)) q = np.array(self.db.by_col("DISCBD")) q = np.reshape(q, (49,1)) reg = GM_Lag_Regimes(self.y, X, self.regimes, yend=yd, q=q, lag_q=False, w=self.w, sig2n_k=True, regime_lag_sep=False, regime_err_sep=False) tbetas = np.array([[ 42.7266306 ], [ -0.15552345], [ 37.70545276], [ -0.5341577 ], [ -0.68305796], [ -0.37106077], [ 0.55809516]]) np.testing.assert_array_almost_equal(tbetas, reg.betas) vm = np.array([ 270.62979422, 3.62539081, 327.89638627, 6.24949355, -5.25333106, -6.01743515, -4.19290074]) np.testing.assert_array_almost_equal(reg.vm[0], vm, 6) e_3 = np.array([[-0.33142796], [-9.51719607], [-7.86272153]]) np.testing.assert_array_almost_equal(reg.e_pred[0:3], e_3, 7) u_3 = np.array([[ 4.51839601], [-5.67363147], [-5.1927562 ]]) np.testing.assert_array_almost_equal(reg.u[0:3], u_3, 7) predy_3 = np.array([[ 11.20758399], [ 24.47538547], [ 35.8195372 ]]) np.testing.assert_array_almost_equal(reg.predy[0:3], predy_3, 7) predy_e_3 = np.array([[ 16.05740796], [ 28.31895007], [ 38.48950253]]) np.testing.assert_array_almost_equal(reg.predy_e[0:3], predy_e_3, 7) chow_regi = np.array([[ 0.13130991, 0.71707772], [ 0.04740966, 0.82763357], [ 0.15474413, 0.6940423 ]]) np.testing.assert_array_almost_equal(reg.chow.regi, chow_regi, 7) self.assertAlmostEqual(reg.chow.joint[0], 0.31248100032096549, 7) def test_lag_q(self): X = np.array(self.db.by_col("INC")) X = np.reshape(X, (49,1)) yd = np.array(self.db.by_col("HOVAL")) yd = np.reshape(yd, (49,1)) q = np.array(self.db.by_col("DISCBD")) q = np.reshape(q, (49,1)) reg = GM_Lag_Regimes(self.y, X, self.regimes, yend=yd, q=q, w=self.w, sig2n_k=True, regime_lag_sep=False, regime_err_sep=False) tbetas = np.array([[ 37.87698329], [ -0.89426982], [ 31.4714777 ], [ -0.71640525], [ -0.28494432], [ -0.2294271 ], [ 0.62996544]]) np.testing.assert_array_almost_equal(tbetas, reg.betas) vm = np.array([ 128.25714554, -0.38975354, 95.7271044 , -1.8429218 , -1.75331978, -0.18240338, -1.67767464]) np.testing.assert_array_almost_equal(reg.vm[0], vm, 6) chow_regi = np.array([[ 0.43494049, 0.50957463], [ 0.02089281, 0.88507135], [ 0.01180501, 0.91347943]]) np.testing.assert_array_almost_equal(reg.chow.regi, chow_regi, 7) self.assertAlmostEqual(reg.chow.joint[0], 0.54288190938307757, 7) def test_all_regi(self): X = np.array(self.db.by_col("INC")) X = np.reshape(X, (49,1)) yd = np.array(self.db.by_col("HOVAL")) yd = np.reshape(yd, (49,1)) q = np.array(self.db.by_col("DISCBD")) q = np.reshape(q, (49,1)) reg = GM_Lag_Regimes(self.y, X, self.regimes, yend=yd, q=q, w=self.w, regime_lag_sep=False, regime_err_sep=True) tbetas = np.array([[ 37.87698329, -0.89426982, 31.4714777 , -0.71640525, -0.28494432, -0.2294271 , 0.62996544]]) np.testing.assert_array_almost_equal(tbetas, reg.betas.T) vm = np.array([ 70.38291551, -0.64868787, 49.25453215, -0.62851534, -0.75413453, -0.12674433, -0.97179236]) np.testing.assert_array_almost_equal(reg.vm[0], vm, 6) e_3 = np.array([[-2.66997799], [-7.69786264], [-4.39412782]]) np.testing.assert_array_almost_equal(reg.e_pred[0:3], e_3, 7) u_3 = np.array([[ 1.13879007], [-3.76873198], [-1.89671717]]) np.testing.assert_array_almost_equal(reg.u[0:3], u_3, 7) predy_3 = np.array([[ 14.58718993], [ 22.57048598], [ 32.52349817]]) np.testing.assert_array_almost_equal(reg.predy[0:3], predy_3, 7) predy_e_3 = np.array([[ 18.39595799], [ 26.49961664], [ 35.02090882]]) np.testing.assert_array_almost_equal(reg.predy_e[0:3], predy_e_3, 7) chow_regi = np.array([[ 0.60091096, 0.43823066], [ 0.03006744, 0.8623373 ], [ 0.01943727, 0.88912016]]) np.testing.assert_array_almost_equal(reg.chow.regi, chow_regi, 7) self.assertAlmostEqual(reg.chow.joint[0], 0.88634854058300516, 7) def test_all_regi_sig2(self): #Artficial: n = 256 x1 = np.random.uniform(-10,10,(n,1)) x2 = np.random.uniform(1,5,(n,1)) q = x2 + np.random.normal(0,1,(n,1)) x = np.hstack((x1,x2)) y = np.dot(np.hstack((np.ones((n,1)),x)),np.array([[1],[0.5],[2]])) + np.random.normal(0,1,(n,1)) latt = int(np.sqrt(n)) w = pysal.lat2W(latt,latt) w.transform='r' regi = [0]*(n/2) + [1]*(n/2) model = GM_Lag_Regimes(y, x1, regi, q=q, yend=x2, w=w, regime_lag_sep=True, regime_err_sep=True) w1 = pysal.lat2W(latt/2,latt) w1.transform='r' model1 = GM_Lag(y[0:(n/2)].reshape((n/2),1), x1[0:(n/2)], yend=x2[0:(n/2)], q=q[0:(n/2)], w=w1) model2 = GM_Lag(y[(n/2):n].reshape((n/2),1), x1[(n/2):n], yend=x2[(n/2):n], q=q[(n/2):n], w=w1) tbetas = np.vstack((model1.betas, model2.betas)) np.testing.assert_array_almost_equal(model.betas,tbetas) vm = np.hstack((model1.vm.diagonal(),model2.vm.diagonal())) np.testing.assert_array_almost_equal(model.vm.diagonal(), vm, 6) #Columbus: X = np.array(self.db.by_col("INC")) X = np.reshape(X, (49,1)) yd = np.array(self.db.by_col("HOVAL")) yd = np.reshape(yd, (49,1)) q = np.array(self.db.by_col("DISCBD")) q = np.reshape(q, (49,1)) reg = GM_Lag_Regimes(self.y, X, self.regimes, yend=yd, q=q, w=self.w,regime_lag_sep=True, regime_err_sep = True) tbetas = np.array([[ 42.35827477], [ -0.09472413], [ -0.68794223], [ 0.54482537], [ 32.24228762], [ -0.12304063], [ -0.46840307], [ 0.67108156]]) np.testing.assert_array_almost_equal(tbetas, reg.betas) vm = np.array([ 200.92894859, 4.56244927, -4.85603079, -2.9755413 , 0. , 0. , 0. , 0. ]) np.testing.assert_array_almost_equal(reg.vm[0], vm, 6) e_3 = np.array([[ -1.32209547], [-13.15611199], [-11.62357696]]) np.testing.assert_array_almost_equal(reg.e_pred[0:3], e_3, 7) u_3 = np.array([[ 6.99250069], [-7.5665856 ], [-7.04753328]]) np.testing.assert_array_almost_equal(reg.u[0:3], u_3, 7) predy_3 = np.array([[ 8.73347931], [ 26.3683396 ], [ 37.67431428]]) np.testing.assert_array_almost_equal(reg.predy[0:3], predy_3, 7) predy_e_3 = np.array([[ 17.04807547], [ 31.95786599], [ 42.25035796]]) np.testing.assert_array_almost_equal(reg.predy_e[0:3], predy_e_3, 7) chow_regi = np.array([[ 1.51825373e-01, 6.96797034e-01], [ 3.20105698e-04, 9.85725412e-01], [ 8.58836996e-02, 7.69476896e-01], [ 1.01357290e-01, 7.50206873e-01]]) np.testing.assert_array_almost_equal(reg.chow.regi, chow_regi, 7) self.assertAlmostEqual(reg.chow.joint[0], 0.38417230022512161, 7) def test_fixed_const(self): X = np.array(self.db.by_col("INC")) X = np.reshape(X, (49,1)) yd = np.array(self.db.by_col("HOVAL")) yd = np.reshape(yd, (49,1)) q = np.array(self.db.by_col("DISCBD")) q = np.reshape(q, (49,1)) reg = GM_Lag_Regimes(self.y, X, self.regimes, yend=yd, q=q, w=self.w, constant_regi='one', regime_lag_sep=False, regime_err_sep=False) tbetas = np.array([[ -0.37658823], [ -0.9666079 ], [ 35.5445944 ], [ -0.45793559], [ -0.24216904], [ 0.62500602]]) np.testing.assert_array_almost_equal(tbetas, reg.betas) vm = np.array([ 1.4183697 , -0.05975784, -0.27161863, -0.62517245, 0.02266177, 0.00312976]) np.testing.assert_array_almost_equal(reg.vm[0], vm, 6) e_3 = np.array([[ 0.17317815], [-5.53766328], [-3.82889307]]) np.testing.assert_array_almost_equal(reg.e_pred[0:3], e_3, 7) u_3 = np.array([[ 3.10025518], [-1.83150689], [-1.49598494]]) np.testing.assert_array_almost_equal(reg.u[0:3], u_3, 7) predy_3 = np.array([[ 12.62572482], [ 20.63326089], [ 32.12276594]]) np.testing.assert_array_almost_equal(reg.predy[0:3], predy_3, 7) predy_e_3 = np.array([[ 15.55280185], [ 24.33941728], [ 34.45567407]]) np.testing.assert_array_almost_equal(reg.predy_e[0:3], predy_e_3, 7) chow_regi = np.array([[ 1.85767047e-01, 6.66463269e-01], [ 1.19445012e+01, 5.48089036e-04]]) np.testing.assert_array_almost_equal(reg.chow.regi, chow_regi, 7) self.assertAlmostEqual(reg.chow.joint[0], 12.017256217621382, 7) def test_names(self): y_var = 'CRIME' x_var = ['INC'] x = np.array([self.db.by_col(name) for name in x_var]).T yd_var = ['HOVAL'] yd = np.array([self.db.by_col(name) for name in yd_var]).T q_var = ['DISCBD'] q = np.array([self.db.by_col(name) for name in q_var]).T r_var = 'NSA' reg = GM_Lag_Regimes(self.y, x, self.regimes, yend=yd, q=q, w=self.w, name_y=y_var, name_x=x_var, name_yend=yd_var, name_q=q_var, name_regimes=r_var, name_ds='columbus', name_w='columbus.gal', regime_lag_sep=False, regime_err_sep=False) betas = np.array([[ 37.87698329], [ -0.89426982], [ 31.4714777 ], [ -0.71640525], [ -0.28494432], [ -0.2294271 ], [ 0.62996544]]) np.testing.assert_array_almost_equal(reg.betas, betas, 7) vm = np.array([ 109.93469618, -0.33407447, 82.05180377, -1.57964725, -1.50284553, -0.15634575, -1.43800683]) np.testing.assert_array_almost_equal(reg.vm[0], vm, 6) chow_regi = np.array([[ 0.50743058, 0.47625326], [ 0.02437494, 0.87593468], [ 0.01377251, 0.9065777 ]]) np.testing.assert_array_almost_equal(reg.chow.regi, chow_regi, 7) self.assertAlmostEqual(reg.chow.joint[0], 0.63336222761359162, 7) self.assertListEqual(reg.name_x, ['0_CONSTANT', '0_INC', '1_CONSTANT', '1_INC']) self.assertListEqual(reg.name_yend, ['0_HOVAL', '1_HOVAL', '_Global_W_CRIME']) self.assertListEqual(reg.name_q, ['0_DISCBD', '0_W_INC', '0_W_DISCBD', '1_DISCBD', '1_W_INC', '1_W_DISCBD']) self.assertEqual(reg.name_y, y_var) if __name__ == '__main__': unittest.main()
py
1a525004c374c45693a4312ff4ffd1a6a5f3acb5
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for rmsprop.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import itertools import math import platform from absl.testing import parameterized import numpy as np from tensorflow.python.eager import context from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.keras.optimizer_v2 import learning_rate_schedule from tensorflow.python.keras.optimizer_v2 import rmsprop from tensorflow.python.ops import embedding_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test _DATA_TYPES = [dtypes.half, dtypes.float32, dtypes.float64] # TODO(b/143684500): Eigen to support complex sqrt if not test_util.IsBuiltWithNvcc() and platform.system() != "Windows" \ and not test.is_built_with_rocm(): _DATA_TYPES += [dtypes.complex64, dtypes.complex128] _TEST_PARAM_VALUES = [ # learning_rate, rho, momentum, epsilon, centered [0.05, 0.9, 0.0, 1e-3, True], [0.05, 0.9, 0.0, 1e-3, False], [0.1, 0.9, 0.0, 1e-3, True], [0.01, 0.9, 0.0, 1e-5, True], [0.01, 0.9, 0.9, 1e-5, True], ] _TESTPARAMS = [ [data_type] + values for data_type, values in itertools.product(_DATA_TYPES, _TEST_PARAM_VALUES) ] class RMSpropOptimizerTest(test.TestCase): def _rmsprop_update_numpy(self, var, g, mg, rms, mom, lr, rho, momentum, epsilon, centered): rms_t = rms * rho + (1 - rho) * g * g if centered: mg_t = mg * rho + (1 - rho) * g denom_t = rms_t - mg_t * mg_t else: mg_t = mg denom_t = rms_t if momentum > 0.: mom_t = momentum * mom + lr * g / (np.sqrt(denom_t + epsilon)) var_t = var - mom_t else: mom_t = mom var_t = var - lr * g / (np.sqrt(denom_t) + epsilon) return var_t, mg_t, rms_t, mom_t def _sparse_rmsprop_update_numpy(self, var, gindexs, gvalues, mg, rms, mom, lr, rho, momentum, epsilon, centered): mg_t = copy.deepcopy(mg) rms_t = copy.deepcopy(rms) mom_t = copy.deepcopy(mom) var_t = copy.deepcopy(var) for i in range(len(gindexs)): gindex = gindexs[i] gvalue = gvalues[i] rms_t[gindex] = rms[gindex] * rho + (1 - rho) * gvalue * gvalue if centered: mg_t[gindex] = mg_t[gindex] * rho + (1 - rho) * gvalue denom_t = rms_t[gindex] - mg_t[gindex] * mg_t[gindex] else: denom_t = rms_t[gindex] if momentum > 0.: mom_t[gindex] = momentum * mom[gindex] + lr * gvalue / np.sqrt(denom_t + epsilon) var_t[gindex] = var[gindex] - mom_t[gindex] else: mom_t[gindex] = mom[gindex] var_t[gindex] = var[gindex] - lr * gvalue / (np.sqrt(denom_t) + epsilon) return var_t, mg_t, rms_t, mom_t @test_util.run_deprecated_v1 def testDense(self): for (dtype, learning_rate, rho, momentum, epsilon, centered) in _TESTPARAMS: with test_util.use_gpu(): # Initialize variables for numpy implementation. var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) grads0_np = np.array([0.1, 0.2], dtype=dtype.as_numpy_dtype) var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) grads1_np = np.array([0.01, 0.2], dtype=dtype.as_numpy_dtype) var0 = resource_variable_ops.ResourceVariable(var0_np, dtype=dtype) var1 = resource_variable_ops.ResourceVariable(var1_np, dtype=dtype) grads0 = constant_op.constant(grads0_np, dtype=dtype) grads1 = constant_op.constant(grads1_np, dtype=dtype) opt = rmsprop.RMSprop( learning_rate=learning_rate, rho=rho, momentum=momentum, epsilon=epsilon, centered=centered) update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) self.evaluate(variables.global_variables_initializer()) if centered: mg0 = opt.get_slot(var0, "mg") mg1 = opt.get_slot(var1, "mg") else: mg0 = None mg1 = None if momentum > 0.: mom0 = opt.get_slot(var0, "momentum") mom1 = opt.get_slot(var1, "momentum") else: mom0 = None mom1 = None rms0 = opt.get_slot(var0, "rms") self.assertIsNotNone(rms0) rms1 = opt.get_slot(var1, "rms") self.assertIsNotNone(rms1) mg0_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype) mg1_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype) rms0_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype) rms1_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype) mom0_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype) mom1_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype) # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], self.evaluate(var0)) self.assertAllClose([3.0, 4.0], self.evaluate(var1)) # Run 3 steps of RMSprop for _ in range(1, 4): self.evaluate(update) var0_np, mg0_np, rms0_np, mom0_np = self._rmsprop_update_numpy( var0_np, grads0_np, mg0_np, rms0_np, mom0_np, learning_rate, rho, momentum, epsilon, centered) var1_np, mg1_np, rms1_np, mom1_np = self._rmsprop_update_numpy( var1_np, grads1_np, mg1_np, rms1_np, mom1_np, learning_rate, rho, momentum, epsilon, centered) # Validate updated params if centered: self.assertAllCloseAccordingToType(mg0_np, self.evaluate(mg0)) self.assertAllCloseAccordingToType(mg1_np, self.evaluate(mg1)) if momentum > 0.: self.assertAllCloseAccordingToType(mom0_np, self.evaluate(mom0)) self.assertAllCloseAccordingToType(mom1_np, self.evaluate(mom1)) self.assertAllCloseAccordingToType(rms0_np, self.evaluate(rms0)) self.assertAllCloseAccordingToType(rms1_np, self.evaluate(rms1)) self.assertAllCloseAccordingToType(var0_np, self.evaluate(var0)) self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1)) @test_util.run_deprecated_v1 def testDenseWithLearningRateDecay(self): var0_np = np.array([1.0, 2.0]) grads0_np = np.array([0.1, 0.2]) var1_np = np.array([3.0, 4.0]) grads1_np = np.array([0.01, 0.2]) var0 = resource_variable_ops.ResourceVariable(var0_np) var1 = resource_variable_ops.ResourceVariable(var1_np) grads0 = constant_op.constant(grads0_np) grads1 = constant_op.constant(grads1_np) learning_rate = 0.01 rho = 0.9 momentum = 0.0 epsilon = 1e-7 centered = False decay = 0.5 opt = rmsprop.RMSprop( learning_rate=learning_rate, rho=rho, momentum=momentum, epsilon=epsilon, centered=centered, decay=decay) update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) self.evaluate(variables.global_variables_initializer()) rms0 = opt.get_slot(var0, "rms") self.assertIsNotNone(rms0) rms1 = opt.get_slot(var1, "rms") self.assertIsNotNone(rms1) if momentum > 0.: mom0 = opt.get_slot(var0, "momentum") mom1 = opt.get_slot(var1, "momentum") else: mom0 = None mom1 = None mg0_np = np.array([0.0, 0.0]) mg1_np = np.array([0.0, 0.0]) rms0_np = np.array([0.0, 0.0]) rms1_np = np.array([0.0, 0.0]) mom0_np = np.array([0.0, 0.0]) mom1_np = np.array([0.0, 0.0]) # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], self.evaluate(var0)) self.assertAllClose([3.0, 4.0], self.evaluate(var1)) # Run 4 steps of RMSprop for t in range(2): self.evaluate(update) lr = learning_rate / (1 + decay * t) var0_np, mg0_np, rms0_np, mom0_np = self._rmsprop_update_numpy( var0_np, grads0_np, mg0_np, rms0_np, mom0_np, lr, rho, momentum, epsilon, centered) var1_np, mg1_np, rms1_np, mom1_np = self._rmsprop_update_numpy( var1_np, grads1_np, mg1_np, rms1_np, mom1_np, lr, rho, momentum, epsilon, centered) # Validate updated params self.assertAllCloseAccordingToType(rms0_np, self.evaluate(rms0)) self.assertAllCloseAccordingToType(rms1_np, self.evaluate(rms1)) if momentum > 0.: self.assertAllCloseAccordingToType(mom0_np, self.evaluate(mom0)) self.assertAllCloseAccordingToType(mom1_np, self.evaluate(mom1)) self.assertAllCloseAccordingToType(var0_np, self.evaluate(var0)) self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1)) @test_util.run_deprecated_v1 def testDenseWithLearningRateInverseTimeDecay(self): var0_np = np.array([1.0, 2.0]) grads0_np = np.array([0.1, 0.2]) var1_np = np.array([3.0, 4.0]) grads1_np = np.array([0.01, 0.2]) var0 = resource_variable_ops.ResourceVariable(var0_np) var1 = resource_variable_ops.ResourceVariable(var1_np) grads0 = constant_op.constant(grads0_np) grads1 = constant_op.constant(grads1_np) learning_rate = 0.01 rho = 0.9 momentum = 0.0 epsilon = 1e-7 centered = False decay = 0.5 lr_schedule = learning_rate_schedule.InverseTimeDecay( learning_rate, decay_steps=1.0, decay_rate=decay) opt = rmsprop.RMSprop( learning_rate=lr_schedule, rho=rho, momentum=momentum, epsilon=epsilon, centered=centered) update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) self.evaluate(variables.global_variables_initializer()) rms0 = opt.get_slot(var0, "rms") self.assertIsNotNone(rms0) rms1 = opt.get_slot(var1, "rms") self.assertIsNotNone(rms1) if momentum > 0.: mom0 = opt.get_slot(var0, "momentum") mom1 = opt.get_slot(var1, "momentum") else: mom0 = None mom1 = None mg0_np = np.array([0.0, 0.0]) mg1_np = np.array([0.0, 0.0]) rms0_np = np.array([0.0, 0.0]) rms1_np = np.array([0.0, 0.0]) mom0_np = np.array([0.0, 0.0]) mom1_np = np.array([0.0, 0.0]) # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], self.evaluate(var0)) self.assertAllClose([3.0, 4.0], self.evaluate(var1)) # Run 4 steps of RMSprop for t in range(2): self.evaluate(update) lr = learning_rate / (1 + decay * t) var0_np, mg0_np, rms0_np, mom0_np = self._rmsprop_update_numpy( var0_np, grads0_np, mg0_np, rms0_np, mom0_np, lr, rho, momentum, epsilon, centered) var1_np, mg1_np, rms1_np, mom1_np = self._rmsprop_update_numpy( var1_np, grads1_np, mg1_np, rms1_np, mom1_np, lr, rho, momentum, epsilon, centered) # Validate updated params self.assertAllCloseAccordingToType(rms0_np, self.evaluate(rms0)) self.assertAllCloseAccordingToType(rms1_np, self.evaluate(rms1)) if momentum > 0.: self.assertAllCloseAccordingToType(mom0_np, self.evaluate(mom0)) self.assertAllCloseAccordingToType(mom1_np, self.evaluate(mom1)) self.assertAllCloseAccordingToType(var0_np, self.evaluate(var0)) self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1)) @test_util.run_deprecated_v1 def testMinimizeSparseResourceVariable(self): for dtype in _DATA_TYPES: var0 = resource_variable_ops.ResourceVariable([[1.0, 2.0]], dtype=dtype) x = constant_op.constant([[4.0], [5.0]], dtype=dtype) def loss(): pred = math_ops.matmul(embedding_ops.embedding_lookup([var0], [0]), x) # pylint: disable=cell-var-from-loop return pred * pred sgd_op = rmsprop.RMSprop( learning_rate=1.0, rho=0.0, momentum=0.0, epsilon=0.0, centered=False).minimize( loss, var_list=[var0]) self.evaluate(variables.global_variables_initializer()) # Fetch params to validate initial values self.assertAllCloseAccordingToType([[1.0, 2.0]], self.evaluate(var0)) # Run 1 step of sgd self.evaluate(sgd_op) # Validate updated params self.assertAllCloseAccordingToType([[0., 1.]], self.evaluate(var0), atol=0.01) @test_util.run_deprecated_v1 def testMinimizeSparseResourceVariableCentered(self): for dtype in _DATA_TYPES: if test_util.is_xla_enabled() and dtype.is_complex: self.skipTest("b/143578550") var0 = resource_variable_ops.ResourceVariable([[1.0, 2.0]], dtype=dtype) x = constant_op.constant([[4.0], [5.0]], dtype=dtype) def loss(): pred = math_ops.matmul(embedding_ops.embedding_lookup([var0], [0]), x) # pylint: disable=cell-var-from-loop return pred * pred # loss = lambda: pred * pred # pylint: disable=cell-var-from-loop sgd_op = rmsprop.RMSprop( learning_rate=1.0, rho=0.0, momentum=0.0, epsilon=1.0, centered=True).minimize( loss, var_list=[var0]) self.evaluate(variables.global_variables_initializer()) # Fetch params to validate initial values self.assertAllCloseAccordingToType([[1.0, 2.0]], self.evaluate(var0)) # Run 1 step of sgd self.evaluate(sgd_op) # Validate updated params self.assertAllCloseAccordingToType([[-111, -138]], self.evaluate(var0), atol=0.01) @test_util.run_deprecated_v1 def testSparse(self): for (dtype, learning_rate, rho, momentum, epsilon, centered) in _TESTPARAMS: with test_util.use_gpu(): # Initialize variables for numpy implementation. var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) grads0_np = np.array([0.1], dtype=dtype.as_numpy_dtype) var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) grads1_np = np.array([0.01], dtype=dtype.as_numpy_dtype) var0 = variables.Variable(var0_np) var1 = variables.Variable(var1_np) grads0_np_indices = np.array([0], dtype=np.int32) grads0 = ops.IndexedSlices( constant_op.constant(grads0_np), constant_op.constant(grads0_np_indices), constant_op.constant([1])) grads1_np_indices = np.array([1], dtype=np.int32) grads1 = ops.IndexedSlices( constant_op.constant(grads1_np), constant_op.constant(grads1_np_indices), constant_op.constant([1])) opt = rmsprop.RMSprop( learning_rate=learning_rate, rho=rho, momentum=momentum, epsilon=epsilon, centered=centered) update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) self.evaluate(variables.global_variables_initializer()) if centered: mg0 = opt.get_slot(var0, "mg") self.assertEqual(mg0 is not None, centered) mg1 = opt.get_slot(var1, "mg") self.assertEqual(mg1 is not None, centered) else: mg0 = None mg1 = None rms0 = opt.get_slot(var0, "rms") self.assertIsNotNone(rms0) rms1 = opt.get_slot(var1, "rms") self.assertIsNotNone(rms1) if momentum > 0.: mom0 = opt.get_slot(var0, "momentum") mom1 = opt.get_slot(var1, "momentum") else: mom0 = None mom1 = None mg0_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype) mg1_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype) rms0_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype) rms1_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype) mom0_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype) mom1_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype) # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], self.evaluate(var0)) self.assertAllClose([3.0, 4.0], self.evaluate(var1)) # Run 3 steps of RMSprop for _ in range(1, 4): self.evaluate(update) var0_np, mg0_np, rms0_np, mom0_np = self._sparse_rmsprop_update_numpy( var0_np, grads0_np_indices, grads0_np, mg0_np, rms0_np, mom0_np, learning_rate, rho, momentum, epsilon, centered) var1_np, mg1_np, rms1_np, mom1_np = self._sparse_rmsprop_update_numpy( var1_np, grads1_np_indices, grads1_np, mg1_np, rms1_np, mom1_np, learning_rate, rho, momentum, epsilon, centered) # Validate updated params if centered: self.assertAllCloseAccordingToType(mg0_np, self.evaluate(mg0)) self.assertAllCloseAccordingToType(mg1_np, self.evaluate(mg1)) self.assertAllCloseAccordingToType(rms0_np, self.evaluate(rms0)) self.assertAllCloseAccordingToType(rms1_np, self.evaluate(rms1)) if momentum > 0.: self.assertAllCloseAccordingToType(mom0_np, self.evaluate(mom0)) self.assertAllCloseAccordingToType(mom1_np, self.evaluate(mom1)) self.assertAllCloseAccordingToType(var0_np, self.evaluate(var0)) self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1)) def testCallableParams(self): with context.eager_mode(): for dtype in _DATA_TYPES: var0 = resource_variable_ops.ResourceVariable([1.0, 2.0], dtype=dtype) var1 = resource_variable_ops.ResourceVariable([3.0, 4.0], dtype=dtype) grads0 = constant_op.constant([0.1, 0.1], dtype=dtype) grads1 = constant_op.constant([0.01, 0.01], dtype=dtype) learning_rate = lambda: 2.0 rho = lambda: 0.9 momentum = lambda: 0.0 epsilon = 1.0 opt = rmsprop.RMSprop(learning_rate, rho, momentum, epsilon) # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], self.evaluate(var0)) self.assertAllClose([3.0, 4.0], self.evaluate(var1)) # Step 1: the rms accumulators where 1. So we should see a normal # update: v -= grad * learning_rate opt.apply_gradients(zip([grads0, grads1], [var0, var1])) # Check the parameters. self.assertAllCloseAccordingToType( np.array([ 1.0 - (0.1 * 2.0 / math.sqrt(0.001 + 1.0)), 2.0 - (0.1 * 2.0 / math.sqrt(0.001 + 1.0)) ]), self.evaluate(var0)) self.assertAllCloseAccordingToType( np.array([ 3.0 - (0.01 * 2.0 / math.sqrt(0.00001 + 1.0)), 4.0 - (0.01 * 2.0 / math.sqrt(0.00001 + 1.0)) ]), self.evaluate(var1)) # Step 2: the root mean square accumulators contain the previous update. opt.apply_gradients(zip([grads0, grads1], [var0, var1])) # Check the parameters. self.assertAllCloseAccordingToType( np.array([ 1.0 - (0.1 * 2.0 / math.sqrt(0.001 + 1.0)) - (0.1 * 2.0 / math.sqrt(0.001 * 0.9 + 0.001 + 1.0)), 2.0 - (0.1 * 2.0 / math.sqrt(0.001 + 1.0)) - (0.1 * 2.0 / math.sqrt(0.001 * 0.9 + 0.001 + 1.0)) ]), self.evaluate(var0)) self.assertAllCloseAccordingToType( np.array([ 3.0 - (0.01 * 2.0 / math.sqrt(0.00001 + 1.0)) - (0.01 * 2.0 / math.sqrt(0.00001 * 0.9 + 1e-5 + 1.0)), 4.0 - (0.01 * 2.0 / math.sqrt(0.00001 + 1.0)) - (0.01 * 2.0 / math.sqrt(0.00001 * 0.9 + 1e-5 + 1.0)) ]), self.evaluate(var1)) def testConstructRMSpropWithLR(self): opt = rmsprop.RMSprop(lr=1.0) opt_2 = rmsprop.RMSprop(learning_rate=0.1, lr=1.0) opt_3 = rmsprop.RMSprop(learning_rate=0.1) self.assertIsInstance(opt.lr, variables.Variable) self.assertIsInstance(opt_2.lr, variables.Variable) self.assertIsInstance(opt_3.lr, variables.Variable) self.evaluate(variables.global_variables_initializer()) self.assertAllClose(self.evaluate(opt.lr), (1.0)) self.assertAllClose(self.evaluate(opt_2.lr), (1.0)) self.assertAllClose(self.evaluate(opt_3.lr), (0.1)) def testSlotsUniqueEager(self): with context.eager_mode(): v1 = variables.Variable(1.) v2 = variables.Variable(1.) opt = rmsprop.RMSprop(1., momentum=0., centered=False) opt.minimize(lambda: v1 + v2, var_list=[v1, v2]) # There should be iteration, and one unique slot variable for v1 and v2. self.assertEqual(3, len(set({id(v) for v in opt.variables()}))) self.assertEqual( self.evaluate(opt.variables()[0]), self.evaluate(opt.iterations)) opt = rmsprop.RMSprop(learning_rate=1., momentum=0.2, centered=False) opt.minimize(lambda: v1 + v2, var_list=[v1, v2]) # There should be iteration, and two unique slot variables for v1 and v2. self.assertEqual(5, len(set({id(v) for v in opt.variables()}))) self.assertEqual( self.evaluate(opt.variables()[0]), self.evaluate(opt.iterations)) opt = rmsprop.RMSprop(learning_rate=1., momentum=0.2, centered=True) opt.minimize(lambda: v1 + v2, var_list=[v1, v2]) # There should be iteration, and three unique slot variables for v1 and v2 self.assertEqual(7, len(set({id(v) for v in opt.variables()}))) self.assertEqual( self.evaluate(opt.variables()[0]), self.evaluate(opt.iterations)) class SlotColocationTest(test.TestCase, parameterized.TestCase): @parameterized.parameters([True, False]) @test_util.run_gpu_only @test_util.run_in_graph_and_eager_modes def testRunMinimizeOnGPUForCPUVariables(self, use_resource): with ops.device("/device:CPU:0"): if use_resource: var0 = resource_variable_ops.ResourceVariable([1.0, 2.0], dtype=dtypes.float32) var1 = resource_variable_ops.ResourceVariable([3.0, 4.0], dtype=dtypes.float32) else: var0 = variables.Variable([1.0, 2.0], dtype=dtypes.float32) var1 = variables.Variable([3.0, 4.0], dtype=dtypes.float32) def loss(): return 5 * var0 + 3 * var1 opt = rmsprop.RMSprop( learning_rate=1.0, decay=0.9, momentum=0.5, epsilon=1.0) # Fetch params to validate initial values self.evaluate(variables.global_variables_initializer()) self.assertAllClose([1.0, 2.0], self.evaluate(var0)) self.assertAllClose([3.0, 4.0], self.evaluate(var1)) # Run 1 step through optimizer on GPU. # Slot variables are created the first time optimizer is used on some # variable. This tests that slot variables will be colocated with the base # variable. with ops.device("/device:GPU:0"): # Note that for eager execution, minimize expects a function instead of a # Tensor. opt_op = opt.minimize(loss, [var0, var1]) self.evaluate(variables.global_variables_initializer()) self.evaluate(opt_op) # Validate updated params, All variables should have decreased. self.assertTrue(all(v < 0.0 for v in self.evaluate(var0)), msg="updated variables: %s" % self.evaluate(var0)) self.assertTrue(all(v < 2.0 for v in self.evaluate(var1)), msg="updated variables: %s" % self.evaluate(var1)) if __name__ == "__main__": test.main()
py
1a52504b5ebec2ca9655f20b17171970be57d49f
from numpy.testing import Tester test = Tester().test
py
1a525079ce024c05fc5e8a37cdc2fd2de1d64615
from typing import Dict, List from ravendb.documents.queries.query import QueryResult class Explanations: def __init__(self): self.explanations: Dict[str, List[str]] = {} def update(self, query_result: QueryResult) -> None: self.explanations = query_result.explanations class ExplanationOptions: def __init__(self, group_key: str = None): self.group_key = group_key
py
1a5252bbbb7c9aa2868a4b0fe0b05ab0b715bb71
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "ponytone.settings") try: from django.core.management import execute_from_command_line except ImportError: # The above import may fail for some other reason. Ensure that the # issue is really that Django is missing to avoid masking other # exceptions on Python 2. try: import django except ImportError: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) raise execute_from_command_line(sys.argv)
py
1a5253038cdabf6b1f6c68825d3ea9261edfea9c
# coding: utf-8 # In[121]: import numpy as np import pandas as pd from os.path import join as opj # ### Matching based on Volumes # * Volume bins # * 100 - 150 # * 150 - 200 # * 200 - 250 # * 250 - 300 # In[122]: # ## Create a function to do volumes matching # In[147]: # def volumes_matching(volumes_bins, df_demographics, df_TD_phenotype, df_AUT_phenotype): # # Load demographics file # # # demographics_file_path = '/home1/varunk/Autism-Connectome-Analysis-brain_connectivity/notebooks/demographics.csv' # # phenotype_file_path = '/home1/varunk/data/ABIDE1/RawDataBIDs/composite_phenotypic_file.csv' # # volumes_bins = np.array([[0,150],[151,200],[201,250],[251,300]]) # # # # df_demographics = pd.read_csv(demographics_file_path) # df_demographics_volumes = df_demographics.as_matrix(['SITE_NAME','VOLUMES']).squeeze() # # # # # df_phenotype = pd.read_csv(phenotype_file_path) # # df_phenotype = df_phenotype.sort_values(['SUB_ID']) # # # # bins_volumes_AUT_data = [] # bins_volumes_TD_data = [] # # for counter, _bin in enumerate(volumes_bins): # df_demographics_volumes_selected_bin = df_demographics_volumes[np.where(np.logical_and((df_demographics_volumes[:,1] >= _bin[0]),(df_demographics_volumes[:,1] <= _bin[1])))] # # # selected_AUT = pd.DataFrame() # selected_TD = pd.DataFrame() # for site in df_demographics_volumes_selected_bin: # # print(site[0]) # selected_AUT = pd.concat([selected_AUT,df_AUT_phenotype.loc[(df_AUT_phenotype['SEX'] == 1) # & (df_AUT_phenotype['DSM_IV_TR'] == 1) # & (df_AUT_phenotype['SITE_ID'] == site[0])]]) # selected_TD = pd.concat([selected_TD,df_TD_phenotype.loc[(df_TD_phenotype['SEX'] == 1) # & (df_TD_phenotype['DSM_IV_TR'] == 0) # & (df_TD_phenotype['SITE_ID'] == site[0])]]) # # bins_volumes_AUT_data.append(selected_AUT) # bins_volumes_TD_data.append(selected_TD) # # matched_df_TD,matched_df_AUT = matching(volumes_bins, bins_volumes_TD_data, bins_volumes_AUT_data) # # sub_ids = selected_df_TD.as_matrix(['SUB_ID']).squeeze() # # matched_df_TD.to_csv('volumes_matched_TD.csv') # return matched_df_TD,matched_df_AUT def matching(bins, bins_TD_data, bins_AUT_data, randomize = False): # num_bins = 4 print('Original data stats') print('Range ','TD ','AUT ','Ratio TD/AUT') ratio = np.zeros((len(bins_TD_data))) for i in range(len(bins_TD_data)): ratio[i] = bins_TD_data[i].shape[0]/bins_AUT_data[i].shape[0] print(bins[i],bins_TD_data[i].shape[0],bins_AUT_data[i].shape[0], ratio[i]) min_ratio = np.min(ratio) min_index = np.argmin(ratio) new_TD = np.zeros((len(bins_TD_data))) new_AUT = np.zeros((len(bins_AUT_data))) # matched_df_AUT = None # matched_df_TD = None if min_ratio < 1: _ratio = 1.0 / ratio min_ratio = np.min(_ratio) print('Ratio = ',min_ratio) # ------------------------------------------- print('Matched data stats') print('Range ','TD ','AUT ') for i in range(len(bins_TD_data)): new_AUT[i] = np.floor(bins_TD_data[i].shape[0] * min_ratio) print(bins[i],bins_TD_data[i].shape[0],new_AUT[i]) # Now loop over all the bins created and select the specific number of subjects randomly from each TD bin # AUT_idx_list = [] selected_df_AUT = pd.DataFrame() selected_df_TD = pd.DataFrame() for i in range(len(bins_AUT_data)): idx = np.arange(len(bins_AUT_data[i])) if randomize == True: np.random.shuffle(idx) idx = idx[0:int(new_AUT[i])] # AUT_idx_list.append(idx) selected_df_AUT = pd.concat([selected_df_AUT, bins_AUT_data[i].iloc[idx]]) selected_df_TD = pd.concat([selected_df_TD, bins_TD_data[i]]) matched_df_AUT = selected_df_AUT.sort_values(['SUB_ID']) matched_df_TD = selected_df_TD.sort_values(['SUB_ID']) return matched_df_TD, matched_df_AUT # ------------------------------------- print('Matched data stats') print('Range ','TD ','AUT ') for i in range(len(bins_TD_data)): new_TD[i] = np.floor(bins_AUT_data[i].shape[0] * min_ratio) print(bins[i],new_TD[i],bins_AUT_data[i].shape[0]) # Now loop over all the bins created and select the specific number of subjects randomly from each TD bin # TD_idx_list = [] selected_df_TD = pd.DataFrame() selected_df_AUT = pd.DataFrame() for i in range(len(bins_TD_data)): idx = np.arange(len(bins_TD_data[i])) if randomize == True: np.random.shuffle(idx) idx = idx[0:int(new_TD[i])] # TD_idx_list.append(idx) selected_df_TD = pd.concat([selected_df_TD, bins_TD_data[i].iloc[idx]]) selected_df_AUT = pd.concat([selected_df_AUT, bins_AUT_data[i]]) matched_df_TD = selected_df_TD.sort_values(['SUB_ID']) matched_df_AUT = selected_df_AUT.sort_values(['SUB_ID']) return matched_df_TD,matched_df_AUT # In[150]: # Usage # demographics_file_path = '/home1/varunk/Autism-Connectome-Analysis-brain_connectivity/notebooks/demographics.csv' # phenotype_file_path = '/home1/varunk/data/ABIDE1/RawDataBIDs/composite_phenotypic_file.csv' # # df_demographics = pd.read_csv(demographics_file_path) # # # df_phenotype = pd.read_csv(phenotype_file_path) # df_phenotype = df_phenotype.sort_values(['SUB_ID']) # # volumes_bins = np.array([[0,150],[151,200],[201,250],[251,300]]) # # matched_df_TD,matched_df_AUT = volumes_matching(volumes_bins, df_demographics, df_phenotype, df_phenotype) # In[151]: def age_matching(age_bins, df_TD_phenotype, df_AUT_phenotype, base_directory ): # age_bins = np.array([[0,9],[9,12],[12,15],[15,18]]) bins_age_AUT_data = [] bins_age_TD_data = [] # for counter, _bin in enumerate(age_bins): log_path = opj(base_directory,"log.txt") log = open(log_path, 'a') log.write("------------- Age Matching with the following bins -------------\n") log.write("Age Bins: %s \n"%age_bins) log.flush() for age in age_bins: selected_AUT = pd.DataFrame() selected_TD = pd.DataFrame() # print(age[0], age[1]) # selected_AUT = pd.concat([selected_AUT,df_AUT_phenotype[(df_AUT_phenotype['SEX'] == 1) # & (df_AUT_phenotype['DSM_IV_TR'] == 1) # & (df_AUT_phenotype['AGE_AT_SCAN'] > age[0]) # & (df_AUT_phenotype['AGE_AT_SCAN'] <= age[1]) ]]) # selected_TD = pd.concat([selected_TD,df_TD_phenotype.loc[(df_TD_phenotype['SEX'] == 1) # & (df_TD_phenotype['DX_GROUP'] == 2) # & (df_TD_phenotype['AGE_AT_SCAN'] > age[0]) # & (df_TD_phenotype['AGE_AT_SCAN'] <= age[1]) ]]) selected_AUT = pd.concat([selected_AUT,df_AUT_phenotype[(df_AUT_phenotype['AGE_AT_SCAN'] > age[0]) & (df_AUT_phenotype['AGE_AT_SCAN'] <= age[1]) ]]) selected_TD = pd.concat([selected_TD,df_TD_phenotype.loc[(df_TD_phenotype['AGE_AT_SCAN'] > age[0]) & (df_TD_phenotype['AGE_AT_SCAN'] <= age[1]) ]]) bins_age_AUT_data.append(selected_AUT) bins_age_TD_data.append(selected_TD) matched_df_TD,matched_df_AUT = matching(age_bins, bins_age_TD_data, bins_age_AUT_data) # sub_ids = selected_df_TD.as_matrix(['SUB_ID']).squeeze() # matched_df_TD.to_csv('age_matched_TD.csv') return matched_df_TD,matched_df_AUT # In[152]: # Usage # demographics_file_path = '/home1/varunk/Autism-Connectome-Analysis-brain_connectivity/notebooks/demographics.csv' # phenotype_file_path = '/home1/varunk/data/ABIDE1/RawDataBIDs/composite_phenotypic_file.csv' # # df_demographics = pd.read_csv(demographics_file_path) # # # df_phenotype = pd.read_csv(phenotype_file_path) # df_phenotype = df_phenotype.sort_values(['SUB_ID']) # # age_bins = np.array([[0,9],[9,12],[12,15],[15,18]]) # # matched_df_TD,matched_df_AUT = age_matching(age_bins, matched_df_TD, df_phenotype) # ## TR Matching # In[153]: def tr_matching(TR_bins, df_demographics, df_TD_phenotype, df_AUT_phenotype, base_directory ): # df_demographics = pd.read_csv(demographics_file_path) df_demographics_TR = df_demographics.as_matrix(['SITE_NAME','TR']).squeeze() log_path = opj(base_directory,"log.txt") log = open(log_path, 'a') log.write("------------- TR Matching with the following bins -------------\n") log.write("TR Bins: %s \n"%TR_bins) log.flush() # df_phenotype = pd.read_csv(phenotype_file_path) # df_phenotype = df_phenotype.sort_values(['SUB_ID']) bins_TR_AUT_data = [] bins_TR_TD_data = [] for counter, _bin in enumerate(TR_bins): df_demographics_TR_selected_bin = df_demographics_TR[np.where(np.logical_and((df_demographics_TR[:,1] > _bin[0]),(df_demographics_TR[:,1] <= _bin[1])))] selected_AUT = pd.DataFrame() selected_TD = pd.DataFrame() for site in df_demographics_TR_selected_bin: # print(site[0]) # selected_AUT = pd.concat([selected_AUT,df_AUT_phenotype.loc[(df_AUT_phenotype['SEX'] == 1) # & (df_AUT_phenotype['DSM_IV_TR'] == 1) # & (df_AUT_phenotype['SITE_ID'] == site[0])]]) # selected_TD = pd.concat([selected_TD,df_TD_phenotype.loc[(df_TD_phenotype['SEX'] == 1) # & (df_TD_phenotype['DX_GROUP'] == 2) # & (df_TD_phenotype['SITE_ID'] == site[0])]]) selected_AUT = pd.concat([selected_AUT,df_AUT_phenotype.loc[(df_AUT_phenotype['SITE_ID'] == site[0])]]) selected_TD = pd.concat([selected_TD,df_TD_phenotype.loc[(df_TD_phenotype['SITE_ID'] == site[0])]]) bins_TR_AUT_data.append(selected_AUT) bins_TR_TD_data.append(selected_TD) matched_df_TD, matched_df_AUT = matching(TR_bins, bins_TR_TD_data, bins_TR_AUT_data) # sub_ids = selected_df_TD.as_matrix(['SUB_ID']).squeeze() # matched_df_TD.to_csv('TR_matched_TD.csv') return matched_df_TD, matched_df_AUT # In[154]: # usage # demographics_file_path = '/home1/varunk/Autism-Connectome-Analysis-brain_connectivity/notebooks/demographics.csv' # phenotype_file_path = '/home1/varunk/data/ABIDE1/RawDataBIDs/composite_phenotypic_file.csv' # TR_bins = np.array([[0,2],[2,2.5],[2.5,3.0]]) # # # df_demographics = pd.read_csv(demographics_file_path) # df_phenotype = pd.read_csv(phenotype_file_path) # df_phenotype = df_phenotype.sort_values(['SUB_ID']) # # matched_df_TD = tr_matching(TR_bins,df_demographics, matched_df_TD, df_phenotype) # In[155]: # Combined Matching Usage # demographics_file_path = '/home1/varunk/Autism-Connectome-Analysis-brain_connectivity/notebooks/demographics.csv' # phenotype_file_path = '/home1/varunk/data/ABIDE1/RawDataBIDs/composite_phenotypic_file.csv' # df_demographics = pd.read_csv(demographics_file_path) # df_phenotype = pd.read_csv(phenotype_file_path) # df_phenotype = df_phenotype.sort_values(['SUB_ID']) # # # # # Volume matching # print('Volume Matching') # volumes_bins = np.array([[0,150],[151,200],[201,250],[251,300]]) # matched_df_TD = df_phenotype # matched_df_AUT = df_phenotype # matched_df_TD, matched_df_AUT = volumes_matching(volumes_bins, df_demographics, matched_df_TD, matched_df_AUT) # # # TR matching # print('TR Matching') # TR_bins = np.array([[0,2],[2,2.5],[2.5,3.0]]) # # matched_df_TD = df_phenotype # # matched_df_AUT = df_phenotype # matched_df_TD,matched_df_AUT = tr_matching(TR_bins,df_demographics, matched_df_TD, matched_df_AUT) # # # # Age Matching # print('Age Matching') # age_bins = np.array([[0,9],[9,12],[12,15],[15,18]]) # # matched_df_TD = df_phenotype # # matched_df_AUT = df_phenotype # matched_df_TD,matched_df_AUT = age_matching(age_bins, matched_df_TD, matched_df_AUT) # # # # matched_df_TD.loc[(matched_df_TD['SEX'] == 1) & (matched_df_TD['DSM_IV_TR'] == 0) & (matched_df_TD['EYE_STATUS_AT_SCAN'] == 2) ] # # matched_df_AUT.loc[(matched_df_AUT['SEX'] == 1) & (matched_df_AUT['DSM_IV_TR'] == 1) & (matched_df_AUT['EYE_STATUS_AT_SCAN'] == 2) ]
py
1a525303dc1812de7b56aee7ffa1be68f0c8c97c
# coding: utf-8 """ Cisco Intersight OpenAPI specification. The Cisco Intersight OpenAPI specification. OpenAPI spec version: 1.0.9-1461 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class EtherPhysicalPortRef(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'object_type': 'str', 'moid': 'str', 'selector': 'str' } attribute_map = { 'object_type': 'ObjectType', 'moid': 'Moid', 'selector': 'Selector' } def __init__(self, object_type=None, moid=None, selector=None): """ EtherPhysicalPortRef - a model defined in Swagger """ self._object_type = None self._moid = None self._selector = None if object_type is not None: self.object_type = object_type if moid is not None: self.moid = moid if selector is not None: self.selector = selector @property def object_type(self): """ Gets the object_type of this EtherPhysicalPortRef. The Object Type of the referenced REST resource. :return: The object_type of this EtherPhysicalPortRef. :rtype: str """ return self._object_type @object_type.setter def object_type(self, object_type): """ Sets the object_type of this EtherPhysicalPortRef. The Object Type of the referenced REST resource. :param object_type: The object_type of this EtherPhysicalPortRef. :type: str """ self._object_type = object_type @property def moid(self): """ Gets the moid of this EtherPhysicalPortRef. The Moid of the referenced REST resource. :return: The moid of this EtherPhysicalPortRef. :rtype: str """ return self._moid @moid.setter def moid(self, moid): """ Sets the moid of this EtherPhysicalPortRef. The Moid of the referenced REST resource. :param moid: The moid of this EtherPhysicalPortRef. :type: str """ self._moid = moid @property def selector(self): """ Gets the selector of this EtherPhysicalPortRef. An OData $filter expression which describes the REST resource to be referenced. This field may be set instead of 'moid' by clients. If 'moid' is set this field is ignored. If 'selector' is set and 'moid' is empty/absent from the request, Intersight will determine the Moid of the resource matching the filter expression and populate it in the MoRef that is part of the object instance being inserted/updated to fulfill the REST request. An error is returned if the filter matches zero or more than one REST resource. An example filter string is: Serial eq '3AA8B7T11'. :return: The selector of this EtherPhysicalPortRef. :rtype: str """ return self._selector @selector.setter def selector(self, selector): """ Sets the selector of this EtherPhysicalPortRef. An OData $filter expression which describes the REST resource to be referenced. This field may be set instead of 'moid' by clients. If 'moid' is set this field is ignored. If 'selector' is set and 'moid' is empty/absent from the request, Intersight will determine the Moid of the resource matching the filter expression and populate it in the MoRef that is part of the object instance being inserted/updated to fulfill the REST request. An error is returned if the filter matches zero or more than one REST resource. An example filter string is: Serial eq '3AA8B7T11'. :param selector: The selector of this EtherPhysicalPortRef. :type: str """ self._selector = selector def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, EtherPhysicalPortRef): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
py
1a52531dda1600211bac851e9bab4686ab11b065
import pickle import torch from model import RNN def read_metadata(metadata_path): with open(metadata_path, 'rb') as f: metadata = pickle.load(f) input_stoi = metadata['input_stoi'] label_itos = metadata['label_itos'] return input_stoi, label_itos def load_model(model_path, input_stoi): model = RNN( len(set(input_stoi.values())), 100, 256, 1, 2, True, 0.5, input_stoi['<pad>'] ) model.load_state_dict(torch.load(model_path)) model = model.eval() return model def predict_sentiment(sentence, model_path, metadata_path): print ('Fetching Meta-Data') input_stoi, label_itos = read_metadata(metadata_path) print('Meta Data Loaded') model = load_model(model_path, input_stoi) print('Tokenization') tokenized = [tok for tok in sentence.split()] indexed = [input_stoi[t] for t in tokenized] tensor = torch.LongTensor(indexed) tensor = tensor.unsqueeze(1) length_tensor = torch.LongTensor([len(indexed)]) print('Parsing through Model') prediction = torch.sigmoid(model(tensor, length_tensor)) print('prediction-',prediction) return label_itos[round(prediction.item())]
py
1a525403a0a775d38a0658b8e9214595f90ec805
import sqlite3 import os class DbHelper: connection = None cursor = None def __init__(self, path: str): if not self.check_file(path): open('path', 'w+').close() try: self.connection = sqlite3.connect(path) self.cursor = self.connection.cursor() except sqlite3.Error as e: print("An error has occured while opening the database:", e.args[0]) @staticmethod def check_file(path: str): return os.path.isfile(path) def query(self, query, param): self.cursor.execute(query, param) def getFirstResult(self) -> []: return self.cursor.fetchone() def queryAll(self, query, param) -> []: self.cursor.execute(query, param) return self.cursor.fetchall() def close(self): self.connection.close()
py
1a52543289cb7671a991c47ddd674d6041f13427
from App.extensions import db from datetime import datetime class Posts(db.Model): __tablename__ = 'posts' id = db.Column(db.Integer,primary_key=True) content = db.Column(db.Text) pid = db.Column(db.Integer,default=0) path = db.Column(db.String(255),default='0,') #记录时间的 timestamp = db.Column(db.DateTime,default=datetime.utcnow) #user的外键 uid = db.Column(db.Integer,db.ForeignKey('user.id'))
py
1a52545ec70cca1e0cb3b3a826bda96f6bb22000
import json import os from botocore.exceptions import ClientError from typing import Dict, Any, List from pprint import pprint from datetime import datetime, timedelta import uuid from collections import namedtuple from .create_processes_metric_image_util import generate_processes_metrics_image AlarmStateChangeData = namedtuple('AlarmStateChangeData', [ 'period', 'queryDate', 'recentDatapoints', 'startDate', 'statistic', 'threshold', 'version','evaluatedDatapoints']) INSTANCE_ID = slice(0, 19) def create_metric_images_urls(alarm_details, metric_names, aws_services, instance_type): ''' This function generates metric images. ''' metric_images_urls: Dict[str, str] = {} try: alarm_name: str = alarm_details['AlarmName'] instance_id: str = alarm_name[INSTANCE_ID] metric_alarms_new_state_details: Dict[str, Any] = get_alarms_new_state_data( alarm_details, aws_services) for name in metric_names: image_url = generate_processes_metrics_image(instance_type, instance_id, name, metric_alarms_new_state_details['CPUUtilization'], aws_services) \ if 'procstat' in name else generate_metric_image(instance_id, name, metric_alarms_new_state_details[name], aws_services) print(f'{name} metric image url of instance {instance_id}.') print(f'{image_url}') if image_url is not None: metric_images_urls[name] = image_url except (Exception, ClientError) as err: print(err) print( f'Failed to generate {metric_names} metric images of instance {instance_id} because of above err.') raise err else: return metric_images_urls def get_alarms_new_state_data(alarm_details: Dict[str, Any], aws_services: Dict[str, Any]) -> Dict[str, Any]: print('Get alarms history.') cloudwatch_resource = aws_services['cloudwatch_resource'] child_alarms_details: List[Dict[str, Any] ] = alarm_details['TriggeringChildren'] alarm_names: List[str] = [] today = datetime.utcnow() year, month, day = today.year, today.month, today.day alarms_new_state: Dict[str, Any] = {} try: for alarm in child_alarms_details: _, _, _, _, _, _, alarm_name = alarm['Arn'].split(':') alarm_names.append(alarm_name) print(alarm_names) for alarm_name in alarm_names: alarm = cloudwatch_resource.Alarm(alarm_name) history: Dict[str, Any] = alarm.describe_history(AlarmTypes=[ 'MetricAlarm', ], HistoryItemType='StateUpdate', #StartDate=datetime(year, month, day), #EndDate=datetime.utcnow(), MaxRecords=1,#Get the record of transition from OK to ALARM. ScanBy='TimestampDescending') for item in history['AlarmHistoryItems']: print(item['AlarmName']) history_data: Dict[str, Any] = json.loads(item['HistoryData']) print(history_data) new_state_data: Dict[str, Any] = history_data['newState'][ 'stateReasonData'] if history_data['newState']['stateValue'] == 'ALARM' else None if new_state_data is not None: alarms_new_state['CPUUtilization' if 'CPUUtilization' in alarm_name else 'CPUCreditBalance'] = {'stateReason': history_data['newState']['stateReason'], 'stateReasonData': AlarmStateChangeData(**new_state_data)} except Exception as err: print(err) print( f'Failed to retrieve new state data of {alarm_names} from history.') pprint(alarms_new_state) return alarms_new_state def generate_metric_image(instance_id: str, metric_name: str, alarm_new_state: Dict[str, Any], aws_services: Dict[str, Any]) -> str: try: aws_region: str = os.environ.get('AWS_REGION') cloudwatch_client = aws_services['cloudwatch_client'] s3_bucket: str = os.environ.get('S3_BUCKET_TO_STORE_GENERATED_IMAGES') horizontal_annotation: List[Dict[str:Any]] = [] horizontal_annotation.append({ "color": "#ff6961", "label": '{}'.format(alarm_new_state['stateReason']), # "fill": "above", "value": float('{}'.format(alarm_new_state['stateReasonData'].threshold)) }) for datapoint in alarm_new_state['stateReasonData'].recentDatapoints: horizontal_annotation.append({ "color": "#ff6961", "label": datapoint, # "fill": "above", "value": float(datapoint) }) metric_request: Dict[str:Any] = { "metrics": [ ["AWS/EC2", f'{metric_name}', "InstanceId", f'{instance_id}', { "stat": '{}'.format(alarm_new_state['stateReasonData'].statistic), "period": int('{}'.format(alarm_new_state['stateReasonData'].period)) }] ], "height": 1024, "width": 1024, # "timezone": "+1100", "start": "-PT3H", "end": "+PT1H", "liveData": True, "annotations": { "horizontal": horizontal_annotation, "vertical": [ { "color": "#9467bd", "label": "start", # "value":"2018-08-28T15:25:26Z", # "value": (datetime.utcnow().strftime("%Y-%m-%dT%H:%M:%SZ")), "value": datetime.strptime('{}'.format(alarm_new_state['stateReasonData'].startDate), "%Y-%m-%dT%H:%M:%S.%f+0000").strftime("%Y-%m-%dT%H:%M:%SZ"), # "fill": "after" }, { "color": "#9467bd", "value": datetime.strptime('{}'.format(alarm_new_state['stateReasonData'].queryDate), "%Y-%m-%dT%H:%M:%S.%f+0000").strftime("%Y-%m-%dT%H:%M:%SZ"), "label": "end" } ] } } print(f'{metric_request}') response = cloudwatch_client.get_metric_widget_image( MetricWidget=json.dumps(metric_request) # OutputFormat='string' ) image_name: str = f'{uuid.uuid4().hex}.jpeg' upload_image_to_s3( image_name, response["MetricWidgetImage"], aws_services) except Exception as err: print(err) print('Failed because of above error.') else: return f'https://{s3_bucket}.s3-{aws_region}.amazonaws.com/{image_name}' def upload_image_to_s3(image_name: str, image: bytearray, aws_services: Dict[str, Any]): try: s3_resource = aws_services['s3_resource'] s3_bucket: str = os.environ.get('S3_BUCKET_TO_STORE_GENERATED_IMAGES') bucket = s3_resource.Bucket(f'{s3_bucket}') bucket.put_object(Key=image_name, ACL='public-read', Body=image, ContentType='image/jpeg' ) except Exception as err: print(err) print('Failed because of above error')
py
1a5256446d2e740013f1ddb6c4943df0de41d99b
""" ASGI config for guitars project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'guitars.settings') application = get_asgi_application()
py
1a5256a15f8378fed05245408657d18e18638ec6
import FreeCAD, Part, Mesh DOC = FreeCAD.activeDocument() DOC_NAME = "part_output_coil_without_windings" def clear_doc(): # Clear the active document deleting all the objects for obj in DOC.Objects: DOC.removeObject(obj.Name) def setview(): # Rearrange View FreeCAD.Gui.SendMsgToActiveView("ViewFit") FreeCAD.Gui.activeDocument().activeView().viewAxometric() if DOC is None: FreeCAD.newDocument(DOC_NAME) FreeCAD.setActiveDocument(DOC_NAME) DOC = FreeCAD.activeDocument() else: clear_doc() # EPS= tolerance to use to cut the parts EPS = 0.10 EPS_C = EPS * -0.5 L_vis_10m = 100 h_equerre = 2.2 h_ecrou_10m = 10 s_rondelle_10m = 2 D = 60 D_aimant = 16 D_winding = 26 D_percage_2_5 = 2.5 D_percage_5 = 5 h_coil = L_vis_10m - h_equerre*2 - s_rondelle_10m*2 - h_ecrou_10m - 5 cylinder_1 = Part.makeCylinder(D/2, h_coil) cylinder_2 = Part.makeCylinder(D_aimant/2, h_coil) cylinder_3 = Part.makeCylinder(D/2, h_coil - 2*3) cylinder_4 = Part.makeCylinder(D_winding/2, h_coil - 2*3) # cylinder_1 cut by cylinder_2 cylinder_1 = cylinder_1.cut(cylinder_2) # cylinder_3 cut by cylinder_4 cylinder_3 = cylinder_3.cut(cylinder_4) # cylinder_1 cut by cylinder_3 cylinder_3_vector = FreeCAD.Vector(0, 0, 3) cylinder_3.translate(cylinder_3_vector) cylinder_1 = cylinder_1.cut(cylinder_3) # cylinder_1 cut by cylinder_5 in several times degre = 20 for i in range(int(360/degre)): radius = D_winding/2 - D_percage_2_5 alpha=(i*degre*math.pi)/180 cylinder_5_vector = FreeCAD.Vector(radius*math.cos(alpha), radius*math.sin(alpha), 0) cylinder_5 = Part.makeCylinder(D_percage_2_5/2, h_coil) cylinder_5.translate(cylinder_5_vector) cylinder_1 = cylinder_1.cut(cylinder_5) # cylinder_1 cut by cylinder_5 in several times degre = 20 for i in range(int(360/degre)): radius = D_winding/2 + D_percage_5 alpha=(i*degre*math.pi)/180 cylinder_5_vector = FreeCAD.Vector(radius*math.cos(alpha), radius*math.sin(alpha), 0) cylinder_5 = Part.makeCylinder(D_percage_5/2, h_coil) cylinder_5.translate(cylinder_5_vector) cylinder_1 = cylinder_1.cut(cylinder_5) # cylinder_1 cut by cylinder_5 in several times degre = 20 for i in range(int(360/degre)): radius = D_winding/2 + D_percage_5*2 + 2 alpha=(i*degre*math.pi)/180 cylinder_5_vector = FreeCAD.Vector(radius*math.cos(alpha), radius*math.sin(alpha), 0) cylinder_5 = Part.makeCylinder(D_percage_5/2, h_coil) cylinder_5.translate(cylinder_5_vector) cylinder_1 = cylinder_1.cut(cylinder_5) Part.show(cylinder_1) DOC.recompute() __objs__=[] __objs__.append(FreeCAD.getDocument("part_output_coil_without_windings").getObject("Shape")) stl_file = u"part_output_coil_without_windings.stl" Mesh.export(__objs__, stl_file) setview() # Generate PNG files file = 'part_output_coil_without_windings_' # Ombr� Gui.runCommand('Std_DrawStyle',5) i = 1 Gui.activeDocument().activeView().viewIsometric() Gui.activeDocument().activeView().saveImage(file + str(i) + '.png',1117,388,'Current') i += 1 Gui.activeDocument().activeView().viewFront() Gui.activeDocument().activeView().saveImage(file + str(i) + '.png',1117,388,'Current') i += 1 Gui.activeDocument().activeView().viewTop() Gui.activeDocument().activeView().saveImage(file + str(i) + '.png',1117,388,'Current') i += 1 Gui.activeDocument().activeView().viewRight() Gui.activeDocument().activeView().saveImage(file + str(i) + '.png',1117,388,'Current') i += 1 Gui.activeDocument().activeView().viewRear() Gui.activeDocument().activeView().saveImage(file + str(i) + '.png',1117,388,'Current') i += 1 Gui.activeDocument().activeView().viewBottom() Gui.activeDocument().activeView().saveImage(file + str(i) + '.png',1117,388,'Current') i += 1 Gui.activeDocument().activeView().viewLeft() Gui.activeDocument().activeView().saveImage(file + str(i) + '.png',1117,388,'Current') # Filaire Gui.runCommand('Std_DrawStyle',2) i += 1 Gui.activeDocument().activeView().viewIsometric() Gui.activeDocument().activeView().saveImage(file + str(i) + '.png',1117,388,'Current') i += 1 Gui.activeDocument().activeView().viewFront() Gui.activeDocument().activeView().saveImage(file + str(i) + '.png',1117,388,'Current') i += 1 Gui.activeDocument().activeView().viewTop() Gui.activeDocument().activeView().saveImage(file + str(i) + '.png',1117,388,'Current') i += 1 Gui.activeDocument().activeView().viewRight() Gui.activeDocument().activeView().saveImage(file + str(i) + '.png',1117,388,'Current') i += 1 Gui.activeDocument().activeView().viewRear() Gui.activeDocument().activeView().saveImage(file + str(i) + '.png',1117,388,'Current') i += 1 Gui.activeDocument().activeView().viewBottom() Gui.activeDocument().activeView().saveImage(file + str(i) + '.png',1117,388,'Current') i += 1 Gui.activeDocument().activeView().viewLeft() Gui.activeDocument().activeView().saveImage(file + str(i) + '.png',1117,388,'Current')
py
1a5256a4ae7dd9bb6a8e3f67c1bf36914412ab38
from pandac.PandaModules import * from direct.interval.IntervalGlobal import * from direct.particles import ParticleEffect from direct.particles import Particles from PooledEffect import PooledEffect from EffectController import EffectController import os class HealSparks(PooledEffect, EffectController): cardScale = 64.0 def __init__(self): PooledEffect.__init__(self) EffectController.__init__(self) model = loader.loadModel('models/effects/particleMaps') self.card = model.find('**/particleSpark') self.setDepthWrite(0) self.setLightOff() self.setFogOff() self.setColorScaleOff() self.effectColor = Vec4(1, 1, 1, 1) self.f = ParticleEffect.ParticleEffect('HealSparks') self.f.reparentTo(self) self.p0 = Particles.Particles('particles-1') self.p0.setFactory('PointParticleFactory') self.p0.setRenderer('SpriteParticleRenderer') self.p0.setEmitter('SphereVolumeEmitter') self.f.addParticles(self.p0) self.p0.setPoolSize(64) self.p0.setBirthRate(0.05) self.p0.setLitterSize(4) self.p0.setLitterSpread(0) self.p0.setSystemLifespan(0.0) self.p0.setLocalVelocityFlag(1) self.p0.setSystemGrowsOlderFlag(0) self.p0.factory.setLifespanBase(0.5) self.p0.factory.setLifespanSpread(0.25) self.p0.factory.setMassBase(1.0) self.p0.factory.setMassSpread(0.0) self.p0.factory.setTerminalVelocityBase(400.0) self.p0.factory.setTerminalVelocitySpread(0.0) self.p0.renderer.setAlphaMode(BaseParticleRenderer.PRALPHAINOUT) self.p0.renderer.setUserAlpha(1.0) self.p0.renderer.setFromNode(self.card) self.p0.renderer.setColor(Vec4(1, 1, 1, 1)) self.p0.renderer.setXScaleFlag(1) self.p0.renderer.setYScaleFlag(1) self.p0.renderer.setAnimAngleFlag(0) self.p0.renderer.setInitialXScale(0.001 * self.cardScale) self.p0.renderer.setFinalXScale(0.004 * self.cardScale) self.p0.renderer.setInitialYScale(0.001 * self.cardScale) self.p0.renderer.setFinalYScale(0.005 * self.cardScale) self.p0.renderer.setNonanimatedTheta(0.0) self.p0.renderer.setAlphaBlendMethod(BaseParticleRenderer.PPBLENDLINEAR) self.p0.renderer.setAlphaDisable(0) self.p0.renderer.setColorBlendMode(ColorBlendAttrib.MAdd, ColorBlendAttrib.OIncomingAlpha, ColorBlendAttrib.OOne) self.p0.emitter.setEmissionType(BaseParticleEmitter.ETRADIATE) self.p0.emitter.setAmplitude(0.0) self.p0.emitter.setAmplitudeSpread(0.0) self.p0.emitter.setOffsetForce(Vec3(0.0, 0.0, 0.0)) self.p0.emitter.setExplicitLaunchVector(Vec3(0.0, 0.0, 0.0)) self.p0.emitter.setRadiateOrigin(Point3(0.0, 0.0, 0.0)) self.p0.emitter.setRadius(1.0) def createTrack(self, delay=0.0): self.p0.renderer.setInitialXScale(0.001 * self.cardScale) self.p0.renderer.setFinalXScale(0.004 * self.cardScale) self.p0.renderer.setInitialYScale(0.001 * self.cardScale) self.p0.renderer.setFinalYScale(0.005 * self.cardScale) self.startEffect = Sequence(Wait(delay), Func(self.p0.clearToInitial), Func(self.p0.softStart), Func(self.f.start, self, self)) self.endEffect = Sequence(Func(self.p0.softStop), Wait(2.0), Func(self.cleanUpEffect)) self.track = Sequence(self.startEffect, Wait(3.0), self.endEffect) def setEffectColor(self, color): self.effectColor = color self.p0.renderer.getColorInterpolationManager().clearToInitial() self.p0.renderer.getColorInterpolationManager().addLinear(0.0, 1.0, self.effectColor * 2.0, self.effectColor, 1) def play(self, delay=0.0): self.createTrack(delay) self.track.start() def cleanUpEffect(self): EffectController.cleanUpEffect(self) self.checkInEffect(self) def destroy(self): EffectController.destroy(self) PooledEffect.destroy(self) self.adjustIval = None return
py
1a5257501af9a5317b38cf961d5d99894c7cd74d
from binascii import crc_hqx from decimal import Decimal from typing import Optional def get_payload_format_indicator() -> str: return "000201" def get_merchant_account_information(key: str) -> str: GUI = "0014BR.GOV.BCB.PIX" string = "01{l:02d}{k}".format(l=len(key), k=key) result = GUI + string if len(result) > 99: raise ValueError("PIX key is too long.") return "26{l:02d}{r}".format(l=len(result), r=result) def get_merchant_category_code() -> str: return '52040000' def get_transaction_currency() -> str: return '5303986' def get_transaction_value(value: Decimal) -> str: if value <= Decimal('0.00'): raise ValueError("Only positive decimals allowed.") string = str(value) return f"54{'{:02d}'.format(len(string))}{string}" def get_country_code() -> str: return '5802BR' def get_merchant_name(name: str) -> str: if len(name) > 25: raise ValueError( "Recipient name must be less than 25 characters long.") return f"59{'{:02d}'.format(len(name))}{name}" def get_merchant_city(city: str) -> str: if len(city) > 15: raise ValueError("Max of 15 characters for city name.") return f"60{'{:02d}'.format(len(city))}{city}" def get_additional_data_field_template(identifier: Optional[str] = None): if not identifier: identifier = '***' if len(identifier) > 25: raise ValueError("Only indentifiers with length less than 25 " "characters are allowed.") txid = f"05{'{:02d}'.format(len(identifier))}{identifier}" return f"62{'{:02d}'.format(len(txid))}{txid}" def get_crc16(payload: str) -> str: checksum = crc_hqx(bytes(payload + '6304', 'ascii'), 0xFFFF) return hex(checksum)[2:].upper()
py
1a52578b8653f9d388759cb0adacdae036502733
#!/usr/bin/python """ Script to upload images to wikipedia. The following parameters are supported: -keep Keep the filename as is -filename: Target filename without the namespace prefix -prefix: Add specified prefix to every filename. -noverify Do not ask for verification of the upload description if one is given -abortonwarn: Abort upload on the specified warning type. If no warning type is specified, aborts on any warning. -ignorewarn: Ignores specified upload warnings. If no warning type is specified, ignores all warnings. Use with caution -chunked: Upload the file in chunks (more overhead, but restartable). If no value is specified the chunk size is 1 MiB. The value must be a number which can be preceded by a suffix. The units are: No suffix: Bytes 'k': Kilobytes (1000 B) 'M': Megabytes (1000000 B) 'Ki': Kibibytes (1024 B) 'Mi': Mebibytes (1024x1024 B) The suffixes are case insensitive. -always Don't ask the user anything. This will imply -keep and -noverify and require that either -abortonwarn or -ignorewarn is defined for all. It will also require a valid file name and description. It'll only overwrite files if -ignorewarn includes the 'exists' warning. -recursive When the filename is a directory it also uploads the files from the subdirectories. -summary: Pick a custom edit summary for the bot. -descfile: Specify a filename where the description is stored It is possible to combine -abortonwarn and -ignorewarn so that if the specific warning is given it won't apply the general one but more specific one. So if it should ignore specific warnings and abort on the rest it's possible by defining no warning for -abortonwarn and the specific warnings for -ignorewarn. The order does not matter. If both are unspecific or a warning is specified by both, it'll prefer aborting. If any other arguments are given, the first is either URL, filename or directory to upload, and the rest is a proposed description to go with the upload. If none of these are given, the user is asked for the directory, file or URL to upload. The bot will then upload the image to the wiki. The script will ask for the location of an image(s), if not given as a parameter, and for a description. """ # # (C) Pywikibot team, 2003-2020 # # Distributed under the terms of the MIT license. # import codecs import math import os import re import pywikibot from pywikibot.bot import suggest_help from pywikibot.specialbots import UploadRobot CHUNK_SIZE_REGEX = re.compile( r'-chunked(?::(\d+(?:\.\d+)?)[ \t]*(k|ki|m|mi)?b?)?$', re.I) def get_chunk_size(match) -> int: """Get chunk size.""" if not match: pywikibot.error('Chunk size parameter is not valid.') chunk_size = 0 elif match.group(1): # number was in there base = float(match.group(1)) if match.group(2): # suffix too suffix = match.group(2).lower() if suffix == 'k': suffix = 1000 elif suffix == 'm': suffix = 1000000 elif suffix == 'ki': suffix = 1 << 10 elif suffix == 'mi': suffix = 1 << 20 else: suffix = 1 chunk_size = math.trunc(base * suffix) else: chunk_size = 1 << 20 # default to 1 MiB return chunk_size def main(*args) -> None: """ Process command line arguments and invoke bot. If args is an empty list, sys.argv is used. @param args: command line arguments @type args: str """ url = '' description = [] summary = None keep_filename = False always = False use_filename = None filename_prefix = None verify_description = True aborts = set() ignorewarn = set() chunk_size = 0 recursive = False description_file = None # process all global bot args # returns a list of non-global args, i.e. args for upload.py local_args = pywikibot.handle_args(args) for option in local_args: arg, _, value = option.partition(':') if arg == '-always': keep_filename = True always = True verify_description = False elif arg == '-recursive': recursive = True elif arg == '-keep': keep_filename = True elif arg == '-filename': use_filename = value elif arg == '-prefix': filename_prefix = value elif arg == '-summary': summary = value elif arg == '-noverify': verify_description = False elif arg == '-abortonwarn': if value and aborts is not True: aborts.add(value) else: aborts = True elif arg == '-ignorewarn': if value and ignorewarn is not True: ignorewarn.add(value) else: ignorewarn = True elif arg == '-chunked': match = CHUNK_SIZE_REGEX.match(option) chunk_size = get_chunk_size(match) elif arg == '-descfile': description_file = value elif not url: url = option else: description.append(option) description = ' '.join(description) if description_file: if description: pywikibot.error('Both a description and a -descfile were ' 'provided. Please specify only one of those.') return with codecs.open(description_file, encoding=pywikibot.config.textfile_encoding) as f: description = f.read().replace('\r\n', '\n') while not ('://' in url or os.path.exists(url)): if not url: error = 'No input filename given.' else: error = 'Invalid input filename given.' if not always: error += ' Try again.' if always: url = None break pywikibot.output(error) url = pywikibot.input('URL, file or directory where files are now:') if always and (aborts is not True and ignorewarn is not True or not description or url is None): additional = '' missing = [] if url is None: missing += ['filename'] additional = error + ' ' if description is None: missing += ['description'] if aborts is not True and ignorewarn is not True: additional += ('Either -ignorewarn or -abortonwarn must be ' 'defined for all codes. ') additional += 'Unable to run in -always mode' suggest_help(missing_parameters=missing, additional_text=additional) return if os.path.isdir(url): file_list = [] for directory_info in os.walk(url): if not recursive: # Do not visit any subdirectories directory_info[1][:] = [] for dir_file in directory_info[2]: file_list.append(os.path.join(directory_info[0], dir_file)) url = file_list else: url = [url] bot = UploadRobot(url, description=description, use_filename=use_filename, keep_filename=keep_filename, verify_description=verify_description, aborts=aborts, ignore_warning=ignorewarn, chunk_size=chunk_size, always=always, summary=summary, filename_prefix=filename_prefix) bot.run() if __name__ == '__main__': main()
py
1a525a6acb3436a21449ad8a3c58817757da27cc
# AUTOGENERATED! DO NOT EDIT! File to edit: nbs/02_data.config.ipynb (unless otherwise specified). __all__ = ['RLE', 'Record', 'Info', 'Annotation', 'BBox', 'from_xyxy_abs', 'from_rle', 'Seg', 'from_polys', 'from_rle'] # Cell from ..basics import * # Cell class RLE: def __init__(self, v, h, w): store_attr(self, 'v,h,w') @classmethod def from_str(cls, s, h, w): v = np.array(s.split(), dtype=np.uint) return cls(v, h, w) def __repr__(self): return str({'shape':(self.h,self.w), 'points':self.v}) # Cell @patch def decode(self:RLE): 'From https://www.kaggle.com/julienbeaulieu/imaterialist-detectron2' mask = np.full(self.h*self.w, 0, dtype=np.uint8) for i, start_pixel in enumerate(self.v[::2]): mask[start_pixel: start_pixel+self.v[2*i+1]] = 1 mask = mask.reshape((self.h, self.w), order='F') return mask # Cell @patch def to_bbox(self:RLE): 'From https://www.kaggle.com/julienbeaulieu/imaterialist-detectron2' shape = (self.h,self.w) a = self.v a = a.reshape((-1, 2)) # an array of (start, length) pairs a[:,0] -= 1 # `start` is 1-indexed y0 = a[:,0] % shape[0] y1 = y0 + a[:,1] if np.any(y1 > shape[0]): # got `y` overrun, meaning that there are a pixels in mask on 0 and shape[0] position y0 = 0 y1 = shape[0] else: y0 = np.min(y0) y1 = np.max(y1) x0 = a[:,0] // shape[0] x1 = (a[:,0] + a[:,1]) // shape[0] x0 = np.min(x0) x1 = np.max(x1) if x1 > shape[1]: # just went out of the image dimensions raise ValueError("invalid self or image dimensions: x1=%d > shape[1]=%d" % ( x1, shape[1] )) return x0, y0, x1, y1 # Cell class Record(Cfg): def __init__(self, info, annons): self.info,self.annons = info,L(annons) def to_cfg(self): return {**self.info.to_cfg(), 'annotations':[o.to_cfg() for o in self.annons]} # Cell class Info(Cfg): def __init__(self, id, fn, h, w): store_attr(self, 'fn,id,h,w') def to_cfg(self): return {'file_name':self.fn,'image_id':self.id,'height':self.h,'width':self.w} # Cell class Annotation(Cfg): def __init__(self, id, bbox, seg, iscrowd=0): store_attr(self, 'id,bbox,seg,iscrowd') def to_cfg(self): return {**self.bbox.to_cfg(), **self.seg.to_cfg(), 'category_id':self.id, 'iscrowd':self.iscrowd} # Cell class BBox(Cfg): def __init__(self, pts, mode): self.pts,self.mode = list(map(int, pts)),mode def to_cfg(self): return {'bbox':self.pts, 'bbox_mode':self.mode} # Cell @patch_classmethod def from_xyxy_abs(cls:BBox, pts): return cls(pts, BoxMode.XYXY_ABS) # Cell @patch_classmethod def from_rle(cls:BBox, rle): return cls(rle.to_bbox(), BoxMode.XYXY_ABS) # Cell class Seg(Cfg): def __init__(self, polys): self.polys = polys def to_cfg(self): return {'segmentation':self.polys} # Cell @patch_classmethod def from_polys(cls:Seg, polys): return cls(polys) # Cell @patch_classmethod def from_rle(cls:Seg, rle): mask = rle.decode() conts,_ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) seg = [] for cont in conts: cont = cont.flatten().tolist() if len(cont) > 4: seg.append(cont) return cls(seg)
py
1a525bd54d44a74d1c8a0c818dbed7a6ffa89063
# ------------ # User Instructions # # In this problem you will implement SLAM in a 2 dimensional # world. Please define a function, slam, which takes five # parameters as input and returns the vector mu. This vector # should have x, y coordinates interlaced, so for example, # if there were 2 poses and 2 landmarks, mu would look like: # # mu = matrix([[Px0], # [Py0], # [Px1], # [Py1], # [Lx0], # [Ly0], # [Lx1], # [Ly1]]) # # data - This is the data that is generated with the included # make_data function. You can also use test_data to # make sure your function gives the correct result. # # N - The number of time steps. # # num_landmarks - The number of landmarks. # # motion_noise - The noise associated with motion. The update # strength for motion should be 1.0 / motion_noise. # # measurement_noise - The noise associated with measurement. # The update strength for measurement should be # 1.0 / measurement_noise. # # # Enter your code at line 509 # -------------- # Testing # # Uncomment the test cases at the bottom of this document. # Your output should be identical to the given results. from math import * import random # =============================================================== # # SLAM in a rectolinear world (we avoid non-linearities) # # # =============================================================== # ------------------------------------------------ # # this is the matrix class # we use it because it makes it easier to collect constraints in GraphSLAM # and to calculate solutions (albeit inefficiently) # class matrix: # implements basic operations of a matrix class # ------------ # # initialization - can be called with an initial matrix # def __init__(self, value=[[]]): self.value = value self.dimx = len(value) self.dimy = len(value[0]) if value == [[]]: self.dimx = 0 # ------------ # # makes matrix of a certain size and sets each element to zero # def zero(self, dimx, dimy): if dimy == 0: dimy = dimx # check if valid dimensions if dimx < 1 or dimy < 1: raise ValueError, "Invalid size of matrix" else: self.dimx = dimx self.dimy = dimy self.value = [[0.0 for row in range(dimy)] for col in range(dimx)] # ------------ # # makes matrix of a certain (square) size and turns matrix into identity matrix # def identity(self, dim): # check if valid dimension if dim < 1: raise ValueError, "Invalid size of matrix" else: self.dimx = dim self.dimy = dim self.value = [[0.0 for row in range(dim)] for col in range(dim)] for i in range(dim): self.value[i][i] = 1.0 # ------------ # # prints out values of matrix # def show(self, txt=''): for i in range(len(self.value)): print txt + '[' + ', '.join('%.3f' % x for x in self.value[i]) + ']' print ' ' # ------------ # # defines elmement-wise matrix addition. Both matrices must be of equal dimensions # def __add__(self, other): # check if correct dimensions if self.dimx != other.dimx or self.dimy != other.dimy: raise ValueError, "Matrices must be of equal dimension to add" else: # add if correct dimensions res = matrix() res.zero(self.dimx, self.dimy) for i in range(self.dimx): for j in range(self.dimy): res.value[i][j] = self.value[i][j] + other.value[i][j] return res # ------------ # # defines elmement-wise matrix subtraction. Both matrices must be of equal dimensions # def __sub__(self, other): # check if correct dimensions if self.dimx != other.dimx or self.dimy != other.dimy: raise ValueError, "Matrices must be of equal dimension to subtract" else: # subtract if correct dimensions res = matrix() res.zero(self.dimx, self.dimy) for i in range(self.dimx): for j in range(self.dimy): res.value[i][j] = self.value[i][j] - other.value[i][j] return res # ------------ # # defines multiplication. Both matrices must be of fitting dimensions # def __mul__(self, other): # check if correct dimensions if self.dimy != other.dimx: raise ValueError, "Matrices must be m*n and n*p to multiply" else: # multiply if correct dimensions res = matrix() res.zero(self.dimx, other.dimy) for i in range(self.dimx): for j in range(other.dimy): for k in range(self.dimy): res.value[i][j] += self.value[i][k] * other.value[k][j] return res # ------------ # # returns a matrix transpose # def transpose(self): # compute transpose res = matrix() res.zero(self.dimy, self.dimx) for i in range(self.dimx): for j in range(self.dimy): res.value[j][i] = self.value[i][j] return res # ------------ # # creates a new matrix from the existing matrix elements. # # Example: # l = matrix([[ 1, 2, 3, 4, 5], # [ 6, 7, 8, 9, 10], # [11, 12, 13, 14, 15]]) # # l.take([0, 2], [0, 2, 3]) # # results in: # # [[1, 3, 4], # [11, 13, 14]] # # # take is used to remove rows and columns from existing matrices # list1/list2 define a sequence of rows/columns that shall be taken # if no list2 is provided, then list2 is set to list1 (good for # symmetric matrices) # def take(self, list1, list2=[]): if list2 == []: list2 = list1 if len(list1) > self.dimx or len(list2) > self.dimy: raise ValueError, "list invalid in take()" res = matrix() res.zero(len(list1), len(list2)) for i in range(len(list1)): for j in range(len(list2)): res.value[i][j] = self.value[list1[i]][list2[j]] return res # ------------ # # creates a new matrix from the existing matrix elements. # # Example: # l = matrix([[1, 2, 3], # [4, 5, 6]]) # # l.expand(3, 5, [0, 2], [0, 2, 3]) # # results in: # # [[1, 0, 2, 3, 0], # [0, 0, 0, 0, 0], # [4, 0, 5, 6, 0]] # # expand is used to introduce new rows and columns into an existing matrix # list1/list2 are the new indexes of row/columns in which the matrix # elements are being mapped. Elements for rows and columns # that are not listed in list1/list2 # will be initialized by 0.0. # def expand(self, dimx, dimy, list1, list2=[]): if list2 == []: list2 = list1 if len(list1) > self.dimx or len(list2) > self.dimy: raise ValueError, "list invalid in expand()" res = matrix() res.zero(dimx, dimy) for i in range(len(list1)): for j in range(len(list2)): res.value[list1[i]][list2[j]] = self.value[i][j] return res # ------------ # # Computes the upper triangular Cholesky factorization of # a positive definite matrix. # This code is based on http://adorio-research.org/wordpress/?p=4560 # def Cholesky(self, ztol=1.0e-5): res = matrix() res.zero(self.dimx, self.dimx) for i in range(self.dimx): S = sum([(res.value[k][i]) ** 2 for k in range(i)]) d = self.value[i][i] - S if abs(d) < ztol: res.value[i][i] = 0.0 else: if d < 0.0: raise ValueError, "Matrix not positive-definite" res.value[i][i] = sqrt(d) for j in range(i + 1, self.dimx): S = sum([res.value[k][i] * res.value[k][j] for k in range(i)]) if abs(S) < ztol: S = 0.0 try: res.value[i][j] = (self.value[i][j] - S) / res.value[i][i] except: raise ValueError, "Zero diagonal" return res # ------------ # # Computes inverse of matrix given its Cholesky upper Triangular # decomposition of matrix. # This code is based on http://adorio-research.org/wordpress/?p=4560 # def CholeskyInverse(self): res = matrix() res.zero(self.dimx, self.dimx) # Backward step for inverse. for j in reversed(range(self.dimx)): tjj = self.value[j][j] S = sum([self.value[j][k] * res.value[j][k] for k in range(j + 1, self.dimx)]) res.value[j][j] = 1.0 / tjj ** 2 - S / tjj for i in reversed(range(j)): res.value[j][i] = res.value[i][j] = \ -sum([self.value[i][k] * res.value[k][j] for k in \ range(i + 1, self.dimx)]) / self.value[i][i] return res # ------------ # # computes and returns the inverse of a square matrix # def inverse(self): aux = self.Cholesky() res = aux.CholeskyInverse() return res # ------------ # # prints matrix (needs work!) # def __repr__(self): return repr(self.value) # ------------------------------------------------ # # this is the robot class # # our robot lives in x-y space, and its motion is # pointed in a random direction. It moves on a straight line # until is comes close to a wall at which point it turns # away from the wall and continues to move. # # For measurements, it simply senses the x- and y-distance # to landmarks. This is different from range and bearing as # commonly studied in the literature, but this makes it much # easier to implement the essentials of SLAM without # cluttered math # class robot: # -------- # init: # creates robot and initializes location to 0, 0 # def __init__(self, world_size=100.0, measurement_range=30.0, motion_noise=1.0, measurement_noise=1.0): self.measurement_noise = 0.0 self.world_size = world_size self.measurement_range = measurement_range self.x = world_size / 2.0 self.y = world_size / 2.0 self.motion_noise = motion_noise self.measurement_noise = measurement_noise self.landmarks = [] self.num_landmarks = 0 def rand(self): return random.random() * 2.0 - 1.0 # -------- # # make random landmarks located in the world # def make_landmarks(self, num_landmarks): self.landmarks = [] for i in range(num_landmarks): self.landmarks.append([round(random.random() * self.world_size), round(random.random() * self.world_size)]) self.num_landmarks = num_landmarks # -------- # # move: attempts to move robot by dx, dy. If outside world # boundary, then the move does nothing and instead returns failure # def move(self, dx, dy): x = self.x + dx + self.rand() * self.motion_noise y = self.y + dy + self.rand() * self.motion_noise if x < 0.0 or x > self.world_size or y < 0.0 or y > self.world_size: return False else: self.x = x self.y = y return True # -------- # # sense: returns x- and y- distances to landmarks within visibility range # because not all landmarks may be in this range, the list of measurements # is of variable length. Set measurement_range to -1 if you want all # landmarks to be visible at all times # def sense(self): Z = [] for i in range(self.num_landmarks): dx = self.landmarks[i][0] - self.x + self.rand() * self.measurement_noise dy = self.landmarks[i][1] - self.y + self.rand() * self.measurement_noise if self.measurement_range < 0.0 or abs(dx) + abs(dy) <= self.measurement_range: Z.append([i, dx, dy]) return Z # -------- # # print robot location # def __repr__(self): return 'Robot: [x=%.5f y=%.5f]' % (self.x, self.y) ###################################################### # -------- # this routine makes the robot data # def make_data(N, num_landmarks, world_size, measurement_range, motion_noise, measurement_noise, distance): complete = False while not complete: data = [] # make robot and landmarks r = robot(world_size, measurement_range, motion_noise, measurement_noise) r.make_landmarks(num_landmarks) seen = [False for row in range(num_landmarks)] # guess an initial motion orientation = random.random() * 2.0 * pi dx = cos(orientation) * distance dy = sin(orientation) * distance for k in range(N - 1): # sense Z = r.sense() # check off all landmarks that were observed for i in range(len(Z)): seen[Z[i][0]] = True # move while not r.move(dx, dy): # if we'd be leaving the robot world, pick instead a new direction orientation = random.random() * 2.0 * pi dx = cos(orientation) * distance dy = sin(orientation) * distance # memorize data data.append([Z, [dx, dy]]) # we are done when all landmarks were observed; otherwise re-run complete = (sum(seen) == num_landmarks) print ' ' print 'Landmarks: ', r.landmarks print r return data #################################################### # -------------------------------- # # print the result of SLAM, the robot pose(s) and the landmarks # def print_result(N, num_landmarks, result): print print 'Estimated Pose(s):' for i in range(N): print ' [' + ', '.join('%.3f' % x for x in result.value[2 * i]) + ', ' \ + ', '.join('%.3f' % x for x in result.value[2 * i + 1]) + ']' print print 'Estimated Landmarks:' for i in range(num_landmarks): print ' [' + ', '.join('%.3f' % x for x in result.value[2 * (N + i)]) + ', ' \ + ', '.join('%.3f' % x for x in result.value[2 * (N + i) + 1]) + ']' # -------------------------------- # # slam - retains entire path and all landmarks # ############## ENTER YOUR CODE BELOW HERE ################### def slam(data, N, num_landmarks, motion_noise, measurement_noise): # # # Add your code here! # # return mu # Make sure you return mu for grading! ############### ENTER YOUR CODE ABOVE HERE ################### # ------------------------------------------------------------------------ # ------------------------------------------------------------------------ # ------------------------------------------------------------------------ # # Main routines # num_landmarks = 5 # number of landmarks N = 20 # time steps world_size = 100.0 # size of world measurement_range = 50.0 # range at which we can sense landmarks motion_noise = 2.0 # noise in robot motion measurement_noise = 2.0 # noise in the measurements distance = 20.0 # distance by which robot (intends to) move each iteratation data = make_data(N, num_landmarks, world_size, measurement_range, motion_noise, measurement_noise, distance) result = slam(data, N, num_landmarks, motion_noise, measurement_noise) print_result(N, num_landmarks, result) # ------------- # Testing # # Uncomment one of the test cases below to compare your results to # the results shown for Test Case 1 and Test Case 2. test_data1 = [[[[1, 19.457599255548065, 23.8387362100849], [2, -13.195807561967236, 11.708840328458608], [3, -30.0954905279171, 15.387879242505843]], [-12.2607279422326, -15.801093326936487]], [[[2, -0.4659930049620491, 28.088559771215664], [4, -17.866382374890936, -16.384904503932]], [-12.2607279422326, -15.801093326936487]], [[[4, -6.202512900833806, -1.823403210274639]], [-12.2607279422326, -15.801093326936487]], [[[4, 7.412136480918645, 15.388585962142429]], [14.008259661173426, 14.274756084260822]], [[[4, -7.526138813444998, -0.4563942429717849]], [14.008259661173426, 14.274756084260822]], [[[2, -6.299793150150058, 29.047830407717623], [4, -21.93551130411791, -13.21956810989039]], [14.008259661173426, 14.274756084260822]], [[[1, 15.796300959032276, 30.65769689694247], [2, -18.64370821983482, 17.380022987031367]], [14.008259661173426, 14.274756084260822]], [[[1, 0.40311325410337906, 14.169429532679855], [2, -35.069349468466235, 2.4945558982439957]], [14.008259661173426, 14.274756084260822]], [[[1, -16.71340983241936, -2.777000269543834]], [-11.006096015782283, 16.699276945166858]], [[[1, -3.611096830835776, -17.954019226763958]], [-19.693482634035977, 3.488085684573048]], [[[1, 18.398273354362416, -22.705102332550947]], [-19.693482634035977, 3.488085684573048]], [[[2, 2.789312482883833, -39.73720193121324]], [12.849049222879723, -15.326510824972983]], [ [[1, 21.26897046581808, -10.121029799040915], [2, -11.917698965880655, -23.17711662602097], [3, -31.81167947898398, -16.7985673023331]], [12.849049222879723, -15.326510824972983]], [ [[1, 10.48157743234859, 5.692957082575485], [2, -22.31488473554935, -5.389184118551409], [3, -40.81803984305378, -2.4703329790238118]], [12.849049222879723, -15.326510824972983]], [ [[0, 10.591050242096598, -39.2051798967113], [1, -3.5675572049297553, 22.849456408289125], [2, -38.39251065320351, 7.288990306029511]], [12.849049222879723, -15.326510824972983]], [[[0, -3.6225556479370766, -25.58006865235512]], [-7.8874682868419965, -18.379005523261092]], [[[0, 1.9784503557879374, -6.5025974151499]], [-7.8874682868419965, -18.379005523261092]], [[[0, 10.050665232782423, 11.026385307998742]], [-17.82919359778298, 9.062000642947142]], [[[0, 26.526838150174818, -0.22563393232425621], [4, -33.70303936886652, 2.880339841013677]], [-17.82919359778298, 9.062000642947142]]] test_data2 = [[[[0, 26.543274387283322, -6.262538160312672], [3, 9.937396825799755, -9.128540360867689]], [18.92765331253674, -6.460955043986683]], [ [[0, 7.706544739722961, -3.758467215445748], [1, 17.03954411948937, 31.705489938553438], [3, -11.61731288777497, -6.64964096716416]], [18.92765331253674, -6.460955043986683]], [ [[0, -12.35130507136378, 2.585119104239249], [1, -2.563534536165313, 38.22159657838369], [3, -26.961236804740935, -0.4802312626141525]], [-11.167066095509824, 16.592065417497455]], [ [[0, 1.4138633151721272, -13.912454837810632], [1, 8.087721200818589, 20.51845934354381], [3, -17.091723454402302, -16.521500551709707], [4, -7.414211721400232, 38.09191602674439]], [-11.167066095509824, 16.592065417497455]], [ [[0, 12.886743222179561, -28.703968411636318], [1, 21.660953298391387, 3.4912891084614914], [3, -6.401401414569506, -32.321583037341625], [4, 5.034079343639034, 23.102207946092893]], [-11.167066095509824, 16.592065417497455]], [ [[1, 31.126317672358578, -10.036784369535214], [2, -38.70878528420893, 7.4987265861424595], [4, 17.977218575473767, 6.150889254289742]], [-6.595520680493778, -18.88118393939265]], [[[1, 41.82460922922086, 7.847527392202475], [3, 15.711709540417502, -30.34633659912818]], [-6.595520680493778, -18.88118393939265]], [[[0, 40.18454208294434, -6.710999804403755], [3, 23.019508919299156, -10.12110867290604]], [-6.595520680493778, -18.88118393939265]], [[[3, 27.18579315312821, 8.067219022708391]], [-6.595520680493778, -18.88118393939265]], [[], [11.492663265706092, 16.36822198838621]], [[[3, 24.57154567653098, 13.461499960708197]], [11.492663265706092, 16.36822198838621]], [[[0, 31.61945290413707, 0.4272295085799329], [3, 16.97392299158991, -5.274596836133088]], [11.492663265706092, 16.36822198838621]], [ [[0, 22.407381798735177, -18.03500068379259], [1, 29.642444125196995, 17.3794951934614], [3, 4.7969752441371645, -21.07505361639969], [4, 14.726069092569372, 32.75999422300078]], [11.492663265706092, 16.36822198838621]], [ [[0, 10.705527984670137, -34.589764174299596], [1, 18.58772336795603, -0.20109708164787765], [3, -4.839806195049413, -39.92208742305105], [4, 4.18824810165454, 14.146847823548889]], [11.492663265706092, 16.36822198838621]], [[[1, 5.878492140223764, -19.955352450942357], [4, -7.059505455306587, -0.9740849280550585]], [19.628527845173146, 3.83678180657467]], [[[1, -11.150789592446378, -22.736641053247872], [4, -28.832815721158255, -3.9462962046291388]], [-19.841703647091965, 2.5113335861604362]], [[[1, 8.64427397916182, -20.286336970889053], [4, -5.036917727942285, -6.311739993868336]], [-5.946642674882207, -19.09548221169787]], [ [[0, 7.151866679283043, -39.56103232616369], [1, 16.01535401373368, -3.780995345194027], [4, -3.04801331832137, 13.697362774960865]], [-5.946642674882207, -19.09548221169787]], [ [[0, 12.872879480504395, -19.707592098123207], [1, 22.236710716903136, 16.331770792606406], [3, -4.841206109583004, -21.24604435851242], [4, 4.27111163223552, 32.25309748614184]], [-5.946642674882207, -19.09548221169787]]] ## Test Case 1 ## ## Estimated Pose(s): ## [49.999, 49.999] ## [37.971, 33.650] ## [26.183, 18.153] ## [13.743, 2.114] ## [28.095, 16.781] ## [42.383, 30.900] ## [55.829, 44.494] ## [70.855, 59.697] ## [85.695, 75.540] ## [74.010, 92.431] ## [53.543, 96.451] ## [34.523, 100.078] ## [48.621, 83.951] ## [60.195, 68.105] ## [73.776, 52.932] ## [87.130, 38.536] ## [80.301, 20.506] ## [72.797, 2.943] ## [55.244, 13.253] ## [37.414, 22.315] ## ## Estimated Landmarks: ## [82.954, 13.537] ## [70.493, 74.139] ## [36.738, 61.279] ## [18.696, 66.057] ## [20.633, 16.873] ## Test Case 2 ## ## Estimated Pose(s): ## [49.999, 49.999] ## [69.180, 45.664] ## [87.742, 39.702] ## [76.269, 56.309] ## [64.316, 72.174] ## [52.256, 88.151] ## [44.058, 69.399] ## [37.001, 49.916] ## [30.923, 30.953] ## [23.507, 11.417] ## [34.179, 27.131] ## [44.154, 43.844] ## [54.805, 60.919] ## [65.697, 78.544] ## [77.467, 95.624] ## [96.801, 98.819] ## [75.956, 99.969] ## [70.199, 81.179] ## [64.053, 61.721] ## [58.106, 42.626] ## ## Estimated Landmarks: ## [76.778, 42.885] ## [85.064, 77.436] ## [13.546, 95.649] ## [59.448, 39.593] ## [69.262, 94.238] ### Uncomment the following three lines for test case 1 ### # result = slam(test_data1, 20, 5, 2.0, 2.0) # print_result(20, 5, result) # print result ### Uncomment the following three lines for test case 2 ### # result = slam(test_data2, 20, 5, 2.0, 2.0) # print_result(20, 5, result) # print result
py
1a525be227a5834c6d32608d2801bc86b2b0a0f5
# -*- coding: utf-8 -*- """ Module containing utilities to create/manipulate grids. """ import logging import math from typing import List, Tuple, Union import geopandas as gpd import pyproj import shapely.ops as sh_ops import shapely.geometry as sh_geom #------------------------------------------------------------- # First define/init some general variables/constants #------------------------------------------------------------- # Get a logger... logger = logging.getLogger(__name__) #logger.setLevel(logging.DEBUG) #------------------------------------------------------------- # Grid tile helpers #------------------------------------------------------------- def create_grid( total_bounds: Tuple[float, float, float, float], nb_columns: int, nb_rows: int, crs: Union[pyproj.CRS, str, None]) -> gpd.GeoDataFrame: xmin, ymin, xmax, ymax = total_bounds width = (xmax-xmin)/nb_columns height = (ymax-ymin)/nb_rows return create_grid3(total_bounds=total_bounds, width=width, height=height, crs=crs) def create_grid3( total_bounds: Tuple[float, float, float, float], width: float, height: float, crs: Union[pyproj.CRS, str, None]) -> gpd.GeoDataFrame: """ Args: total_bounds (Tuple[float, float, float, float]): [description] width (float): [description] height (float): [description] crs (Union[pyproj.CRS, str, None]): [description] number_decimals (int, optional): The number of decimals the coordinates of the grid will have. Defaults to None, so no rounding. Returns: gpd.GeoDataFrame: [description] """ xmin, ymin, xmax, ymax = total_bounds rows = int(math.ceil((ymax-ymin) / height)) cols = int(math.ceil((xmax-xmin) / width)) polygons = [] cell_left = xmin cell_right = xmin + width for _ in range(cols): if cell_left > xmax: break cell_top = ymin + height cell_bottom = ymin for _ in range(rows): if cell_bottom > ymax: break polygons.append(sh_ops.Polygon([(cell_left, cell_top), (cell_right, cell_top), (cell_right, cell_bottom), (cell_left, cell_bottom)])) cell_top += height cell_bottom += height cell_left += width cell_right += width return gpd.GeoDataFrame({'geometry': polygons}, crs=crs) def create_grid2( total_bounds: Tuple[float, float, float, float], nb_squarish_tiles: int, crs: Union[pyproj.CRS, str, None], nb_squarish_tiles_max: int = None) -> gpd.GeoDataFrame: """ Creates a grid and tries to approximate the number of cells asked as good as possible with grid cells that as close to square as possible. Args: total_bounds (Tuple[float, float, float, float]): bounds of the grid to be created nb_squarish_cells (int): about the number of cells wanted crs (CRS): the projection to create the grid in nb_squarish_tiles_max (int, optional): the maximum number of cells Returns: gpd.GeoDataFrame: geodataframe with the grid """ # Check input if nb_squarish_tiles_max is not None and nb_squarish_tiles_max < 1: raise Exception("The maximum nb of tiles should be larger than 1") # If more cells asked, calculate optimal number xmin, ymin, xmax, ymax = total_bounds total_width = xmax-xmin total_height = ymax-ymin columns_vs_rows = total_width/total_height nb_rows = max(round(math.sqrt(nb_squarish_tiles/columns_vs_rows)), 1) # Evade having too many cells (if few cells are asked) if nb_rows > nb_squarish_tiles: nb_rows = nb_squarish_tiles nb_columns = max(round(nb_squarish_tiles/nb_rows), 1) # If a maximum number of tiles is specified, check it if nb_squarish_tiles_max is not None: while((nb_rows * nb_columns) > nb_squarish_tiles_max): # If the number of cells became larger than the max number of cells, # increase the number of cells in the direction of the longest side # of the resulting cells if(nb_columns > 1 and (nb_rows == 1 or total_width/nb_columns > total_height/nb_rows)): # Cell width is larger than cell height nb_columns -= 1 else: nb_rows -= 1 # Now we know everything to create the grid return create_grid( total_bounds=total_bounds, nb_columns=nb_columns, nb_rows=nb_rows, crs=crs) def split_tiles( input_tiles: gpd.GeoDataFrame, nb_tiles_wanted: int) -> gpd.GeoDataFrame: nb_tiles = len(input_tiles) if nb_tiles >= nb_tiles_wanted: return input_tiles nb_tiles_ratio_target = nb_tiles_wanted / nb_tiles # Loop over all tiles in the grid result_tiles = [] for tile in input_tiles.itertuples(): # For this tile, as long as the curr_nb_tiles_ratio_todo is not 1, keep splitting curr_nb_tiles_ratio_todo = nb_tiles_ratio_target curr_tiles_being_split = [tile.geometry] while curr_nb_tiles_ratio_todo > 1: # Check in how many parts the tiles are split in this iteration divisor = 0 if round(curr_nb_tiles_ratio_todo) == 3: divisor = 3 else: divisor = 2 curr_nb_tiles_ratio_todo /= divisor # Split all current tiles tmp_tiles_after_split = [] for tile_to_split in curr_tiles_being_split: xmin, ymin, xmax, ymax = tile_to_split.bounds width = abs(xmax-xmin) height = abs(ymax-ymin) # Split in 2 or 3... if divisor == 3: if width > height: split_line = sh_geom.LineString([ (xmin+width/3, ymin-1), (xmin+width/3, ymax+1), (xmin+2*width/3, ymax+1), (xmin+2*width/3, ymin-1)]) else: split_line = sh_geom.LineString([ (xmin-1, ymin+height/3), (xmax+1, ymin+height/3), (xmax+1, ymin+2*height/3), (xmin-1, ymin+2*height/3)]) else: if width > height: split_line = sh_geom.LineString([(xmin+width/2, ymin-1), (xmin+width/2, ymax+1)]) else: split_line = sh_geom.LineString([(xmin-1, ymin+height/2), (xmax+1, ymin+height/2)]) tmp_tiles_after_split.extend(sh_ops.split(tile_to_split, split_line)) curr_tiles_being_split = tmp_tiles_after_split result_tiles.extend(curr_tiles_being_split) # We should be ready... return gpd.GeoDataFrame(geometry=result_tiles, crs=input_tiles.crs)
py
1a525c9783b5cedf570b7be92a1238a4b4e538b1
#!/usr/bin/env python import os import sys from pathlib import Path if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "config.settings.local") try: from django.core.management import execute_from_command_line except ImportError: # The above import may fail for some other reason. Ensure that the # issue is really that Django is missing to avoid masking other # exceptions on Python 2. try: import django # noqa except ImportError: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) raise # This allows easy placement of apps within the interior # wgblog directory. current_path = Path(__file__).parent.resolve() sys.path.append(str(current_path / "wgblog")) execute_from_command_line(sys.argv)
py
1a525d306e9f52a6aaf657db4a6ab830226985f6
import numpy as np import pytest import pandas as pd import pandas.testing as tm @pytest.mark.parametrize( "dropna, tuples, outputs", [ ( True, [["A", "B"], ["B", "A"]], {"c": [13.0, 123.23], "d": [13.0, 123.0], "e": [13.0, 1.0]}, ), ( False, [["A", "B"], ["A", np.nan], ["B", "A"]], { "c": [13.0, 12.3, 123.23], "d": [13.0, 233.0, 123.0], "e": [13.0, 12.0, 1.0], }, ), ], ) def test_groupby_dropna_multi_index_dataframe_nan_in_one_group( dropna, tuples, outputs, nulls_fixture ): # GH 3729 this is to test that NA is in one group df_list = [ ["A", "B", 12, 12, 12], ["A", nulls_fixture, 12.3, 233.0, 12], ["B", "A", 123.23, 123, 1], ["A", "B", 1, 1, 1.0], ] df = pd.DataFrame(df_list, columns=["a", "b", "c", "d", "e"]) grouped = df.groupby(["a", "b"], dropna=dropna).sum() mi = pd.MultiIndex.from_tuples(tuples, names=list("ab")) # Since right now, by default MI will drop NA from levels when we create MI # via `from_*`, so we need to add NA for level manually afterwards. if not dropna: mi = mi.set_levels(["A", "B", np.nan], level="b") expected = pd.DataFrame(outputs, index=mi) tm.assert_frame_equal(grouped, expected) @pytest.mark.parametrize( "dropna, tuples, outputs", [ ( True, [["A", "B"], ["B", "A"]], {"c": [12.0, 123.23], "d": [12.0, 123.0], "e": [12.0, 1.0]}, ), ( False, [["A", "B"], ["A", np.nan], ["B", "A"], [np.nan, "B"]], { "c": [12.0, 13.3, 123.23, 1.0], "d": [12.0, 234.0, 123.0, 1.0], "e": [12.0, 13.0, 1.0, 1.0], }, ), ], ) def test_groupby_dropna_multi_index_dataframe_nan_in_two_groups( dropna, tuples, outputs, nulls_fixture, nulls_fixture2 ): # GH 3729 this is to test that NA in different groups with different representations df_list = [ ["A", "B", 12, 12, 12], ["A", nulls_fixture, 12.3, 233.0, 12], ["B", "A", 123.23, 123, 1], [nulls_fixture2, "B", 1, 1, 1.0], ["A", nulls_fixture2, 1, 1, 1.0], ] df = pd.DataFrame(df_list, columns=["a", "b", "c", "d", "e"]) grouped = df.groupby(["a", "b"], dropna=dropna).sum() mi = pd.MultiIndex.from_tuples(tuples, names=list("ab")) # Since right now, by default MI will drop NA from levels when we create MI # via `from_*`, so we need to add NA for level manually afterwards. if not dropna: mi = mi.set_levels([["A", "B", np.nan], ["A", "B", np.nan]]) expected = pd.DataFrame(outputs, index=mi) tm.assert_frame_equal(grouped, expected) @pytest.mark.parametrize( "dropna, idx, outputs", [ (True, ["A", "B"], {"b": [123.23, 13.0], "c": [123.0, 13.0], "d": [1.0, 13.0]}), ( False, ["A", "B", np.nan], { "b": [123.23, 13.0, 12.3], "c": [123.0, 13.0, 233.0], "d": [1.0, 13.0, 12.0], }, ), ], ) def test_groupby_dropna_normal_index_dataframe(dropna, idx, outputs): # GH 3729 df_list = [ ["B", 12, 12, 12], [None, 12.3, 233.0, 12], ["A", 123.23, 123, 1], ["B", 1, 1, 1.0], ] df = pd.DataFrame(df_list, columns=["a", "b", "c", "d"]) grouped = df.groupby("a", dropna=dropna).sum() expected = pd.DataFrame(outputs, index=pd.Index(idx, dtype="object", name="a")) tm.assert_frame_equal(grouped, expected) @pytest.mark.parametrize( "dropna, idx, expected", [ (True, ["a", "a", "b", np.nan], pd.Series([3, 3], index=["a", "b"])), ( False, ["a", "a", "b", np.nan], pd.Series([3, 3, 3], index=["a", "b", np.nan]), ), ], ) def test_groupby_dropna_series_level(dropna, idx, expected): ser = pd.Series([1, 2, 3, 3], index=idx) result = ser.groupby(level=0, dropna=dropna).sum() tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "dropna, expected", [ (True, pd.Series([210.0, 350.0], index=["a", "b"], name="Max Speed")), ( False, pd.Series([210.0, 350.0, 20.0], index=["a", "b", np.nan], name="Max Speed"), ), ], ) def test_groupby_dropna_series_by(dropna, expected): ser = pd.Series( [390.0, 350.0, 30.0, 20.0], index=["Falcon", "Falcon", "Parrot", "Parrot"], name="Max Speed", ) result = ser.groupby(["a", "b", "a", np.nan], dropna=dropna).mean() tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "dropna, tuples, outputs", [ ( True, [["A", "B"], ["B", "A"]], {"c": [13.0, 123.23], "d": [12.0, 123.0], "e": [1.0, 1.0]}, ), ( False, [["A", "B"], ["A", np.nan], ["B", "A"]], { "c": [13.0, 12.3, 123.23], "d": [12.0, 233.0, 123.0], "e": [1.0, 12.0, 1.0], }, ), ], ) def test_groupby_dropna_multi_index_dataframe_agg(dropna, tuples, outputs): # GH 3729 df_list = [ ["A", "B", 12, 12, 12], ["A", None, 12.3, 233.0, 12], ["B", "A", 123.23, 123, 1], ["A", "B", 1, 1, 1.0], ] df = pd.DataFrame(df_list, columns=["a", "b", "c", "d", "e"]) agg_dict = {"c": sum, "d": max, "e": "min"} grouped = df.groupby(["a", "b"], dropna=dropna).agg(agg_dict) mi = pd.MultiIndex.from_tuples(tuples, names=list("ab")) # Since right now, by default MI will drop NA from levels when we create MI # via `from_*`, so we need to add NA for level manually afterwards. if not dropna: mi = mi.set_levels(["A", "B", np.nan], level="b") expected = pd.DataFrame(outputs, index=mi) tm.assert_frame_equal(grouped, expected) @pytest.mark.parametrize( "datetime1, datetime2", [ (pd.Timestamp("2020-01-01"), pd.Timestamp("2020-02-01")), (pd.Timedelta("-2 days"), pd.Timedelta("-1 days")), (pd.Period("2020-01-01"), pd.Period("2020-02-01")), ], ) @pytest.mark.parametrize( "dropna, values", [(True, [12, 3]), (False, [12, 3, 6],)], ) def test_groupby_dropna_datetime_like_data( dropna, values, datetime1, datetime2, unique_nulls_fixture, unique_nulls_fixture2 ): # 3729 df = pd.DataFrame( { "values": [1, 2, 3, 4, 5, 6], "dt": [ datetime1, unique_nulls_fixture, datetime2, unique_nulls_fixture2, datetime1, datetime1, ], } ) if dropna: indexes = [datetime1, datetime2] else: indexes = [datetime1, datetime2, np.nan] grouped = df.groupby("dt", dropna=dropna).agg({"values": sum}) expected = pd.DataFrame({"values": values}, index=pd.Index(indexes, name="dt")) tm.assert_frame_equal(grouped, expected)
py
1a525da1af07e3da9fde07ba960fde3d09f64edd
import argparse import json import torch from scripts.default_config import (get_default_config, imagedata_kwargs, model_kwargs, merge_from_files_with_base) import torchreid from torchreid.utils import collect_env_info, set_random_seed from ptflops import get_model_complexity_info def build_datamanager(cfg, classification_classes_filter=None): return torchreid.data.ImageDataManager(filter_classes=classification_classes_filter, **imagedata_kwargs(cfg)) def reset_config(cfg, args): if args.root: cfg.data.root = args.root if args.custom_roots: cfg.custom_datasets.roots = args.custom_roots if args.custom_types: cfg.custom_datasets.types = args.custom_types if args.custom_names: cfg.custom_datasets.names = args.custom_names def main(): parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--config-file', type=str, default='', required=True, help='path to config file') parser.add_argument('--custom-roots', type=str, nargs='+', help='types or paths to annotation of custom datasets (delimited by space)') parser.add_argument('--custom-types', type=str, nargs='+', help='path of custom datasets (delimited by space)') parser.add_argument('--custom-names', type=str, nargs='+', help='names of custom datasets (delimited by space)') parser.add_argument('--root', type=str, default='', help='path to data root') parser.add_argument('--classes', type=str, nargs='+', help='name of classes in classification dataset') parser.add_argument('--out') parser.add_argument('opts', default=None, nargs=argparse.REMAINDER, help='Modify config options using the command-line') args = parser.parse_args() cfg = get_default_config() cfg.use_gpu = torch.cuda.is_available() if args.config_file: merge_from_files_with_base(cfg, args.config_file) reset_config(cfg, args) cfg.merge_from_list(args.opts) set_random_seed(cfg.train.seed) print('Show configuration\n{}\n'.format(cfg)) print('Collecting env info ...') print('** System info **\n{}\n'.format(collect_env_info())) if cfg.use_gpu: torch.backends.cudnn.benchmark = True datamanager = build_datamanager(cfg, args.classes) num_train_classes = datamanager.num_train_pids print('Building main model: {}'.format(cfg.model.name)) model = torchreid.models.build_model(**model_kwargs(cfg, num_train_classes)) macs, num_params = get_model_complexity_info(model, (3, cfg.data.height, cfg.data.width), as_strings=False, verbose=False, print_per_layer_stat=False) print('Main model complexity: M params={:,} G flops={:,}'.format(num_params / 10**6, macs * 2 / 10**9)) if args.out: out = list() out.append({'key': 'size', 'display_name': 'Size', 'value': num_params / 10**6, 'unit': 'Mp'}) out.append({'key': 'complexity', 'display_name': 'Complexity', 'value': 2 * macs / 10**9, 'unit': 'GFLOPs'}) print('dump to' + args.out) with open(args.out, 'w') as write_file: json.dump(out, write_file, indent=4) if __name__ == '__main__': main()
py
1a525e5f38c854dcecb9d3255252b281e706a247
from django.shortcuts import render, HttpResponse from django.http import JsonResponse from rest_framework.views import APIView from smtest import models from smtest.utils.permission import SVIPPermission from smtest.utils.throttle import TestThrottle,VisitThrottle from rest_framework.versioning import QueryParameterVersioning, URLPathVersioning def md5(username): import hashlib import time ctime = str(time.time()) m = hashlib.md5(bytes(username, encoding='utf-8')) m.update(bytes(ctime, encoding='utf-8')) return m.hexdigest() # 用户名密码认证, 获取token(rest_framework内部已经实现了生成token的方法) class AuthView(APIView): authentication_classes = [] # 此时则不会进行认证 permission_classes = [] # 此时不会校验权限(尽管不校验认证, 但是rest framework默认认为未认证的是一个匿名用户,也会进行权限校验) throttle_classes = [VisitThrottle,] # 节流控制 def post(self,request,*args,**kwargs): ret = {'code': 1000, 'msg': None} try: username = request._request.POST.get('username') password = request._request.POST.get('password') user = models.UserInfo.objects.filter(username=username, password=password).first() if not user: ret['code'] = 1001 ret['msg'] = "用户名或密码错误" return JsonResponse(ret) # 生成token token = md5(username) models.UserToken.objects.update_or_create(user=user, defaults={'token': token}) ret['token'] = token except Exception as e: print(e) ret['code'] = 1002 ret['msg'] = "未知错误" return JsonResponse(ret) class StudentsView(APIView): def get(self,request,*args,**kwargs): self.dispatch # 进入APIVIEW的dispatch print(request.user, request.auth) print('get...') return HttpResponse('GET...') def post(self,request,*args,**kwargs): return HttpResponse('POST...') def put(self,request,*args,**kwargs): return HttpResponse('PUT...') def delete(self,request,*args,**kwargs): return HttpResponse('DELETE...') class OrderView(APIView): # 局部权限类 permission_classes = [SVIPPermission,] throttle_classes = [TestThrottle,] def get(self,request,*args,**kwargs): return HttpResponse('svip order...')
py
1a525f4aca8159b07f228e89b1ba6de74fbb1e4a
import numpy as np class PriorProbability(): def __init__(self): """ This is a simple classifier that only uses prior probability to classify points. It just looks at the classes for each data point and always predicts the most common class. """ self.most_common_class = None def fit(self, features, targets): """ Implement a classifier that works by prior probability. Takes in features and targets and fits the features to the targets using prior probability. Args: features (np.array): numpy array of size NxF containing features, where N is number of examples and F is number of features. targets (np.array): numpy array containing class labels for each of the N examples. """ counts = np.bincount(targets.astype(int)) self.most_common_class = np.argmax(counts) def predict(self, data): """ Takes in features as a numpy array and predicts classes for each point using the trained model. Args: features (np.array): numpy array of size NxF containing features, where N is number of examples and F is number of features. """ return np.full(data.shape[0], self.most_common_class)
py
1a5262188b5d123767e21450b9ed2fd137f04e01
import torch from torch.ao.quantization.observer import ObserverBase class ModelReportObserver(ObserverBase): r"""This observer is used to record additional information regarding keeping track of S = average_batch_activation_range/epoch_activation_range. The purpose of this information is to prepare a report to present to users on whether Dynamic or Static Quantization is more appropriate for their model given the general distributions of their data. * :attr:`num_batches_tracked` specifies number of batches passed through the observer * :attr:`average_batch_activation_range` defines average across the ranges of each batch passed through * :attr:`epoch_activation_min` defines the minimum value passed through the observer * :attr:`epoch_activation_max` defines the maximum value passed through the observer Note: this tool is meant for FX Graph Mode Quantization """ def __init__(self): super().__init__(torch.qint8) self.num_batches_tracked = 0 # keep track of the min and mix of the range for average batch and epoch as a whole self.average_batch_activation_range = torch.tensor(float(0)) self.epoch_activation_min = torch.tensor(float("inf")) self.epoch_activation_max = torch.tensor(float("-inf")) def forward(self, x): x_copy = x.detach() # avoid keeping autograd tape x_copy = x_copy.to(self.epoch_activation_min.dtype) min_val_cur, max_val_cur = torch.aminmax(x_copy) # calculate new epoch range values epoch_min_val = torch.min(self.epoch_activation_min, min_val_cur) epoch_max_val = torch.max(self.epoch_activation_max, max_val_cur) self.epoch_activation_min.copy_(epoch_min_val) self.epoch_activation_max.copy_(epoch_max_val) # calculate the average batch activation range current_batch_range = max_val_cur - min_val_cur new_range = ( self.average_batch_activation_range * self.num_batches_tracked + current_batch_range ) / (self.num_batches_tracked + 1) self.average_batch_activation_range = new_range self.num_batches_tracked += 1 # new batch was processed # return the passed in the value return x @torch.jit.export def get_batch_to_epoch_ratio(self): epoch_activation_range = self.epoch_activation_max - self.epoch_activation_min if epoch_activation_range == torch.tensor(float(0)): raise ValueError("Range for Epoch is 0") elif epoch_activation_range == torch.tensor(float("inf")): raise ValueError( "No data has been run through observer or infinity value present" ) else: return self.average_batch_activation_range / epoch_activation_range @torch.jit.export def reset_batch_and_epoch_values(self): # set all the values back to their original defaults for a new epoch self.num_batches_tracked = 0 self.average_batch_activation_range = torch.tensor(float(0)) self.epoch_activation_min = torch.tensor(float("inf")) self.epoch_activation_max = torch.tensor(float("-inf")) @torch.jit.export def calculate_qparams(self): raise Exception( "calculate_qparams should not be called for ModelReportObserver" )
py
1a52623a9a96d489e789a7d9d1093b8ad42d0859
import difflib import email.parser import inspect import json import os import re import sys import pytest from .env import H2Conf class TestPost: @pytest.fixture(autouse=True, scope='class') def _class_scope(self, env): TestPost._local_dir = os.path.dirname(inspect.getfile(TestPost)) H2Conf(env).add_vhost_cgi().install() assert env.apache_restart() == 0 def local_src(self, fname): return os.path.join(TestPost._local_dir, fname) # upload and GET again using curl, compare to original content def curl_upload_and_verify(self, env, fname, options=None): url = env.mkurl("https", "cgi", "/upload.py") fpath = os.path.join(env.gen_dir, fname) r = env.curl_upload(url, fpath, options=options) assert r.exit_code == 0, f"{r}" assert 200 <= r.response["status"] < 300 r2 = env.curl_get(r.response["header"]["location"]) assert r2.exit_code == 0 assert r2.response["status"] == 200 with open(self.local_src(fpath), mode='rb') as file: src = file.read() assert src == r2.response["body"] def test_h2_004_01(self, env): self.curl_upload_and_verify(env, "data-1k", ["-vvv", "--http1.1"]) self.curl_upload_and_verify(env, "data-1k", ["--http2"]) def test_h2_004_02(self, env): self.curl_upload_and_verify(env, "data-10k", ["--http1.1"]) self.curl_upload_and_verify(env, "data-10k", ["--http2"]) def test_h2_004_03(self, env): self.curl_upload_and_verify(env, "data-100k", ["--http1.1"]) self.curl_upload_and_verify(env, "data-100k", ["--http2"]) def test_h2_004_04(self, env): self.curl_upload_and_verify(env, "data-1m", ["--http1.1"]) self.curl_upload_and_verify(env, "data-1m", ["--http2"]) def test_h2_004_05(self, env): self.curl_upload_and_verify(env, "data-1k", ["-v", "--http1.1", "-H", "Expect: 100-continue"]) self.curl_upload_and_verify(env, "data-1k", ["-v", "--http2", "-H", "Expect: 100-continue"]) @pytest.mark.skipif(True, reason="python3 regresses in chunked inputs to cgi") def test_h2_004_06(self, env): self.curl_upload_and_verify(env, "data-1k", ["--http1.1", "-H", "Content-Length: "]) self.curl_upload_and_verify(env, "data-1k", ["--http2", "-H", "Content-Length: "]) @pytest.mark.parametrize("name, value", [ ("HTTP2", "on"), ("H2PUSH", "off"), ("H2_PUSHED", ""), ("H2_PUSHED_ON", ""), ("H2_STREAM_ID", "1"), ("H2_STREAM_TAG", r'\d+-1'), ]) def test_h2_004_07(self, env, name, value): url = env.mkurl("https", "cgi", "/env.py") r = env.curl_post_value(url, "name", name) assert r.exit_code == 0 assert r.response["status"] == 200 m = re.match("{0}=(.*)".format(name), r.response["body"].decode('utf-8')) assert m assert re.match(value, m.group(1)) # POST some data using nghttp and see it echo'ed properly back def nghttp_post_and_verify(self, env, fname, options=None): url = env.mkurl("https", "cgi", "/echo.py") fpath = os.path.join(env.gen_dir, fname) r = env.nghttp().upload(url, fpath, options=options) assert r.exit_code == 0 assert r.response["status"] >= 200 and r.response["status"] < 300 with open(self.local_src(fpath), mode='rb') as file: src = file.read() assert 'request-length' in r.response["header"] assert int(r.response["header"]['request-length']) == len(src) if len(r.response["body"]) != len(src): sys.stderr.writelines(difflib.unified_diff( src.decode().splitlines(True), r.response["body"].decode().splitlines(True), fromfile='source', tofile='response' )) assert len(r.response["body"]) == len(src) assert r.response["body"] == src, f"expected '{src}', got '{r.response['body']}'" @pytest.mark.parametrize("name", [ "data-1k", "data-10k", "data-100k", "data-1m" ]) def test_h2_004_21(self, env, name): self.nghttp_post_and_verify(env, name, []) @pytest.mark.parametrize("name", [ "data-1k", "data-10k", "data-100k", "data-1m", ]) def test_h2_004_22(self, env, name, repeat): self.nghttp_post_and_verify(env, name, ["--no-content-length"]) # upload and GET again using nghttp, compare to original content def nghttp_upload_and_verify(self, env, fname, options=None): url = env.mkurl("https", "cgi", "/upload.py") fpath = os.path.join(env.gen_dir, fname) r = env.nghttp().upload_file(url, fpath, options=options) assert r.exit_code == 0 assert r.response["status"] >= 200 and r.response["status"] < 300 assert r.response["header"]["location"] r2 = env.nghttp().get(r.response["header"]["location"]) assert r2.exit_code == 0 assert r2.response["status"] == 200 with open(self.local_src(fpath), mode='rb') as file: src = file.read() assert src == r2.response["body"] @pytest.mark.parametrize("name", [ "data-1k", "data-10k", "data-100k", "data-1m" ]) def test_h2_004_23(self, env, name, repeat): self.nghttp_upload_and_verify(env, name, []) @pytest.mark.parametrize("name", [ "data-1k", "data-10k", "data-100k", "data-1m" ]) def test_h2_004_24(self, env, name, repeat): self.nghttp_upload_and_verify(env, name, ["--expect-continue"]) @pytest.mark.parametrize("name", [ "data-1k", "data-10k", "data-100k", "data-1m" ]) def test_h2_004_25(self, env, name, repeat): self.nghttp_upload_and_verify(env, name, ["--no-content-length"]) def test_h2_004_30(self, env): # issue: #203 resource = "data-1k" full_length = 1000 chunk = 200 self.curl_upload_and_verify(env, resource, ["-v", "--http2"]) logfile = os.path.join(env.server_logs_dir, "test_004_30") if os.path.isfile(logfile): os.remove(logfile) H2Conf(env).add(""" LogFormat "{ \\"request\\": \\"%r\\", \\"status\\": %>s, \\"bytes_resp_B\\": %B, \\"bytes_tx_O\\": %O, \\"bytes_rx_I\\": %I, \\"bytes_rx_tx_S\\": %S }" issue_203 CustomLog logs/test_004_30 issue_203 """).add_vhost_cgi().install() assert env.apache_restart() == 0 url = env.mkurl("https", "cgi", "/files/{0}".format(resource)) r = env.curl_get(url, 5, options=["--http2"]) assert r.response["status"] == 200 r = env.curl_get(url, 5, options=["--http1.1", "-H", "Range: bytes=0-{0}".format(chunk-1)]) assert 206 == r.response["status"] assert chunk == len(r.response["body"].decode('utf-8')) r = env.curl_get(url, 5, options=["--http2", "-H", "Range: bytes=0-{0}".format(chunk-1)]) assert 206 == r.response["status"] assert chunk == len(r.response["body"].decode('utf-8')) # now check what response lengths have actually been reported lines = open(logfile).readlines() log_h2_full = json.loads(lines[-3]) log_h1 = json.loads(lines[-2]) log_h2 = json.loads(lines[-1]) assert log_h2_full['bytes_rx_I'] > 0 assert log_h2_full['bytes_resp_B'] == full_length assert log_h2_full['bytes_tx_O'] > full_length assert log_h1['bytes_rx_I'] > 0 # input bytes received assert log_h1['bytes_resp_B'] == chunk # response bytes sent (payload) assert log_h1['bytes_tx_O'] > chunk # output bytes sent assert log_h2['bytes_rx_I'] > 0 assert log_h2['bytes_resp_B'] == chunk assert log_h2['bytes_tx_O'] > chunk def test_h2_004_40(self, env): # echo content using h2test_module "echo" handler def post_and_verify(fname, options=None): url = env.mkurl("https", "cgi", "/h2test/echo") fpath = os.path.join(env.gen_dir, fname) r = env.curl_upload(url, fpath, options=options) assert r.exit_code == 0 assert r.response["status"] >= 200 and r.response["status"] < 300 ct = r.response["header"]["content-type"] mail_hd = "Content-Type: " + ct + "\r\nMIME-Version: 1.0\r\n\r\n" mime_msg = mail_hd.encode() + r.response["body"] # this MIME API is from hell body = email.parser.BytesParser().parsebytes(mime_msg) assert body assert body.is_multipart() filepart = None for part in body.walk(): if fname == part.get_filename(): filepart = part assert filepart with open(self.local_src(fpath), mode='rb') as file: src = file.read() assert src == filepart.get_payload(decode=True) post_and_verify("data-1k", [])
py
1a5264ef3ad9a55151c01b9951ba39ac0941223a
""" Django settings for django_test project. Generated by 'django-admin startproject' using Django 1.11.7. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '*tb5175r6s&y^_p$z%z=6gpswk-rcazy9(9k(bhp5nemciovz5' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'frontend', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'django_test.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')] , 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'django_test.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': 'django_test', #'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), 'USER': 'roman', 'PASSWORD': 'admin', 'HOST': '127.0.0.1', 'PORT': '5432', } } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = (os.path.join(BASE_DIR, "static"), ) STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', )
py
1a5265357630d7d516d2a7a670e6224d6a140779
""" PyQt App that leverages completed model for image inpainting """ import sys import os import random import torch import argparse from PIL import Image from PyQt5.QtWidgets import * from PyQt5.QtGui import * from PyQt5.QtCore import * from torchvision.utils import make_grid from torchvision.utils import save_image from torchvision import transforms from partial_conv_net import PartialConvUNet from places2_train import unnormalize, MEAN, STDDEV def exceeds_bounds(y): if y >= 250: return True else: return False class Drawer(QWidget): newPoint = pyqtSignal(QPoint) def __init__(self, image_path, parent=None): QWidget.__init__(self, parent) self.path = QPainterPath() self.image_path = image_path def paintEvent(self, event): painter = QPainter(self) painter.drawPixmap(QRect(0, 0, 256, 256), QPixmap(self.image_path)) painter.setPen(QPen(Qt.black, 12)) painter.drawPath(self.path) def mousePressEvent(self, event): if exceeds_bounds(event.pos().y()): return self.path.moveTo(event.pos()) self.update() def mouseMoveEvent(self, event): if exceeds_bounds(event.pos().y()): return self.path.lineTo(event.pos()) self.newPoint.emit(event.pos()) self.update() def sizeHint(self): return QSize(256, 256) def resetPath(self): self.path = QPainterPath() self.update() class InpaintApp(QWidget): def __init__(self, image_num): super().__init__() self.setLayout(QVBoxLayout()) self.title = 'Inpaint Application' self.width = 276 self.height = 350 self.cwd = os.getcwd() image_num = str(image_num).zfill(8) image_path = self.cwd + "/val_256/Places365_val_{}.jpg".format(image_num) self.save_path = self.cwd + "/test.jpg" self.open_and_save_img(image_path, self.save_path) self.drawer = Drawer(self.save_path, self) self.setWindowTitle(self.title) self.setGeometry(200, 200, self.width, self.height) self.layout().addWidget(self.drawer) self.layout().addWidget(QPushButton("Inpaint!", clicked=self.inpaint)) self.img_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(MEAN, STDDEV)]) self.mask_transform = transforms.ToTensor() self.device = torch.device("cpu") model_dict = torch.load(self.cwd + "/model_e1_i56358.pth", map_location="cpu") model = PartialConvUNet() model.load_state_dict(model_dict["model"]) model = model.to(self.device) self.model = model self.model.eval() self.show() def open_and_save_img(self, path, dest): img = Image.open(path) img.save(dest) def inpaint(self): mask = QImage(256, 256, QImage.Format_RGB32) mask.fill(qRgb(255, 255, 255)) painter = QPainter() painter.begin(mask) painter.setPen(QPen(Qt.black, 12)) painter.drawPath(self.drawer.path) painter.end() mask.save("mask.png", "png") # open image and normalize before forward pass mask = Image.open(self.cwd + "/mask.png") mask = self.mask_transform(mask.convert("RGB")) gt_img = Image.open(self.save_path) gt_img = self.img_transform(gt_img.convert("RGB")) img = gt_img * mask # adds dimension of 1 (batch) to image img.unsqueeze_(0) gt_img.unsqueeze_(0) mask.unsqueeze_(0) # forward pass with torch.no_grad(): output = self.model(img.to(self.device), mask.to(self.device)) # unnormalize the image and output output = mask * img + (1 - mask) * output grid = make_grid(unnormalize(output)) save_image(grid, "test.jpg") self.drawer.resetPath() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--img", type=int, default=1) args = parser.parse_args() app = QApplication(sys.argv) ex = InpaintApp(args.img) sys.exit(app.exec_())
py
1a526576f5e5611b0fd60ddcec87cbbbc472da4d
# Copyright 2019 Cloudification GmbH # # Author: Sergey Kraynev <[email protected]> # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import json from unittest import mock import requests import designate.tests from designate import exceptions from designate import objects from designate.backend import impl_akamai_v2 as akamai from designate.tests import fixtures class AkamaiBackendTestCase(designate.tests.TestCase): def setUp(self): super(AkamaiBackendTestCase, self).setUp() self.zone = objects.Zone( id='cca7908b-dad4-4c50-adba-fb67d4c556e8', name='example.com.', email='[email protected]' ) self.target = { 'id': '4588652b-50e7-46b9-b688-a9bad40a873e', 'type': 'akamai_v2', 'masters': [ {'host': '192.168.1.1', 'port': 53}, {'host': '192.168.1.2', 'port': 35} ], 'options': [ {'key': 'host', 'value': '192.168.2.3'}, {'key': 'port', 'value': '53'}, {'key': 'akamai_client_secret', 'value': 'client_secret'}, {'key': 'akamai_host', 'value': 'host_value'}, {'key': 'akamai_access_token', 'value': 'access_token'}, {'key': 'akamai_client_token', 'value': 'client_token'}, {'key': 'akamai_contract_id', 'value': 'G-XYW'}, {'key': 'akamai_gid', 'value': '777'} ], } def gen_response(self, status_code, reason, json_data=None): response = requests.models.Response() response.status_code = status_code response.reason = reason response._content = json.dumps(json_data or {}).encode('utf-8') return response @mock.patch.object(akamai, 'edgegrid') @mock.patch.object(akamai.requests.Session, 'post') def test_create_zone_missed_contract_id(self, mock_post, mock_auth): self.target['options'].remove( {'key': 'akamai_contract_id', 'value': 'G-XYW'}) backend = akamai.AkamaiBackend( objects.PoolTarget.from_dict(self.target) ) mock_auth.EdgeGridAuth.assert_called_once_with( access_token='access_token', client_secret='client_secret', client_token='client_token' ) with fixtures.random_seed(0): self.assertRaisesRegex( exceptions.Backend, 'contractId is required for zone creation', backend.create_zone, self.admin_context, self.zone) mock_post.assert_not_called() @mock.patch.object(akamai, 'edgegrid') @mock.patch.object(akamai.requests.Session, 'post') def test_create_zone(self, mock_post, mock_auth): backend = akamai.AkamaiBackend( objects.PoolTarget.from_dict(self.target) ) mock_auth.EdgeGridAuth.assert_called_once_with( access_token='access_token', client_secret='client_secret', client_token='client_token' ) with fixtures.random_seed(0): backend.create_zone(self.admin_context, self.zone) project_id = self.admin_context.project_id or self.zone.tenant_id mock_post.assert_called_once_with( json={ 'comment': 'Created by Designate for Tenant %s' % project_id, 'masters': ['192.168.1.1', '192.168.1.2'], 'type': 'secondary', 'zone': u'example.com.' }, params={ 'gid': '777', 'contractId': 'G-XYW' }, url='https://host_value/config-dns/v2/zones' ) @mock.patch.object(akamai, 'edgegrid') @mock.patch.object(akamai.requests.Session, 'post') def test_create_zone_duplicate_zone(self, mock_post, mock_auth): backend = akamai.AkamaiBackend( objects.PoolTarget.from_dict(self.target) ) mock_auth.EdgeGridAuth.assert_called_once_with( access_token='access_token', client_secret='client_secret', client_token='client_token' ) mock_post.return_value = self.gen_response(409, 'Conflict') with fixtures.random_seed(0): backend.create_zone(self.admin_context, self.zone) project_id = self.admin_context.project_id or self.zone.tenant_id mock_post.assert_called_once_with( json={ 'comment': 'Created by Designate for Tenant %s' % project_id, 'masters': ['192.168.1.1', '192.168.1.2'], 'type': 'secondary', 'zone': u'example.com.' }, params={ 'gid': '777', 'contractId': 'G-XYW' }, url='https://host_value/config-dns/v2/zones' ) @mock.patch.object(akamai, 'edgegrid') @mock.patch.object(akamai.requests.Session, 'post') def test_create_zone_with_tsig_key(self, mock_post, mock_auth): self.target['options'].extend([ {'key': 'tsig_key_name', 'value': 'test_key'}, {'key': 'tsig_key_algorithm', 'value': 'hmac-sha512'}, {'key': 'tsig_key_secret', 'value': 'aaaabbbbccc'} ]) backend = akamai.AkamaiBackend( objects.PoolTarget.from_dict(self.target) ) mock_auth.EdgeGridAuth.assert_called_once_with( access_token='access_token', client_secret='client_secret', client_token='client_token' ) with fixtures.random_seed(0): backend.create_zone(self.admin_context, self.zone) project_id = self.admin_context.project_id or self.zone.tenant_id mock_post.assert_called_once_with( json={ 'comment': 'Created by Designate for Tenant %s' % project_id, 'masters': ['192.168.1.1', '192.168.1.2'], 'type': 'secondary', 'zone': 'example.com.', 'tsigKey': { 'name': 'test_key', 'algorithm': 'hmac-sha512', 'secret': 'aaaabbbbccc', } }, params={ 'gid': '777', 'contractId': 'G-XYW' }, url='https://host_value/config-dns/v2/zones' ) @mock.patch.object(akamai, 'edgegrid') @mock.patch.object(akamai.requests.Session, 'post') def test_create_zone_raise_error(self, mock_post, mock_auth): backend = akamai.AkamaiBackend( objects.PoolTarget.from_dict(self.target) ) mock_auth.EdgeGridAuth.assert_called_once_with( access_token='access_token', client_secret='client_secret', client_token='client_token' ) json_data = { 'title': 'Missing parameter', 'detail': 'Missed A option' } mock_post.return_value = self.gen_response( 400, 'Bad Request', json_data) with fixtures.random_seed(0): self.assertRaisesRegex( exceptions.Backend, 'Zone creation failed due to: Missed A option', backend.create_zone, self.admin_context, self.zone) project_id = self.admin_context.project_id or self.zone.tenant_id mock_post.assert_called_once_with( json={ 'comment': 'Created by Designate for Tenant %s' % project_id, 'masters': ['192.168.1.1', '192.168.1.2'], 'type': 'secondary', 'zone': 'example.com.' }, params={ 'gid': '777', 'contractId': 'G-XYW' }, url='https://host_value/config-dns/v2/zones' ) @mock.patch.object(akamai, 'edgegrid') @mock.patch.object(akamai.requests.Session, 'post') def test_force_delete_zone(self, mock_post, mock_auth): backend = akamai.AkamaiBackend( objects.PoolTarget.from_dict(self.target) ) mock_auth.EdgeGridAuth.assert_called_once_with( access_token='access_token', client_secret='client_secret', client_token='client_token' ) mock_post.return_value = self.gen_response(200, 'Success') with fixtures.random_seed(0): backend.delete_zone(self.admin_context, self.zone) mock_post.assert_called_once_with( json={ 'zones': ['example.com.'] }, params={ 'force': True }, url='https://host_value/config-dns/v2/zones/delete-requests' ) @mock.patch.object(akamai, 'edgegrid') @mock.patch.object(akamai.requests.Session, 'post') def test_force_delete_zone_raise_error(self, mock_post, mock_auth): backend = akamai.AkamaiBackend( objects.PoolTarget.from_dict(self.target) ) mock_auth.EdgeGridAuth.assert_called_once_with( access_token='access_token', client_secret='client_secret', client_token='client_token' ) mock_post.return_value = self.gen_response( 403, 'Bad Request', {'detail': 'Unexpected error'}) with fixtures.random_seed(0): self.assertRaisesRegex( exceptions.Backend, 'Zone deletion failed due to: Unexpected error', backend.delete_zone, self.admin_context, self.zone) mock_post.assert_called_once_with( json={ 'zones': ['example.com.'] }, params={ 'force': True }, url='https://host_value/config-dns/v2/zones/delete-requests' ) @mock.patch.object(akamai, 'edgegrid') @mock.patch.object(akamai.requests.Session, 'post') def test_force_delete_zone_raise_error_404(self, mock_post, mock_auth): backend = akamai.AkamaiBackend( objects.PoolTarget.from_dict(self.target) ) mock_auth.EdgeGridAuth.assert_called_once_with( access_token='access_token', client_secret='client_secret', client_token='client_token' ) mock_post.return_value = self.gen_response( 404, 'Bad Request', {'detail': 'Unexpected error'}) with fixtures.random_seed(0): backend.delete_zone(self.admin_context, self.zone) mock_post.assert_called_once_with( json={ 'zones': ['example.com.'] }, params={ 'force': True }, url='https://host_value/config-dns/v2/zones/delete-requests' ) @mock.patch.object(akamai, 'edgegrid') @mock.patch.object(akamai.requests.Session, 'post') @mock.patch.object(akamai.requests.Session, 'get') def test_soft_delete_zone(self, mock_get, mock_post, mock_auth): backend = akamai.AkamaiBackend( objects.PoolTarget.from_dict(self.target) ) mock_auth.EdgeGridAuth.assert_called_once_with( access_token='access_token', client_secret='client_secret', client_token='client_token' ) mock_post.side_effect = [ # emulate, when Force=True is forbidden self.gen_response(403, 'Forbidden'), # emulate request, when Force=False self.gen_response(200, 'Success', {'requestId': 'nice_id'}), ] # emulate max 9 failed attempts and 1 success mock_get.side_effect = 9 * [ self.gen_response(200, 'Success', {'isComplete': False}) ] + [ self.gen_response(200, 'Success', {'isComplete': True}) ] with fixtures.random_seed(0), \ mock.patch.object(akamai.time, 'sleep') as mock_sleep: mock_sleep.return_value = None backend.delete_zone(self.admin_context, self.zone) self.assertEqual(10, mock_sleep.call_count) url = 'https://host_value/config-dns/v2/zones/delete-requests/nice_id' mock_get.assert_has_calls(9 * [mock.call(url=url)]) mock_post.assert_has_calls([ mock.call( json={'zones': ['example.com.']}, params={'force': True}, url='https://host_value/config-dns/v2/zones/delete-requests' ), mock.call( json={'zones': ['example.com.']}, params={'force': False}, url='https://host_value/config-dns/v2/zones/delete-requests' ) ]) @mock.patch.object(akamai, 'edgegrid') @mock.patch.object(akamai.requests.Session, 'post') @mock.patch.object(akamai.requests.Session, 'get') def test_soft_delete_zone_failed_after_10_attempts( self, mock_get, mock_post, mock_auth): backend = akamai.AkamaiBackend( objects.PoolTarget.from_dict(self.target) ) mock_auth.EdgeGridAuth.assert_called_once_with( access_token='access_token', client_secret='client_secret', client_token='client_token' ) mock_post.side_effect = [ # emulate, when Force=True is forbidden self.gen_response(403, 'Forbidden'), # emulate request, when Force=False self.gen_response(200, 'Success', {'requestId': 'nice_id'}), ] # emulate max 10 failed attempts mock_get.side_effect = 10 * [ self.gen_response(200, 'Success', {'isComplete': False}) ] with fixtures.random_seed(0), \ mock.patch.object(akamai.time, 'sleep') as mock_sleep: mock_sleep.return_value = None self.assertRaisesRegex( exceptions.Backend, 'Zone was not deleted after 10 attempts', backend.delete_zone, self.admin_context, self.zone) self.assertEqual(10, mock_sleep.call_count) url = 'https://host_value/config-dns/v2/zones/delete-requests/nice_id' mock_get.assert_has_calls(10 * [mock.call(url=url)]) mock_post.assert_has_calls([ mock.call( json={'zones': ['example.com.']}, params={'force': True}, url='https://host_value/config-dns/v2/zones/delete-requests' ), mock.call( json={'zones': ['example.com.']}, params={'force': False}, url='https://host_value/config-dns/v2/zones/delete-requests' ) ]) @mock.patch.object(akamai, 'edgegrid') @mock.patch.object(akamai.requests.Session, 'post') def test_soft_delete_zone_raise_error(self, mock_post, mock_auth): backend = akamai.AkamaiBackend( objects.PoolTarget.from_dict(self.target) ) mock_auth.EdgeGridAuth.assert_called_once_with( access_token='access_token', client_secret='client_secret', client_token='client_token' ) mock_post.side_effect = [ # emulate, when Force=True is forbidden self.gen_response(403, 'Forbidden'), # emulate request, when Force=False self.gen_response(409, 'Conflict', {'detail': 'Intenal Error'}) ] with fixtures.random_seed(0): self.assertRaisesRegex( exceptions.Backend, 'Zone deletion failed due to: Intenal Error', backend.delete_zone, self.admin_context, self.zone) mock_post.assert_has_calls([ mock.call( json={'zones': [u'example.com.']}, params={'force': True}, url='https://host_value/config-dns/v2/zones/delete-requests' ), mock.call( json={'zones': [u'example.com.']}, params={'force': False}, url='https://host_value/config-dns/v2/zones/delete-requests' ) ]) @mock.patch.object(akamai, 'edgegrid') @mock.patch.object(akamai.requests.Session, 'post') def test_soft_delete_zone_missed_request_id(self, mock_post, mock_auth): backend = akamai.AkamaiBackend( objects.PoolTarget.from_dict(self.target) ) mock_auth.EdgeGridAuth.assert_called_once_with( access_token='access_token', client_secret='client_secret', client_token='client_token' ) mock_post.side_effect = [ # emulate, when Force=True is forbidden self.gen_response(403, 'Forbidden'), # emulate request, when Force=False self.gen_response(200, 'Success') ] with fixtures.random_seed(0): self.assertRaisesRegex( exceptions.Backend, 'Zone deletion failed due to: requestId missed in response', backend.delete_zone, self.admin_context, self.zone) mock_post.assert_has_calls([ mock.call( json={'zones': [u'example.com.']}, params={'force': True}, url='https://host_value/config-dns/v2/zones/delete-requests' ), mock.call( json={'zones': [u'example.com.']}, params={'force': False}, url='https://host_value/config-dns/v2/zones/delete-requests' ) ])
py
1a5265ed085987cd39728024b220fae7a3fde044
import ctypes import os from casual.xatmi.xatmi import tpalloc, tpfree, tperrno, tperrnostring, \ X_OCTET, CASUAL_BUFFER_BINARY_TYPE, CASUAL_BUFFER_BINARY_SUBTYPE, \ CASUAL_BUFFER_JSON_TYPE, CASUAL_BUFFER_JSON_SUBTYPE, \ CASUAL_BUFFER_YAML_TYPE, CASUAL_BUFFER_YAML_SUBTYPE, \ CASUAL_BUFFER_XML_TYPE, CASUAL_BUFFER_XML_SUBTYPE from casual.server.exception import BufferError BufferTypeMap = { 'x_octet': (X_OCTET, 0), 'binary': (CASUAL_BUFFER_BINARY_TYPE, CASUAL_BUFFER_BINARY_SUBTYPE), 'json': (CASUAL_BUFFER_JSON_TYPE, CASUAL_BUFFER_JSON_SUBTYPE), 'yaml': (CASUAL_BUFFER_YAML_TYPE, CASUAL_BUFFER_YAML_SUBTYPE), 'xml': (CASUAL_BUFFER_XML_TYPE, CASUAL_BUFFER_XML_SUBTYPE) } def x_octet(): return BufferTypeMap['x_octet'] def binary(): return BufferTypeMap['binary'] def json(): return BufferTypeMap['json'] def yaml(): return BufferTypeMap['yaml'] def xml(): return BufferTypeMap['xml'] def _convert( data): try: data = data.encode() is_bytes = False except (UnicodeDecodeError, AttributeError): is_bytes = True return is_bytes, data class Buffer(object): def __init__(self, buffertype, subtype, data=None): if data: self.is_bytes, data = _convert( data) self.size = ctypes.c_long(len(data)) self.holder = tpalloc(buffertype, subtype, self.size) if self.holder: self.set(data) else: raise BufferError(tperrnostring(tperrno())) else: self.size = ctypes.c_long(1024) self.holder = tpalloc(buffertype, subtype, self.size) def set(self, data): ctypes.memmove(self.holder, data, len(data)) def raw(self): return self.holder def data(self): return self.holder[0:self.size.value] def __del__(self): if self.holder and tpfree: tpfree( self.holder) # # Supported buffer type # class JsonBuffer(Buffer): def __init__(self, data = None): buffertype, subtype = json() try: super().__init__(buffertype, subtype, data) except TypeError: super( JsonBuffer, self).__init__(buffertype, subtype, data) # # Supported buffer type # class XmlBuffer(Buffer): def __init__(self, data = None): buffertype, subtype = xml() try: super().__init__(buffertype, subtype, data) except TypeError: super( XmlBuffer, self).__init__(buffertype, subtype, data) def create_buffer(buffer): theType=type(buffer) if theType is XmlBuffer: return XmlBuffer() elif theType is JsonBuffer: return JsonBuffer() else: raise BufferError("Unknown buffer type")
py
1a5265eef973edfa14624f63b0c90aeab56d5a2e
# Coffee Machine Program Requirements # 1. Prompt user by asking “What would you like? (espresso/latte/cappuccino):” # a. Check the user’s input to decide what to do next. # b. The prompt should show every time action has completed, e.g. once the drink is # dispensed. The prompt should show again to serve the next customer. # 2. Turn off the Coffee Machine by entering “off” to the prompt. # a. For maintainers of the coffee machine, they can use “off” as the secret word to turn off # the machine. Your code should end execution when this happens. # 3. Print report. # a. When the user enters “report” to the prompt, a report should be generated that shows # the current resource values. e.g. # Water: 100ml # Milk: 50ml # Coffee: 76g # Money: $2.5 # 4. Check resources sufficient? # a. When the user chooses a drink, the program should check if there are enough # resources to make that drink. # b. E.g. if Latte requires 200ml water but there is only 100ml left in the machine. It should # not continue to make the drink but print: “Sorry there is not enough water.” # c. The same should happen if another resource is depleted, e.g. milk or coffee. # 5. Process coins. # a. If there are sufficient resources to make the drink selected, then the program should # prompt the user to insert coins. # b. Remember that quarters = $0.25, dimes = $0.10, nickles = $0.05, pennies = $0.01 # c. Calculate the monetary value of the coins inserted. E.g. 1 quarter, 2 dimes, 1 nickel, 2 # pennies = 0.25 + 0.1 x 2 + 0.05 + 0.01 x 2 = $0.52 # 6. Check transaction successful? # a. Check that the user has inserted enough money to purchase the drink they selected. # E.g Latte cost $2.50, but they only inserted $0.52 then after counting the coins the # program should say “Sorry that's not enough money. Money refunded.”. # b. But if the user has inserted enough money, then the cost of the drink gets added to the # machine as the profit and this will be reflected the next time “report” is triggered. E.g. # Water: 100ml # Milk: 50ml # Coffee: 76g # Money: $2.5 # c. If the user has inserted too much money, the machine should offer change. # E.g. “Here is $2.45 dollars in change.” The change should be rounded to 2 decimal # places. # 7. Make Coffee. # a. If the transaction is successful and there are enough resources to make the drink the # user selected, then the ingredients to make the drink should be deducted from the # coffee machine resources. # E.g. report before purchasing latte: # Water: 300ml # Milk: 200ml # Coffee: 100g # Money: $0 # Report after purchasing latte: # Water: 100ml # Milk: 50ml # Coffee: 76g # Money: $2.5 # b. Once all resources have been deducted, tell the user “Here is your latte. Enjoy!”. If # latte was their choice of drink.
py
1a5266353ebb9a55636962afcb07fbf86e50eea3
from time import sleep import picamera WAIT_TIME = 10 with picamera.PiCamera() as camera: camera.resolution = (1024, 768) for filename in camera.capture_continuous('/home/pi/timelapse/img{timestamp:%D-%m-%y_%H-%M-%S}.jpg'): sleep(WAIT_TIME)
py
1a52667bf629990decf8513b88aee2c68998d482
# # Copyright (c) [2021] Huawei Technologies Co.,Ltd.All rights reserved. # # OpenArkCompiler is licensed under Mulan PSL v2. # You can use this software according to the terms and conditions of the Mulan PSL v2. # # http://license.coscl.org.cn/MulanPSL2 # # THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, MERCHANTABILITY OR # FIT FOR A PARTICULAR PURPOSE. # See the Mulan PSL v2 for more details. # from api import * SUPO0 = { "compile": [ C2ast( clang="${OUT_ROOT}/tools/bin/clang", include_path=[ "${OUT_ROOT}/${MAPLE_BUILD_TYPE}/lib/include", "${OUT_ROOT}/tools/gcc-linaro-7.5.0/aarch64-linux-gnu/libc/usr/include", "${OUT_ROOT}/tools/gcc-linaro-7.5.0/lib/gcc/aarch64-linux-gnu/7.5.0/include", "../lib" ], option="--target=aarch64 -U __SIZEOF_INT128__", infile="${APP}.c", outfile="${APP}.ast" ), Mplfe( hir2mpl="${OUT_ROOT}/${MAPLE_BUILD_TYPE}/bin/hir2mpl", infile="${APP}.ast", outfile="${APP}.mpl" ), Maple( maple="${OUT_ROOT}/${MAPLE_BUILD_TYPE}/bin/maple", run=["mplcg"], option={ "mplcg": "--quiet" }, global_option="", infile="${APP}.mpl" ), CLinker( infile="${APP}.s", front_option="-O2 -static -L../lib -std=c89 -s", outfile="${APP}.out", back_option="-lst -lm" ) ], "run": [ Shell( "${OUT_ROOT}/tools/bin/qemu-aarch64 -L ${OUT_ROOT}/tools/gcc-linaro-7.5.0/aarch64-linux-gnu/libc ${APP}.out > output.log 2>&1" ), CheckFileEqual( file1="output.log", file2="expected.txt" ) ] }
py
1a526719ec7cb3983a7dd53de64d3657be6550c8
"""react_django_app URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.conf import settings from django.contrib import admin from django.urls import path from django.conf.urls import url from django.views.decorators.cache import never_cache from django.views.decorators.gzip import gzip_page from django.views.generic import TemplateView from django.views.static import serve urlpatterns = [ path('admin/', admin.site.urls), url(r'^static/(?P<path>.*)$', gzip_page(serve), kwargs=dict(document_root=settings.FRONTEND_STATIC_ROOT)), url(r'^$', never_cache(gzip_page(TemplateView.as_view(template_name='index.html'))), name='main'), ]
py
1a5268851a2c126c9be7db6c256994c92f5140ad
# -*- coding: utf-8 -*- import sys import gc from hypothesis import given from hypothesis.extra import numpy as hynp import pytest import numpy as np from numpy.testing import ( assert_, assert_equal, assert_raises, assert_warns, HAS_REFCOUNT, assert_raises_regex, ) import textwrap class TestArrayRepr: def test_nan_inf(self): x = np.array([np.nan, np.inf]) assert_equal(repr(x), 'array([nan, inf])') def test_subclass(self): class sub(np.ndarray): pass # one dimensional x1d = np.array([1, 2]).view(sub) assert_equal(repr(x1d), 'sub([1, 2])') # two dimensional x2d = np.array([[1, 2], [3, 4]]).view(sub) assert_equal(repr(x2d), 'sub([[1, 2],\n' ' [3, 4]])') # two dimensional with flexible dtype xstruct = np.ones((2,2), dtype=[('a', '<i4')]).view(sub) assert_equal(repr(xstruct), "sub([[(1,), (1,)],\n" " [(1,), (1,)]], dtype=[('a', '<i4')])" ) @pytest.mark.xfail(reason="See gh-10544") def test_object_subclass(self): class sub(np.ndarray): def __new__(cls, inp): obj = np.asarray(inp).view(cls) return obj def __getitem__(self, ind): ret = super().__getitem__(ind) return sub(ret) # test that object + subclass is OK: x = sub([None, None]) assert_equal(repr(x), 'sub([None, None], dtype=object)') assert_equal(str(x), '[None None]') x = sub([None, sub([None, None])]) assert_equal(repr(x), 'sub([None, sub([None, None], dtype=object)], dtype=object)') assert_equal(str(x), '[None sub([None, None], dtype=object)]') def test_0d_object_subclass(self): # make sure that subclasses which return 0ds instead # of scalars don't cause infinite recursion in str class sub(np.ndarray): def __new__(cls, inp): obj = np.asarray(inp).view(cls) return obj def __getitem__(self, ind): ret = super().__getitem__(ind) return sub(ret) x = sub(1) assert_equal(repr(x), 'sub(1)') assert_equal(str(x), '1') x = sub([1, 1]) assert_equal(repr(x), 'sub([1, 1])') assert_equal(str(x), '[1 1]') # check it works properly with object arrays too x = sub(None) assert_equal(repr(x), 'sub(None, dtype=object)') assert_equal(str(x), 'None') # plus recursive object arrays (even depth > 1) y = sub(None) x[()] = y y[()] = x assert_equal(repr(x), 'sub(sub(sub(..., dtype=object), dtype=object), dtype=object)') assert_equal(str(x), '...') x[()] = 0 # resolve circular references for garbage collector # nested 0d-subclass-object x = sub(None) x[()] = sub(None) assert_equal(repr(x), 'sub(sub(None, dtype=object), dtype=object)') assert_equal(str(x), 'None') # gh-10663 class DuckCounter(np.ndarray): def __getitem__(self, item): result = super().__getitem__(item) if not isinstance(result, DuckCounter): result = result[...].view(DuckCounter) return result def to_string(self): return {0: 'zero', 1: 'one', 2: 'two'}.get(self.item(), 'many') def __str__(self): if self.shape == (): return self.to_string() else: fmt = {'all': lambda x: x.to_string()} return np.array2string(self, formatter=fmt) dc = np.arange(5).view(DuckCounter) assert_equal(str(dc), "[zero one two many many]") assert_equal(str(dc[0]), "zero") def test_self_containing(self): arr0d = np.array(None) arr0d[()] = arr0d assert_equal(repr(arr0d), 'array(array(..., dtype=object), dtype=object)') arr0d[()] = 0 # resolve recursion for garbage collector arr1d = np.array([None, None]) arr1d[1] = arr1d assert_equal(repr(arr1d), 'array([None, array(..., dtype=object)], dtype=object)') arr1d[1] = 0 # resolve recursion for garbage collector first = np.array(None) second = np.array(None) first[()] = second second[()] = first assert_equal(repr(first), 'array(array(array(..., dtype=object), dtype=object), dtype=object)') first[()] = 0 # resolve circular references for garbage collector def test_containing_list(self): # printing square brackets directly would be ambiguuous arr1d = np.array([None, None]) arr1d[0] = [1, 2] arr1d[1] = [3] assert_equal(repr(arr1d), 'array([list([1, 2]), list([3])], dtype=object)') def test_void_scalar_recursion(self): # gh-9345 repr(np.void(b'test')) # RecursionError ? def test_fieldless_structured(self): # gh-10366 no_fields = np.dtype([]) arr_no_fields = np.empty(4, dtype=no_fields) assert_equal(repr(arr_no_fields), 'array([(), (), (), ()], dtype=[])') class TestComplexArray: def test_str(self): rvals = [0, 1, -1, np.inf, -np.inf, np.nan] cvals = [complex(rp, ip) for rp in rvals for ip in rvals] dtypes = [np.complex64, np.cdouble, np.clongdouble] actual = [str(np.array([c], dt)) for c in cvals for dt in dtypes] wanted = [ '[0.+0.j]', '[0.+0.j]', '[0.+0.j]', '[0.+1.j]', '[0.+1.j]', '[0.+1.j]', '[0.-1.j]', '[0.-1.j]', '[0.-1.j]', '[0.+infj]', '[0.+infj]', '[0.+infj]', '[0.-infj]', '[0.-infj]', '[0.-infj]', '[0.+nanj]', '[0.+nanj]', '[0.+nanj]', '[1.+0.j]', '[1.+0.j]', '[1.+0.j]', '[1.+1.j]', '[1.+1.j]', '[1.+1.j]', '[1.-1.j]', '[1.-1.j]', '[1.-1.j]', '[1.+infj]', '[1.+infj]', '[1.+infj]', '[1.-infj]', '[1.-infj]', '[1.-infj]', '[1.+nanj]', '[1.+nanj]', '[1.+nanj]', '[-1.+0.j]', '[-1.+0.j]', '[-1.+0.j]', '[-1.+1.j]', '[-1.+1.j]', '[-1.+1.j]', '[-1.-1.j]', '[-1.-1.j]', '[-1.-1.j]', '[-1.+infj]', '[-1.+infj]', '[-1.+infj]', '[-1.-infj]', '[-1.-infj]', '[-1.-infj]', '[-1.+nanj]', '[-1.+nanj]', '[-1.+nanj]', '[inf+0.j]', '[inf+0.j]', '[inf+0.j]', '[inf+1.j]', '[inf+1.j]', '[inf+1.j]', '[inf-1.j]', '[inf-1.j]', '[inf-1.j]', '[inf+infj]', '[inf+infj]', '[inf+infj]', '[inf-infj]', '[inf-infj]', '[inf-infj]', '[inf+nanj]', '[inf+nanj]', '[inf+nanj]', '[-inf+0.j]', '[-inf+0.j]', '[-inf+0.j]', '[-inf+1.j]', '[-inf+1.j]', '[-inf+1.j]', '[-inf-1.j]', '[-inf-1.j]', '[-inf-1.j]', '[-inf+infj]', '[-inf+infj]', '[-inf+infj]', '[-inf-infj]', '[-inf-infj]', '[-inf-infj]', '[-inf+nanj]', '[-inf+nanj]', '[-inf+nanj]', '[nan+0.j]', '[nan+0.j]', '[nan+0.j]', '[nan+1.j]', '[nan+1.j]', '[nan+1.j]', '[nan-1.j]', '[nan-1.j]', '[nan-1.j]', '[nan+infj]', '[nan+infj]', '[nan+infj]', '[nan-infj]', '[nan-infj]', '[nan-infj]', '[nan+nanj]', '[nan+nanj]', '[nan+nanj]'] for res, val in zip(actual, wanted): assert_equal(res, val) class TestArray2String: def test_basic(self): """Basic test of array2string.""" a = np.arange(3) assert_(np.array2string(a) == '[0 1 2]') assert_(np.array2string(a, max_line_width=4, legacy='1.13') == '[0 1\n 2]') assert_(np.array2string(a, max_line_width=4) == '[0\n 1\n 2]') def test_unexpected_kwarg(self): # ensure than an appropriate TypeError # is raised when array2string receives # an unexpected kwarg with assert_raises_regex(TypeError, 'nonsense'): np.array2string(np.array([1, 2, 3]), nonsense=None) def test_format_function(self): """Test custom format function for each element in array.""" def _format_function(x): if np.abs(x) < 1: return '.' elif np.abs(x) < 2: return 'o' else: return 'O' x = np.arange(3) x_hex = "[0x0 0x1 0x2]" x_oct = "[0o0 0o1 0o2]" assert_(np.array2string(x, formatter={'all':_format_function}) == "[. o O]") assert_(np.array2string(x, formatter={'int_kind':_format_function}) == "[. o O]") assert_(np.array2string(x, formatter={'all':lambda x: "%.4f" % x}) == "[0.0000 1.0000 2.0000]") assert_equal(np.array2string(x, formatter={'int':lambda x: hex(x)}), x_hex) assert_equal(np.array2string(x, formatter={'int':lambda x: oct(x)}), x_oct) x = np.arange(3.) assert_(np.array2string(x, formatter={'float_kind':lambda x: "%.2f" % x}) == "[0.00 1.00 2.00]") assert_(np.array2string(x, formatter={'float':lambda x: "%.2f" % x}) == "[0.00 1.00 2.00]") s = np.array(['abc', 'def']) assert_(np.array2string(s, formatter={'numpystr':lambda s: s*2}) == '[abcabc defdef]') def test_structure_format(self): dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))]) x = np.array([('Sarah', (8.0, 7.0)), ('John', (6.0, 7.0))], dtype=dt) assert_equal(np.array2string(x), "[('Sarah', [8., 7.]) ('John', [6., 7.])]") np.set_printoptions(legacy='1.13') try: # for issue #5692 A = np.zeros(shape=10, dtype=[("A", "M8[s]")]) A[5:].fill(np.datetime64('NaT')) assert_equal( np.array2string(A), textwrap.dedent("""\ [('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',) ('NaT',) ('NaT',) ('NaT',) ('NaT',) ('NaT',)]""") ) finally: np.set_printoptions(legacy=False) # same again, but with non-legacy behavior assert_equal( np.array2string(A), textwrap.dedent("""\ [('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',) ( 'NaT',) ( 'NaT',) ( 'NaT',) ( 'NaT',) ( 'NaT',)]""") ) # and again, with timedeltas A = np.full(10, 123456, dtype=[("A", "m8[s]")]) A[5:].fill(np.datetime64('NaT')) assert_equal( np.array2string(A), textwrap.dedent("""\ [(123456,) (123456,) (123456,) (123456,) (123456,) ( 'NaT',) ( 'NaT',) ( 'NaT',) ( 'NaT',) ( 'NaT',)]""") ) # See #8160 struct_int = np.array([([1, -1],), ([123, 1],)], dtype=[('B', 'i4', 2)]) assert_equal(np.array2string(struct_int), "[([ 1, -1],) ([123, 1],)]") struct_2dint = np.array([([[0, 1], [2, 3]],), ([[12, 0], [0, 0]],)], dtype=[('B', 'i4', (2, 2))]) assert_equal(np.array2string(struct_2dint), "[([[ 0, 1], [ 2, 3]],) ([[12, 0], [ 0, 0]],)]") # See #8172 array_scalar = np.array( (1., 2.1234567890123456789, 3.), dtype=('f8,f8,f8')) assert_equal(np.array2string(array_scalar), "(1., 2.12345679, 3.)") def test_unstructured_void_repr(self): a = np.array([27, 91, 50, 75, 7, 65, 10, 8, 27, 91, 51, 49,109, 82,101,100], dtype='u1').view('V8') assert_equal(repr(a[0]), r"void(b'\x1B\x5B\x32\x4B\x07\x41\x0A\x08')") assert_equal(str(a[0]), r"b'\x1B\x5B\x32\x4B\x07\x41\x0A\x08'") assert_equal(repr(a), r"array([b'\x1B\x5B\x32\x4B\x07\x41\x0A\x08'," "\n" r" b'\x1B\x5B\x33\x31\x6D\x52\x65\x64'], dtype='|V8')") assert_equal(eval(repr(a), vars(np)), a) assert_equal(eval(repr(a[0]), vars(np)), a[0]) def test_edgeitems_kwarg(self): # previously the global print options would be taken over the kwarg arr = np.zeros(3, int) assert_equal( np.array2string(arr, edgeitems=1, threshold=0), "[0 ... 0]" ) def test_summarize_1d(self): A = np.arange(1001) strA = '[ 0 1 2 ... 998 999 1000]' assert_equal(str(A), strA) reprA = 'array([ 0, 1, 2, ..., 998, 999, 1000])' assert_equal(repr(A), reprA) def test_summarize_2d(self): A = np.arange(1002).reshape(2, 501) strA = '[[ 0 1 2 ... 498 499 500]\n' \ ' [ 501 502 503 ... 999 1000 1001]]' assert_equal(str(A), strA) reprA = 'array([[ 0, 1, 2, ..., 498, 499, 500],\n' \ ' [ 501, 502, 503, ..., 999, 1000, 1001]])' assert_equal(repr(A), reprA) def test_linewidth(self): a = np.full(6, 1) def make_str(a, width, **kw): return np.array2string(a, separator="", max_line_width=width, **kw) assert_equal(make_str(a, 8, legacy='1.13'), '[111111]') assert_equal(make_str(a, 7, legacy='1.13'), '[111111]') assert_equal(make_str(a, 5, legacy='1.13'), '[1111\n' ' 11]') assert_equal(make_str(a, 8), '[111111]') assert_equal(make_str(a, 7), '[11111\n' ' 1]') assert_equal(make_str(a, 5), '[111\n' ' 111]') b = a[None,None,:] assert_equal(make_str(b, 12, legacy='1.13'), '[[[111111]]]') assert_equal(make_str(b, 9, legacy='1.13'), '[[[111111]]]') assert_equal(make_str(b, 8, legacy='1.13'), '[[[11111\n' ' 1]]]') assert_equal(make_str(b, 12), '[[[111111]]]') assert_equal(make_str(b, 9), '[[[111\n' ' 111]]]') assert_equal(make_str(b, 8), '[[[11\n' ' 11\n' ' 11]]]') def test_wide_element(self): a = np.array(['xxxxx']) assert_equal( np.array2string(a, max_line_width=5), "['xxxxx']" ) assert_equal( np.array2string(a, max_line_width=5, legacy='1.13'), "[ 'xxxxx']" ) def test_multiline_repr(self): class MultiLine: def __repr__(self): return "Line 1\nLine 2" a = np.array([[None, MultiLine()], [MultiLine(), None]]) assert_equal( np.array2string(a), '[[None Line 1\n' ' Line 2]\n' ' [Line 1\n' ' Line 2 None]]' ) assert_equal( np.array2string(a, max_line_width=5), '[[None\n' ' Line 1\n' ' Line 2]\n' ' [Line 1\n' ' Line 2\n' ' None]]' ) assert_equal( repr(a), 'array([[None, Line 1\n' ' Line 2],\n' ' [Line 1\n' ' Line 2, None]], dtype=object)' ) class MultiLineLong: def __repr__(self): return "Line 1\nLooooooooooongestLine2\nLongerLine 3" a = np.array([[None, MultiLineLong()], [MultiLineLong(), None]]) assert_equal( repr(a), 'array([[None, Line 1\n' ' LooooooooooongestLine2\n' ' LongerLine 3 ],\n' ' [Line 1\n' ' LooooooooooongestLine2\n' ' LongerLine 3 , None]], dtype=object)' ) assert_equal( np.array_repr(a, 20), 'array([[None,\n' ' Line 1\n' ' LooooooooooongestLine2\n' ' LongerLine 3 ],\n' ' [Line 1\n' ' LooooooooooongestLine2\n' ' LongerLine 3 ,\n' ' None]],\n' ' dtype=object)' ) def test_nested_array_repr(self): a = np.empty((2, 2), dtype=object) a[0, 0] = np.eye(2) a[0, 1] = np.eye(3) a[1, 0] = None a[1, 1] = np.ones((3, 1)) assert_equal( repr(a), 'array([[array([[1., 0.],\n' ' [0., 1.]]), array([[1., 0., 0.],\n' ' [0., 1., 0.],\n' ' [0., 0., 1.]])],\n' ' [None, array([[1.],\n' ' [1.],\n' ' [1.]])]], dtype=object)' ) @given(hynp.from_dtype(np.dtype("U"))) def test_any_text(self, text): # This test checks that, given any value that can be represented in an # array of dtype("U") (i.e. unicode string), ... a = np.array([text, text, text]) # casting a list of them to an array does not e.g. truncate the value assert_equal(a[0], text) # and that np.array2string puts a newline in the expected location expected_repr = "[{0!r} {0!r}\n {0!r}]".format(text) result = np.array2string(a, max_line_width=len(repr(text)) * 2 + 3) assert_equal(result, expected_repr) @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts") def test_refcount(self): # make sure we do not hold references to the array due to a recursive # closure (gh-10620) gc.disable() a = np.arange(2) r1 = sys.getrefcount(a) np.array2string(a) np.array2string(a) r2 = sys.getrefcount(a) gc.collect() gc.enable() assert_(r1 == r2) class TestPrintOptions: """Test getting and setting global print options.""" def setup(self): self.oldopts = np.get_printoptions() def teardown(self): np.set_printoptions(**self.oldopts) def test_basic(self): x = np.array([1.5, 0, 1.234567890]) assert_equal(repr(x), "array([1.5 , 0. , 1.23456789])") np.set_printoptions(precision=4) assert_equal(repr(x), "array([1.5 , 0. , 1.2346])") def test_precision_zero(self): np.set_printoptions(precision=0) for values, string in ( ([0.], "0."), ([.3], "0."), ([-.3], "-0."), ([.7], "1."), ([1.5], "2."), ([-1.5], "-2."), ([-15.34], "-15."), ([100.], "100."), ([.2, -1, 122.51], " 0., -1., 123."), ([0], "0"), ([-12], "-12"), ([complex(.3, -.7)], "0.-1.j")): x = np.array(values) assert_equal(repr(x), "array([%s])" % string) def test_formatter(self): x = np.arange(3) np.set_printoptions(formatter={'all':lambda x: str(x-1)}) assert_equal(repr(x), "array([-1, 0, 1])") def test_formatter_reset(self): x = np.arange(3) np.set_printoptions(formatter={'all':lambda x: str(x-1)}) assert_equal(repr(x), "array([-1, 0, 1])") np.set_printoptions(formatter={'int':None}) assert_equal(repr(x), "array([0, 1, 2])") np.set_printoptions(formatter={'all':lambda x: str(x-1)}) assert_equal(repr(x), "array([-1, 0, 1])") np.set_printoptions(formatter={'all':None}) assert_equal(repr(x), "array([0, 1, 2])") np.set_printoptions(formatter={'int':lambda x: str(x-1)}) assert_equal(repr(x), "array([-1, 0, 1])") np.set_printoptions(formatter={'int_kind':None}) assert_equal(repr(x), "array([0, 1, 2])") x = np.arange(3.) np.set_printoptions(formatter={'float':lambda x: str(x-1)}) assert_equal(repr(x), "array([-1.0, 0.0, 1.0])") np.set_printoptions(formatter={'float_kind':None}) assert_equal(repr(x), "array([0., 1., 2.])") def test_0d_arrays(self): assert_equal(str(np.array(u'café', '<U4')), u'café') assert_equal(repr(np.array('café', '<U4')), "array('café', dtype='<U4')") assert_equal(str(np.array('test', np.str_)), 'test') a = np.zeros(1, dtype=[('a', '<i4', (3,))]) assert_equal(str(a[0]), '([0, 0, 0],)') assert_equal(repr(np.datetime64('2005-02-25')[...]), "array('2005-02-25', dtype='datetime64[D]')") assert_equal(repr(np.timedelta64('10', 'Y')[...]), "array(10, dtype='timedelta64[Y]')") # repr of 0d arrays is affected by printoptions x = np.array(1) np.set_printoptions(formatter={'all':lambda x: "test"}) assert_equal(repr(x), "array(test)") # str is unaffected assert_equal(str(x), "1") # check `style` arg raises assert_warns(DeprecationWarning, np.array2string, np.array(1.), style=repr) # but not in legacy mode np.array2string(np.array(1.), style=repr, legacy='1.13') # gh-10934 style was broken in legacy mode, check it works np.array2string(np.array(1.), legacy='1.13') def test_float_spacing(self): x = np.array([1., 2., 3.]) y = np.array([1., 2., -10.]) z = np.array([100., 2., -1.]) w = np.array([-100., 2., 1.]) assert_equal(repr(x), 'array([1., 2., 3.])') assert_equal(repr(y), 'array([ 1., 2., -10.])') assert_equal(repr(np.array(y[0])), 'array(1.)') assert_equal(repr(np.array(y[-1])), 'array(-10.)') assert_equal(repr(z), 'array([100., 2., -1.])') assert_equal(repr(w), 'array([-100., 2., 1.])') assert_equal(repr(np.array([np.nan, np.inf])), 'array([nan, inf])') assert_equal(repr(np.array([np.nan, -np.inf])), 'array([ nan, -inf])') x = np.array([np.inf, 100000, 1.1234]) y = np.array([np.inf, 100000, -1.1234]) z = np.array([np.inf, 1.1234, -1e120]) np.set_printoptions(precision=2) assert_equal(repr(x), 'array([ inf, 1.00e+05, 1.12e+00])') assert_equal(repr(y), 'array([ inf, 1.00e+05, -1.12e+00])') assert_equal(repr(z), 'array([ inf, 1.12e+000, -1.00e+120])') def test_bool_spacing(self): assert_equal(repr(np.array([True, True])), 'array([ True, True])') assert_equal(repr(np.array([True, False])), 'array([ True, False])') assert_equal(repr(np.array([True])), 'array([ True])') assert_equal(repr(np.array(True)), 'array(True)') assert_equal(repr(np.array(False)), 'array(False)') def test_sign_spacing(self): a = np.arange(4.) b = np.array([1.234e9]) c = np.array([1.0 + 1.0j, 1.123456789 + 1.123456789j], dtype='c16') assert_equal(repr(a), 'array([0., 1., 2., 3.])') assert_equal(repr(np.array(1.)), 'array(1.)') assert_equal(repr(b), 'array([1.234e+09])') assert_equal(repr(np.array([0.])), 'array([0.])') assert_equal(repr(c), "array([1. +1.j , 1.12345679+1.12345679j])") assert_equal(repr(np.array([0., -0.])), 'array([ 0., -0.])') np.set_printoptions(sign=' ') assert_equal(repr(a), 'array([ 0., 1., 2., 3.])') assert_equal(repr(np.array(1.)), 'array( 1.)') assert_equal(repr(b), 'array([ 1.234e+09])') assert_equal(repr(c), "array([ 1. +1.j , 1.12345679+1.12345679j])") assert_equal(repr(np.array([0., -0.])), 'array([ 0., -0.])') np.set_printoptions(sign='+') assert_equal(repr(a), 'array([+0., +1., +2., +3.])') assert_equal(repr(np.array(1.)), 'array(+1.)') assert_equal(repr(b), 'array([+1.234e+09])') assert_equal(repr(c), "array([+1. +1.j , +1.12345679+1.12345679j])") np.set_printoptions(legacy='1.13') assert_equal(repr(a), 'array([ 0., 1., 2., 3.])') assert_equal(repr(b), 'array([ 1.23400000e+09])') assert_equal(repr(-b), 'array([ -1.23400000e+09])') assert_equal(repr(np.array(1.)), 'array(1.0)') assert_equal(repr(np.array([0.])), 'array([ 0.])') assert_equal(repr(c), "array([ 1.00000000+1.j , 1.12345679+1.12345679j])") # gh-10383 assert_equal(str(np.array([-1., 10])), "[ -1. 10.]") assert_raises(TypeError, np.set_printoptions, wrongarg=True) def test_float_overflow_nowarn(self): # make sure internal computations in FloatingFormat don't # warn about overflow repr(np.array([1e4, 0.1], dtype='f2')) def test_sign_spacing_structured(self): a = np.ones(2, dtype='<f,<f') assert_equal(repr(a), "array([(1., 1.), (1., 1.)], dtype=[('f0', '<f4'), ('f1', '<f4')])") assert_equal(repr(a[0]), "(1., 1.)") def test_floatmode(self): x = np.array([0.6104, 0.922, 0.457, 0.0906, 0.3733, 0.007244, 0.5933, 0.947, 0.2383, 0.4226], dtype=np.float16) y = np.array([0.2918820979355541, 0.5064172631089138, 0.2848750619642916, 0.4342965294660567, 0.7326538397312751, 0.3459503329096204, 0.0862072768214508, 0.39112753029631175], dtype=np.float64) z = np.arange(6, dtype=np.float16)/10 c = np.array([1.0 + 1.0j, 1.123456789 + 1.123456789j], dtype='c16') # also make sure 1e23 is right (is between two fp numbers) w = np.array(['1e{}'.format(i) for i in range(25)], dtype=np.float64) # note: we construct w from the strings `1eXX` instead of doing # `10.**arange(24)` because it turns out the two are not equivalent in # python. On some architectures `1e23 != 10.**23`. wp = np.array([1.234e1, 1e2, 1e123]) # unique mode np.set_printoptions(floatmode='unique') assert_equal(repr(x), "array([0.6104 , 0.922 , 0.457 , 0.0906 , 0.3733 , 0.007244,\n" " 0.5933 , 0.947 , 0.2383 , 0.4226 ], dtype=float16)") assert_equal(repr(y), "array([0.2918820979355541 , 0.5064172631089138 , 0.2848750619642916 ,\n" " 0.4342965294660567 , 0.7326538397312751 , 0.3459503329096204 ,\n" " 0.0862072768214508 , 0.39112753029631175])") assert_equal(repr(z), "array([0. , 0.1, 0.2, 0.3, 0.4, 0.5], dtype=float16)") assert_equal(repr(w), "array([1.e+00, 1.e+01, 1.e+02, 1.e+03, 1.e+04, 1.e+05, 1.e+06, 1.e+07,\n" " 1.e+08, 1.e+09, 1.e+10, 1.e+11, 1.e+12, 1.e+13, 1.e+14, 1.e+15,\n" " 1.e+16, 1.e+17, 1.e+18, 1.e+19, 1.e+20, 1.e+21, 1.e+22, 1.e+23,\n" " 1.e+24])") assert_equal(repr(wp), "array([1.234e+001, 1.000e+002, 1.000e+123])") assert_equal(repr(c), "array([1. +1.j , 1.123456789+1.123456789j])") # maxprec mode, precision=8 np.set_printoptions(floatmode='maxprec', precision=8) assert_equal(repr(x), "array([0.6104 , 0.922 , 0.457 , 0.0906 , 0.3733 , 0.007244,\n" " 0.5933 , 0.947 , 0.2383 , 0.4226 ], dtype=float16)") assert_equal(repr(y), "array([0.2918821 , 0.50641726, 0.28487506, 0.43429653, 0.73265384,\n" " 0.34595033, 0.08620728, 0.39112753])") assert_equal(repr(z), "array([0. , 0.1, 0.2, 0.3, 0.4, 0.5], dtype=float16)") assert_equal(repr(w[::5]), "array([1.e+00, 1.e+05, 1.e+10, 1.e+15, 1.e+20])") assert_equal(repr(wp), "array([1.234e+001, 1.000e+002, 1.000e+123])") assert_equal(repr(c), "array([1. +1.j , 1.12345679+1.12345679j])") # fixed mode, precision=4 np.set_printoptions(floatmode='fixed', precision=4) assert_equal(repr(x), "array([0.6104, 0.9219, 0.4570, 0.0906, 0.3733, 0.0072, 0.5933, 0.9468,\n" " 0.2383, 0.4226], dtype=float16)") assert_equal(repr(y), "array([0.2919, 0.5064, 0.2849, 0.4343, 0.7327, 0.3460, 0.0862, 0.3911])") assert_equal(repr(z), "array([0.0000, 0.1000, 0.2000, 0.3000, 0.3999, 0.5000], dtype=float16)") assert_equal(repr(w[::5]), "array([1.0000e+00, 1.0000e+05, 1.0000e+10, 1.0000e+15, 1.0000e+20])") assert_equal(repr(wp), "array([1.2340e+001, 1.0000e+002, 1.0000e+123])") assert_equal(repr(np.zeros(3)), "array([0.0000, 0.0000, 0.0000])") assert_equal(repr(c), "array([1.0000+1.0000j, 1.1235+1.1235j])") # for larger precision, representation error becomes more apparent: np.set_printoptions(floatmode='fixed', precision=8) assert_equal(repr(z), "array([0.00000000, 0.09997559, 0.19995117, 0.30004883, 0.39990234,\n" " 0.50000000], dtype=float16)") # maxprec_equal mode, precision=8 np.set_printoptions(floatmode='maxprec_equal', precision=8) assert_equal(repr(x), "array([0.610352, 0.921875, 0.457031, 0.090576, 0.373291, 0.007244,\n" " 0.593262, 0.946777, 0.238281, 0.422607], dtype=float16)") assert_equal(repr(y), "array([0.29188210, 0.50641726, 0.28487506, 0.43429653, 0.73265384,\n" " 0.34595033, 0.08620728, 0.39112753])") assert_equal(repr(z), "array([0.0, 0.1, 0.2, 0.3, 0.4, 0.5], dtype=float16)") assert_equal(repr(w[::5]), "array([1.e+00, 1.e+05, 1.e+10, 1.e+15, 1.e+20])") assert_equal(repr(wp), "array([1.234e+001, 1.000e+002, 1.000e+123])") assert_equal(repr(c), "array([1.00000000+1.00000000j, 1.12345679+1.12345679j])") # test unique special case (gh-18609) a = np.float64.fromhex('-1p-97') assert_equal(np.float64(np.array2string(a, floatmode='unique')), a) def test_legacy_mode_scalars(self): # in legacy mode, str of floats get truncated, and complex scalars # use * for non-finite imaginary part np.set_printoptions(legacy='1.13') assert_equal(str(np.float64(1.123456789123456789)), '1.12345678912') assert_equal(str(np.complex128(complex(1, np.nan))), '(1+nan*j)') np.set_printoptions(legacy=False) assert_equal(str(np.float64(1.123456789123456789)), '1.1234567891234568') assert_equal(str(np.complex128(complex(1, np.nan))), '(1+nanj)') def test_legacy_stray_comma(self): np.set_printoptions(legacy='1.13') assert_equal(str(np.arange(10000)), '[ 0 1 2 ..., 9997 9998 9999]') np.set_printoptions(legacy=False) assert_equal(str(np.arange(10000)), '[ 0 1 2 ... 9997 9998 9999]') def test_dtype_linewidth_wrapping(self): np.set_printoptions(linewidth=75) assert_equal(repr(np.arange(10,20., dtype='f4')), "array([10., 11., 12., 13., 14., 15., 16., 17., 18., 19.], dtype=float32)") assert_equal(repr(np.arange(10,23., dtype='f4')), textwrap.dedent("""\ array([10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22.], dtype=float32)""")) styp = '<U4' assert_equal(repr(np.ones(3, dtype=styp)), "array(['1', '1', '1'], dtype='{}')".format(styp)) assert_equal(repr(np.ones(12, dtype=styp)), textwrap.dedent("""\ array(['1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1'], dtype='{}')""".format(styp))) def test_linewidth_repr(self): a = np.full(7, fill_value=2) np.set_printoptions(linewidth=17) assert_equal( repr(a), textwrap.dedent("""\ array([2, 2, 2, 2, 2, 2, 2])""") ) np.set_printoptions(linewidth=17, legacy='1.13') assert_equal( repr(a), textwrap.dedent("""\ array([2, 2, 2, 2, 2, 2, 2])""") ) a = np.full(8, fill_value=2) np.set_printoptions(linewidth=18, legacy=False) assert_equal( repr(a), textwrap.dedent("""\ array([2, 2, 2, 2, 2, 2, 2, 2])""") ) np.set_printoptions(linewidth=18, legacy='1.13') assert_equal( repr(a), textwrap.dedent("""\ array([2, 2, 2, 2, 2, 2, 2, 2])""") ) def test_linewidth_str(self): a = np.full(18, fill_value=2) np.set_printoptions(linewidth=18) assert_equal( str(a), textwrap.dedent("""\ [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2]""") ) np.set_printoptions(linewidth=18, legacy='1.13') assert_equal( str(a), textwrap.dedent("""\ [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2]""") ) def test_edgeitems(self): np.set_printoptions(edgeitems=1, threshold=1) a = np.arange(27).reshape((3, 3, 3)) assert_equal( repr(a), textwrap.dedent("""\ array([[[ 0, ..., 2], ..., [ 6, ..., 8]], ..., [[18, ..., 20], ..., [24, ..., 26]]])""") ) b = np.zeros((3, 3, 1, 1)) assert_equal( repr(b), textwrap.dedent("""\ array([[[[0.]], ..., [[0.]]], ..., [[[0.]], ..., [[0.]]]])""") ) # 1.13 had extra trailing spaces, and was missing newlines np.set_printoptions(legacy='1.13') assert_equal( repr(a), textwrap.dedent("""\ array([[[ 0, ..., 2], ..., [ 6, ..., 8]], ..., [[18, ..., 20], ..., [24, ..., 26]]])""") ) assert_equal( repr(b), textwrap.dedent("""\ array([[[[ 0.]], ..., [[ 0.]]], ..., [[[ 0.]], ..., [[ 0.]]]])""") ) def test_bad_args(self): assert_raises(ValueError, np.set_printoptions, threshold=float('nan')) assert_raises(TypeError, np.set_printoptions, threshold='1') assert_raises(TypeError, np.set_printoptions, threshold=b'1') assert_raises(TypeError, np.set_printoptions, precision='1') assert_raises(TypeError, np.set_printoptions, precision=1.5) def test_unicode_object_array(): expected = "array(['é'], dtype=object)" x = np.array([u'\xe9'], dtype=object) assert_equal(repr(x), expected) class TestContextManager: def test_ctx_mgr(self): # test that context manager actually works with np.printoptions(precision=2): s = str(np.array([2.0]) / 3) assert_equal(s, '[0.67]') def test_ctx_mgr_restores(self): # test that print options are actually restrored opts = np.get_printoptions() with np.printoptions(precision=opts['precision'] - 1, linewidth=opts['linewidth'] - 4): pass assert_equal(np.get_printoptions(), opts) def test_ctx_mgr_exceptions(self): # test that print options are restored even if an exception is raised opts = np.get_printoptions() try: with np.printoptions(precision=2, linewidth=11): raise ValueError except ValueError: pass assert_equal(np.get_printoptions(), opts) def test_ctx_mgr_as_smth(self): opts = {"precision": 2} with np.printoptions(**opts) as ctx: saved_opts = ctx.copy() assert_equal({k: saved_opts[k] for k in opts}, opts)
py
1a526905c8c70fa961e173438f60a34322a379fc
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.mgmt.core.exceptions import ARMErrorFormat from .. import models as _models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Iterable, Optional, TypeVar, Union T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class FileSharesOperations(object): """FileSharesOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.storage.v2021_01_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list( self, resource_group_name, # type: str account_name, # type: str maxpagesize=None, # type: Optional[str] filter=None, # type: Optional[str] expand=None, # type: Optional[Union[str, "_models.ListSharesExpand"]] **kwargs # type: Any ): # type: (...) -> Iterable["_models.FileShareItems"] """Lists all shares. :param resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. :type resource_group_name: str :param account_name: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower- case letters only. :type account_name: str :param maxpagesize: Optional. Specified maximum number of shares that can be included in the list. :type maxpagesize: str :param filter: Optional. When specified, only share names starting with the filter will be listed. :type filter: str :param expand: Optional, used to expand the properties within share's properties. :type expand: str or ~azure.mgmt.storage.v2021_01_01.models.ListSharesExpand :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either FileShareItems or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.storage.v2021_01_01.models.FileShareItems] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.FileShareItems"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-01-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=24, min_length=3), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') if maxpagesize is not None: query_parameters['$maxpagesize'] = self._serialize.query("maxpagesize", maxpagesize, 'str') if filter is not None: query_parameters['$filter'] = self._serialize.query("filter", filter, 'str') if expand is not None: query_parameters['$expand'] = self._serialize.query("expand", expand, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('FileShareItems', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Storage/storageAccounts/{accountName}/fileServices/default/shares'} # type: ignore def create( self, resource_group_name, # type: str account_name, # type: str share_name, # type: str file_share, # type: "_models.FileShare" expand=None, # type: Optional[Union[str, "_models.PutSharesExpand"]] **kwargs # type: Any ): # type: (...) -> "_models.FileShare" """Creates a new share under the specified account as described by request body. The share resource includes metadata and properties for that share. It does not include a list of the files contained by the share. :param resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. :type resource_group_name: str :param account_name: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower- case letters only. :type account_name: str :param share_name: The name of the file share within the specified storage account. File share names must be between 3 and 63 characters in length and use numbers, lower-case letters and dash (-) only. Every dash (-) character must be immediately preceded and followed by a letter or number. :type share_name: str :param file_share: Properties of the file share to create. :type file_share: ~azure.mgmt.storage.v2021_01_01.models.FileShare :param expand: Optional, used to create a snapshot. :type expand: str or ~azure.mgmt.storage.v2021_01_01.models.PutSharesExpand :keyword callable cls: A custom type or function that will be passed the direct response :return: FileShare, or the result of cls(response) :rtype: ~azure.mgmt.storage.v2021_01_01.models.FileShare :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.FileShare"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-01-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.create.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=24, min_length=3), 'shareName': self._serialize.url("share_name", share_name, 'str', max_length=63, min_length=3), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] if expand is not None: query_parameters['$expand'] = self._serialize.query("expand", expand, 'str') query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(file_share, 'FileShare') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('FileShare', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('FileShare', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized create.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Storage/storageAccounts/{accountName}/fileServices/default/shares/{shareName}'} # type: ignore def update( self, resource_group_name, # type: str account_name, # type: str share_name, # type: str file_share, # type: "_models.FileShare" **kwargs # type: Any ): # type: (...) -> "_models.FileShare" """Updates share properties as specified in request body. Properties not mentioned in the request will not be changed. Update fails if the specified share does not already exist. :param resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. :type resource_group_name: str :param account_name: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower- case letters only. :type account_name: str :param share_name: The name of the file share within the specified storage account. File share names must be between 3 and 63 characters in length and use numbers, lower-case letters and dash (-) only. Every dash (-) character must be immediately preceded and followed by a letter or number. :type share_name: str :param file_share: Properties to update for the file share. :type file_share: ~azure.mgmt.storage.v2021_01_01.models.FileShare :keyword callable cls: A custom type or function that will be passed the direct response :return: FileShare, or the result of cls(response) :rtype: ~azure.mgmt.storage.v2021_01_01.models.FileShare :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.FileShare"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-01-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.update.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=24, min_length=3), 'shareName': self._serialize.url("share_name", share_name, 'str', max_length=63, min_length=3), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(file_share, 'FileShare') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('FileShare', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Storage/storageAccounts/{accountName}/fileServices/default/shares/{shareName}'} # type: ignore def get( self, resource_group_name, # type: str account_name, # type: str share_name, # type: str expand="stats", # type: Optional[str] x_ms_snapshot=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> "_models.FileShare" """Gets properties of a specified share. :param resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. :type resource_group_name: str :param account_name: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower- case letters only. :type account_name: str :param share_name: The name of the file share within the specified storage account. File share names must be between 3 and 63 characters in length and use numbers, lower-case letters and dash (-) only. Every dash (-) character must be immediately preceded and followed by a letter or number. :type share_name: str :param expand: Optional, used to expand the properties within share's properties. :type expand: str :param x_ms_snapshot: Optional, used to retrieve properties of a snapshot. :type x_ms_snapshot: str :keyword callable cls: A custom type or function that will be passed the direct response :return: FileShare, or the result of cls(response) :rtype: ~azure.mgmt.storage.v2021_01_01.models.FileShare :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.FileShare"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-01-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=24, min_length=3), 'shareName': self._serialize.url("share_name", share_name, 'str', max_length=63, min_length=3), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') if expand is not None: query_parameters['$expand'] = self._serialize.query("expand", expand, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] if x_ms_snapshot is not None: header_parameters['x-ms-snapshot'] = self._serialize.header("x_ms_snapshot", x_ms_snapshot, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('FileShare', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Storage/storageAccounts/{accountName}/fileServices/default/shares/{shareName}'} # type: ignore def delete( self, resource_group_name, # type: str account_name, # type: str share_name, # type: str x_ms_snapshot=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> None """Deletes specified share under its account. :param resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. :type resource_group_name: str :param account_name: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower- case letters only. :type account_name: str :param share_name: The name of the file share within the specified storage account. File share names must be between 3 and 63 characters in length and use numbers, lower-case letters and dash (-) only. Every dash (-) character must be immediately preceded and followed by a letter or number. :type share_name: str :param x_ms_snapshot: Optional, used to delete a snapshot. :type x_ms_snapshot: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-01-01" accept = "application/json" # Construct URL url = self.delete.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=24, min_length=3), 'shareName': self._serialize.url("share_name", share_name, 'str', max_length=63, min_length=3), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] if x_ms_snapshot is not None: header_parameters['x-ms-snapshot'] = self._serialize.header("x_ms_snapshot", x_ms_snapshot, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Storage/storageAccounts/{accountName}/fileServices/default/shares/{shareName}'} # type: ignore def restore( self, resource_group_name, # type: str account_name, # type: str share_name, # type: str deleted_share, # type: "_models.DeletedShare" **kwargs # type: Any ): # type: (...) -> None """Restore a file share within a valid retention days if share soft delete is enabled. :param resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. :type resource_group_name: str :param account_name: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower- case letters only. :type account_name: str :param share_name: The name of the file share within the specified storage account. File share names must be between 3 and 63 characters in length and use numbers, lower-case letters and dash (-) only. Every dash (-) character must be immediately preceded and followed by a letter or number. :type share_name: str :param deleted_share: :type deleted_share: ~azure.mgmt.storage.v2021_01_01.models.DeletedShare :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-01-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.restore.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=24, min_length=3), 'shareName': self._serialize.url("share_name", share_name, 'str', max_length=63, min_length=3), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(deleted_share, 'DeletedShare') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) restore.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Storage/storageAccounts/{accountName}/fileServices/default/shares/{shareName}/restore'} # type: ignore
py
1a526b1f73a5025e01a2d36e8fe289c6779bda84
#!/usr/bin/env python # Copyright 2012-2018 CERN for the benefit of the ATLAS collaboration. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Authors: # - Vincent Garonne <[email protected]>, 2012-2017 # - Mario Lassnig <[email protected]>, 2013-2018 # - Thomas Beermann <[email protected]>, 2013-2018 # - Martin Barisits <[email protected]>, 2013-2017 # - Cedric Serfon <[email protected]>, 2014-2017 # - Joaquin Bogado <[email protected]>, 2018 # - Hannes Hansen <[email protected]>, 2018-2019 # - Andrew Lister <[email protected]>, 2019 # - Patrick Austin <[email protected]>, 2020 # # PY3K COMPATIBLE from __future__ import print_function from logging import getLogger, StreamHandler, DEBUG from json import dumps, loads from traceback import format_exc try: from urlparse import parse_qsl except ImportError: from urllib.parse import parse_qsl from web import application, ctx, data, header, Created, InternalError, OK, loadhook from rucio.api.lock import get_replica_locks_for_rule_id from rucio.api.rule import (add_replication_rule, delete_replication_rule, get_replication_rule, update_replication_rule, reduce_replication_rule, list_replication_rule_history, list_replication_rule_full_history, list_replication_rules, examine_replication_rule, move_replication_rule) from rucio.common.exception import (InsufficientAccountLimit, RuleNotFound, AccessDenied, InvalidRSEExpression, InvalidReplicationRule, RucioException, DataIdentifierNotFound, InsufficientTargetRSEs, ReplicationRuleCreationTemporaryFailed, InvalidRuleWeight, StagingAreaRuleRequiresLifetime, DuplicateRule, InvalidObject, AccountNotFound, RuleReplaceFailed, ScratchDiskLifetimeConflict, ManualRuleApprovalBlocked, UnsupportedOperation) from rucio.common.schema import get_schema_value from rucio.common.utils import generate_http_error, render_json, APIEncoder from rucio.web.rest.common import rucio_loadhook, check_accept_header_wrapper LOGGER = getLogger("rucio.rule") SH = StreamHandler() SH.setLevel(DEBUG) LOGGER.addHandler(SH) URLS = ('/(.+)/locks', 'ReplicaLocks', '/(.+)/reduce', 'ReduceRule', '/(.+)/move', 'MoveRule', '%s/history' % get_schema_value('SCOPE_NAME_REGEXP'), 'RuleHistoryFull', '/(.+)/history', 'RuleHistory', '/(.+)/analysis', 'RuleAnalysis', '/', 'AllRule', '/(.+)', 'Rule',) class Rule: """ REST APIs for replication rules. """ @check_accept_header_wrapper(['application/json']) def GET(self, rule_id): """ get rule information for given rule id. HTTP Success: 200 OK HTTP Error: 401 Unauthorized 404 Not Found 406 Not Acceptable 500 InternalError :returns: JSON dict containing informations about the requested user. """ header('Content-Type', 'application/json') try: estimate_ttc = False json_data = data() params = loads(json_data) if 'estimate_ttc' in params: estimate_ttc = params['estimate_ttc'] except ValueError: estimate_ttc = False try: rule = get_replication_rule(rule_id, estimate_ttc=estimate_ttc, issuer=ctx.env.get('issuer'), vo=ctx.env.get('vo')) except RuleNotFound as error: raise generate_http_error(404, 'RuleNotFound', error.args[0]) except RucioException as error: raise generate_http_error(500, error.__class__.__name__, error.args[0]) except Exception as error: raise InternalError(error) return render_json(**rule) def PUT(self, rule_id): """ Update the replication rules locked flag . HTTP Success: 200 OK HTTP Error: 401 Unauthorized 404 Not Found 500 InternalError """ json_data = data() try: params = loads(json_data) options = params['options'] update_replication_rule(rule_id=rule_id, options=options, issuer=ctx.env.get('issuer'), vo=ctx.env.get('vo')) except AccessDenied as error: raise generate_http_error(401, 'AccessDenied', error.args[0]) except RuleNotFound as error: raise generate_http_error(404, 'RuleNotFound', error.args[0]) except AccountNotFound as error: raise generate_http_error(404, 'AccountNotFound', error.args[0]) except ScratchDiskLifetimeConflict as error: raise generate_http_error(409, 'ScratchDiskLifetimeConflict', error.args[0]) except ValueError: raise generate_http_error(400, 'ValueError', 'Cannot decode json parameter list') except UnsupportedOperation as error: raise generate_http_error(409, 'UnsupportedOperation', error.args[0]) except RucioException as error: raise generate_http_error(500, error.__class__.__name__, error.args[0]) raise OK() def DELETE(self, rule_id): """ Delete a new replication rule. HTTP Success: 200 OK HTTP Error: 401 Unauthorized 404 Not Found 500 Internal Error """ json_data = data() try: purge_replicas = None params = loads(json_data) if 'purge_replicas' in params: purge_replicas = params['purge_replicas'] except ValueError: raise generate_http_error(400, 'ValueError', 'Cannot decode json parameter list') try: delete_replication_rule(rule_id=rule_id, purge_replicas=purge_replicas, issuer=ctx.env.get('issuer'), vo=ctx.env.get('vo')) except AccessDenied as error: raise generate_http_error(401, 'AccessDenied', error.args[0]) except UnsupportedOperation as error: raise generate_http_error(401, 'UnsupportedOperation', error.args[0]) except RuleNotFound as error: raise generate_http_error(404, 'RuleNotFound', error.args[0]) except Exception as error: raise InternalError(error) raise OK() class AllRule: """ REST APIs for all rules. """ @check_accept_header_wrapper(['application/x-json-stream']) def GET(self): """ Return all rules of a given account. HTTP Success: 200 OK HTTP Error: 401 Unauthorized 404 Not Found 406 Not Acceptable :param scope: The scope name. """ header('Content-Type', 'application/x-json-stream') filters = {} if ctx.query: params = dict(parse_qsl(ctx.query[1:])) filters.update(params) try: for rule in list_replication_rules(filters=filters, vo=ctx.env.get('vo')): yield dumps(rule, cls=APIEncoder) + '\n' except RuleNotFound as error: raise generate_http_error(404, 'RuleNotFound', error.args[0]) except Exception as error: print(format_exc()) raise InternalError(error) def POST(self): """ Create a new replication rule. HTTP Success: 201 Created HTTP Error: 400 Bad Request 401 Unauthorized 404 Not Found 409 Conflict 500 Internal Error """ json_data = data() try: grouping, weight, lifetime, locked, subscription_id, source_replica_expression, activity, notify,\ purge_replicas, ignore_availability, comment, ask_approval, asynchronous, priority,\ split_container, meta = 'DATASET', None, None, False, None, None, None, None, False, False, None,\ False, False, 3, False, None params = loads(json_data) dids = params['dids'] account = params['account'] copies = params['copies'] rse_expression = params['rse_expression'] if 'grouping' in params: grouping = params['grouping'] if 'weight' in params: weight = params['weight'] if 'lifetime' in params: lifetime = params['lifetime'] if 'locked' in params: locked = params['locked'] if 'subscription_id' in params: subscription_id = params['subscription_id'] if 'source_replica_expression' in params: source_replica_expression = params['source_replica_expression'] if 'activity' in params: activity = params['activity'] if 'notify' in params: notify = params['notify'] if 'purge_replicas' in params: purge_replicas = params['purge_replicas'] if 'ignore_availability' in params: ignore_availability = params['ignore_availability'] if 'comment' in params: comment = params['comment'] if 'ask_approval' in params: ask_approval = params['ask_approval'] if 'asynchronous' in params: asynchronous = params['asynchronous'] if 'priority' in params: priority = params['priority'] if 'split_container' in params: split_container = params['split_container'] if 'meta' in params: meta = params['meta'] except ValueError: raise generate_http_error(400, 'ValueError', 'Cannot decode json parameter list') try: rule_ids = add_replication_rule(dids=dids, copies=copies, rse_expression=rse_expression, weight=weight, lifetime=lifetime, grouping=grouping, account=account, locked=locked, subscription_id=subscription_id, source_replica_expression=source_replica_expression, activity=activity, notify=notify, purge_replicas=purge_replicas, ignore_availability=ignore_availability, comment=comment, ask_approval=ask_approval, asynchronous=asynchronous, priority=priority, split_container=split_container, meta=meta, issuer=ctx.env.get('issuer'), vo=ctx.env.get('vo')) # TODO: Add all other error cases here except InvalidReplicationRule as error: raise generate_http_error(409, 'InvalidReplicationRule', error.args[0]) except DuplicateRule as error: raise generate_http_error(409, 'DuplicateRule', error.args[0]) except InsufficientTargetRSEs as error: raise generate_http_error(409, 'InsufficientTargetRSEs', error.args[0]) except InsufficientAccountLimit as error: raise generate_http_error(409, 'InsufficientAccountLimit', error.args[0]) except InvalidRSEExpression as error: raise generate_http_error(409, 'InvalidRSEExpression', error.args[0]) except DataIdentifierNotFound as error: raise generate_http_error(404, 'DataIdentifierNotFound', error.args[0]) except ReplicationRuleCreationTemporaryFailed as error: raise generate_http_error(409, 'ReplicationRuleCreationTemporaryFailed', error.args[0]) except InvalidRuleWeight as error: raise generate_http_error(409, 'InvalidRuleWeight', error.args[0]) except StagingAreaRuleRequiresLifetime as error: raise generate_http_error(409, 'StagingAreaRuleRequiresLifetime', error.args[0]) except ScratchDiskLifetimeConflict as error: raise generate_http_error(409, 'ScratchDiskLifetimeConflict', error.args[0]) except ManualRuleApprovalBlocked as error: raise generate_http_error(409, 'ManualRuleApprovalBlocked', error.args[0]) except InvalidObject as error: raise generate_http_error(409, 'InvalidObject', error.args[0]) except RucioException as error: raise generate_http_error(500, error.__class__.__name__, error.args[0]) except Exception as error: print(format_exc()) raise InternalError(error) raise Created(dumps(rule_ids)) class ReplicaLocks: """ REST APIs for replica locks. """ @check_accept_header_wrapper(['application/x-json-stream']) def GET(self, rule_id): """ get locks for a given rule_id. HTTP Success: 200 OK HTTP Error: 404 Not Found 406 Not Acceptable 500 InternalError :returns: JSON dict containing informations about the requested user. """ header('Content-Type', 'application/x-json-stream') try: locks = get_replica_locks_for_rule_id(rule_id) except RucioException as error: raise generate_http_error(500, error.__class__.__name__, error.args[0]) except Exception as error: raise InternalError(error) for lock in locks: yield dumps(lock, cls=APIEncoder) + '\n' class ReduceRule: """ REST APIs for reducing rules. """ def POST(self, rule_id): """ Reduce a replication rule. HTTP Success: 201 Created HTTP Error: 400 Bad Request 401 Unauthorized 404 Not Found 409 Conflict 500 Internal Error """ json_data = data() try: exclude_expression = None params = loads(json_data) copies = params['copies'] if 'exclude_expression' in params: exclude_expression = params['exclude_expression'] except ValueError: raise generate_http_error(400, 'ValueError', 'Cannot decode json parameter list') try: rule_ids = reduce_replication_rule(rule_id=rule_id, copies=copies, exclude_expression=exclude_expression, issuer=ctx.env.get('issuer'), vo=ctx.env.get('vo')) # TODO: Add all other error cases here except RuleReplaceFailed as error: raise generate_http_error(409, 'RuleReplaceFailed', error.args[0]) except RuleNotFound as error: raise generate_http_error(404, 'RuleNotFound', error.args[0]) except RucioException as error: raise generate_http_error(500, error.__class__.__name__, error.args[0]) except Exception as error: print(error) print(format_exc()) raise InternalError(error) raise Created(dumps(rule_ids)) class MoveRule: """ REST APIs for moving rules. """ def POST(self, rule_id): """ Move a replication rule. HTTP Success: 201 Created HTTP Error: 400 Bad Request 401 Unauthorized 404 Not Found 409 Conflict 500 Internal Error """ json_data = data() try: params = loads(json_data) rule_id = params['rule_id'] rse_expression = params['rse_expression'] except ValueError: raise generate_http_error(400, 'ValueError', 'Cannot decode json parameter list') try: rule_ids = move_replication_rule(rule_id=rule_id, rse_expression=rse_expression, issuer=ctx.env.get('issuer'), vo=ctx.env.get('vo')) except RuleReplaceFailed as error: raise generate_http_error(409, 'RuleReplaceFailed', error.args[0]) except RuleNotFound as error: raise generate_http_error(404, 'RuleNotFound', error.args[0]) except RucioException as error: raise generate_http_error(500, error.__class__.__name__, error.args[0]) except Exception as error: print(error) print(format_exc()) raise InternalError(error) raise Created(dumps(rule_ids)) class RuleHistory: """ REST APIs for rule history. """ @check_accept_header_wrapper(['application/x-json-stream']) def GET(self, rule_id): """ get history for a given rule_id. HTTP Success: 200 OK HTTP Error: 404 Not Found 406 Not Acceptable 500 InternalError :returns: JSON dict containing informations about the requested user. """ header('Content-Type', 'application/x-json-stream') try: history = list_replication_rule_history(rule_id, issuer=ctx.env.get('issuer'), vo=ctx.env.get('vo')) except RucioException as error: raise generate_http_error(500, error.__class__.__name__, error.args[0]) except Exception as error: raise InternalError(error) for hist in history: yield dumps(hist, cls=APIEncoder) + '\n' class RuleHistoryFull: """ REST APIs for rule history for DIDs. """ @check_accept_header_wrapper(['application/x-json-stream']) def GET(self, scope, name): """ get history for a given DID. HTTP Success: 200 OK HTTP Error: 404 Not Found 406 Not Acceptable 500 InternalError :returns: JSON dict containing informations about the requested user. """ header('Content-Type', 'application/x-json-stream') try: history = list_replication_rule_full_history(scope, name, vo=ctx.env.get('vo')) except RucioException as error: raise generate_http_error(500, error.__class__.__name__, error.args[0]) except Exception as error: raise InternalError(error) for hist in history: yield dumps(hist, cls=APIEncoder) + '\n' class RuleAnalysis: """ REST APIs for rule analysis. """ @check_accept_header_wrapper(['application/json']) def GET(self, rule_id): """ get analysis for given rule. HTTP Success: 200 OK HTTP Error: 404 Not Found 406 Not Acceptable 500 InternalError :returns: JSON dict containing informations about the requested user. """ header('Content-Type', 'application/json') try: analysis = examine_replication_rule(rule_id, issuer=ctx.env.get('issuer'), vo=ctx.env.get('vo')) except RucioException as error: raise generate_http_error(500, error.__class__.__name__, error.args[0]) except Exception as error: raise InternalError(error) return render_json(**analysis) """---------------------- Web service startup ----------------------""" APP = application(URLS, globals()) APP.add_processor(loadhook(rucio_loadhook)) application = APP.wsgifunc()
py
1a526c17db22c482e8cb7ada3bd8c715a1be7969
d = {'daniel':'555-5555', 'anna':'555-7777', 'linus':'555-6666'} #for key,value in d.items(): # print(key) # print(value) d['bob'] = '555-2222' for phone_number in d.vaules(): print(phone_number) print(len(d)) if 'daniel' in d: print(d['daniel']) else: print('Not there!') print(d['linus']) for name in d.keys(): print(name)
py
1a526e8fa7fc50435d929a969d1062d862ce5842
import os import pickle import copy import json from collections import defaultdict import numpy as np import random import torch from torch_geometric.data import Data, Dataset, Batch from torch_geometric.utils import to_networkx from torch_scatter import scatter #from torch.utils.data import Dataset import rdkit from rdkit import Chem from rdkit.Chem.rdchem import Mol, HybridizationType, BondType from rdkit import RDLogger import networkx as nx from tqdm import tqdm # import sidechainnet as scn RDLogger.DisableLog('rdApp.*') from .chem import BOND_TYPES, mol_to_smiles def prepare_pdb2(scn_dir, data_path): # step 1: filter and save pdb file. train_data = [] cnt_fail = 0 def get_num_plusseg(msk): tmp = [0] for i in range(1, len(msk)): if msk[i] == msk[i-1]: tmp.append(0) else: tmp.append(1) s = sum(tmp) if msk[0] == '-': return (s + 1) // 2 else: return (s // 2) + 1 def get_plus_rate(msk): cnt = sum([1 if x == '+' else 0 for x in msk]) return cnt / len(msk) d = scn.load(casp_version=12, thinning=30, scn_dir=scn_dir) raw_data = d['train'] mask = raw_data['msk'] n_raw_data = len(mask) cnt_seg = 0 cnt_success = 0 for i in tqdm(range(n_raw_data)): if get_plus_rate(mask[i]) > 0.5 and get_num_plusseg(mask[i]) == 1: cnt_seg += 1 mask_ = [1 if _ == '+' else 0 for _ in mask[i]] if sum(mask_) < 200: cnt_success += 1 seq = raw_data['seq'][i] crd = raw_data['crd'][i] name = raw_data['ids'][i] mol = scn.StructureBuilder(seq, crd) mol.to_pdb('./tmp.pdb') data = pdb_to_data('./tmp.pdb', name) if data is not None: train_data.append(data) else: cnt_fail += 1 print('total n_raw_data: %d, cnt_seg: %d, cnt_success: %d' % (n_raw_data, cnt_seg, cnt_success)) n_data = len(train_data) print('number of train samples: %d | number of fails: %d' % (n_data, cnt_fail)) os.makedirs(os.path.join(data_path), exist_ok=True) with open(os.path.join(data_path, 'train_data_%dk.pkl' % (n_data // 1000)), "wb") as fout: pickle.dump(train_data, fout) print('save train %dk done' % (n_data // 1000)) def prepare_pdblarge(scn_dir, data_path): # step 1: filter and save pdb file. train_data = [] cnt_fail = 0 max_residue = 0 d = scn.load(casp_version=12, thinning=30, scn_dir=scn_dir) raw_data = d['train'] mask = raw_data['msk'] n_raw_data = len(mask) cnt_seg = 0 cnt_success = 0 for i in tqdm(range(n_raw_data)): # if get_plus_rate(mask[i]) > 0.5 and get_num_plusseg(mask[i]) == 1: if True: cnt_seg += 1 mask_ = [1 if _ == '+' else 0 for _ in mask[i]] if sum(mask_) < 400: cnt_success += 1 seq = raw_data['seq'][i] crd = raw_data['crd'][i] name = raw_data['ids'][i] mol = scn.StructureBuilder(seq, crd) mol.to_pdb('./tmp.pdb') data = pdb_to_data('./tmp.pdb', name) if data is not None: train_data.append(data) max_residue = max(max_residue, sum(mask_)) else: cnt_fail += 1 print('total n_raw_data: %d, cnt_seg: %d, cnt_success: %d, max_residue: %d' % (n_raw_data, cnt_seg, cnt_success, max_residue)) n_data = len(train_data) print('number of train samples: %d | number of fails: %d' % (n_data, cnt_fail)) os.makedirs(os.path.join(data_path), exist_ok=True) with open(os.path.join(data_path, 'train_data_%dk.pkl' % (n_data // 1000)), "wb") as fout: pickle.dump(train_data, fout) print('save train %dk done' % (n_data // 1000)) def prepare_pdb_valtest(scn_dir, data_path): # step 1: filter and save pdb file. val_data = [] test_data = [] all_data = [] cnt_fail = 0 max_residue = 0 n_raw_data = 0 cnt_success = 0 d = scn.load(casp_version=12, thinning=30, scn_dir=scn_dir) fetch_dict = ['test', 'valid-10', 'valid-20', 'valid-30', 'valid-40', 'valid-50', 'valid-70', 'valid-90'] for dict_name in fetch_dict: raw_data = d[dict_name] mask = raw_data['msk'] n_raw_data += len(mask) cnt_seg = 0 cnt_success = 0 for i in tqdm(range(len(mask))): # if get_plus_rate(mask[i]) > 0.5 and get_num_plusseg(mask[i]) == 1: if True: mask_ = [1 if _ == '+' else 0 for _ in mask[i]] if sum(mask_) < 400: seq = raw_data['seq'][i] crd = raw_data['crd'][i] name = raw_data['ids'][i] mol = scn.StructureBuilder(seq, crd) mol.to_pdb('./tmp.pdb') data = pdb_to_data('./tmp.pdb', name) if data is not None: cnt_success += 1 all_data.append(data) max_residue = max(max_residue, sum(mask_)) else: cnt_fail += 1 print('total n_raw_data: %d, cnt_success: %d, max_residue: %d' % (n_raw_data, cnt_success, max_residue)) random.shuffle(all_data) n_val = len(all_data) // 2 n_test = len(all_data) - n_val print('number of val samples: %d | number of test samples: %d | number of fails: %d' % (n_val, n_test, cnt_fail)) os.makedirs(os.path.join(data_path), exist_ok=True) with open(os.path.join(data_path, 'val_data_%dk.pkl' % (n_val // 1000)), "wb") as fout: pickle.dump(all_data[:n_val], fout) print('save val %dk done' % (n_val // 1000)) with open(os.path.join(data_path, 'test_data_%dk.pkl' % (n_test // 1000)), "wb") as fout: pickle.dump(all_data[n_val:], fout) print('save test %dk done' % (n_test // 1000)) def pdb_to_data(pdb_path, name): mol = Chem.rdmolfiles.MolFromPDBFile(pdb_path) if mol is None: return None with open(pdb_path, 'r') as f: pdb_infos = f.readlines() pdb_infos = pdb_infos[1:-1] assert mol.GetNumConformers() == 1 N = mol.GetNumAtoms() # name = pdb_path.split('/')[-1].split('.')[0] pos = torch.tensor(mol.GetConformer(0).GetPositions(), dtype=torch.float32) atomic_number = [] aromatic = [] is_sidechain = [] is_alpha = [] atom2res = [] sp = [] sp2 = [] sp3 = [] num_hs = [] for index, atom in enumerate(mol.GetAtoms()): atomic_number.append(atom.GetAtomicNum()) aromatic.append(1 if atom.GetIsAromatic() else 0) hybridization = atom.GetHybridization() sp.append(1 if hybridization == HybridizationType.SP else 0) sp2.append(1 if hybridization == HybridizationType.SP2 else 0) sp3.append(1 if hybridization == HybridizationType.SP3 else 0) info = atom.GetPDBResidueInfo() ref_info = pdb_infos[index] ref_info = ref_info.split() assert info.GetResidueName().strip() == ref_info[3] assert info.GetName().strip() == ref_info[2] assert info.GetResidueNumber() == int(ref_info[4]) if info.GetName().strip() == 'CA': is_alpha.append(1) else: is_alpha.append(0) if info.GetName().strip() in ['N', 'CA', 'C', 'O']: is_sidechain.append(0) else: is_sidechain.append(1) atom2res.append(info.GetResidueNumber() - 1) num_res = len(set(atom2res)) atom2res = np.array(atom2res) atom2res -= atom2res.min() atom2res = torch.tensor(atom2res, dtype=torch.long) is_sidechain = torch.tensor(is_sidechain).bool() is_alpha = torch.tensor(is_alpha).bool() dummy_index = torch.arange(pos.size(0)) alpha_index = dummy_index[is_alpha] res2alpha_index = -torch.ones(5000, dtype=torch.long) res2alpha_index[atom2res[is_alpha]] = alpha_index atom2alpha_index = res2alpha_index[atom2res] if is_sidechain.sum().item() == 0: # protein built solely on GLY can not be used for sidechain prediction return None # assert (4 * num_res == (len(is_sidechain) - sum(is_sidechain))),(4 * num_res, (len(is_sidechain) - sum(is_sidechain))) z = torch.tensor(atomic_number, dtype=torch.long) row, col, edge_type = [], [], [] for bond in mol.GetBonds(): start, end = bond.GetBeginAtomIdx(), bond.GetEndAtomIdx() row += [start, end] col += [end, start] edge_type += 2 * [BOND_TYPES[bond.GetBondType()]] edge_index = torch.tensor([row, col], dtype=torch.long) edge_type = torch.tensor(edge_type) if edge_index.size(1) == 0: # only alpha carbon return None perm = (edge_index[0] * N + edge_index[1]).argsort() edge_index = edge_index[:, perm] edge_type = edge_type[perm] row, col = edge_index hs = (z == 1).to(torch.float32) num_hs = scatter(hs[row], col, dim_size=N, reduce='sum').tolist() # smiles = Chem.MolToSmiles(mol) data = Data(atom_type=z, pos=pos, edge_index=edge_index, edge_type=edge_type, is_alpha=is_alpha, rdmol=copy.deepcopy(mol), name=name, is_sidechain=is_sidechain, atom2res=atom2res, atom2alpha_index=atom2alpha_index) #data.nx = to_networkx(data, to_undirected=True) return data def rdmol_to_data(mol:Mol, smiles=None, data_cls=Data): assert mol.GetNumConformers() == 1 N = mol.GetNumAtoms() pos = torch.tensor(mol.GetConformer(0).GetPositions(), dtype=torch.float32) atomic_number = [] aromatic = [] sp = [] sp2 = [] sp3 = [] num_hs = [] for atom in mol.GetAtoms(): atomic_number.append(atom.GetAtomicNum()) aromatic.append(1 if atom.GetIsAromatic() else 0) hybridization = atom.GetHybridization() sp.append(1 if hybridization == HybridizationType.SP else 0) sp2.append(1 if hybridization == HybridizationType.SP2 else 0) sp3.append(1 if hybridization == HybridizationType.SP3 else 0) z = torch.tensor(atomic_number, dtype=torch.long) row, col, edge_type = [], [], [] for bond in mol.GetBonds(): start, end = bond.GetBeginAtomIdx(), bond.GetEndAtomIdx() row += [start, end] col += [end, start] edge_type += 2 * [BOND_TYPES[bond.GetBondType()]] edge_index = torch.tensor([row, col], dtype=torch.long) edge_type = torch.tensor(edge_type) perm = (edge_index[0] * N + edge_index[1]).argsort() edge_index = edge_index[:, perm] edge_type = edge_type[perm] row, col = edge_index hs = (z == 1).to(torch.float32) num_hs = scatter(hs[row], col, dim_size=N, reduce='sum').tolist() if smiles is None: smiles = Chem.MolToSmiles(mol) data = data_cls(atom_type=z, pos=pos, edge_index=edge_index, edge_type=edge_type, rdmol=copy.deepcopy(mol), smiles=smiles) #data.nx = to_networkx(data, to_undirected=True) return data class MolClusterData(Data): def __inc__(self, key, value): if key == 'subgraph_index': return self.subgraph_index.max().item() + 1 else: return super().__inc__(key, value) def rdmol_cluster_to_data(mol:Mol, smiles=None): data = rdmol_to_data(mol, smiles, data_cls=MolClusterData) data.subgraph_index = torch.zeros([data.atom_type.size(0)], dtype=torch.long) for i, subgraph in enumerate(nx.connected_components(to_networkx(data, to_undirected=True))): data.subgraph_index[list(subgraph)] = i return data def preprocess_iso17_dataset(base_path): train_path = os.path.join(base_path, 'iso17_split-0_train.pkl') test_path = os.path.join(base_path, 'iso17_split-0_test.pkl') with open(train_path, 'rb') as fin: raw_train = pickle.load(fin) with open(test_path, 'rb') as fin: raw_test = pickle.load(fin) smiles_list_train = [mol_to_smiles(mol) for mol in raw_train] smiles_set_train = list(set(smiles_list_train)) smiles_list_test = [mol_to_smiles(mol) for mol in raw_test] smiles_set_test = list(set(smiles_list_test)) print('preprocess train...') all_train = [] for i in tqdm(range(len(raw_train))): smiles = smiles_list_train[i] data = rdmol_to_data(raw_train[i], smiles=smiles) all_train.append(data) print('Train | find %d molecules with %d confs' % (len(smiles_set_train), len(all_train))) print('preprocess test...') all_test = [] for i in tqdm(range(len(raw_test))): smiles = smiles_list_test[i] data = rdmol_to_data(raw_test[i], smiles=smiles) all_test.append(data) print('Test | find %d molecules with %d confs' % (len(smiles_set_test), len(all_test))) return all_train, all_test def preprocess_GEOM_dataset(base_path, dataset_name, max_conf=5, train_size=0.8, max_size=9999999999, seed=None): # set random seed if seed is None: seed = 2021 np.random.seed(seed) random.seed(seed) # read summary file assert dataset_name in ['qm9', 'drugs'] summary_path = os.path.join(base_path, 'summary_%s.json' % dataset_name) with open(summary_path, 'r') as f: summ = json.load(f) # filter valid pickle path smiles_list = [] pickle_path_list = [] num_mols = 0 num_confs = 0 for smiles, meta_mol in tqdm(summ.items()): u_conf = meta_mol.get('uniqueconfs') if u_conf is None: continue pickle_path = meta_mol.get('pickle_path') if pickle_path is None: continue num_mols += 1 num_confs += min(max_conf, u_conf) smiles_list.append(smiles) pickle_path_list.append(pickle_path) if num_mols >= max_size: break print('pre-filter: find %d molecules with %d confs' % (num_mols, num_confs)) # 1. select maximal 'max_conf' confs of each qm9 molecule # 2. split the dataset based on 2d-structure, i.e., test on unseen graphs train_data, val_data, test_data = [], [], [] val_size = test_size = (1. - train_size) / 2 num_mols = np.zeros(4, dtype=int) # (tot, train, val, test) num_confs = np.zeros(4, dtype=int) # (tot, train, val, test) ''' # mol.get('uniqueconfs') != len(mol.get('conformers')) with open(os.path.join(base_path, pickle_path_list[1878]), 'rb') as fin: mol = pickle.load(fin) print(mol.get('uniqueconfs'), len(mol.get('conformers'))) print(mol.get('conformers')[0]['rd_mol'].GetConformer(0).GetPositions()) print(mol.get('conformers')[1]['rd_mol'].GetConformer(0).GetPositions()) return ''' bad_case = 0 for i in tqdm(range(len(pickle_path_list))): with open(os.path.join(base_path, pickle_path_list[i]), 'rb') as fin: mol = pickle.load(fin) if mol.get('uniqueconfs') > len(mol.get('conformers')): bad_case += 1 continue if mol.get('uniqueconfs') <= 0: bad_case += 1 continue datas = [] smiles = mol.get('smiles') if mol.get('uniqueconfs') <= max_conf: # use all confs conf_ids = np.arange(mol.get('uniqueconfs')) else: # filter the most probable 'max_conf' confs all_weights = np.array([_.get('boltzmannweight', -1.) for _ in mol.get('conformers')]) descend_conf_id = (-all_weights).argsort() conf_ids = descend_conf_id[:max_conf] for conf_id in conf_ids: conf_meta = mol.get('conformers')[conf_id] data = rdmol_to_data(conf_meta.get('rd_mol')) labels = { 'totalenergy': conf_meta['totalenergy'], 'boltzmannweight': conf_meta['boltzmannweight'], } for k, v in labels.items(): data[k] = torch.tensor([v], dtype=torch.float32) datas.append(data) # split eps = np.random.rand() if eps <= train_size: train_data.extend(datas) num_mols += [1, 1, 0, 0] num_confs += [len(datas), len(datas), 0, 0] elif eps <= train_size + val_size: val_data.extend(datas) num_mols += [1, 0, 1, 0] num_confs += [len(datas), 0, len(datas), 0] else: test_data.extend(datas) num_mols += [1, 0, 0, 1] num_confs += [len(datas), 0, 0, len(datas)] print('post-filter: find %d molecules with %d confs' % (num_mols[0], num_confs[0])) print('train size: %d molecules with %d confs' % (num_mols[1], num_confs[1])) print('val size: %d molecules with %d confs' % (num_mols[2], num_confs[2])) print('test size: %d molecules with %d confs' % (num_mols[3], num_confs[3])) print('bad case: %d' % bad_case) print('done!') return train_data, val_data, test_data def preprocess_GEOM_dataset_with_fixed_num_conf(base_path, dataset_name, conf_per_mol=5, train_size=0.8, tot_mol_size=50000, seed=None): """ base_path: directory that contains GEOM dataset dataset_name: dataset name, should be in [qm9, drugs] conf_per_mol: keep mol that has at least conf_per_mol confs, and sampling the most probable conf_per_mol confs train_size ratio, val = test = (1-train_size) / 2 tot_mol_size: max num of mols. The total number of final confs should be tot_mol_size * conf_per_mol seed: rand seed for RNG """ # set random seed if seed is None: seed = 2021 np.random.seed(seed) random.seed(seed) # read summary file assert dataset_name in ['qm9', 'drugs'] summary_path = os.path.join(base_path, 'summary_%s.json' % dataset_name) with open(summary_path, 'r') as f: summ = json.load(f) # filter valid pickle path smiles_list = [] pickle_path_list = [] num_mols = 0 num_confs = 0 for smiles, meta_mol in tqdm(summ.items()): u_conf = meta_mol.get('uniqueconfs') if u_conf is None: continue pickle_path = meta_mol.get('pickle_path') if pickle_path is None: continue if u_conf < conf_per_mol: continue num_mols += 1 num_confs += conf_per_mol smiles_list.append(smiles) pickle_path_list.append(pickle_path) # we need do a shuffle and sample first max_size items here. #if num_mols >= max_size: # break random.shuffle(pickle_path_list) assert len(pickle_path_list) >= tot_mol_size, 'the length of all available mols is %d, which is smaller than tot mol size %d' % (len(pickle_path_list), tot_mol_size) pickle_path_list = pickle_path_list[:tot_mol_size] print('pre-filter: find %d molecules with %d confs, use %d molecules with %d confs' % (num_mols, num_confs, tot_mol_size, tot_mol_size*conf_per_mol)) # 1. select maximal 'max_conf' confs of each qm9 molecule # 2. split the dataset based on 2d-structure, i.e., test on unseen graphs train_data, val_data, test_data = [], [], [] val_size = test_size = (1. - train_size) / 2 # generate train, val, test split indexes split_indexes = list(range(tot_mol_size)) random.shuffle(split_indexes) index2split = {} #print(int(len(split_indexes) * train_size), int(len(split_indexes) * (train_size + val_size)), len(split_indexes)) for i in range(0, int(len(split_indexes) * train_size)): index2split[split_indexes[i]] = 'train' for i in range(int(len(split_indexes) * train_size), int(len(split_indexes) * (train_size + val_size))): index2split[split_indexes[i]] = 'val' for i in range(int(len(split_indexes) * (train_size + val_size)), len(split_indexes)): index2split[split_indexes[i]] = 'test' num_mols = np.zeros(4, dtype=int) # (tot, train, val, test) num_confs = np.zeros(4, dtype=int) # (tot, train, val, test) bad_case = 0 for i in tqdm(range(len(pickle_path_list))): with open(os.path.join(base_path, pickle_path_list[i]), 'rb') as fin: mol = pickle.load(fin) if mol.get('uniqueconfs') > len(mol.get('conformers')): bad_case += 1 continue if mol.get('uniqueconfs') <= 0: bad_case += 1 continue datas = [] smiles = mol.get('smiles') if mol.get('uniqueconfs') == conf_per_mol: # use all confs conf_ids = np.arange(mol.get('uniqueconfs')) else: # filter the most probable 'max_conf' confs all_weights = np.array([_.get('boltzmannweight', -1.) for _ in mol.get('conformers')]) descend_conf_id = (-all_weights).argsort() conf_ids = descend_conf_id[:conf_per_mol] for conf_id in conf_ids: conf_meta = mol.get('conformers')[conf_id] data = rdmol_to_data(conf_meta.get('rd_mol'), smiles=smiles) labels = { 'totalenergy': conf_meta['totalenergy'], 'boltzmannweight': conf_meta['boltzmannweight'], } for k, v in labels.items(): data[k] = torch.tensor([v], dtype=torch.float32) data['idx'] = torch.tensor([i], dtype=torch.long) datas.append(data) assert len(datas) == conf_per_mol # split ''' eps = np.random.rand() if eps <= train_size: train_data.extend(datas) num_mols += [1, 1, 0, 0] num_confs += [len(datas), len(datas), 0, 0] elif eps <= train_size + val_size: val_data.extend(datas) num_mols += [1, 0, 1, 0] num_confs += [len(datas), 0, len(datas), 0] else: test_data.extend(datas) num_mols += [1, 0, 0, 1] num_confs += [len(datas), 0, 0, len(datas)] ''' if index2split[i] == 'train': train_data.extend(datas) num_mols += [1, 1, 0, 0] num_confs += [len(datas), len(datas), 0, 0] elif index2split[i] == 'val': val_data.extend(datas) num_mols += [1, 0, 1, 0] num_confs += [len(datas), 0, len(datas), 0] elif index2split[i] == 'test': test_data.extend(datas) num_mols += [1, 0, 0, 1] num_confs += [len(datas), 0, 0, len(datas)] else: raise ValueError('unknown index2split value.') print('post-filter: find %d molecules with %d confs' % (num_mols[0], num_confs[0])) print('train size: %d molecules with %d confs' % (num_mols[1], num_confs[1])) print('val size: %d molecules with %d confs' % (num_mols[2], num_confs[2])) print('test size: %d molecules with %d confs' % (num_mols[3], num_confs[3])) print('bad case: %d' % bad_case) print('done!') return train_data, val_data, test_data, index2split def get_test_set_with_large_num_conf(base_path, dataset_name, block, tot_mol_size=1000, seed=None, confmin=50, confmax=500): """ base_path: directory that contains GEOM dataset dataset_name: dataset name, should be in [qm9, drugs] conf_per_mol: keep mol that has at least conf_per_mol confs, and sampling the most probable conf_per_mol confs train_size ratio, val = test = (1-train_size) / 2 tot_mol_size: max num of mols. The total number of final confs should be tot_mol_size * conf_per_mol seed: rand seed for RNG """ #block smiles in train / val block_smiles = defaultdict(int) for i in range(len(block)): block_smiles[block[i].smiles] = 1 # set random seed if seed is None: seed = 2021 np.random.seed(seed) random.seed(seed) # read summary file assert dataset_name in ['qm9', 'drugs'] summary_path = os.path.join(base_path, 'summary_%s.json' % dataset_name) with open(summary_path, 'r') as f: summ = json.load(f) # filter valid pickle path smiles_list = [] pickle_path_list = [] num_mols = 0 num_confs = 0 for smiles, meta_mol in tqdm(summ.items()): u_conf = meta_mol.get('uniqueconfs') if u_conf is None: continue pickle_path = meta_mol.get('pickle_path') if pickle_path is None: continue if u_conf < confmin or u_conf > confmax: continue if block_smiles[smiles] == 1: continue num_mols += 1 num_confs += u_conf smiles_list.append(smiles) pickle_path_list.append(pickle_path) # we need do a shuffle and sample first max_size items here. #if num_mols >= tot_mol_size: # break random.shuffle(pickle_path_list) assert len(pickle_path_list) >= tot_mol_size, 'the length of all available mols is %d, which is smaller than tot mol size %d' % (len(pickle_path_list), tot_mol_size) pickle_path_list = pickle_path_list[:tot_mol_size] print('pre-filter: find %d molecules with %d confs' % (num_mols, num_confs)) bad_case = 0 all_test_data = [] num_valid_mol = 0 num_valid_conf = 0 for i in tqdm(range(len(pickle_path_list))): with open(os.path.join(base_path, pickle_path_list[i]), 'rb') as fin: mol = pickle.load(fin) if mol.get('uniqueconfs') > len(mol.get('conformers')): bad_case += 1 continue if mol.get('uniqueconfs') <= 0: bad_case += 1 continue datas = [] smiles = mol.get('smiles') conf_ids = np.arange(mol.get('uniqueconfs')) for conf_id in conf_ids: conf_meta = mol.get('conformers')[conf_id] data = rdmol_to_data(conf_meta.get('rd_mol'), smiles=smiles) labels = { 'totalenergy': conf_meta['totalenergy'], 'boltzmannweight': conf_meta['boltzmannweight'], } for k, v in labels.items(): data[k] = torch.tensor([v], dtype=torch.float32) data['idx'] = torch.tensor([i], dtype=torch.long) datas.append(data) all_test_data.extend(datas) num_valid_mol += 1 num_valid_conf += len(datas) print('poster-filter: find %d molecules with %d confs' % (num_valid_mol, num_valid_conf)) return all_test_data class ConformationDataset(Dataset): def __init__(self, path, transform=None): super().__init__() with open(path, 'rb') as f: self.data = pickle.load(f) self.transform = transform self.atom_types = self._atom_types() self.edge_types = self._edge_types() def __getitem__(self, idx): data = self.data[idx].clone() if self.transform is not None: data = self.transform(data) return data def __len__(self): return len(self.data) def _atom_types(self): """All atom types.""" atom_types = set() for graph in self.data: atom_types.update(graph.atom_type.tolist()) return sorted(atom_types) def _edge_types(self): """All edge types.""" edge_types = set() for graph in self.data: edge_types.update(graph.edge_type.tolist()) return sorted(edge_types) class SidechainConformationDataset(ConformationDataset): def __init__(self, path, transform=None, cutoff=10., max_residue=5000, fix_subgraph=False): super().__init__(path, transform) self.cutoff = cutoff self.max_residue = max_residue self.fix_subgraph = fix_subgraph def __getitem__(self, idx): data = self.data[idx].clone() """ Subgraph sampling 1. sampling an atom from the backbone (residue) 2. Find all neighboring atoms within a cutoff 3. extend atoms to ensure the completeness of each residue 4. remap the index for subgraph """ is_sidechain = data.is_sidechain pos = data.pos edge_index = data.edge_index atom2res = data.atom2res dummy_index = torch.arange(pos.size(0)) backbone_index = dummy_index[~is_sidechain] #stop=False #while not stop: # step 1 if self.fix_subgraph: center_atom_index = backbone_index[backbone_index.size(0) // 2].view(1,) else: center_atom_index = backbone_index[torch.randint(low=0, high=backbone_index.size(0), size=(1, ))] # (1, ) pos_center_atom = pos[center_atom_index] # (1, 3) # step 2 distance = (pos_center_atom - pos).norm(dim=-1) mask = (distance <= self.cutoff) # step 3 is_keep_residue = scatter(mask, atom2res, dim=-1, dim_size=self.max_residue, reduce='sum') # (max_residue, ) is_keep_atom = is_keep_residue[atom2res] is_keep_edge = (is_keep_atom[edge_index[0]]) & (is_keep_atom[edge_index[1]]) # step 4 mapping = -torch.ones(pos.size(0), dtype=torch.long) keep_index = dummy_index[is_keep_atom] mapping[keep_index] = torch.arange(keep_index.size(0)) if (data.is_sidechain[is_keep_atom]).sum().item() == 0: #stop = True return None # return subgraph data subgraph_data = Data(atom_type=data.atom_type[is_keep_atom], pos=data.pos[is_keep_atom], edge_index=mapping[data.edge_index[:, is_keep_edge]], edge_type=data.edge_type[is_keep_edge], is_sidechain=data.is_sidechain[is_keep_atom], atom2res=data.atom2res[is_keep_atom]) if self.transform is not None: subgraph_data = self.transform(subgraph_data) return subgraph_data @staticmethod def collate_fn(data): batch = [_ for _ in data if _ is not None] return Batch.from_data_list(batch) def accumulate_grad_from_subgraph(model, atom_type, pos, bond_index, bond_type, batch, atom2res, batch_size=8, device='cuda:0', is_sidechain=None, is_alpha=None, pos_gt=None, cutoff=10., max_residue=5000, transform=None): """ 1. decompose the protein to subgraphs 2. evaluate subgraphs using trained models 3. accumulate atom-wise grads 4. return grads """ accumulated_grad = torch.zeros_like(pos) accumulated_time = torch.zeros(pos.size(0), device=pos.deivce) all_subgraphs = [] dummy_index = torch.arange(pos.size(0)) # prepare subgraphs is_covered = torch.zeros(pos.size(0), device=pos.deivce).bool() is_alpha_and_uncovered = is_alpha & (~is_covered) while is_alpha_and_uncovered.sum().item() != 0: alpha_index = dummy_index[is_alpha_and_uncovered] center_atom_index = alpha_index[torch.randint(low=0, high=alpha_index.size(0), size=(1, ))] # (1, ) pos_center_atom = pos[center_atom_index] # (1, 3) distance = (pos_center_atom - pos).norm(dim=-1) mask = (distance <= cutoff) is_keep_residue = scatter(mask, atom2res, dim=-1, dim_size=max_residue, reduce='sum') # (max_residue, ) is_keep_atom = is_keep_residue[atom2res] is_keep_edge = (is_keep_atom[bond_index[0]]) & (is_keep_atom[bond_index[1]]) mapping = -torch.ones(pos.size(0), dtype=torch.long) keep_index = dummy_index[is_keep_atom] mapping[keep_index] = torch.arange(keep_index.size(0)) is_covered |= is_keep_atom is_alpha_and_uncovered = is_alpha & (~is_covered) if (is_sidechain[is_keep_atom]).sum().item() == 0: continue subgraph = Data(atom_type=atom_type[is_keep_atom], pos=pos[is_keep_atom], edge_index=mapping[bond_index[:, is_keep_edge]], edge_type=bond_type[is_keep_edge], is_sidechain=is_sidechain[is_keep_atom], atom2res=atom2res[is_keep_atom], mapping=keep_index) if transform is not None: subgraph = transform(subgraph) all_subgraphs.append(subgraph) # run model tot_iters = (len(all_subgraphs) + batch_size - 1) // batch_size for it in range(tot_iters): batch = Batch.from_data_list(all_subgraphs[it * batch_size, (it + 1) * batch_size]).to(device) class PackedConformationDataset(ConformationDataset): def __init__(self, path, transform=None): super().__init__(path, transform) #k:v = idx: data_obj self._pack_data_by_mol() def _pack_data_by_mol(self): """ pack confs with same mol into a single data object """ self._packed_data = defaultdict(list) if hasattr(self.data, 'idx'): for i in range(len(self.data)): self._packed_data[self.data[i].idx.item()].append(self.data[i]) else: for i in range(len(self.data)): self._packed_data[self.data[i].smiles].append(self.data[i]) print('[Packed] %d Molecules, %d Conformations.' % (len(self._packed_data), len(self.data))) new_data = [] # logic # save graph structure for each mol once, but store all confs cnt = 0 for k, v in self._packed_data.items(): data = copy.deepcopy(v[0]) all_pos = [] for i in range(len(v)): all_pos.append(v[i].pos) data.pos_ref = torch.cat(all_pos, 0) # (num_conf*num_node, 3) data.num_pos_ref = torch.tensor([len(all_pos)], dtype=torch.long) #del data.pos if hasattr(data, 'totalenergy'): del data.totalenergy if hasattr(data, 'boltzmannweight'): del data.boltzmannweight new_data.append(data) self.new_data = new_data def __getitem__(self, idx): data = self.new_data[idx].clone() if self.transform is not None: data = self.transform(data) return data def __len__(self): return len(self.new_data)
py
1a526f0a59d22c76830d3a1b9451cbd1322c10dd
# -*- coding: utf-8 -*- # # Pharmapendium_scripts documentation build configuration file, created by # sphinx-quickstart. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import os import sys # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # sys.path.insert(0, os.path.abspath('.')) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'Pharmapendium_scripts' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '0.1' # The full version, including alpha/beta/rc tags. release = '0.1' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'default' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". # html_title = None # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. # html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is generated. # html_domain_indices = True # If false, no index is generated. # html_use_index = True # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'pharmapendium_scriptsdoc' # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # 'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'pharmapendium_scripts.tex', u'Pharmapendium_scripts Documentation', u"Eric Gilbert", 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. # latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # latex_use_parts = False # If true, show page references after internal links. # latex_show_pagerefs = False # If true, show URL addresses after external links. # latex_show_urls = False # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. # latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'pharmapendium_scripts', u'Pharmapendium_scripts Documentation', [u"Eric Gilbert"], 1) ] # If true, show URL addresses after external links. # man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'pharmapendium_scripts', u'Pharmapendium_scripts Documentation', u"Eric Gilbert", 'Pharmapendium_scripts', 'This project is for creating scripts to be used to access Pharmapendium using the API.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. # texinfo_appendices = [] # If false, no module index is generated. # texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. # texinfo_show_urls = 'footnote'
py
1a527060c2e3237e6f9ba4199ff095c44686605f
import py from rpython.rlib.jit import JitDriver, dont_look_inside from rpython.rlib.objectmodel import keepalive_until_here from rpython.rlib import rgc from rpython.jit.metainterp.test.support import LLJitMixin, OOJitMixin class DelTests: def test_del_keep_obj(self): myjitdriver = JitDriver(greens = [], reds = ['n', 'x']) class Foo: def __del__(self): pass def f(n): x = None while n > 0: myjitdriver.can_enter_jit(x=x, n=n) myjitdriver.jit_merge_point(x=x, n=n) x = Foo() Foo() n -= 1 return 42 self.meta_interp(f, [20]) self.check_resops({'call': 4, # calls to a helper function 'guard_no_exception': 4, # follows the calls 'int_sub': 2, 'int_gt': 2, 'guard_true': 2, 'jump': 1}) def test_class_of_allocated(self): myjitdriver = JitDriver(greens = [], reds = ['n', 'x']) class Foo: def __del__(self): pass def f(self): return self.meth() class X(Foo): def meth(self): return 456 class Y(Foo): def meth(self): return 123 def f(n): x = None while n > 0: myjitdriver.can_enter_jit(x=x, n=n) myjitdriver.jit_merge_point(x=x, n=n) x = X() y = Y() assert x.f() == 456 assert y.f() == 123 n -= 1 return 42 res = self.meta_interp(f, [20]) assert res == 42 def test_instantiate_with_or_without_del(self): import gc mydriver = JitDriver(reds = ['n', 'x'], greens = []) class Base: pass class A(Base): foo = 72 class B(Base): foo = 8 def __del__(self): pass def f(n): x = 0 while n > 0: mydriver.can_enter_jit(n=n, x=x) mydriver.jit_merge_point(n=n, x=x) if n % 2 == 0: cls = A else: cls = B inst = cls() x += inst.foo n -= 1 return 1 res = self.meta_interp(f, [20], enable_opts='') assert res == 1 self.check_resops(call=1) # for the case B(), but not for the case A() def test_keepalive(self): py.test.skip("XXX fails") # hum, I think the test itself is broken # mydriver = JitDriver(reds = ['n', 'states'], greens = []) class State: num = 1 class X: def __init__(self, state): self.state = state def __del__(self): self.state.num += 1 @dont_look_inside def do_stuff(): pass def f(n): states = [] while n > 0: mydriver.jit_merge_point(n=n, states=states) state = State() states.append(state) x = X(state) do_stuff() state.num *= 1000 do_stuff() keepalive_until_here(x) n -= 1 return states def main(n): states = f(n) rgc.collect() rgc.collect() err = 1001 for state in states: if state.num != 1001: err = state.num print 'ERROR:', err return err assert main(20) == 1001 res = self.meta_interp(main, [20]) assert res == 1001 class TestLLtype(DelTests, LLJitMixin): pass class TestOOtype(DelTests, OOJitMixin): def setup_class(cls): py.test.skip("XXX dels are not implemented in the" " static CLI or JVM backend")
py
1a527093aed44ea54843631636ab7ac64f95a699
from .InputExample import InputExample from .LabelSentenceReader import LabelSentenceReader from .NLIDataReader import NLIDataReader from .STSDataReader import STSDataReader, STSBenchmarkDataReader from .TripletReader import TripletReader from .InputExampleDocument import InputExampleDocument
py
1a5270c3f4eafb203af9aa11265abe2cbffbb7c1
import logging log = logging.getLogger(__name__) import numpy import westpa from oldtools.aframe import AnalysisMixin, ArgumentError class IterRangeMixin(AnalysisMixin): '''A mixin for limiting the range of data considered for a given analysis. This should go after DataManagerMixin''' def __init__(self): super(IterRangeMixin,self).__init__() self.first_iter = None self.last_iter = None self.iter_step = 1 include_args = self.include_args.setdefault('IterRangeMixin',{}) include_args.setdefault('first_iter', True) include_args.setdefault('last_iter', True) include_args.setdefault('iter_step',True) def add_args(self, parser, upcall = True): if upcall: try: upfunc = super(IterRangeMixin,self).add_args except AttributeError: pass else: upfunc(parser) group = parser.add_argument_group('analysis range') if self.include_args['IterRangeMixin']['first_iter']: group.add_argument('--start', '--begin', '--first', dest='first_iter', type=int, metavar='N_ITER', default=1, help='''Begin analysis at iteration N_ITER (default: %(default)d).''') if self.include_args['IterRangeMixin']['last_iter']: group.add_argument('--stop', '--end', '--last', dest='last_iter', type=int, metavar='N_ITER', help='''Conclude analysis with N_ITER, inclusive (default: last completed iteration).''') if self.include_args['IterRangeMixin']['iter_step']: group.add_argument('--step', dest='iter_step', type=int, metavar='STEP', help='''Analyze/report in blocks of STEP iterations.''') def process_args(self, args, upcall = True): if self.include_args['IterRangeMixin']['first_iter']: self.first_iter = args.first_iter or 1 if self.include_args['IterRangeMixin']['last_iter']: self.last_iter = args.last_iter if self.include_args['IterRangeMixin']['iter_step']: self.iter_step = args.iter_step or 1 if upcall: try: upfunc = super(IterRangeMixin,self).process_args except AttributeError: pass else: upfunc(args) def check_iter_range(self): assert hasattr(self, 'data_manager') and self.data_manager is not None self.first_iter = int(max(self.first_iter, 1)) if self.last_iter is None or self.last_iter > self.data_manager.current_iteration - 1: self.last_iter = int(self.data_manager.current_iteration - 1) if self.first_iter == self.last_iter: raise ArgumentError('first and last iterations are the same') westpa.rc.pstatus('Processing iterations from {self.first_iter:d} to {self.last_iter:d}, inclusive (step size {self.iter_step:d})'.format(self=self)) def iter_block_iter(self): '''Return an iterable of (block_first,block_last+1) over the blocks of iterations selected by --first/--last/--step. NOTE WELL that the second of the pair follows Python iterator conventions and returns one past the last element of the block.''' for blkfirst in range(self.first_iter, self.last_iter+1, self.iter_step): yield(blkfirst, min(self.last_iter, blkfirst+self.iter_step-1)+1) def n_iter_blocks(self): '''Return the number of blocks of iterations (as returned by ``iter_block_iter``) selected by --first/--last/--step.''' npoints = self.last_iter - self.first_iter + 1 if npoints % self.iter_step == 0: return npoints // self.iter_step else: return npoints // self.iter_step + 1 def record_data_iter_range(self, h5object, first_iter = None, last_iter = None): '''Store attributes ``first_iter`` and ``last_iter`` on the given HDF5 object (group/dataset)''' first_iter = first_iter or self.first_iter last_iter = last_iter or self.last_iter h5object.attrs['first_iter'] = first_iter h5object.attrs['last_iter'] = last_iter def record_data_iter_step(self, h5object, iter_step = None): '''Store attribute ``iter_step`` on the given HDF5 object (group/dataset).''' iter_step = iter_step or self.iter_step h5object.attrs['iter_step'] = iter_step def check_data_iter_range_least(self, h5object, first_iter = None, last_iter = None): '''Check that the given HDF5 object contains (as denoted by its ``first_iter``/``last_iter`` attributes) at least the data range specified.''' first_iter = first_iter or self.first_iter last_iter = last_iter or self.last_iter obj_first_iter = h5object.attrs.get('first_iter') obj_last_iter = h5object.attrs.get('last_iter') return (obj_first_iter <= first_iter and obj_last_iter >= last_iter) def check_data_iter_range_equal(self, h5object, first_iter = None, last_iter = None): '''Check that the given HDF5 object contains per-iteration data for exactly the specified iterations (as denoted by the object's ``first_iter`` and ``last_iter`` attributes''' first_iter = first_iter or self.first_iter last_iter = last_iter or self.last_iter obj_first_iter = h5object.attrs.get('first_iter') obj_last_iter = h5object.attrs.get('last_iter') return (obj_first_iter == first_iter and obj_last_iter == last_iter) def check_data_iter_step_conformant(self, h5object, iter_step = None): '''Check that the given HDF5 object contains per-iteration data at an iteration stride suitable for extracting data with the given stride. (In other words, is the given ``iter_step`` a multiple of the stride with which data was recorded.)''' iter_step = iter_step or self.iter_step obj_iter_step = h5object.attrs.get('iter_step') return (obj_iter_step % iter_step == 0) def check_data_iter_step_equal(self, h5object, iter_step = None): '''Check that the given HDF5 object contains per-iteration data at an iteration stride the same as that specified.''' iter_step = iter_step or self.iter_step obj_iter_step = h5object.attrs.get('iter_step') return (obj_iter_step == iter_step) def slice_per_iter_data(self, dataset, first_iter = None, last_iter = None, iter_step = None, axis=0): '''Return the subset of the given dataset corresponding to the given iteration range and stride. Unless otherwise specified, the first dimension of the dataset is the one sliced.''' first_iter = first_iter or self.first_iter last_iter = last_iter or self.last_iter iter_step = iter_step or self.iter_step ds_first_iter = dataset.attrs['first_iter'] ds_last_iter = dataset.attrs['last_iter'] ds_iter_step = dataset.attrs.get('iter_step', 1) if first_iter < ds_first_iter or last_iter > ds_last_iter or ds_iter_step % iter_step > 0: raise IndexError(('Cannot slice requested iterations [{:d},{:d}] (stride={:d}) from dataset {!r}' +'with range [{:d},{:d}] (stride={:d}).'.format(first_iter,last_iter,iter_step, ds_first_iter,ds_last_iter,ds_iter_step))) dimslices = [] for idim in range(len(dataset.shape)): if idim == axis: dimslices.append(slice(first_iter - ds_first_iter, last_iter - ds_first_iter + iter_step, iter_step)) else: dimslices.append(slice(None,None,None)) dimslices = tuple(dimslices) log.debug('slicing {!r} with {!r}'.format(dataset, dimslices)) data = dataset[dimslices] log.debug('resulting data is of shape {!r}'.format(data.shape)) return data def iter_range(self, first_iter = None, last_iter = None, iter_step = None): first_iter = first_iter or self.first_iter last_iter = last_iter or self.last_iter iter_step = iter_step or self.iter_step return numpy.arange(first_iter, last_iter + 1, iter_step)
py
1a527345ef6bdbefa1e2b2a679fa1d0072c3e515
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """GradientDescent for TensorFlow.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.training import optimizer from tensorflow.python.training import training_ops from tensorflow.python.util.tf_export import tf_export @tf_export(v1=["train.GradientDescentOptimizer"]) class GradientDescentOptimizer(optimizer.Optimizer): """Optimizer that implements the gradient descent algorithm. """ def __init__(self, learning_rate, use_locking=False, name="GradientDescent"): """Construct a new gradient descent optimizer. Args: learning_rate: A Tensor or a floating point value. The learning rate to use. use_locking: If True use locks for update operations. name: Optional name prefix for the operations created when applying gradients. Defaults to "GradientDescent". @compatibility(eager) When eager execution is enabled, `learning_rate` can be a callable that takes no arguments and returns the actual value to use. This can be useful for changing these values across different invocations of optimizer functions. @end_compatibility """ super(GradientDescentOptimizer, self).__init__(use_locking, name) self._learning_rate = learning_rate self._learning_rate_tensor = None def _apply_dense(self, grad, var): return training_ops.apply_gradient_descent( var, math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype), grad, use_locking=self._use_locking).op def _resource_apply_dense(self, grad, handle): return training_ops.resource_apply_gradient_descent( handle.handle, math_ops.cast(self._learning_rate_tensor, grad.dtype.base_dtype), grad, use_locking=self._use_locking) def _resource_apply_sparse_duplicate_indices(self, grad, handle, indices): return resource_variable_ops.resource_scatter_add( handle.handle, indices, -grad * self._learning_rate) def _apply_sparse_duplicate_indices(self, grad, var): delta = ops.IndexedSlices( grad.values * math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype), grad.indices, grad.dense_shape) return var.scatter_sub(delta, use_locking=self._use_locking) def _prepare(self): learning_rate = self._call_if_callable(self._learning_rate) self._learning_rate_tensor = ops.convert_to_tensor( learning_rate, name="learning_rate")
py
1a5273b9b9515e4201022944804a7369474b5eef
# -*- coding: utf-8 -*- # The Paginator class has lines from the repository "Amy". # Copyright (c) 2014-2015 Software Carpentry and contributors import base64 from datetime import date import hashlib from typing import Union from django.core.paginator import Paginator as DjangoPaginator import requests from visitors.models import Subscriber PAGINATOR_DIVIDER_THRESHOLD = 10 class Paginator(DjangoPaginator): """Everything should work as in django.core.paginator.Paginator, except this class provides additional generator for nicer set of pages.""" _page_number = None def page(self, number): """Overridden to store retrieved page number somewhere.""" self._page_number = number return super().page(number) def paginate_sections(self): """Divide pagination range into 3 sections. Each section should contain approx. 5 links. If sections are overlapping, they're merged. The results might be: * L…M…R * LM…R * L…MR * LMR where L - left section, M - middle section, R - right section, and "…" stands for a separator. """ index = int(self._page_number) or 1 items = self.page_range # The number of pages is low, so we don't need to divide them. if items and items[-1] <= PAGINATOR_DIVIDER_THRESHOLD: return list(items) L = items[0:5] M = items[index-3:index+4] or items[0:index+1] R = items[-5:] L_s = set(L) M_s = set(M) R_s = set(R) D1 = L_s.isdisjoint(M_s) D2 = M_s.isdisjoint(R_s) if D1 and D2: # L…M…R pagination = list(L) + [None] + list(M) + [None] + list(R) elif not D1 and D2: # LM…R pagination = sorted(L_s | M_s) + [None] + list(R) elif D1 and not D2: # L…MR pagination = list(L) + [None] + sorted(M_s | R_s) else: # LMR pagination = sorted(L_s | M_s | R_s) return pagination def get_user_profile(request): avatar = False first_name = False about_to_expire = False expired = False user = None if request.user.is_authenticated: user = request.user try: user.subscriber except: return {} if not user.subscriber.avatar: fetch_and_save_avatar(user) first_name = user.first_name avatar = user.subscriber.avatar if not user.subscriber or not user.subscriber.credits: expired = True elif user.subscriber.credits <= 30: about_to_expire = True elif user.subscriber.credits <= 0: expired = True context = { 'avatar': avatar, 'first_name': first_name, 'about_to_expire': about_to_expire, 'expired': expired, } if user: context["credits"] = user.subscriber.credits if user and user.subscriber.credits is not None: if context['credits'] < 0: context['credits'] = 0 else: context["credits"] = 0 return context def fetch_and_save_avatar(user): email = user.email.encode("utf-8") email_hash = hashlib.md5() email_hash.update(email) url = "https://www.gravatar.com/{}.json".format(email_hash.hexdigest()) r = requests.get(url) if r.json() == "User not found": img = 'iVBORw0KGgoAAAANSUhEUgAAAGQAAABkCAYAAABw4pVUAAAABmJLR0QA/wD/AP+gvaeTAAAFz0lEQVR4nO2caWhdRRTHf8kzaYIkZrGKxqVIG5fULcagHzRY6ZcYFUUUUUGxotW6gAhFBAVB/CCCIi3ihra4YFWoNBZiBVu0QrV1r9XUWBOTujVNWmlMs/jhvGCMue/de2fmzn0v5wfnQ8i7M/85c+fOdmZAURRFURRFURRFURRFURRFURRFURRFKRJKgGrfIlJENeITL6wA9gKTwH7gdeAqoMyXIA9kgA5gLbAP8cUAsDxpIZdlM5/NdgM3A0ckLSpBypAy7iLYD0uTFPRuDiFT9iXQmqSohGgBviB/+dclKWpPCEGTwBjwJFCRpDhHlAOPA4cJV/buJMX1hxQ1ZTuBpiQFWuZs4FuilXlPkgLDtpDptg9ot6ihHKgHTgHOBc5DKv1EoMZiPtcBB4le3h8sasjL1hgCpz5h90TMqwEZyawE1gDbgUMh8xsANgGrgLuAJcCREfJ+EJiIWdbNEctpxPMxRU7ZMwSPwqqAy4GniP6ZCGOjiLMeAS4K0FEGvGiYz6qcHrTM3YZiJ4H3+HdSmUE+Z+uAvy2kHcUGgCeAxVktNUirMk33jhh+jU2TBcGTyND4MaDPUnqmtg34zlJai2J7NyY/WhJejPZ9XKeWxn0Q+eQos9PpI9ML8f8mptVaDPwamxLgp4hC54J1Y7Dia/LJmgRWGzxfrKxGfBML07X7WqCXaJOtYmYYWSkYjpuASQsBGAReMUyjmHgZg8qwxSJgHP/fbt82Diw09KU1NuDfIb5tvbEXLdLK3G4lE8AFxl60zHP4d4wv68G8PwZbiSCjtTMtpVWILABu9y1iOlfj/y31bX8CR5s6MmOaANLK3gTmW0irkKlEKuZ930La8f92psX+wDCgw0YfcouFNIqFeuBKkwSiBLOVIwEFDUgnPoxsdXaYCChC7kT6E5BW04eMwkbDPJxvLasN2d9uBxqRShic9v8aoC6C2LlCLxK/BeKfKiTKsRMJMgwMgAiqkDokFHIeUru9SBzvyIzfPY3sryv/5WJgy7S/K4DjkIXHBUjcQBcSGmWVD/HfkabRYr+kUQOi64BmZBJYD5wTN+Mi5ybkc96DxLDtDvtgmFFWCTJy6MwmfiMS8LYNPRsSxBgSudiEHFXYgRzfMN43agHeQIKMZ7aGKvx/GtJqXTN81QDcB7yNtJ5YzEcCGYI6/ooUFDyttiGHXxcCZwT9M1cf8nvWghhBYmwrc/xmrpJr9JTzmILpTN36sK1IiO0X0wr52vD5YuWruA+aVsh2w+fz8RuwMcTv9gPfhPjdLpJp1TsSyGNWOnDbOU4AtwKXEDwJ3QSchAzBN+ZI61PkYM9fjjUPI+t+XqgAhvIItFEp92fza0XOXXQBz/L/k64lwA1IJfUjyz1bkENC8zA/1xLG1kb2omXW4L6Qn1nS+kkCWq+wpDU25+O+kAewc0PCz451dmNnF9aYzbivlOMNNWaQuZNLjfcaarTGUtxXyLWGGpsd6+vHwlqVrTCgLtzH+F5q+HybFRXBLENGcKnhGGST39UbGPuYWJZ3HGp7y1CbM5YgS8+uCh73LW8g/JUYUW0nsvKdWlbirkJei6npYUd6DlIAEZulwEu4ccAI0UdblUhMgG0to8j9YAVBKdLJp6GVPOpAw2Hgmog6vJNBrtBwUSnXI+tbuWgETsX+3OMAKZiNm7ACNx391jz5foxcm2Ezz15kgbLgaUMiMGw6ZxA4PSC/BuAXy/mtB4419kSKqAZeIP51R7PZMPAQ8mmqRYLRlgO/WsxjCNkCKFqagY+w/wmzbWPIFVG1btyQLjLAbcjqqG/Hz7QJZKMrdWcGkyCDDB/T0GIOIefMz3Ja4gKiEZkz9JBcJYwjWwfLgKPcF7FwWQw8AHxAvAsoc9kA8CoSQZi6Y3je7imPQAY4DRkMNAEnACcjof3VyL7+9GC9IeTN34vMG/qQW4s+R6Jk+hPSrSiKoiiKoiiKoiiKoiiKoiiKoiiKoiiKRf4BC3RbvGqA5OgAAAAASUVORK5CYII=' else: thumbnail_url = [ i['thumbnailUrl'] for i in r.json()['entry'] ][0] r = requests.get(thumbnail_url) img = base64.b64encode(r.content) s = Subscriber.objects.get(user=user) s.avatar = img s.save() def is_dni(value: Union[str, int]) -> bool: value = value.strip() try: int(value) except ValueError: return False if len(value) >= 7: return True return False
py
1a5274cc83e272e4b983c6715b2840a323ad39dc
# this is the script that i used to create output videos and gifs # simply put all the animations, one per each folder import os import subprocess import logging first_frame_duration = 1 last_frame_duration = 5 fps = 60 source = "frames" videos_dir = "videos" h264_videos_dir = "h264" gifs_dir = "gifs" completed = 0 logging.basicConfig(level=logging.INFO, filename="generate-videos.log", filemode="w+", format='%(asctime)s %(levelname)s %(message)s') logging.info("Creating folders") if not os.path.exists(videos_dir): os.makedirs(videos_dir) if not os.path.exists(h264_videos_dir): os.makedirs(h264_videos_dir) if not os.path.exists(gifs_dir): os.makedirs(gifs_dir) logging.info("Listing file") dirs = os.listdir(source) for dir in dirs: logging.info(f"Started conversion for folder {dir}") # LIST OF FILES files = os.listdir(f"{source}/{dir}") # create video options = f"ffmpeg -y -r {fps} -i {source}/{dir}/%07d.png -loop 0 {videos_dir}/{dir}.mp4" subprocess.run(options.split(" ")) logging.info("mp4 video created") # create h264 video options = f"ffmpeg -y -r {fps} -i {source}/{dir}/%07d.png -c:a aac -b:a 256k -ar 44100 -c:v libx264 -pix_fmt yuv420p -r {fps} {h264_videos_dir}/{dir}_h264.mp4" subprocess.run(options.split(" ")) logging.info("h264 video created") # create gif options = f"ffmpeg -y -i {videos_dir}/{dir}.mp4 -loop 0 -filter_complex fps=25,scale=500:-1,split[s0][s1];[s0]palettegen[p];[s1][p]paletteuse {gifs_dir}/{dir}.gif" subprocess.run(options.split(" ")) logging.info("gif video created") logging.info(f"Completed folder {dir}! Folder {completed + 1}/{len(dirs)}") completed += 1 logging.info("Removing temp folder") logging.info("Everything completed")
py
1a52750916b591741da079dfd94e4b199d7e60a9
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import proto # type: ignore __protobuf__ = proto.module( package="google.ads.googleads.v10.errors", marshal="google.ads.googleads.v10", manifest={"RequestErrorEnum",}, ) class RequestErrorEnum(proto.Message): r"""Container for enum describing possible request errors. """ class RequestError(proto.Enum): r"""Enum describing possible request errors.""" UNSPECIFIED = 0 UNKNOWN = 1 RESOURCE_NAME_MISSING = 3 RESOURCE_NAME_MALFORMED = 4 BAD_RESOURCE_ID = 17 INVALID_CUSTOMER_ID = 16 OPERATION_REQUIRED = 5 RESOURCE_NOT_FOUND = 6 INVALID_PAGE_TOKEN = 7 EXPIRED_PAGE_TOKEN = 8 INVALID_PAGE_SIZE = 22 REQUIRED_FIELD_MISSING = 9 IMMUTABLE_FIELD = 11 TOO_MANY_MUTATE_OPERATIONS = 13 CANNOT_BE_EXECUTED_BY_MANAGER_ACCOUNT = 14 CANNOT_MODIFY_FOREIGN_FIELD = 15 INVALID_ENUM_VALUE = 18 DEVELOPER_TOKEN_PARAMETER_MISSING = 19 LOGIN_CUSTOMER_ID_PARAMETER_MISSING = 20 VALIDATE_ONLY_REQUEST_HAS_PAGE_TOKEN = 21 CANNOT_RETURN_SUMMARY_ROW_FOR_REQUEST_WITHOUT_METRICS = 29 CANNOT_RETURN_SUMMARY_ROW_FOR_VALIDATE_ONLY_REQUESTS = 30 INCONSISTENT_RETURN_SUMMARY_ROW_VALUE = 31 TOTAL_RESULTS_COUNT_NOT_ORIGINALLY_REQUESTED = 32 RPC_DEADLINE_TOO_SHORT = 33 __all__ = tuple(sorted(__protobuf__.manifest))
py
1a527546b32a57ccf42d7777b93ada26fc2af5c5
import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from detectron2.structures import ImageList from .build import SSHEAD_REGISTRY from .ss_layers import Flatten class CycleEnergyHead(nn.Module): def __init__(self, cfg, cin): super(CycleEnergyHead, self).__init__() self.name = 'cycle' self.input = 'ROI' self.device = torch.device(cfg.MODEL.DEVICE) self.coef = cfg.MODEL.SS.COEF self.enc1 = nn.Sequential( nn.Conv2d(cin, 256, kernel_size=3, padding=0, bias=True), # nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, padding=0, bias=True), # nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.AdaptiveAvgPool2d(1) # nn.Flatten(start_dim=1, end_dim=-1) ) self.map_back = nn.Linear(256, 256*49) self.topk = 100 self.bs = cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE self.scale = cfg.MODEL.SS.LOSS_SCALE for m in self.modules(): if isinstance(m, nn.Linear): nn.init.kaiming_normal_(m.weight, mode='fan_out') m.bias.data.zero_() elif isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 0) def cal_pair_dist(self, feat_u, feat_v): # finding the similarity score of feat_v us = feat_u.size(0) vs = feat_v.size(0) fs = feat_u.size(1) assert fs == feat_v.size(1) uu = feat_u.unsqueeze(1).repeat(1, vs, 1).view(-1, fs) vv = feat_v.repeat(us, 1) diff = uu - vv dist = (diff * diff).sum(dim=1).view(us, vs) * self.coef score = F.softmax(dist, dim=1) return dist, score def computer_corr_softmax(self, feat_u, feat_v): # track forward # calculate the L2 distance between feat_u and feat_v sim_dist, sim_score = self.cal_pair_dist(feat_u, feat_v) soft_v = torch.matmul(sim_score, feat_v) # track backward back_dist, back_score = self.cal_pair_dist(soft_v, feat_u) labels = torch.arange(len(feat_u)).long().to(back_dist.device) loss = nn.CrossEntropyLoss()(back_dist, labels) if back_dist.size(1) == 0:# there is no objects in the first frame. print(back_dist.size(), feat_u.size(), feat_v.size(), loss) correct = (back_dist.argmax(dim=1) == labels).float().sum() count = len(back_dist) return loss, correct, count, soft_v def forward(self, features, prev_boxes=None): features, idxs, proposals = features total_loss = 0.0 corrects = 0 counts = 0 pos_fea= None neg_fea = None prev = 0 # since the number of proposals might be different for different pairs if prev_boxes is not None: feat_u = self.enc1(features) feat_v = self.enc1(prev_boxes) feat_u = feat_u.view(feat_u.size(0), feat_u.size(1)) feat_v = feat_v.view(feat_v.size(0), feat_v.size(1)) if feat_u.size(0) == 0: print(feat_u, feat_v) return {'loss_cycle': feat_u.sum() * self.scale}, 0. total_loss, correct, cnt, _ = self.computer_corr_softmax(feat_u, feat_v) # print('correct: ', correct, 'cnt: ', cnt) total_acc = correct.item()/cnt else: for i in range(0, len(idxs), 2): u = features[prev:idxs[i]] v = features[idxs[i]: idxs[i+1]] prev = idxs[i+1] feat_u = self.enc1(u) feat_v = self.enc1(v) feat_u = feat_u.view(feat_u.size(0), feat_u.size(1)) feat_v = feat_v.view(feat_v.size(0), feat_v.size(1)) if feat_u.size(0) == 0: print(feat_u.size(), feat_v.size()) loss = feat_u.sum() correct = 0 cnt = 0 else: loss, correct, cnt, soft_target = self.computer_corr_softmax(feat_u, feat_v) if pos_fea is None: pos_fea = self.map_back(feat_u) neg_fea = self.map_back(soft_target) else: pos_fea = torch.cat([pos_fea, self.map_back(feat_u)], 0) neg_fea = torch.cat([neg_fea, self.map_back(soft_target)], 0) total_loss += loss*cnt corrects += correct counts += cnt # breakpoint() if counts != 0: total_loss /= counts total_acc = corrects/counts else: total_acc = 0. if pos_fea is not None: assert len(pos_fea) == len(neg_fea) # print('total loss: {:.4f}\ttotal acc: {:.3f}'.format(total_loss, total_acc)) return {'loss_cycle': total_loss * self.scale}, total_acc, torch.cat([pos_fea, neg_fea], 0) else: return {'loss_cycle': total_loss * self.scale}, total_acc, None @SSHEAD_REGISTRY.register() def build_cycle_energy_head(cfg, input_shape): in_channels = cfg.MODEL.FPN.OUT_CHANNELS rot_head = CycleEnergyHead(cfg, in_channels) return rot_head
py
1a527610645dded90211c699d052b12cc1a37851
import argparse import speakeasy class DbgView(speakeasy.Speakeasy): """ Print debug port prints to the console """ def __init__(self, debug=False): super(DbgView, self).__init__(debug=debug) def debug_print_hook(self, emu, api_name, func, params): # Call the DbgPrint* function and print the formatted string to the console rv = func(params) formatted_str = params[0] print(formatted_str) return rv def debug_printex_hook(self, emu, api_name, func, params): # Call the DbgPrintEx function and print the formatted string to the console rv = func(params) formatted_str = params[2] print(formatted_str) return rv def main(args): dbg = DbgView() module = dbg.load_module(args.file) dbg.add_api_hook(dbg.debug_print_hook, "ntoskrnl", "DbgPrint") dbg.add_api_hook(dbg.debug_printex_hook, "ntoskrnl", "DbgPrintEx") # Emulate the module dbg.run_module(module, all_entrypoints=True) if __name__ == "__main__": parser = argparse.ArgumentParser( description="Print debug port prints to the console" ) parser.add_argument( "-f", "--file", action="store", dest="file", required=True, help="Path of driver to emulate", ) args = parser.parse_args() main(args)
py
1a5276870e47b60458a4b2e37b6c46a6e6a15db7
""" Copyright (c) 2022 Huawei Technologies Co.,Ltd. openGauss is licensed under Mulan PSL v2. You can use this software according to the terms and conditions of the Mulan PSL v2. You may obtain a copy of Mulan PSL v2 at: http://license.coscl.org.cn/MulanPSL2 THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. See the Mulan PSL v2 for more details. """ """ Case Type : GUC参数 Case Name : enable_hashjoin参数使用gs_guc set设置并验证其预期结果 Description : 1.查询enable_hashjoin默认值 2.修改enable_hashjoin为off 3.重启使其生效 4.校验其预期结果 5.恢复默认值 Expect : 1.查询enable_hashjoin默认值成功 2.修改enable_hashjoin为off成功 3.重启集群成功 4.该参数值为off,达到预期效果 5.恢复默认值成功 History : """ import unittest from testcase.utils.CommonSH import CommonSH from testcase.utils.Constant import Constant from testcase.utils.Logger import Logger LOG = Logger() class GucQueryplan(unittest.TestCase): def setUp(self): LOG.info('----this is setup------') LOG.info( '--------Opengauss_Function_Guc_Queryplan_Case0007--------') self.comsh = CommonSH('PrimaryDbUser') self.constant = Constant() self.pv = '' def test_Guc_queryplan(self): LOG.info( '--------查看enable_hashjoin默认值-----') msg = self.comsh.execut_db_sql('show enable_hashjoin;') LOG.info(msg) self.pv = msg.splitlines()[-2].strip() LOG.info( '------修改enable_hashjoin为off----') msg = self.comsh.execute_gsguc('set', self.constant.GSGUC_SUCCESS_MSG, 'enable_hashjoin=off') LOG.info(msg) LOG.info('-------重启数据库------') self.comsh.restart_db_cluster() status = self.comsh.get_db_cluster_status() self.assertTrue("Normal" in status or 'Degraded' in status) LOG.info( '-------校验其预期结果-------') msg = self.comsh.execut_db_sql('show enable_hashjoin;') LOG.info(msg) res = msg.splitlines()[-2].strip() self.assertIn(self.constant.BOOLEAN_VALUES[1], res) def tearDown(self): LOG.info( '----this is tearDown-------') LOG.info( '-------恢复默认值------') msg = self.comsh.execute_gsguc('set', self.constant.GSGUC_SUCCESS_MSG, f'enable_hashjoin={self.pv}') LOG.info(msg) stopmsg = self.comsh.stop_db_cluster() LOG.info(stopmsg) startmsg = self.comsh.start_db_cluster() LOG.info(startmsg) LOG.info( '------Opengauss_Function_Guc_Queryplan_Case0007执行完成------')
py
1a5276f8bf510ab6cf8b546f74781d20503a71c1
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. import math from fairseq import utils import torch from . import FairseqCriterion, register_criterion @register_criterion('cokd_loss') class COKDCriterion(FairseqCriterion): def __init__(self, args, task): super().__init__(args, task) self.kd_alpha = args.kd_alpha self.eps = args.label_smoothing @staticmethod def add_args(parser): """Add criterion-specific arguments to the parser.""" # fmt: off parser.add_argument('--label-smoothing', default=0., type=float, metavar='D', help='epsilon for label smoothing, 0 means no label smoothing') parser.add_argument('--kd-alpha', default=0.5, type=float) parser.add_argument('--num-teachers', default=1, type=int) # fmt: on def forward(self, model, sample, reduce=True, teachers = None): """Compute the loss for the given sample. Returns a tuple with three elements: 1) the loss 2) the sample size, which is used as the denominator for the gradient 3) logging outputs to display while training """ net_output = model(**sample['net_input']) if teachers is None: loss, nll_loss = self.compute_loss(model, net_output, sample, reduce=reduce) else: net_output_teachers = [teacher(**sample['net_input']) for teacher in teachers] loss, nll_loss = self.compute_kd_loss(model, net_output, net_output_teachers, sample, reduce=reduce) sample_size = sample['target'].size(0) if self.args.sentence_avg else sample['ntokens'] logging_output = { 'loss': utils.item(loss.data) if reduce else loss.data, 'nll_loss': utils.item(nll_loss.data) if reduce else nll_loss.data, 'ntokens': sample['ntokens'], 'nsentences': sample['target'].size(0), 'sample_size': sample_size, } return loss, sample_size, logging_output def compute_loss(self, model, net_output, sample, reduce=True): lprobs = model.get_normalized_probs(net_output, log_probs=True) lprobs = lprobs.view(-1, lprobs.size(-1)) target = model.get_targets(sample, net_output).view(-1, 1)#fairseq/models/fairseq_model.py:sample['target'] non_pad_mask = target.ne(self.padding_idx) nll_loss = -lprobs.gather(dim=-1, index=target)[non_pad_mask] smooth_loss = -lprobs.sum(dim=-1, keepdim=True)[non_pad_mask] if reduce: nll_loss = nll_loss.sum() smooth_loss = smooth_loss.sum() eps_i = self.eps / lprobs.size(-1) loss = (1. - self.eps) * nll_loss + eps_i * smooth_loss return loss, nll_loss def compute_kd_loss(self, model, net_output, net_output_teachers, sample, reduce=True): lprobs = model.get_normalized_probs(net_output, log_probs=True) lprobs = lprobs.view(-1, lprobs.size(-1)) teacher_probs = [model.get_normalized_probs(net_output_teacher, log_probs=False) for net_output_teacher in net_output_teachers] teacher_prob = torch.mean(torch.stack(teacher_probs, dim = 0), dim = 0) teacher_prob = teacher_prob.view(-1, teacher_prob.size(-1)) target = model.get_targets(sample, net_output).view(-1, 1) non_pad_mask = target.ne(self.padding_idx) kd_loss = (-lprobs * teacher_prob).sum(dim = -1, keepdim=True)[non_pad_mask] nll_loss = -lprobs.gather(dim=-1, index=target)[non_pad_mask] if reduce: nll_loss = nll_loss.sum() kd_loss = kd_loss.sum() loss = nll_loss * (1 - self.kd_alpha) + kd_loss * self.kd_alpha return loss, nll_loss @staticmethod def aggregate_logging_outputs(logging_outputs): """Aggregate logging outputs from data parallel training.""" ntokens = sum(log.get('ntokens', 0) for log in logging_outputs) nsentences = sum(log.get('nsentences', 0) for log in logging_outputs) sample_size = sum(log.get('sample_size', 0) for log in logging_outputs) return { 'loss': sum(log.get('loss', 0) for log in logging_outputs) / sample_size / math.log(2), 'nll_loss': sum(log.get('nll_loss', 0) for log in logging_outputs) / ntokens / math.log(2), 'ntokens': ntokens, 'nsentences': nsentences, 'sample_size': sample_size, }
py
1a5277495d4e8461f1c092b9295f74e7779e32e4
# coding: utf-8 """ Kubernetes No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 OpenAPI spec version: v1.13.5 Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import unittest import kubernetes_asyncio.client from kubernetes_asyncio.client.models.v1_network_policy_list import V1NetworkPolicyList # noqa: E501 from kubernetes_asyncio.client.rest import ApiException class TestV1NetworkPolicyList(unittest.TestCase): """V1NetworkPolicyList unit test stubs""" def setUp(self): pass def tearDown(self): pass def testV1NetworkPolicyList(self): """Test V1NetworkPolicyList""" # FIXME: construct object with mandatory attributes with example values # model = kubernetes_asyncio.client.models.v1_network_policy_list.V1NetworkPolicyList() # noqa: E501 pass if __name__ == '__main__': unittest.main()
py
1a52784a9e2d5924fe0c7e259c4ff5a556e8e0fa
import math import random from collections import namedtuple, deque import numpy as np import matplotlib.pyplot as plt import torch import torch.nn as nn import torch.optim as optim from rllite.common import ReplayBuffer2 USE_CUDA = torch.cuda.is_available() class StochasticMDP: def __init__(self): self.end = False self.current_state = 2 self.num_actions = 2 self.num_states = 6 self.p_right = 0.5 def reset(self): self.end = False self.current_state = 2 state = np.zeros(self.num_states) state[self.current_state - 1] = 1. return state def step(self, action): if self.current_state != 1: if action == 1: if random.random() < self.p_right and self.current_state < self.num_states: self.current_state += 1 else: self.current_state -= 1 if action == 0: self.current_state -= 1 if self.current_state == self.num_states: self.end = True state = np.zeros(self.num_states) state[self.current_state - 1] = 1. if self.current_state == 1: if self.end: return state, 1.00, True, {} else: return state, 1.00 / 100.00, True, {} else: return state, 0.0, False, {} class Net(nn.Module): def __init__(self, num_inputs, num_outputs): super(Net, self).__init__() self.num_inputs = num_inputs self.num_outputs = num_outputs self.layers = nn.Sequential( nn.Linear(num_inputs, 256), nn.ReLU(), nn.Linear(256, num_outputs) ) def forward(self, x): return self.layers(x) def act(self, state, epsilon): if random.random() > epsilon: state = torch.FloatTensor(state).unsqueeze(0) action = self.forward(state).max(1)[1] return action.data[0] else: return random.randrange(self.num_outputs) class HierarchicalDQN(object): def __init__(self): self.env = StochasticMDP() self.num_goals = self.env.num_states self.num_actions = self.env.num_actions self.model = Net(2*self.num_goals, self.num_actions) self.target_model = Net(2*self.num_goals, self.num_actions) self.meta_model = Net(self.num_goals, self.num_goals) self.target_meta_model = Net(self.num_goals, self.num_goals) if USE_CUDA: self.model = self.model.cuda() self.target_model = self.target_model.cuda() self.meta_model = self.meta_model.cuda() self.target_meta_model = self.target_meta_model.cuda() self.optimizer = optim.Adam(self.model.parameters()) self.meta_optimizer = optim.Adam(self.meta_model.parameters()) self.replay_buffer = ReplayBuffer2(10000) self.meta_replay_buffer = ReplayBuffer2(10000) def to_onehot(self, x): oh = np.zeros(6) oh[x - 1] = 1. return oh def update(self, model, optimizer, replay_buffer, batch_size): if batch_size > len(replay_buffer): return state, action, reward, next_state, done = replay_buffer.sample(batch_size) state = torch.FloatTensor(state) next_state = torch.FloatTensor(next_state) action = torch.LongTensor(action) reward = torch.FloatTensor(reward) done = torch.FloatTensor(done) q_value = model(state) q_value = q_value.gather(1, action.unsqueeze(1)).squeeze(1) next_q_value = model(next_state).max(1)[0] expected_q_value = reward + 0.99 * next_q_value * (1 - done) loss = (q_value - expected_q_value).pow(2).mean() optimizer.zero_grad() loss.backward() optimizer.step() def learn(self, num_frames=100000, epsilon_start=1.0, epsilon_final=0.01, epsilon_decay=500): frame_idx = 1 state = self.env.reset() done = False all_rewards = [] episode_reward = 0 while frame_idx < num_frames: goal = self.meta_model.act(state, epsilon_final + (epsilon_start - epsilon_final) * math.exp(-1. * frame_idx / epsilon_decay)) onehot_goal = self.to_onehot(goal) meta_state = state extrinsic_reward = 0 while not done and goal != np.argmax(state): goal_state = np.concatenate([state, onehot_goal]) action = self.model.act(goal_state, epsilon_final + (epsilon_start - epsilon_final) * math.exp(-1. * frame_idx / epsilon_decay)) next_state, reward, done, _ = self.env.step(action) episode_reward += reward extrinsic_reward += reward intrinsic_reward = 1.0 if goal == np.argmax(next_state) else 0.0 self.replay_buffer.push(goal_state, action, intrinsic_reward, np.concatenate([next_state, onehot_goal]), done) state = next_state self.update(self.model, self.optimizer, self.replay_buffer, 32) self.update(self.meta_model, self.meta_optimizer, self.meta_replay_buffer, 32) frame_idx += 1 if frame_idx % 1000 == 0: n = 100 # mean reward of last 100 episodes plt.figure(figsize=(20, 5)) plt.title(frame_idx) plt.plot([np.mean(all_rewards[i:i + n]) for i in range(0, len(all_rewards), n)]) plt.show() self.meta_replay_buffer.push(meta_state, goal, extrinsic_reward, state, done) if done: state = self.env.reset() done = False all_rewards.append(episode_reward) episode_reward = 0 print(frame_idx) if __name__ == '__main__': model = HierarchicalDQN() model.learn()
py
1a5278e627aff094f0737bae9fd4906c239214ce
import numpy try: import cupy xpy_default=cupy junk_to_check_installed = cupy.array(5) # this will fail if GPU not installed correctly except: xpy_default=numpy def TimeDelayFromEarthCenter( detector_earthfixed_xyz_metres, source_right_ascension_radians, source_declination_radians, greenwich_mean_sidereal_time, xpy=xpy_default, dtype=numpy.float64, ): """ Parameters ---------- detector_earthfixed_xyz_metres : array_like, shape = det_shape + (3,) Location of detector(s) relative to Earth's center in meters. May provide multiple detectors, last axis must be (x,y,z) but other axes can take whatever form is desired. source_right_ascension_radians : array_like, shape = sample_shape Right ascension of source in radians, can be an arbitrary dimensional array. source_declination_radians : array_like, shape = sample_shape Declination of source in radians, can be an arbitrary dimensional array. greenwich_mean_sidereal_time : float Should be equivalent to XLALGreenwichMeanSiderealTime(gpstime). Returns ------- time_delay_from_earth_center : array_like, shape = det_shape + sample_shape """ negative_speed_of_light = xpy.asarray(-299792458.0) det_shape = detector_earthfixed_xyz_metres.shape[:-1] sample_shape = source_right_ascension_radians.shape cos_dec = xpy.cos(source_declination_radians) greenwich_hour_angle = ( greenwich_mean_sidereal_time - source_right_ascension_radians ) ehat_src = xpy.empty(sample_shape + (3,), dtype=dtype) ehat_src[...,0] = cos_dec * xpy.cos(greenwich_hour_angle) ehat_src[...,1] = -cos_dec * xpy.sin(greenwich_hour_angle) ehat_src[...,2] = xpy.sin(source_declination_radians) neg_separation = xpy.inner(detector_earthfixed_xyz_metres, ehat_src) return xpy.divide( neg_separation, negative_speed_of_light, out=neg_separation, ) def ComputeDetAMResponse( detector_response_matrix, source_right_ascension_radians, source_declination_radians, source_polarization_radians, greenwich_mean_sidereal_time, xpy=xpy_default, dtype_real=numpy.float64, dtype_complex=numpy.complex128, ): """ Parameters ---------- detector_response_matrix : array_like, shape = det_shape + (3, 3) Detector response matrix, or matrices for multiple detectors. Last two axes must be 3-by-3 response matrix, and may include arbitrary axes before that for various detectors. source_right_ascension_radians : array_like, shape = sample_shape Right ascension of source in radians, can be an arbitrary dimensional array. source_declination_radians : array_like, shape = sample_shape Declination of source in radians, can be an arbitrary dimensional array. source_polarization_radians : array_like, shape = sample_shape Polarization angle of source in radians, can be an arbitrary dimensional array. greenwich_mean_sidereal_time : float Should be equivalent to XLALGreenwichMeanSiderealTime(gpstime). Returns ------- F : array_like, shape = det_shape + sample_shape """ det_shape = detector_response_matrix.shape[:-1] sample_shape = source_right_ascension_radians.shape matrix_shape = 3, 3 # Initialize trig matrices. X = xpy.empty(sample_shape+(3,), dtype=dtype_real) Y = xpy.empty(sample_shape+(3,), dtype=dtype_real) # Greenwich hour angle of source in radians. source_greenwich_radians = ( greenwich_mean_sidereal_time - source_right_ascension_radians ) # Pre-compute trig functions cos_gha = xpy.cos(source_greenwich_radians) sin_gha = xpy.sin(source_greenwich_radians) cos_dec = xpy.cos(source_declination_radians) sin_dec = xpy.sin(source_declination_radians) cos_psi = xpy.cos(source_polarization_radians) sin_psi = xpy.sin(source_polarization_radians) # Populate trig matrices. X[...,0] = -cos_psi*sin_gha - sin_psi*cos_gha*sin_dec X[...,1] = -cos_psi*cos_gha + sin_psi*sin_gha*sin_dec X[...,2] = sin_psi*cos_dec Y[...,0] = sin_psi*sin_gha - cos_psi*cos_gha*sin_dec Y[...,1] = sin_psi*cos_gha + cos_psi*sin_gha*sin_dec Y[...,2] = cos_psi*cos_dec # Compute F for each polarization state. F_plus = ( X*xpy.inner(X, detector_response_matrix) - Y*xpy.inner(Y, detector_response_matrix) ).sum(axis=-1) F_cross = ( X*xpy.inner(Y, detector_response_matrix) + Y*xpy.inner(X, detector_response_matrix) ).sum(axis=-1) return F_plus + 1.0j*F_cross
py
1a5279c769c4e481d5e3d5e78057c73d091bb5c3
import pytest from insights.parsers import ParseException from insights.tests import context_wrap from insights.parsers.gluster_vol import GlusterVolInfo TRACKING_VALID = """ Volume Name: test_vol cluster.choose-local: off network.remote-dio: enable performance.low-prio-threads: 32 performance.io-cache: off performance.read-ahead: off performance.quick-read: off nfs.disable: on performance.client-io-threads: off """ TRACKING_INVALID = """ """ MULTIPLE_VOLUMES = """ Volume Name: test_vol Type: Replicate Volume ID: 2c32ed8d-5a07-4a76-a73a-123859556974 Status: Started Snapshot Count: 0 Number of Bricks: 1 x 3 = 3 Transport-type: tcp Bricks: Brick1: 172.17.18.42:/home/brick Brick2: 172.17.18.43:/home/brick Brick3: 172.17.18.44:/home/brick Options Reconfigured: cluster.choose-local: off user.cifs: off features.shard: on cluster.shd-wait-qlength: 10000 cluster.shd-max-threads: 8 cluster.locking-scheme: granular cluster.data-self-heal-algorithm: full cluster.server-quorum-type: server cluster.quorum-type: auto cluster.eager-lock: enable network.remote-dio: enable performance.low-prio-threads: 32 performance.io-cache: off performance.read-ahead: off performance.quick-read: off transport.address-family: inet nfs.disable: on performance.client-io-threads: off Volume Name: test_vol_2 Type: Replicate Volume ID: dd821df9-ee2e-429c-98a0-81b1b794433d Status: Started Snapshot Count: 0 Number of Bricks: 1 x 3 = 3 Transport-type: tcp Bricks: Brick1: 172.17.18.42:/home/brick2 Brick2: 172.17.18.43:/home/brick2 Brick3: 172.17.18.44:/home/brick2 Options Reconfigured: cluster.choose-local: off user.cifs: off features.shard: on cluster.shd-wait-qlength: 10000 cluster.shd-max-threads: 8 cluster.locking-scheme: granular cluster.data-self-heal-algorithm: full cluster.server-quorum-type: server cluster.quorum-type: auto cluster.eager-lock: enable network.remote-dio: enable performance.low-prio-threads: 32 performance.io-cache: off performance.read-ahead: off performance.quick-read: off transport.address-family: inet nfs.disable: on performance.client-io-threads: off """.strip() def test_invalid(): with pytest.raises(ParseException) as e: GlusterVolInfo(context_wrap(TRACKING_INVALID)) assert "Unable to parse gluster volume options: []" in str(e) def test_gluster_volume_options(): parser_result = GlusterVolInfo(context_wrap(TRACKING_VALID)) assert parser_result is not None data = parser_result.data["test_vol"] assert data['network.remote-dio'] == 'enable' assert data['cluster.choose-local'] == 'off' assert data['performance.client-io-threads'] == 'off' assert data['performance.quick-read'] == 'off' assert data['performance.low-prio-threads'] == '32' assert data['performance.io-cache'] == 'off' assert data['performance.read-ahead'] == 'off' assert data['nfs.disable'] == 'on' def test_gluster_multiple_volume_options(): parser_result = GlusterVolInfo(context_wrap(MULTIPLE_VOLUMES)) assert parser_result is not None data = parser_result.data["test_vol"] assert data['network.remote-dio'] == 'enable' assert data['cluster.choose-local'] == 'off' assert data['performance.client-io-threads'] == 'off' assert data['performance.quick-read'] == 'off' assert data['performance.low-prio-threads'] == '32' assert data['performance.io-cache'] == 'off' assert data['performance.read-ahead'] == 'off' assert data['nfs.disable'] == 'on' data = parser_result.data["test_vol_2"] assert data['network.remote-dio'] == 'enable' assert data['cluster.choose-local'] == 'off' assert data['performance.client-io-threads'] == 'off' assert data['performance.quick-read'] == 'off' assert data['performance.low-prio-threads'] == '32' assert data['performance.io-cache'] == 'off' assert data['performance.read-ahead'] == 'off' assert data['nfs.disable'] == 'on'
py
1a527a72f22a1cc205a5e1f6a2d0694f636a0d01
from django.apps import AppConfig class BrevehomeConfig(AppConfig): name = 'brevehome'
py
1a527ae6c3071f42491f8bdc00487ce68c8ef8e3
"""Contain the unit tests related to the views in app ``catalogs``.""" from django.http.request import HttpRequest from django.test import TestCase from teamspirit.catalogs.views import catalog_view from teamspirit.core.models import Address from teamspirit.profiles.models import Personal from teamspirit.users.models import User class CatalogsViewsTestCase(TestCase): """Test the views in the app ``catalogs``.""" def setUp(self): super().setUp() # a user in database self.address = Address.objects.create( label_first="1 rue de l'impasse", label_second="", postal_code="75000", city="Paris", country="France" ) self.personal = Personal.objects.create( phone_number="01 02 03 04 05", address=self.address ) self.user = User.objects.create_user( email="[email protected]", first_name="Toto", password="TopSecret", personal=self.personal ) # log this user in self.client.login(email="[email protected]", password="TopSecret") # a 'get' request self.get_request = HttpRequest() self.get_request.method = 'get' self.get_request.user = self.user def test_catalog_view(self): """Unit test - app ``catalogs`` - view ``catalog_view`` Test the catalog view. """ view = catalog_view response = view(self.get_request) # type is TemplateResponse # render the response content response.render() html = response.content.decode('utf8') self.assertEqual(response.status_code, 200) self.assertTrue(html.startswith('<!DOCTYPE html>')) self.assertIn('<title>Team Spirit - Catalogue</title>', html)
py
1a527ae7f332da4f3d5fd4a3136c9864b2acb7f9
# -*- coding: utf-8 -*- from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('contenttypes', '0002_remove_content_type_name'), ('hs_core', '0020_baseresource_collections'), ] operations = [ migrations.CreateModel( name='FundingAgency', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('object_id', models.PositiveIntegerField()), ('agency_name', models.TextField()), ('award_title', models.TextField(null=True, blank=True)), ('award_number', models.TextField(null=True, blank=True)), ('agency_url', models.URLField(null=True, blank=True)), ('content_type', models.ForeignKey(related_name='hs_core_fundingagency_related', to='contenttypes.ContentType')), ], options={ 'abstract': False, }, ), ]
py
1a527aed81a48794972d0d62e3de69b10e6d49bf
import requests import json from lxml import html from lxml import etree from bs4 import BeautifulSoup import time import numpy import getpass import os clear = lambda: os.system('cls') import json """ Most of these functions work through REST APIs, but due to lack of documentation about some features, this script uses also HTTP request scraping (for example in def get_last_mark()) this is the cause for having two functions for logging in, liucLogin() for loggin through http requests while login() for logging through REST APIs further investigation in APIs documentation should fix this and make the script work ONLY through REST API. Function get_last_mark() works through http scraping, and it requires liucLogin() Please note that the script is working only with students' account. """ #not all urls are from official REST API's endpoints url_login = "https://sol.liuc.it/esse3/auth/Logon.do" url_esiti = 'https://sol.liuc.it/esse3/auth/studente/Appelli/BachecaEsiti.do' url_appelli = 'https://sol.liuc.it/e3rest/api/calesa-service-v1/appelli/' url_login_end = "https://sol.liuc.it/e3rest/api/login/" #average endpoint = url_average + matId (get this from login()) + "/medie" url_average = 'http://sol.liuc.it/e3rest/api/libretto-service-v2/libretti/' #example: ".../e3rest/api/libretto-service-v2/libretti/999/medie" return average of student with matId 999 url_libretto = 'http://sol.liuc.it/e3rest/api/libretto-service-v2/libretti/' #start requests session session = requests.session() session.get(url_login) #login through API #return basic info about the student def login(username1, pwd): response = session.get(url_login_end, auth=(username1, pwd)) user_details_json = json.loads(response.text) user_details = [] matId = (user_details_json["user"]["trattiCarriera"][0]["matId"]) stuId = (user_details_json["user"]["trattiCarriera"][0]["stuId"]) matricola = (user_details_json["user"]["trattiCarriera"][0]["matricola"]) name = (user_details_json["user"]["firstName"]) surname = (user_details_json["user"]["lastName"]) user_details.append(matId) user_details.append(stuId) user_details.append(matricola) user_details.append(name) user_details.append(surname) return user_details #return a matrix with available exams and their details #this function works through JSON REST API def getAppelli(username1, pwd): appelli = session.get(url_appelli, auth=(username1, pwd)) appelli_json = json.loads(appelli.text) appelli_detail = [[]] advanced_details_exam = [[]] #look for exam attributes, so i can search for exams description #first endpoints = exam id #second endopoints = input(exam_id)->output(exam_details) for i in range(len(appelli_json)): id_appello = appelli_json[i]["adDefAppId"] id_corso = appelli_json[i]["cdsDefAppId"] desc_appello = appelli_json[i]["adDes"] appelli_detail.insert(i, [desc_appello, id_appello, id_corso]) #look for exam details, giving as input exam id for i in range(len(appelli_detail) - 1): detail_endpoints = url_appelli + str(appelli_detail[i][2]) + "/" + str(appelli_detail[i][1]) get_exam_info = session.get(detail_endpoints, auth=(username1, pwd)) exam_info_json = json.loads(get_exam_info.text) """ print(exam_info_json) print(detail_endpoints) """ for j in range(len(exam_info_json) - 1): corso = exam_info_json[j]["adDes"] data_appello = exam_info_json[j]["dataInizioApp"] data_inizio = exam_info_json[j]["dataInizioIscr"] data_fine = exam_info_json[j]["dataFineIscr"] tipo_appello = exam_info_json[j]["desApp"] advanced_details_exam.insert((j+i), [corso, data_appello, tipo_appello, data_inizio, data_fine]) return advanced_details_exam #return average and most likely graduation grade def get_media(username1, pwd): matricola_id = login(username1, pwd)[0] personal_url_average = url_average + str(matricola_id) + "/medie" getAverage = session.get(personal_url_average, auth=(username1,pwd)) average_json = json.loads(getAverage.text) average = average_json[1]["media"] votolaurea = average_json[3]["media"] return average, votolaurea #return a matrix in which each line contains [exam name, exam grade] #if an exam has not a grade, return [exam name, "---"] def get_libretto(username1, pwd): libretto = [[]] matricola_id = login(username1, pwd)[0] personal_url_libretto = url_libretto + str(matricola_id) + "/righe/" response = session.get(personal_url_libretto, auth = (username1, pwd)) libretto_json = json.loads(response.text) num_esami_da_dare = 0 for i in range(len(libretto_json)): esame_libretto = libretto_json[i]["adDes"] voto_libretto = libretto_json[i]["esito"]["voto"] if voto_libretto == None: voto_libretto = "---" num_esami_da_dare = num_esami_da_dare + 1 libretto.insert(i, [esame_libretto, voto_libretto]) #adding info about how many exam are finished num_esami_dati = len(libretto_json) - num_esami_da_dare #insert the info in last line of the list esami_dati_da_dare = [num_esami_dati, num_esami_da_dare] return libretto, esami_dati_da_dare #---------------------------------------------------------------------------------------------------------------- def liucLogin(username1, pwd): response = session.get(url_login, auth=(username1, pwd)) #salvo la pagina di scelta carriera tree = etree.HTML(response.text) element = tree.xpath('//*[@id="gu_toolbar_sceltacarriera"]') try: content = etree.tostring(element[0]) url1 = content[108:113].decode('utf-8') print("Accedo all'ultima carriera disponibile...") url_carriera = "https://sol.liuc.it/esse3/auth/studente/SceltaCarrieraStudente.do?stu_id=" + url1 response = session.get(url_carriera, auth=(username1, pwd)) if (response.status_code) == 200: print("Login riuscito. ") else: print("Login non riuscito. ") except: print("Login non riuscito ") #check the last grades def get_last_mark(username1, pwd): response = session.get(url_esiti, auth=(username1,pwd)) html_esiti = BeautifulSoup(response.text, "html.parser") #nome deve essere fixato, non trovo il css selector esatto, non funziona neanche con xpath #controllare documentazione e3rest su esse3 per api json prof_esame_esito = html_esiti.select('td.detail_table:nth-child(3)') data_esame_esito = html_esiti.select('td.detail_table:nth-child(1)') voto_esame_esito = html_esiti.select('td.detail_table:nth-child(5) > form:nth-child(1)') print(len(prof_esame_esito)) esiti = [] quanti_esiti = len(prof_esame_esito) for i in range(quanti_esiti): prof_esame_esito1 = prof_esame_esito[i].get_text() data_esame_esito1 = data_esame_esito[i].get_text() voto_esame_esito1 = voto_esame_esito[i].get_text() info_esito = prof_esame_esito1 + " - " + data_esame_esito1 + " - " + voto_esame_esito1 info_esito = info_esito.replace("\n", "") esiti.append(info_esito) return esiti
py
1a527ba51de84ff9c0bc982f39815da8283ae8ee
#!/usr/bin/env python3 """This example demonstrates using the file token manager for refresh tokens. In order to run this program, you will first need to obtain a valid refresh token. You can use the `obtain_refresh_token.py` example to help. In this example, refresh tokens will be saved into a file `refresh_token.txt` relative to your current working directory. If your current working directory is under version control it is strongly encouraged you add `refresh_token.txt` to the version control ignore list. Usage: EXPORT praw_client_id=<REDDIT_CLIENT_ID> EXPORT praw_client_secret=<REDDIT_CLIENT_SECRET> python3 use_file_token_manager.py """ import asyncio import os import sys import aiofiles import asyncpraw from asyncpraw.util.token_manager import FileTokenManager REFRESH_TOKEN_FILENAME = "refresh_token.txt" async def initialize_refresh_token_file(): if os.path.isfile(REFRESH_TOKEN_FILENAME): return refresh_token = input("Initial refresh token value: ") async with aiofiles.open(REFRESH_TOKEN_FILENAME, "w") as fp: await fp.write(refresh_token) async def main(): if "praw_client_id" not in os.environ: sys.stderr.write("Environment variable ``praw_client_id`` must be defined\n") return 1 if "praw_client_secret" not in os.environ: sys.stderr.write( "Environment variable ``praw_client_secret`` must be defined\n" ) return 1 await initialize_refresh_token_file() refresh_token_manager = FileTokenManager(REFRESH_TOKEN_FILENAME) async with asyncpraw.Reddit( token_manager=refresh_token_manager, user_agent="use_file_token_manager/v0 by u/bboe", ) as reddit: scopes = await reddit.auth.scopes() if scopes == {"*"}: print(f"{await reddit.user.me()} is authenticated with all scopes") elif "identity" in scopes: print( f"{await reddit.user.me()} is authenticated with the following scopes:" f" {scopes}" ) else: print(f"You are authenticated with the following scopes: {scopes}") if __name__ == "__main__": loop = asyncio.get_event_loop() sys.exit(loop.run_until_complete(main()))
py
1a527bbd1e25dd54f88d23e052f7e9793ed48834
import time from rdfframes.knowledge_graph import KnowledgeGraph from rdfframes.utils.constants import JoinType from rdfframes.client.http_client import HttpClientDataFormat, HttpClient def movies_with_american_actors_cache(): graph = KnowledgeGraph(graph_name='dbpedia') dataset = graph.feature_domain_range('dbpp:starring', 'movie', 'actor')\ .expand('actor', [('dbpp:birthPlace', 'actor_country'), ('rdfs:label', 'actor_name')])\ .expand('movie', [('rdfs:label', 'movie_name'), ('dcterms:subject', 'subject'), ('dbpp:country', 'movie_country'), ('dbpp:genre', 'genre', True)])\ .cache() # 26928 Rows. -- 4273 msec. american_actors = dataset.filter({'actor_country': ['regex(str(?actor_country), "USA")']}) # 1606 Rows. -- 7659 msec. prolific_actors = dataset.group_by(['actor'])\ .count('movie', 'movie_count', unique=True).filter({'movie_count': ['>= 200']}) #663,769 Rows. -- 76704 msec. movies = american_actors.join(prolific_actors, join_col_name1='actor', join_type=JoinType.OuterJoin)\ .join(dataset, join_col_name1='actor') #.select_cols(['movie_name', 'actor_name', 'genre']) sparql_query = movies.to_sparql() print(sparql_query) def movies_with_american_actors(): graph = KnowledgeGraph(graph_name='dbpedia') dataset1 = graph.feature_domain_range('dbpp:starring', 'movie1', 'actor')\ .expand('actor', [('dbpp:birthPlace', 'actor_country1'), ('rdfs:label', 'actor_name1')])\ .expand('movie1', [('rdfs:label', 'movie_name1'), ('dcterms:subject', 'subject1'), ('dbpp:country', 'movie_country1'), ('dbpp:genre', 'genre1', True)]) # 26928 Rows. -- 4273 msec. american_actors = dataset1.filter({'actor_country1': ['regex(str(?actor_country1), "USA")']}) # 1606 Rows. -- 7659 msec. dataset2 = graph.feature_domain_range('dbpp:starring', 'movie2', 'actor')\ .expand('actor', [('dbpp:birthPlace', 'actor_country2'), ('rdfs:label', 'actor_name2')])\ .expand('movie2', [('rdfs:label', 'movie_name2'), ('dcterms:subject', 'subject2'), ('dbpp:country', 'movie_country2'), ('dbpp:genre', 'genre2', True)]) prolific_actors = dataset2.group_by(['actor'])\ .count('movie2', 'movie_count2', unique=True).filter({'movie_count2': ['>= 200']}) #663,769 Rows. -- 76704 msec. movies = american_actors.join(prolific_actors, join_col_name1='actor', join_type=JoinType.OuterJoin)\ # .join(dataset, join_col_name1='actor') #.select_cols(['movie_name', 'actor_name', 'genre']) sparql_query = movies.to_sparql() print(sparql_query) def movies_with_american_actors_optional(): graph = KnowledgeGraph(graph_uri='http://dbpedia.org', prefixes={'dcterms': 'http://purl.org/dc/terms/', 'rdfs': 'http://www.w3.org/2000/01/rdf-schema#', 'dbpprop': 'http://dbpedia.org/property/', 'dbpr': 'http://dbpedia.org/resource/'}) dataset = graph.feature_domain_range('dbpprop:starring', domain_col_name='movie', range_col_name='actor')\ .expand('actor', [ RDFPredicate('dbpprop:birthPlace', 'actor_country', optional=True), RDFPredicate('rdfs:label', 'actor_name', optional=True)])\ .expand('movie', [ RDFPredicate('rdfs:label', 'movie_name', optional=True), RDFPredicate('dcterms:subject', 'subject', optional=True), RDFPredicate('dbpprop:country', 'movie_country', optional=True)])\ .cache() # 26928 Rows. -- 4273 msec. american_actors = dataset.filter({'actor_country': ['regex(str(?actor_country), "USA")']}) # 1606 Rows. -- 7659 msec. prolific_actors = dataset.group_by(['actor'])\ .count('movie', 'movie_count', unique=True).filter({'movie_count': ['>= 20', '<=30']}) # 663769 Rows. -- 76511 msec. movies = american_actors.join(prolific_actors, join_col_name1='actor', join_type=JoinType.OuterJoin)\ .join(dataset, join_col_name1='actor') sparql_query = movies.to_sparql() print(sparql_query) endpoint = 'http://10.161.202.101:8890/sparql/' output_format = HttpClientDataFormat.PANDAS_DF client = HttpClient(endpoint_url=endpoint, return_format=output_format) df = dataset.execute(client, return_format=output_format) print(df) #movies_with_american_actors_optional() start = time.time() movies_with_american_actors() duration = time.time()-start print("Duration = {} sec".format(duration))
py
1a527bd1f8176fffb7fd44bef160286ce9a5a7e9
# Generated by Django 3.0.1 on 2020-01-29 08:44 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('characters', '0005_merge_20200126_2005'), ] operations = [ migrations.RenameField( model_name='character', old_name='skill_points', new_name='growth_points', ), migrations.RenameField( model_name='character', old_name='force', new_name='strength', ), ]
py
1a527cf75f5b605ed5e27d485e83caf789e261a1
### Noisy DQN Procgen Config ### env = { # "name": it should be defined in the command. ex) python main.py --config config.AGENT.procgen --env.name coinrun "render": False, "gray_img": True, "stack_frame": 4, "no_op": False, "reward_clip": True, } agent = { "name": "noisy", "network": "noisy", "head": "cnn", "gamma": 0.99, "explore_ratio": 0.1, "buffer_size": 1000000, "batch_size": 32, "start_train_step": 100000, "target_update_period": 10000, # noisy "noise_type": "factorized", # [independent, factorized] } optim = { "name": "adam", "lr": 2.5e-4, } train = { "training": True, "load_path": None, "run_step": 30000000, "print_period": 10000, "save_period": 100000, "eval_iteration": 5, "record": True, "record_period": 300000, # distributed setting "update_period": 32, "num_workers": 16, }
py
1a527dbfccf56c328622797c6237de80cc07bc1b
from django.utils.version import get_version VERSION = (1, 8, 5, 'final', 0) __version__ = get_version(VERSION) def setup(): """ Configure the settings (this happens as a side effect of accessing the first setting), configure logging and populate the app registry. """ from django.apps import apps from django.conf import settings from django.utils.log import configure_logging configure_logging(settings.LOGGING_CONFIG, settings.LOGGING) apps.populate(settings.INSTALLED_APPS)
py
1a527e84a49c34ec422fa969b713bdc72fce7787
#!/usr/bin/env python3 """ Make satellite test data """ import os from pathlib import Path import numcodecs import pandas as pd import xarray as xr import nowcasting_dataset START = pd.Timestamp("2020-04-01T12:00") END = pd.Timestamp("2020-04-01T14:00") OUTPUT_PATH = Path(os.path.dirname(nowcasting_dataset.__file__)).parent / "tests" / "data" print(f"{OUTPUT_PATH=}") # HRV Path HRV_SAT_FILENAME = ( "/mnt/storage_ssd_8tb/data/ocf/solar_pv_nowcasting/nowcasting_dataset_pipeline/" "satellite/EUMETSAT/SEVIRI_RSS/zarr/v3/eumetsat_seviri_hrv_uk.zarr" ) # Non-HRV path SAT_FILENAME = ( "/mnt/storage_ssd_8tb/data/ocf/solar_pv_nowcasting/nowcasting_dataset_pipeline/" "satellite/EUMETSAT/SEVIRI_RSS/zarr/v3/eumetsat_seviri_uk.zarr" ) def generate_satellite_test_data(): """Main function to make satelllite test data""" # Create HRV data output_filename = OUTPUT_PATH / "hrv_sat_data.zarr" print("Opening", HRV_SAT_FILENAME) print("Writing satellite tests data to", output_filename) # This opens all the HRV satellite data hrv_sat_data = xr.open_mfdataset( HRV_SAT_FILENAME, chunks={}, mode="r", engine="zarr", concat_dim="time", combine="nested" ) # v3 of the HRV data doesn't use variables. Instead the HRV data is in the 'data' DataArray. # hrv_sat_data = hrv_sat_data.sel(variable=["HRV"], time=slice(START, END)) # just take a bit of the time, to keep size of file now hrv_sat_data = hrv_sat_data.sel(time=slice(START, END)) # Adds compression and chunking encoding = { "data": {"compressor": numcodecs.get_codec(dict(id="bz2", level=5))}, "time": {"units": "nanoseconds since 1970-01-01"}, } # Write the HRV data to disk hrv_sat_data.to_zarr( output_filename, mode="w", consolidated=True, encoding=encoding, compute=True ) # Now do the exact same with the non-HRV data output_filename = OUTPUT_PATH / "sat_data.zarr" print("Writing satellite tests data to", output_filename) sat_data = xr.open_mfdataset( SAT_FILENAME, chunks={}, mode="r", engine="zarr", concat_dim="time", combine="nested" ) sat_data = sat_data.sel(variable=["IR_016"], time=slice(START, END)) sat_data.to_zarr(output_filename, mode="w", consolidated=True, encoding=encoding, compute=True) if __name__ == "__main__": generate_satellite_test_data()
py
1a527ea10789891b3e7f00bca604dcc7e475c074
import pdf_to_json as p2j import json url = "file:data/multilingual/Latn.BAM/Mono_16/udhr_Latn.BAM_Mono_16.pdf" lConverter = p2j.pdf_to_json.pdf_to_json_converter() lConverter.mImageHashOnly = True lDict = lConverter.convert(url) print(json.dumps(lDict, indent=4, ensure_ascii=False, sort_keys=True))
py
1a527ec7e10e041cbc2c574b15f98359341d8145
from primitiv import Device from primitiv import tensor_functions as tF from primitiv.devices import Naive import numpy as np import unittest class TensorFunctionsTest(unittest.TestCase): @classmethod def setUpClass(cls): pass @classmethod def tearDownClass(cls): pass def setUp(self): self.device = Naive() Device.set_default(self.device) self.a = np.array([[1, 2], [3, 4]], np.float32) self.b = np.array([[1, 1], [4, 8]], np.float32) def tearDown(self): pass def test_tensor_pos(self): x = tF.input(self.a) y = tF.input(self.b) self.assertTrue(((+x).to_ndarrays()[0] == self.a).all()) def test_tensor_neg(self): x = tF.input(self.a) y = tF.input(self.b) self.assertTrue(((-x).to_ndarrays()[0] == -self.a).all()) def test_tensor_add(self): x = tF.input(self.a) y = tF.input(self.b) self.assertTrue(((x + y).to_ndarrays()[0] == np.array([[2, 3], [7, 12]])).all()) self.assertTrue(((x + 2).to_ndarrays()[0] == np.array([[3, 4], [5, 6]])).all()) self.assertTrue(((2 + x).to_ndarrays()[0] == np.array([[3, 4], [5, 6]])).all()) def test_tensor_sub(self): x = tF.input(self.a) y = tF.input(self.b) self.assertTrue(((x - y).to_ndarrays()[0] == np.array([[0, 1], [-1, -4]])).all()) self.assertTrue(((x - 2).to_ndarrays()[0] == np.array([[-1, 0], [1, 2]])).all()) self.assertTrue(((2 - x).to_ndarrays()[0] == np.array([[1, 0], [-1, -2]])).all()) def test_tensor_mul(self): x = tF.input(self.a) y = tF.input(self.b) self.assertTrue(((x * y).to_ndarrays()[0] == np.array([[1, 2], [12, 32]])).all()) self.assertTrue(((x * 2).to_ndarrays()[0] == np.array([[2, 4], [6, 8]])).all()) self.assertTrue(((2 * x).to_ndarrays()[0] == np.array([[2, 4], [6, 8]])).all()) def test_tensor_matmul(self): x = tF.input(self.a) y = tF.input(self.b) self.assertTrue(((x @ y).to_ndarrays()[0] == np.array([[9, 17], [19, 35]])).all()) self.assertRaises(TypeError, lambda: x @ 2) self.assertRaises(TypeError, lambda: 2 @ x) def test_tensor_truediv(self): x = tF.input(self.a) y = tF.input(self.b) self.assertTrue(((x / y).to_ndarrays()[0] == np.array([[1, 2], [0.75, 0.5]])).all()) self.assertTrue(((x / 2).to_ndarrays()[0] == np.array([[0.5, 1], [1.5, 2]])).all()) self.assertTrue(((2 / y).to_ndarrays()[0] == np.array([[2, 2], [0.5, 0.25]])).all()) def test_tensor_pow(self): x = tF.input(self.a) y = tF.input(self.b) self.assertTrue(np.isclose((x ** y).to_ndarrays()[0], np.array([[1, 2], [81, 65536]])).all()) self.assertTrue(np.isclose((x ** 2).to_ndarrays()[0], np.array([[1, 4], [9, 16]])).all()) self.assertTrue(np.isclose((2 ** x).to_ndarrays()[0], np.array([[2, 4], [8, 16]])).all()) self.assertTrue(np.isclose((x ** -2).to_ndarrays()[0], np.array([[1, 1/4], [1/9, 1/16]])).all()) input_arr = np.array([1, -1, 3, -3, 5, -5]) x = tF.input(input_arr) self.assertTrue(((x ** 6).to_ndarrays()[0] == np.array([1, 1, 729, 729, 15625, 15625])).all()) self.assertTrue(((x ** 9).to_ndarrays()[0] == np.array([1, -1, 19683, -19683, 1953125, -1953125])).all()) input_arr = np.array([1, -1]) x = tF.input(input_arr) self.assertTrue(((x ** 0x7fffffff).to_ndarrays()[0] == np.array([1, -1])).all()) self.assertTrue(((x ** -0x80000000).to_ndarrays()[0] == np.array([1, 1])).all()) self.assertRaises(TypeError, lambda: pow(x, y, 2)) def test_tensor_iadd(self): x = tF.input(self.a) y = tF.input(self.b) x_tmp = x x += y self.assertIs(x, x_tmp) self.assertTrue((x.to_ndarrays()[0] == np.array([[2, 3], [7, 12]])).all()) def test_tensor_isub(self): x = tF.input(self.a) y = tF.input(self.b) x_tmp = x x -= y self.assertIs(x, x_tmp) self.assertTrue((x.to_ndarrays()[0] == np.array([[0, 1], [-1, -4]])).all()) def test_tensor_imul(self): x = tF.input(self.a) x_tmp = x x *= 2 self.assertIs(x, x_tmp) self.assertTrue((x.to_ndarrays()[0] == np.array([[2, 4], [6, 8]])).all())
py
1a527ee7e3067f29fbfe48463fc348e87c7d4500
#!/usr/bin/env python # -*- coding: utf-8 -*- """ test_isafe ---------------------------------- Tests for `isafe` module. """ import unittest from isafe import isafe class Testisafe(unittest.TestCase): def setUp(self): pass def test_something(self): pass def tearDown(self): pass if __name__ == '__main__': unittest.main()
py
1a527efdbdf9edd65b5002d1f5d616437145c746
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # https://www.bggofurther.com/2015/01/create-an-interactive-command-line-menu-using-python/ # This tool won't work in Visual Studio Code (as an example). # I don't know why this is the case but just run it in cmd.exe import sys import os import collections import ctypes from subprocess import Popen, PIPE import locale import gui # <-- change name !! import header from hurry.filesize import alternative, size # pip install hurry.filesize from prompt_toolkit import prompt from prompt_toolkit.styles import style_from_dict from prompt_toolkit.token import Token # set locale to default to get thousands separators locale.setlocale(locale.LC_ALL, '') # Pointer to large unsigned integer PULARGE_INTEGER = ctypes.POINTER(ctypes.c_ulonglong) kernel32 = ctypes.WinDLL('kernel32', use_last_error=True) kernel32.GetDiskFreeSpaceExW.argtypes = ( ctypes.c_wchar_p,) + (PULARGE_INTEGER,) * 3 def get_size(start_path='.'): """ https://stackoverflow.com/questions/1392413/calculating-a-directory-size-using-python """ total_size = 0 for dirpath, dirnames, filenames in os.walk(start_path): for f in filenames: fp = os.path.join(dirpath, f) total_size += os.path.getsize(fp) return size(total_size, system=alternative) def get_size2(string): value = size(string, system=alternative) return value def cutit(s, n): """ cute function that removes chars s = string n = char to remove """ return s[n:] class UsageTuple(collections.namedtuple('UsageTuple', 'total, used, free')): def __str__(self): # Add thousands separator to numbers displayed return '{}, {}, {}'.format(*self) def disk_usage(path): try: # allows str or bytes (or os.PathLike in Python 3.6+) path = os.fsdecode(path) except AttributeError: # fsdecode() not added until Python 3.2 pass # Define variables to receive results when passed as "by reference" arguments _, total, free = ctypes.c_ulonglong(), ctypes.c_ulonglong(), ctypes.c_ulonglong() success = kernel32.GetDiskFreeSpaceExW( path, ctypes.byref(_), ctypes.byref(total), ctypes.byref(free)) if not success: error_code = ctypes.get_last_error() if not success: windows_error_message = ctypes.FormatError(error_code) raise ctypes.WinError(error_code, '{} {!r}'.format( windows_error_message, path)) used = total.value - free.value return UsageTuple(total.value, used, free.value) def drive_parser(letter): total, used, free = disk_usage(letter) total = get_size2(total) free = get_size2(free) return free, total def get_bottom_toolbar_tokens(cli): free, total = drive_parser('D:/') return [(Token.Toolbar, ' app folder: {} patch folder: {} SDCard: {} of {} free'.format(get_size('app'), get_size('patch'), free, total))] def input(string): # it's intendet to redefine input() XD style = style_from_dict({ Token.Toolbar: '#ffffff bg:#333333', }) output = prompt( string, get_bottom_toolbar_tokens=get_bottom_toolbar_tokens, style=style) return output # Main definition - constants menu_actions = {} sub_menu = {} selection = [] name, titleid = gui.send_variables() # ======================= # MENUS FUNCTIONS # ======================= def clearscreen(numlines=100): """ Clear the console.numlines is an optional argument used only as a fall-back. """ # Thanks to Steven D'Aprano, http://www.velocityreviews.com/forums if os.name == "posix": # Unix/Linux/MacOS/BSD/etc os.system('clear') elif os.name in ("nt", "dos", "ce"): # DOS/Windows os.system('CLS') else: # Fallback for other operating systems. print('\n' * numlines) def syscmd(cmd): """ executes the given command with a better way than using os.system() (I don't know why but it seems to be bad practice !) It also returns the exe output instead of printing it :) """ cmoa = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE) output, error = cmoa.communicate() return output, error # Main menu def main_menu(): clearscreen() print("1.Start the download") print("2.Update Database") print("3.Search for Games") print("4.Load the queue from 'input.txt'") print("5.View the queue") print("6.Exit") choice = input(">> ") exec_menu(choice) return # Execute menu def exec_menu(choice): clearscreen() ch = choice.lower() if ch == '': menu_actions['main_menu']() else: try: menu_actions[ch]() except KeyError: print("Invalid selection, please try again.\n") menu_actions['main_menu']() return def start_download(): clearscreen() if selection == []: print("Nothing to download.") input('\n<press enter>') menu_actions['main_menu']() else: for tid in selection: header.start_download(tid, 'psv') input('\n<press enter>') menu_actions['main_menu']() def update_database(): clearscreen() header.initial_setup() input('\n<press enter>') menu_actions['main_menu']() def search(): search_input, selected = gui.start_searching(None) for item in selected: selection.append(item) menu_actions['main_menu']() def load(): clearscreen() if header.exists('input.txt') is False: print("Enter the Filename:") filename = header.input_txt(input(">> ")) else: filename = 'input.txt' list1 = header.input_txt(filename) for item in list1: selection.append(item) input('\n<press enter>') menu_actions['main_menu']() def view(): for item in selection: position = titleid.index(item) print(name[position], '[' + item + ']') input('\n<press enter>') menu_actions['main_menu']() # Exit program def exit(): sys.exit() # ======================= # MENUS DEFINITIONS # ======================= # Menu definition menu_actions = { 'main_menu': main_menu, '1': start_download, '2': update_database, '3': search, '4': load, '5': view, '6': exit, } sub_menu = { 'home': search, } # ======================= # MAIN PROGRAM # ======================= # Main Program if __name__ == "__main__": # Launch main menu main_menu()
py
1a52800420148cfb471c540c5a229618dfaf47ae
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- import unittest from azure.cli.testsdk import ScenarioTest, record_only import json import os id_sql = '/subscriptions/da364f0f-307b-41c9-9d47-b7413ec45535/resourceGroups/pstestwlRG1bca8/providers/Microsoft.Compute/virtualMachines/pstestwlvm1bca8' item_id_sql = '/Subscriptions/da364f0f-307b-41c9-9d47-b7413ec45535/resourceGroups/pstestwlRG1bca8/providers/Microsoft.RecoveryServices/vaults/pstestwlRSV1bca8/backupFabrics/Azure/protectionContainers/vmappcontainer;compute;pstestwlrg1bca8;pstestwlvm1bca8/protectedItems/sqldatabase;mssqlserver;testdb' sub_sql = 'da364f0f-307b-41c9-9d47-b7413ec45535' rg_sql = 'pstestwlRG1bca8' vault_sql = 'pstestwlRSV1bca8' container_sql = 'VMAppContainer;Compute;pstestwlRG1bca8;pstestwlvm1bca8' container_friendly_sql = 'pstestwlvm1bca8' item_auto_sql = 'SQLInstance;mssqlserver' item1_sql = 'SQLDataBase;MSSQLSERVER;testdb' item2_sql = 'msdb' backup_entity_friendly_name_sql = 'MSSQLSERVER/testdb1 [pstestwlvm1bca8]' class BackupTests(ScenarioTest, unittest.TestCase): # SQL workload tests start here # Please make sure you have the following setup in place before running the tests - # For the tests using pstestwlvm1bca8 and pstestwlRSV1bca8 - # Each test will register the container at the start and unregister at the end of the test # Make sure that the container is not already registered since the start of the test # For the tests using PSTestVM664243 and hiagaSrcVault - # Each test will register the container at the start and unregister at the end of the test # Make sure that the container is not already registered since the start of the test # Note: Archive and CRR test uses different subscription. Please comment them out when running the whole test suite at once. And run those tests individually. @record_only() def test_backup_wl_sql_container(self): self.kwargs.update({ 'vault': "hiagaSrcVault", 'name': "VMAppContainer;Compute;hiagaSrcRG2;PSTestVM664243", 'fname': "PSTestVM664243", 'rg': "hiagaSrcRG", 'wt': 'MSSQL', 'sub': sub_sql, 'id': "/subscriptions/da364f0f-307b-41c9-9d47-b7413ec45535/resourceGroups/HIAGASRCRG2/providers/Microsoft.Compute/virtualMachines/PSTestVM664243" }) self.cmd('backup container register -v {vault} -g {rg} --backup-management-type AzureWorkload --workload-type {wt} --resource-id {id} ') self.cmd('backup container list -v {vault} -g {rg} --backup-management-type AzureWorkload', checks=[ self.check("length([?name == '{name}'])", 1)]) container_json = self.cmd('backup container show -n {name} -v {vault} -g {rg} --backup-management-type AzureWorkload', checks=[ self.check('properties.friendlyName', '{fname}'), self.check('properties.healthStatus', 'Healthy'), self.check('properties.registrationStatus', 'Registered'), self.check('resourceGroup', '{rg}') ]).get_output_in_json() self.kwargs['container_name'] = container_json['name'] self.cmd('backup container show -n {container_name} -v {vault} -g {rg} --backup-management-type AzureWorkload', checks=[ self.check('properties.friendlyName', '{fname}'), self.check('properties.healthStatus', 'Healthy'), self.check('properties.registrationStatus', 'Registered'), self.check('name', '{container_name}'), self.check('resourceGroup', '{rg}') ]).get_output_in_json() self.assertIn(self.kwargs['vault'].lower(), container_json['id'].lower()) self.assertIn(self.kwargs['name'].lower(), container_json['name'].lower()) self.cmd('backup container list -v {vault} -g {rg} --backup-management-type AzureWorkload', checks=[ self.check("length([?properties.friendlyName == '{fname}'])", 1)]) self.cmd('backup container re-register -v {vault} -g {rg} --backup-management-type AzureWorkload --workload-type {wt} -y --container-name {name}') self.cmd('backup container list -v {vault} -g {rg} --backup-management-type AzureWorkload', checks=[ self.check("length([?name == '{name}'])", 1)]) self.cmd('backup container unregister -v {vault} -g {rg} -c {name} -y') self.cmd('backup container list -v {vault} -g {rg} --backup-management-type AzureWorkload', checks=[ self.check("length([?name == '{name}'])", 0)]) @record_only() def test_backup_wl_sql_policy(self): self.kwargs.update({ 'vault': vault_sql, 'name': container_sql, 'fname': container_friendly_sql, 'policy': 'HourlyLogBackup', 'wt': 'MSSQL', 'sub': sub_sql, 'default': 'HourlyLogBackup', 'rg': rg_sql, 'item': item1_sql, 'id': id_sql, 'item_id': item_id_sql, 'pit': 'SQLDataBase', 'policy_new': self.create_random_name('clitest-policy', 24) }) self.kwargs['policy1_json'] = self.cmd('backup policy show -g {rg} -v {vault} -n {policy}', checks=[ self.check('name', '{policy}'), self.check('resourceGroup', '{rg}') ]).get_output_in_json() self.kwargs['policy_json'] = json.dumps(self.kwargs['policy1_json'], separators=(',', ':')).replace('\'', '\\\'').replace('"', '\\"') self.cmd("backup policy create -g {rg} -v {vault} --policy {policy_json} --backup-management-type AzureWorkload --workload-type {wt} --name {policy_new}", checks=[ self.check('name', '{policy_new}'), self.check('resourceGroup', '{rg}') ]) self.cmd('backup policy list -g {rg} -v {vault}', checks=[ self.check("length([?name == '{default}'])", 1), self.check("length([?name == '{policy}'])", 1), self.check("length([?name == '{policy_new}'])", 1) ]) self.kwargs['policy1_json']['properties']['settings']['isCompression'] = 'true' self.kwargs['policy1_json']['properties']['settings']['issqlcompression'] = 'true' self.kwargs['policy1_json'] = json.dumps(self.kwargs['policy1_json'], separators=(',', ':')).replace('\'', '\\\'').replace('"', '\\"') self.cmd("backup policy set -g {rg} -v {vault} --policy {policy1_json} -n {policy_new}", checks=[ self.check('name', '{policy_new}'), self.check('resourceGroup', '{rg}') ]) self.cmd("backup policy set -g {rg} -v {vault} --backup-management-type AzureWorkload --fix-for-inconsistent-items -n {policy_new}", checks=[ self.check('name', '{policy_new}'), self.check('resourceGroup', '{rg}') ]) self.cmd('backup policy show -g {rg} -v {vault} -n {policy_new}', checks=[ self.check('name', '{policy_new}'), self.check('resourceGroup', '{rg}') ]) self.cmd('backup policy delete -g {rg} -v {vault} -n {policy_new}') self.cmd('backup policy list -g {rg} -v {vault}', checks=[ self.check("length([?name == '{default}'])", 1), self.check("length([?name == '{policy}'])", 1), self.check("length([?name == '{policy_new}'])", 0) ]) @record_only() def test_backup_wl_sql_protectable_item(self): self.kwargs.update({ 'vault': vault_sql, 'name': container_sql, 'fname': container_friendly_sql, 'policy': 'HourlyLogBackup', 'wt': 'MSSQL', 'sub': sub_sql, 'default': 'HourlyLogBackup', 'rg': rg_sql, 'item': item1_sql, 'id': id_sql, 'item_id': item_id_sql, 'pit': 'SQLDataBase', 'protectable_item_name': 'testdb', 'pit_hana': 'SAPHanaDatabase' }) self.cmd('backup container register -v {vault} -g {rg} --backup-management-type AzureWorkload --workload-type {wt} --resource-id {id}') self.cmd('backup container list -v {vault} -g {rg} --backup-management-type AzureWorkload', checks=[ self.check("length([?name == '{name}'])", 1)]) self.kwargs['container1'] = self.cmd('backup container show -n {name} -v {vault} -g {rg} --query properties.friendlyName --backup-management-type AzureWorkload').get_output_in_json() self.cmd('backup protectable-item list -g {rg} --vault-name {vault} --workload-type {wt}', checks=[ self.check("length([?properties.friendlyName == '{protectable_item_name}'])", 1) ]) self.cmd('backup protectable-item show -g {rg} --vault-name {vault} --name {protectable_item_name} --workload-type {wt} --protectable-item-type {pit} --server-name {fname}', checks=[ self.check('properties.friendlyName', '{protectable_item_name}'), self.check('properties.protectableItemType', '{pit}'), self.check('properties.serverName', '{fname}'), self.check('resourceGroup', '{rg}') ]) self.cmd('backup container unregister -v {vault} -g {rg} -c {name} -y') self.cmd('backup container list -v {vault} -g {rg} --backup-management-type AzureWorkload', checks=[ self.check("length([?name == '{name}'])", 0)]) @record_only() def test_backup_wl_sql_rp(self): resource_group = rg_sql.lower() self.kwargs.update({ 'vault': vault_sql, 'name': container_sql, 'rg': resource_group, 'fname': container_friendly_sql, 'policy': 'HourlyLogBackup', 'wt': 'MSSQL', 'sub': sub_sql, 'item': item1_sql, 'pit': 'SQLDatabase', 'item_id': item_id_sql, 'id': id_sql, 'fitem': 'testdb' }) self.cmd('backup container register -v {vault} -g {rg} --backup-management-type AzureWorkload --workload-type {wt} --resource-id {id}') self.cmd('backup container list -v {vault} -g {rg} --backup-management-type AzureWorkload', checks=[ self.check("length([?name == '{name}'])", 1)]) self.cmd('backup protection enable-for-azurewl -v {vault} -g {rg} -p {policy} --protectable-item-type {pit} --protectable-item-name {item} --server-name {fname} --workload-type {wt}', checks=[ self.check("properties.entityFriendlyName", '{fitem}'), self.check("properties.operation", "ConfigureBackup"), self.check("properties.status", "Completed"), self.check("resourceGroup", '{rg}') ]) self.kwargs['container1'] = self.cmd('backup container show -n {name} -v {vault} -g {rg} --backup-management-type AzureWorkload --query name').get_output_in_json() self.cmd('backup recoverypoint list -g {rg} -v {vault} -c {name} -i {item} --workload-type {wt} --query [].name', checks=[ self.check("length(@)", 1) ]) rp1_json = self.cmd('backup recoverypoint show-log-chain -g {rg} -v {vault} -c {name} -i {item} --workload-type {wt}').get_output_in_json() self.assertIn(vault_sql.lower(), rp1_json[0]['id'].lower()) self.assertIn(container_sql.lower(), rp1_json[0]['id'].lower()) rp2_json = self.cmd('backup recoverypoint show-log-chain -g {rg} -v {vault} -c {name} -i {item} --workload-type {wt}').get_output_in_json() self.assertIn(vault_sql.lower(), rp2_json[0]['id'].lower()) self.assertIn(container_sql.lower(), rp2_json[0]['id'].lower()) self.cmd('backup protection disable -v {vault} -g {rg} -c {container1} --backup-management-type AzureWorkload --workload-type {wt} -i {item} -y --delete-backup-data true') self.cmd('backup container unregister -v {vault} -g {rg} -c {name} -y') self.cmd('backup container list -v {vault} -g {rg} --backup-management-type AzureWorkload', checks=[ self.check("length([?name == '{name}'])", 0)]) @record_only() def test_backup_wl_sql_auto_protection(self): self.kwargs.update({ 'vault': vault_sql, 'name': container_sql, 'fname': container_friendly_sql, 'policy': 'HourlyLogBackup', 'wt': 'MSSQL', 'sub': sub_sql, 'default': 'HourlyLogBackup', 'rg': rg_sql, 'item': item_auto_sql, 'fitem': item_auto_sql.split(';')[-1], 'id': id_sql, 'item_id': item_id_sql, 'pit': 'SQLInstance', 'entityFriendlyName': backup_entity_friendly_name_sql }) self.cmd('backup container register -v {vault} -g {rg} --backup-management-type AzureWorkload --workload-type {wt} --resource-id {id}') self.cmd('backup container list -v {vault} -g {rg} --backup-management-type AzureWorkload', checks=[ self.check("length([?name == '{name}'])", 1)]) self.cmd('backup protection auto-enable-for-azurewl -v {vault} -g {rg} -p {policy} --protectable-item-name {item} --protectable-item-type {pit} --server-name {fname} --workload-type {wt}') protectable_item_json = self.cmd('backup protectable-item show -v {vault} -g {rg} -n {item} --protectable-item-type {pit} --server-name {fname} --workload-type {wt}', checks=[ self.check("properties.isAutoProtected", True)]).get_output_in_json() self.assertIn(self.kwargs['policy'], protectable_item_json['properties']['autoProtectionPolicy']) self.cmd('backup protection auto-disable-for-azurewl -v {vault} -g {rg} --protectable-item-name {item} --protectable-item-type {pit} --server-name {fname} --workload-type {wt}') self.cmd('backup protectable-item show -v {vault} -g {rg} -n {item} --protectable-item-type {pit} --server-name {fname} --workload-type {wt}', checks=[ self.check("properties.isAutoProtected", False), self.check("properties.autoProtectionPolicy", None)]) self.cmd('backup container unregister -v {vault} -g {rg} -c {name} -y') self.cmd('backup container list -v {vault} -g {rg} --backup-management-type AzureWorkload', checks=[ self.check("length([?name == '{name}'])", 0)]) @record_only() def test_backup_wl_sql_item(self): resource_group = rg_sql.lower() self.kwargs.update({ 'vault': vault_sql, 'name': container_sql, 'rg': resource_group, 'fname': container_friendly_sql, 'policy': 'HourlyLogBackup', 'wt': 'MSSQL', 'sub': sub_sql, 'item': item1_sql, 'pit': 'SQLDatabase', 'item_id': item_id_sql, 'id': id_sql, 'fitem': 'testdb' }) self.cmd('backup container register -v {vault} -g {rg} --backup-management-type AzureWorkload --workload-type {wt} --resource-id {id}') self.cmd('backup container list -v {vault} -g {rg} --backup-management-type AzureWorkload', checks=[ self.check("length([?name == '{name}'])", 1)]) self.cmd('backup protection enable-for-azurewl -v {vault} -g {rg} -p {policy} --protectable-item-type {pit} --protectable-item-name {item} --server-name {fname} --workload-type {wt}') self.kwargs['container1'] = self.cmd('backup container show -n {name} -v {vault} -g {rg} --backup-management-type AzureWorkload --query name').get_output_in_json() item1_json = self.cmd('backup item show -g {rg} -v {vault} -c {name} -n {item} --backup-management-type AzureWorkload --workload-type {wt}', checks=[ self.check('properties.friendlyName', '{fitem}'), self.check('properties.protectedItemHealthStatus', 'IRPending'), self.check('properties.protectionState', 'IRPending'), self.check('properties.protectionStatus', 'Healthy'), self.check('resourceGroup', '{rg}') ]).get_output_in_json() self.assertIn(self.kwargs['vault'].lower(), item1_json['id'].lower()) self.assertIn(self.kwargs['fname'].lower(), item1_json['properties']['containerName'].lower()) self.assertIn(self.kwargs['fname'].lower(), item1_json['properties']['sourceResourceId'].lower()) self.assertIn(self.kwargs['policy'].lower(), item1_json['properties']['policyId'].lower()) self.kwargs['container1_fullname'] = self.cmd('backup container show -n {name} -v {vault} -g {rg} --backup-management-type AzureWorkload --query name').get_output_in_json() self.cmd('backup item show -g {rg} -v {vault} -c {container1_fullname} -n {item} --backup-management-type AzureWorkload --workload-type {wt}', checks=[ self.check('properties.friendlyName', '{fitem}'), self.check('properties.protectedItemHealthStatus', 'IRPending'), self.check('properties.protectionState', 'IRPending'), self.check('properties.protectionStatus', 'Healthy'), self.check('resourceGroup', '{rg}') ]) self.kwargs['item1_fullname'] = item1_json['name'] self.cmd('backup item show -g {rg} -v {vault} -c {container1_fullname} -n {item1_fullname} --backup-management-type AzureWorkload --workload-type SAPHanaDatabase', checks=[ self.check('properties.friendlyName', '{fitem}'), self.check('properties.protectedItemHealthStatus', 'IRPending'), self.check('properties.protectionState', 'IRPending'), self.check('properties.protectionStatus', 'Healthy'), self.check('resourceGroup', '{rg}') ]) self.cmd('backup item list -g {rg} -v {vault} -c {container1} --backup-management-type AzureWorkload --workload-type SQLDataBase', checks=[ self.check("length([?properties.friendlyName == '{fitem}'])", 1) ]) self.cmd('backup item list -g {rg} -v {vault} -c {container1_fullname} --backup-management-type AzureWorkload --workload-type SQLDataBase', checks=[ self.check("length([?properties.friendlyName == '{fitem}'])", 1) ]) self.cmd('backup item list -g {rg} -v {vault} --backup-management-type AzureWorkload --workload-type SQLDataBase', checks=[ self.check("length([?properties.friendlyName == '{fitem}'])", 1) ]) self.cmd('backup item set-policy -g {rg} -v {vault} -c {container1} -n {item1_fullname} -p {policy} --backup-management-type AzureWorkload --workload-type SQLDataBase', checks=[ self.check("properties.entityFriendlyName", '{fitem}'), self.check("properties.operation", "ConfigureBackup"), self.check("properties.status", "Completed"), self.check("resourceGroup", '{rg}') ]) item1_json = self.cmd('backup item show -g {rg} -v {vault} -c {container1} -n {item} --backup-management-type AzureWorkload --workload-type SQLDataBase').get_output_in_json() self.assertIn("HourlyLogBackup".lower(), item1_json['properties']['policyId'].lower()) self.cmd('backup protection disable -v {vault} -g {rg} -c {container1} --backup-management-type AzureWorkload --workload-type {wt} -i {item} -y --delete-backup-data true') self.cmd('backup container unregister -v {vault} -g {rg} -c {name} -y') self.cmd('backup container list -v {vault} -g {rg} --backup-management-type AzureWorkload', checks=[ self.check("length([?name == '{name}'])", 0)]) @record_only() def test_backup_wl_sql_protection(self): resource_group = rg_sql.lower() self.kwargs.update({ 'vault': vault_sql, 'name': container_sql, 'rg': resource_group, 'fname': container_friendly_sql, 'policy': 'HourlyLogBackup', 'wt': 'MSSQL', 'sub': sub_sql, 'item': item1_sql, 'pit': 'SQLDatabase', 'item_id': item_id_sql, 'id': id_sql, 'fitem': 'testdb' }) self.cmd('backup container register -v {vault} -g {rg} --backup-management-type AzureWorkload --workload-type {wt} --resource-id {id}') self.cmd('backup container list -v {vault} -g {rg} --backup-management-type AzureWorkload', checks=[ self.check("length([?name == '{name}'])", 1)]) self.cmd('backup protection enable-for-azurewl -v {vault} -g {rg} -p {policy} --protectable-item-type {pit} --protectable-item-name {item} --server-name {fname} --workload-type {wt}', checks=[ self.check("properties.entityFriendlyName", '{fitem}'), self.check("properties.operation", "ConfigureBackup"), self.check("properties.status", "Completed"), self.check("resourceGroup", '{rg}') ]) self.kwargs['container1'] = self.cmd('backup container show -n {name} -v {vault} -g {rg} --backup-management-type AzureWorkload --query name').get_output_in_json() self.kwargs['backup_job'] = self.cmd('backup protection backup-now -v {vault} -g {rg} -i {item} -c {name} --backup-type Full --enable-compression false', checks=[ self.check("properties.status", "InProgress"), self.check("resourceGroup", '{rg}') ]).get_output_in_json() self.assertIn("Backup", self.kwargs['backup_job']['properties']['operation']) self.kwargs['job'] = self.kwargs['backup_job']['name'] self.cmd('backup job wait -v {vault} -g {rg} -n {job}') self.cmd('backup item show -g {rg} -v {vault} -c {container1} -n {item} --backup-management-type AzureWorkload', checks=[ self.check('properties.friendlyName', '{fitem}'), self.check('properties.protectedItemHealthStatus', 'Healthy'), self.check('properties.protectionState', 'Protected'), self.check('properties.protectionStatus', 'Healthy'), self.check('resourceGroup', '{rg}') ]) self.cmd('backup protection disable -v {vault} -g {rg} -i {item} -c {name} --backup-management-type AzureWorkload -y', checks=[ self.check("properties.entityFriendlyName", '{fitem}'), self.check("properties.operation", "DisableBackup"), self.check("properties.status", "Completed"), self.check("resourceGroup", '{rg}') ]) self.cmd('backup item show -g {rg} -v {vault} -c {container1} -n {item} --backup-management-type AzureWorkload', checks=[ self.check("properties.friendlyName", '{fitem}'), self.check("properties.protectionState", "ProtectionStopped"), self.check("resourceGroup", '{rg}') ]) self.cmd('backup protection disable -v {vault} -g {rg} -c {container1} --backup-management-type AzureWorkload --workload-type {wt} -i {item} -y --delete-backup-data true') self.cmd('backup container unregister -v {vault} -g {rg} -c {name} -y') self.cmd('backup container list -v {vault} -g {rg} --backup-management-type AzureWorkload', checks=[ self.check("length([?name == '{name}'])", 0)]) @record_only() def test_backup_wl_sql_restore(self): resource_group = rg_sql.lower() self.kwargs.update({ 'vault': vault_sql, 'name': container_sql, 'rg': resource_group, 'fname': container_friendly_sql, 'policy': 'HourlyLogBackup', 'wt': 'MSSQL', 'sub': sub_sql, 'item': item1_sql, 'fitem': 'testdb', 'id': id_sql, 'pit': 'SQLDatabase', 'item_id': item_id_sql, 'titem': 'testdb_restored' }) self.cmd('backup container register -v {vault} -g {rg} --backup-management-type AzureWorkload --workload-type {wt} --resource-id {id}') self.cmd('backup container list -v {vault} -g {rg} --backup-management-type AzureWorkload', checks=[ self.check("length([?name == '{name}'])", 1)]) self.cmd('backup protection enable-for-azurewl -v {vault} -g {rg} -p {policy} --protectable-item-type {pit} --protectable-item-name {item} --server-name {fname} --workload-type {wt}', checks=[ self.check("properties.entityFriendlyName", '{fitem}'), self.check("properties.operation", "ConfigureBackup"), self.check("properties.status", "Completed"), self.check("resourceGroup", '{rg}') ]) self.kwargs['container1'] = self.cmd('backup container show -n {name} -v {vault} -g {rg} --backup-management-type AzureWorkload --query name').get_output_in_json() self.kwargs['backup_job'] = self.cmd('backup protection backup-now -v {vault} -g {rg} -i {item} -c {name} --backup-type Full --enable-compression false', checks=[ self.check("properties.status", "InProgress"), self.check("resourceGroup", '{rg}') ]).get_output_in_json() self.assertIn("Backup", self.kwargs['backup_job']['properties']['operation']) self.kwargs['job'] = self.kwargs['backup_job']['name'] self.cmd('backup job wait -v {vault} -g {rg} -n {job}') self.cmd('backup item show -g {rg} -v {vault} -c {container1} -n {item} --backup-management-type AzureWorkload', checks=[ self.check('properties.friendlyName', '{fitem}'), self.check('properties.protectedItemHealthStatus', 'Healthy'), self.check('properties.protectionState', 'Protected'), self.check('properties.protectionStatus', 'Healthy'), self.check('resourceGroup', '{rg}') ]) self.kwargs['rp'] = self.cmd('backup recoverypoint list -g {rg} -v {vault} -c {name} -i {item} --workload-type {wt} --query [0]').get_output_in_json() self.kwargs['rp'] = self.kwargs['rp']['name'] self.kwargs['rc'] = json.dumps(self.cmd('backup recoveryconfig show --vault-name {vault} -g {rg} --restore-mode AlternateWorkloadRestore --rp-name {rp} --item-name {item} --container-name {container1} --target-item-name {titem} --target-server-type SQLInstance --target-server-name {fname} --workload-type {wt}').get_output_in_json(), separators=(',', ':')) with open("recoveryconfig_sql_restore.json", "w") as f: f.write(self.kwargs['rc']) self.kwargs['backup_job'] = self.cmd('backup restore restore-azurewl --vault-name {vault} -g {rg} --recovery-config recoveryconfig_sql_restore.json', checks=[ self.check("properties.operation", "Restore"), self.check("properties.status", "InProgress"), self.check("resourceGroup", '{rg}') ]).get_output_in_json() self.kwargs['job'] = self.kwargs['backup_job']['name'] self.cmd('backup job wait -v {vault} -g {rg} -n {job}') self.kwargs['rc'] = json.dumps(self.cmd('backup recoveryconfig show --vault-name {vault} -g {rg} --restore-mode OriginalWorkloadRestore --item-name {item} --container-name {container1} --rp-name {rp}').get_output_in_json(), separators=(',', ':')) with open("recoveryconfig_sql_restore.json", "w") as f: f.write(self.kwargs['rc']) self.kwargs['backup_job'] = self.cmd('backup restore restore-azurewl --vault-name {vault} -g {rg} --recovery-config recoveryconfig_sql_restore.json', checks=[ self.check("properties.operation", "Restore"), self.check("properties.status", "InProgress"), self.check("resourceGroup", '{rg}') ]).get_output_in_json() self.kwargs['job'] = self.kwargs['backup_job']['name'] self.cmd('backup job wait -v {vault} -g {rg} -n {job}') self.cmd('backup protection disable -v {vault} -g {rg} -c {name} --backup-management-type AzureWorkload --workload-type {wt} -i {item} -y --delete-backup-data true') self.cmd('backup container unregister -v {vault} -g {rg} -c {name} -y') self.cmd('backup container list -v {vault} -g {rg} --backup-management-type AzureWorkload', checks=[ self.check("length([?name == '{name}'])", 0)]) @record_only() def test_backup_wl_sql_restore_as_files(self): resource_group = rg_sql.lower() self.kwargs.update({ 'vault': vault_sql, 'name': container_sql, 'rg': resource_group, 'fname': container_friendly_sql, 'policy': 'HourlyLogBackup', 'wt': 'MSSQL', 'sub': sub_sql, 'item': item1_sql, 'fitem': 'testdb', 'id': id_sql, 'pit': 'SQLDatabase', 'item_id': item_id_sql, 'titem': 'testdb_restored' }) self.cmd('backup container register -v {vault} -g {rg} --backup-management-type AzureWorkload --workload-type {wt} --resource-id {id}') self.cmd('backup container list -v {vault} -g {rg} --backup-management-type AzureWorkload', checks=[ self.check("length([?name == '{name}'])", 1)]) self.cmd('backup protection enable-for-azurewl -v {vault} -g {rg} -p {policy} --protectable-item-type {pit} --protectable-item-name {item} --server-name {fname} --workload-type {wt}', checks=[ self.check("properties.entityFriendlyName", '{fitem}'), self.check("properties.operation", "ConfigureBackup"), self.check("properties.status", "Completed"), self.check("resourceGroup", '{rg}') ]) self.kwargs['container1'] = self.cmd('backup container show -n {name} -v {vault} -g {rg} --backup-management-type AzureWorkload --query name').get_output_in_json() self.kwargs['backup_job'] = self.cmd('backup protection backup-now -v {vault} -g {rg} -i {item} -c {name} --backup-type Full --enable-compression false', checks=[ self.check("properties.status", "InProgress"), self.check("resourceGroup", '{rg}') ]).get_output_in_json() self.assertIn("Backup", self.kwargs['backup_job']['properties']['operation']) self.kwargs['job'] = self.kwargs['backup_job']['name'] self.cmd('backup job wait -v {vault} -g {rg} -n {job}') self.cmd('backup item show -g {rg} -v {vault} -c {container1} -n {item} --backup-management-type AzureWorkload', checks=[ self.check('properties.protectedItemHealthStatus', 'Healthy'), self.check('properties.protectionState', 'Protected'), self.check('properties.protectionStatus', 'Healthy'), self.check('resourceGroup', '{rg}') ]) self.kwargs['rp'] = self.cmd('backup recoverypoint list -g {rg} -v {vault} -c {name} -i {item} --workload-type {wt} --query [0]').get_output_in_json() self.kwargs['rp'] = self.kwargs['rp']['name'] self.kwargs['rc'] = json.dumps(self.cmd('backup recoveryconfig show --vault-name {vault} -g {rg} --restore-mode RestoreAsFiles --rp-name {rp} --filepath "C:\" --target-container-name {container1} --item-name {item} --container-name {container1} --workload-type {wt}').get_output_in_json(), separators=(',', ':')) with open("recoveryconfig_sql_raf.json", "w") as f: f.write(self.kwargs['rc']) self.kwargs['backup_job'] = self.cmd('backup restore restore-azurewl --vault-name {vault} -g {rg} --recovery-config recoveryconfig_sql_raf.json', checks=[ self.check("properties.operation", "Restore"), self.check("properties.status", "InProgress"), self.check("resourceGroup", '{rg}') ]).get_output_in_json() self.kwargs['job'] = self.kwargs['backup_job']['name'] self.cmd('backup job wait -v {vault} -g {rg} -n {job}') self.cmd('backup protection disable -v {vault} -g {rg} -c {name} --backup-management-type AzureWorkload --workload-type {wt} -i {item} -y --delete-backup-data true') self.cmd('backup container unregister -v {vault} -g {rg} -c {name} -y') self.cmd('backup container list -v {vault} -g {rg} --backup-management-type AzureWorkload', checks=[ self.check("length([?name == '{name}'])", 0)]) @record_only() def test_backup_wl_sql_crr(self): self.kwargs.update({ 'vault': "sql-clitest-vault", 'name': "VMAppContainer;Compute;sql-clitest-rg;sql-clitest-vm", 'fname': "sql-clitest-vm", 'wt': 'MSSQL', 'sub': "vsarg-MABPortalTestAutomation_NOB", 'rg': "sql-clitest-rg", 'item': "SQLDataBase;mssqlserver;msdb", 'fitem': "msdb", 'tvault': "clitest-vault-secondary-donotuse", 'trg': "clitest-rg-donotuse", 'tcontainer': "clitest-sql-secondary-donotuse", 'tserver': "clitest-sql-sec", 'tpit': 'SQLInstance', 'titem': 'msdb_restored' }) self.cmd('backup container list -v {vault} -g {rg} --backup-management-type AzureWorkload', checks=[ self.check("length([?name == '{name}'])", 1)]) self.kwargs['container1'] = self.cmd('backup container show -n {name} -v {vault} -g {rg} --backup-management-type AzureWorkload --query name').get_output_in_json() self.cmd('backup item show -g {rg} -v {vault} -c {container1} -n {item} --backup-management-type AzureWorkload', checks=[ self.check('properties.friendlyName', '{fitem}'), self.check('properties.protectedItemHealthStatus', 'Healthy'), self.check('properties.protectionState', 'Protected'), self.check('properties.protectionStatus', 'Healthy'), self.check('resourceGroup', '{rg}') ]) self.kwargs['rp'] = self.cmd('backup recoverypoint list -g {rg} -v {vault} -c {name} -i {item} --workload-type {wt} --use-secondary-region --query [0]').get_output_in_json() self.kwargs['rp'] = self.kwargs['rp']['name'] #SQL CRR ALR Restore self.kwargs['rc'] = json.dumps(self.cmd('backup recoveryconfig show --vault-name {vault} -g {rg} --restore-mode AlternateWorkloadRestore --rp-name {rp} --item-name {item} --container-name {container1} --target-item-name {titem} --target-server-type SQLInstance --target-server-name {tserver} --target-container-name {tcontainer} --workload-type {wt} --target-vault-name {tvault} --target-resource-group {trg}').get_output_in_json(), separators=(',', ':')) with open("recoveryconfig_sql_crr.json", "w") as f: f.write(self.kwargs['rc']) self.kwargs['backup_job'] = self.cmd('backup restore restore-azurewl --vault-name {vault} -g {rg} --recovery-config recoveryconfig_sql_crr.json --use-secondary-region', checks=[ self.check("properties.operation", "CrossRegionRestore"), self.check("properties.status", "InProgress") ]).get_output_in_json() self.kwargs['job'] = self.kwargs['backup_job']['name'] self.cmd('backup job wait -v {vault} -g {rg} -n {job} --use-secondary-region') #SQL CRR RAF Restore self.kwargs['rc'] = json.dumps(self.cmd('backup recoveryconfig show --vault-name {vault} -g {rg} --restore-mode restoreasfiles --rp-name {rp} --item-name {item} --container-name {container1} --target-container-name {tcontainer} --workload-type {wt} --target-vault-name {tvault} --target-resource-group {trg} --filepath "C:\"').get_output_in_json(), separators=(',', ':')) with open("recoveryconfig_sql_crr.json", "w") as f: f.write(self.kwargs['rc']) self.kwargs['backup_job'] = self.cmd('backup restore restore-azurewl --vault-name {vault} -g {rg} --recovery-config recoveryconfig_sql_crr.json --use-secondary-region', checks=[ self.check("properties.operation", "CrossRegionRestore"), self.check("properties.status", "InProgress") ]).get_output_in_json() self.kwargs['job'] = self.kwargs['backup_job']['name'] self.cmd('backup job wait -v {vault} -g {rg} -n {job} --use-secondary-region') @record_only() def test_backup_wl_sql_archive (self): self.kwargs.update({ 'vault': "archiveccyvault1", 'rg': "ArchiveResourceGroup", 'sub': "AzureBackup_Functional_Testing", 'item': "SQLDataBase;mssqlserver;msdb", 'container': "VMAppContainer;compute;archiveresourcegroup;archsqlccyvm2" }) # Getting the recovery point IDs (names) and storing it in a list rp_names = self.cmd('backup recoverypoint list --backup-management-type AzureWorkload --workload-type MSSQL -g {rg} -v {vault} -c {container} -i {item}', checks=[ ]).get_output_in_json() self.kwargs['rp1'] = rp_names[0]['name'] self.kwargs['rp1_tier'] = rp_names[0]['tierType'] self.kwargs['rp1_is_ready_for_move'] = rp_names[0]['properties']['recoveryPointMoveReadinessInfo']['ArchivedRP']['isReadyForMove'] # Check Archivable Recovery Points self.cmd('backup recoverypoint list -g {rg} -v {vault} -i {item} -c {container} --backup-management-type AzureWorkload --is-ready-for-move {rp1_is_ready_for_move} --target-tier VaultArchive --query [0]', checks=[ self.check("resourceGroup", '{rg}'), self.check("properties.recoveryPointMoveReadinessInfo.ArchivedRP.isReadyForMove", '{rp1_is_ready_for_move}') ]) # Get Archived Recovery Points self.cmd('backup recoverypoint list -g {rg} -v {vault} -i {item} -c {container} --backup-management-type AzureWorkload --tier {rp1_tier} --query [0]', checks=[ self.check("tierType", '{rp1_tier}'), self.check("resourceGroup", '{rg}') ]) is_move = False for i in rp_names: if i['tierType']=="VaultStandard" and i['properties']['recoveryPointMoveReadinessInfo']['ArchivedRP']['isReadyForMove']==True: self.kwargs['rp_move'] = i['name'] is_move = True break if is_move: # # Move Recovery points self.cmd('backup recoverypoint move -g {rg} -v {vault} -i {item} -c {container} --source-tier VaultStandard --destination-tier VaultArchive --name {rp_move}', checks=[ self.check("properties.entityFriendlyName", 'msdb [archsqlccyvm2]'), self.check("resourceGroup", '{rg}'), self.check("properties.operation", "MoveRecoveryPoint"), self.check("properties.status", "Completed") ]) # Getting the recovery point ID in VaultArchive tier self.kwargs['rp_restore'] = self.cmd('backup recoverypoint list --backup-management-type AzureWorkload --workload-type MSSQL -g {rg} -v {vault} -c {container} -i {item} --tier VaultArchive --query [0]').get_output_in_json() self.kwargs['rp_restore'] = self.kwargs['rp_restore']['name'] # # Integrated Restore self.kwargs['rc'] = json.dumps(self.cmd('backup recoveryconfig show --vault-name {vault} -g {rg} --restore-mode OriginalWorkloadRestore --item-name {item} --container-name {container} --rp-name {rp_restore}').get_output_in_json(), separators=(',', ':')) with open("recoveryconfig_sql_archive.json", "w") as f: f.write(self.kwargs['rc']) # # Trigger Restore self.cmd('backup restore restore-azurewl -g {rg} -v {vault} --recovery-config recoveryconfig_sql_archive.json --rehydration-priority High', checks=[ self.check("properties.operation", "RestoreWithRehydrate"), self.check("properties.status", "InProgress"), self.check("resourceGroup", '{rg}') ]).get_output_in_json()
py
1a52807d5ae10d62b95d33236aaea2c988f13b28
# -*- coding: utf-8 -*- # This is for introducing **syntactic** local bindings, i.e. simple code splicing # at macro expansion time. If you're looking for regular run-time let et al. macros, # see letdo.py. # TODO: Coverage of code using `with block` and `with expr` is not reported correctly. # # TODO: As this is a toy macro system within the real macro system, that is to be expected; # TODO: `mcpyrate` goes to some degree of trouble to produce correct coverage reporting for # TODO: the real macro system, and we haven't duplicated that effort here. # # TODO: With `mcpyrate`, we don't really need `let_syntax` and `abbrev` anymore, so we could # TODO: actually remove them; but their tests exercise some code paths that would otherwise # TODO: remain untested. As of v0.15.0, we're keeping them for now. __all__ = ["let_syntax", "abbrev", "expr", "block"] from mcpyrate.quotes import macros, q, a # noqa: F401 from ast import Name, Call, Subscript, Tuple, Starred, Expr, With from copy import deepcopy from functools import partial import sys from mcpyrate import parametricmacro from mcpyrate.quotes import is_captured_value from mcpyrate.utils import rename from mcpyrate.walkers import ASTTransformer, ASTVisitor from .letdo import _implicit_do, _destructure_and_apply_let from .nameutil import is_unexpanded_block_macro from .util import eliminate_ifones from ..dynassign import dyn # -------------------------------------------------------------------------------- # Macro interface @parametricmacro def let_syntax(tree, *, args, syntax, expander, **kw): """[syntax, expr/block] Introduce local **syntactic** bindings. **Expression variant**:: let_syntax[lhs << rhs, ...][body] let_syntax[lhs << rhs, ...][[body0, ...]] Alternative haskelly syntax:: let_syntax[[lhs << rhs, ...] in body] let_syntax[[lhs << rhs, ...] in [body0, ...]] let_syntax[body, where[lhs << rhs, ...]] let_syntax[[body0, ...], where[lhs << rhs, ...]] **Block variant**:: with let_syntax: with block as xs: # capture a block of statements - bare name ... with block[a, ...] as xs: # capture a block of statements - template ... with expr as x: # capture a single expression - bare name ... with expr[a, ...] as x: # capture a single expression - template ... body0 ... A single expression can be a ``do[]`` if multiple expressions are needed. The bindings are applied **at macro expansion time**, substituting the expression on the RHS for each instance of the corresponding LHS. Each substitution gets a fresh copy. This is useful to e.g. locally abbreviate long function names at macro expansion time (with zero run-time overhead), or to splice in several (possibly parametric) instances of a common pattern. In the expression variant, ``lhs`` may be: - A bare name (e.g. ``x``), or - A simple template of the form ``f(x, ...)``. The names inside the parentheses declare the formal parameters of the template (that can then be used in the body). In the block variant: - The **as-part** specifies the name of the LHS. - If a template, the formal parameters are declared on the ``block`` or ``expr``, not on the as-part (due to syntactic limitations). **Templates** To make parametric substitutions, use templates. Templates support only positional arguments, with no default values. Even in block templates, parameters are always expressions (because they use the subscript syntax at the use site). In the body of the ``let_syntax``, a template is used like an expr macro. Just like in an actual macro invocation, when the template is substituted, any instances of its formal parameters on its RHS get replaced by the argument values from the invocation site. Note each instance of the same formal parameter gets a fresh copy of the corresponding argument value. **Substitution order** This is a two-step process. In the first step, we apply template substitutions. In the second step, we apply bare name substitutions to the result of the first step. (So RHSs of templates may use any of the bare-name definitions.) Within each step, the substitutions are applied **in the order specified**. So if the bindings are ``((x, y), (y, z))``, then ``x`` transforms to ``z``. But if the bindings are ``((y, z), (x, y))``, then ``x`` transforms to ``y``, and only an explicit ``y`` at the use site transforms to ``z``. **Notes** Inspired by Racket's ``let-syntax`` and ``with-syntax``, see: https://docs.racket-lang.org/reference/let.html https://docs.racket-lang.org/reference/stx-patterns.html **CAUTION**: This is essentially a toy macro system inside the real macro system, implemented with the real macro system. The usual caveats of macro systems apply. Especially, we support absolutely no form of hygiene. Be very, very careful to avoid name conflicts. ``let_syntax`` is meant only for simple local substitutions where the elimination of repetition can shorten the code and improve readability. If you need to do something complex, prefer writing a real macro directly in `mcpyrate`. """ if syntax not in ("expr", "block"): raise SyntaxError("let_syntax is an expr and block macro only") # pragma: no cover if syntax == "block" and kw['optional_vars'] is not None: raise SyntaxError("let_syntax (block mode) does not take an as-part") # pragma: no cover if syntax == "expr": _let_syntax_expr_inside_out = partial(_let_syntax_expr, expand_inside=True) return _destructure_and_apply_let(tree, args, expander, _let_syntax_expr_inside_out, letsyntax_mode=True) else: # syntax == "block": with dyn.let(_macro_expander=expander): return _let_syntax_block(block_body=tree, expand_inside=True) @parametricmacro def abbrev(tree, *, args, syntax, expander, **kw): """[syntax, expr/block] Exactly like ``let_syntax``, but expands outside in. Because this variant expands before any macros in the body, it can locally rename other macros, e.g.:: abbrev[m << macrowithverylongname][ m[tree1] if m[tree2] else m[tree3]] **CAUTION**: Because ``abbrev`` expands outside-in, and does not respect boundaries of any nested ``abbrev`` invocations, it will not lexically scope the substitutions. Instead, the outermost ``abbrev`` expands first, and then any inner ones expand with whatever substitutions they have remaining. If the same name is used on the LHS in two or more nested ``abbrev``, any inner ones will likely raise an error (unless the outer substitution just replaces a name with another), because also the names on the LHS in the inner ``abbrev`` will undergo substitution when the outer ``abbrev`` expands. """ if syntax not in ("expr", "block"): raise SyntaxError("abbrev is an expr and block macro only") # pragma: no cover if syntax == "block" and kw['optional_vars'] is not None: raise SyntaxError("abbrev (block mode) does not take an as-part") # pragma: no cover # DON'T expand inner macro invocations first - outside-in ordering is the default, so we simply do nothing. if syntax == "expr": _let_syntax_expr_outside_in = partial(_let_syntax_expr, expand_inside=False) return _destructure_and_apply_let(tree, args, expander, _let_syntax_expr_outside_in, letsyntax_mode=True) else: with dyn.let(_macro_expander=expander): return _let_syntax_block(block_body=tree, expand_inside=False) @parametricmacro def expr(tree, *, syntax, **kw): """[syntax, block] ``with expr:`` inside a ``with let_syntax:``.""" if syntax != "block": raise SyntaxError("`expr` is a block macro only") # pragma: no cover raise SyntaxError("`expr` is only valid at the top level of a block-mode `let_syntax` or `abbrev`") # pragma: no cover, not intended to hit the expander @parametricmacro def block(tree, *, syntax, **kw): """[syntax, block] ``with block:`` inside a ``with let_syntax:``.""" if syntax != "block": raise SyntaxError("`block` is a block macro only") # pragma: no cover raise SyntaxError("`block` is only valid at the top level of a block-mode `let_syntax` or `abbrev`") # pragma: no cover, not intended to hit the expander # -------------------------------------------------------------------------------- # Syntax transformers # let_syntax[lhs << rhs, ...][body] # let_syntax[lhs << rhs, ...][[body0, ...]] # let_syntax[[lhs << rhs, ...] in body] # let_syntax[[lhs << rhs, ...] in [body0, ...]] # let_syntax[body, where[lhs << rhs, ...]] # let_syntax[[body0, ...], where[lhs << rhs, ...]] # # This transformer takes destructured input, with the bindings subform # and the body already extracted, and supplied separately. # # bindings: sequence of ast.Tuple: (k1, v1), (k2, v2), ..., (kn, vn) # expand_inside: if True, expand inside-out. If False, expand outside-in. def _let_syntax_expr(bindings, body, *, expand_inside): body = _implicit_do(body) # support the extra bracket syntax if not bindings: # Optimize out a `let_syntax` with no bindings. return body # pragma: no cover names_seen = set() templates = [] barenames = [] def register_bindings(): for line in bindings: key, value = line.elts name, args = _analyze_lhs(key) if name in names_seen: raise SyntaxError(f"duplicate '{name}'; names defined in the same let_syntax expr must be unique") # pragma: no cover names_seen.add(name) target = templates if args else barenames target.append((name, args, value, "expr")) if expand_inside: bindings = dyn._macro_expander.visit_recursively(bindings) body = dyn._macro_expander.visit_recursively(body) register_bindings() body = _substitute_templates(templates, body) body = _substitute_barenames(barenames, body) return body # block version: # # with let_syntax: # with block as xs: # ... # with block[a, ...] as xs: # ... # with expr as x: # ... # with expr[a, ...] as x: # ... # body0 # ... # # expand_inside: if True, expand inside-out. If False, expand outside-in. def _let_syntax_block(block_body, *, expand_inside): is_let_syntax = partial(is_unexpanded_block_macro, let_syntax, dyn._macro_expander) is_abbrev = partial(is_unexpanded_block_macro, abbrev, dyn._macro_expander) is_expr_declaration = partial(is_unexpanded_block_macro, expr, dyn._macro_expander) is_block_declaration = partial(is_unexpanded_block_macro, block, dyn._macro_expander) is_helper_macro = lambda tree: is_expr_declaration(tree) or is_block_declaration(tree) def check_strays(ismatch, tree): class StrayHelperMacroChecker(ASTVisitor): # TODO: refactor this? def examine(self, tree): if is_captured_value(tree): return # don't recurse! elif is_let_syntax(tree) or is_abbrev(tree): return # don't recurse! elif ismatch(tree): # Expand the stray helper macro invocation, to trigger its `SyntaxError` # with a useful message, and *make the expander generate a use site traceback*. # # (If we just `raise` here directly, the expander won't see the use site # of the `with expr` or `with block`, but just that of the `do[]`.) dyn._macro_expander.visit(tree) self.generic_visit(tree) StrayHelperMacroChecker().visit(tree) check_stray_blocks_and_exprs = partial(check_strays, is_helper_macro) names_seen = set() def destructure_binding(withstmt, mode, kind): assert mode in ("block", "expr") assert kind in ("barename", "template") ctxmanager = withstmt.items[0].context_expr optvars = withstmt.items[0].optional_vars if not optvars: raise SyntaxError(f"'with {mode}:': expected an as-part") # pragma: no cover if type(optvars) is not Name: raise SyntaxError(f"'with {mode}:': expected exactly one name in the as-part") # pragma: no cover name = optvars.id if name in names_seen: raise SyntaxError(f"duplicate '{name}'; as-parts in the same let_syntax block must be unique") # pragma: no cover if kind == "template": _, args = _analyze_lhs(ctxmanager) # syntactic limitation, can't place formal parameter list on the as-part else: # kind == "barename": args = [] if mode == "block": with q as value: if 1: with a: withstmt.body else: # mode == "expr": if len(withstmt.body) != 1: raise SyntaxError("'with expr:' expected a one-item body (use a do[] if need more)") # pragma: no cover theexpr = withstmt.body[0] if type(theexpr) is not Expr: raise SyntaxError("'with expr:' expected an expression body, got a statement") # pragma: no cover value = theexpr.value # discard Expr wrapper in definition names_seen.add(name) return name, args, value, mode def isbinding(tree): for mode in ("block", "expr"): if not (type(tree) is With and len(tree.items) == 1): continue ctxmanager = tree.items[0].context_expr if type(ctxmanager) is Name and ctxmanager.id == mode: return mode, "barename" # expr[...], block[...] if type(ctxmanager) is Subscript and type(ctxmanager.value) is Name and ctxmanager.value.id == mode: return mode, "template" # expr(...), block(...) # parenthesis syntax for macro arguments TODO: Python 3.9+: remove once we bump minimum Python to 3.9 if type(ctxmanager) is Call and type(ctxmanager.func) is Name and ctxmanager.func.id == mode: return mode, "template" return False templates = [] barenames = [] new_block_body = [] for stmt in block_body: # `let_syntax` mode (expand_inside): respect lexical scoping of nested `let_syntax`/`abbrev` expanded = False if expand_inside and (is_let_syntax(stmt) or is_abbrev(stmt)): stmt = dyn._macro_expander.visit_recursively(stmt) expanded = True stmt = _substitute_templates(templates, stmt) stmt = _substitute_barenames(barenames, stmt) binding_data = isbinding(stmt) if binding_data: name, args, value, mode = destructure_binding(stmt, *binding_data) check_stray_blocks_and_exprs(value) # before expanding it! if expand_inside and not expanded: value = dyn._macro_expander.visit_recursively(value) target = templates if args else barenames target.append((name, args, value, mode)) else: check_stray_blocks_and_exprs(stmt) # before expanding it! if expand_inside and not expanded: stmt = dyn._macro_expander.visit_recursively(stmt) new_block_body.append(stmt) new_block_body = eliminate_ifones(new_block_body) if not new_block_body: raise SyntaxError("let_syntax: expected at least one statement beside definitions") # pragma: no cover return new_block_body # ----------------------------------------------------------------------------- def _get_subscript_args(tree): if sys.version_info >= (3, 9, 0): # Python 3.9+: the Index wrapper is gone. theslice = tree.slice else: theslice = tree.slice.value if type(theslice) is Tuple: args = theslice.elts else: args = [theslice] return args # x --> "x", [] # f[a, b, c] --> "f", ["a", "b", "c"] # f(a, b, c) --> "f", ["a", "b", "c"] def _analyze_lhs(tree): if type(tree) is Name: # bare name name = tree.id args = [] elif type(tree) is Subscript and type(tree.value) is Name: # template f[x, ...] name = tree.value.id args = [a.id for a in _get_subscript_args(tree)] # parenthesis syntax for macro arguments TODO: Python 3.9+: remove once we bump minimum Python to 3.9 elif type(tree) is Call and type(tree.func) is Name: # template f(x, ...) name = tree.func.id if any(type(a) is Starred for a in tree.args): # *args (Python 3.5+) raise SyntaxError("in template, only positional parameters supported (no *args)") # pragma: no cover args = [a.id for a in tree.args] if tree.keywords: raise SyntaxError("in template, only positional parameters supported (no named args or **kwargs)") # pragma: no cover else: raise SyntaxError("expected a name (e.g. x) or a template (e.g. f(x, ...)) on the LHS") # pragma: no cover return name, args def _substitute_barename(name, value, tree, mode): def isthisname(tree): return type(tree) is Name and tree.id == name def splice(tree): class Splicer(ASTTransformer): def transform(self, tree): if is_captured_value(tree): return tree # don't recurse! def subst(): # Copy just to be on the safe side. Different instances may be # edited differently by other macros expanded later. return deepcopy(value) # discard Expr wrapper (identifying a statement position) at use site # when performing a block substitution if mode == "block" and type(tree) is Expr and isthisname(tree.value): tree = subst() return tree elif isthisname(tree): if mode == "block": raise SyntaxError(f"cannot substitute block '{name}' into expression position") # pragma: no cover tree = subst() return self.generic_visit(tree) return self.generic_visit(tree) return Splicer().visit(tree) # If the new value is also bare name, perform the substitution (now as a string) # also in the name part of def and similar, to support human intuition of "renaming". if type(value) is Name: postproc = partial(rename, name, value.id) else: postproc = lambda x: x return postproc(splice(tree)) def _substitute_barenames(barenames, tree): for name, _noformalparams, value, mode in barenames: tree = _substitute_barename(name, value, tree, mode) return tree def _substitute_templates(templates, tree): for name, formalparams, value, mode in templates: def isthisfunc(tree): if type(tree) is Subscript and type(tree.value) is Name and tree.value.id == name: return True # parenthesis syntax for macro arguments TODO: Python 3.9+: remove once we bump minimum Python to 3.9 if type(tree) is Call and type(tree.func) is Name and tree.func.id == name: return True return False def subst(tree): if type(tree) is Subscript: theargs = _get_subscript_args(tree) elif type(tree) is Call: theargs = tree.args else: assert False if len(theargs) != len(formalparams): raise SyntaxError(f"let_syntax template '{name}' expected {len(formalparams)} arguments, got {len(theargs)}") # pragma: no cover # make a fresh deep copy of the RHS to avoid destroying the template. tree = deepcopy(value) # expand the f itself in f[x, ...] or f(x, ...) for k, v in zip(formalparams, theargs): # expand the x, ... in the expanded form of f # can't put statements in a Subscript or in a Call, so always treat args as expressions. tree = _substitute_barename(k, v, tree, "expr") return tree def splice(tree): class Splicer(ASTTransformer): def transform(self, tree): if is_captured_value(tree): return tree # don't recurse! # discard Expr wrapper (identifying a statement position) at use site # when performing a block substitution if mode == "block" and type(tree) is Expr and isthisfunc(tree.value): tree = subst(tree.value) return tree elif isthisfunc(tree): if mode == "block": raise SyntaxError(f"cannot substitute block '{name}' into expression position") # pragma: no cover tree = subst(tree) return self.generic_visit(tree) return self.generic_visit(tree) return Splicer().visit(tree) tree = splice(tree) return tree
py
1a5280b0118ab60b99714b9977daa52c30da553a
from __future__ import unicode_literals import json from django import forms from django.utils.safestring import mark_safe from .conf import settings class MediumEditorTextarea(forms.Textarea): def render(self, name, value, attrs=None, renderer=None): if attrs is None: attrs = {} attrs.update({'class': 'django-mediumeditor-input'}) identifier = attrs.get('id', 'id_{}'.format(name)) params = { 'data-mediumeditor-textarea': identifier, 'class': 'django-mediumeditor-editable', 'id': '{}_editable'.format(identifier), } param_str = ' '.join('{}="{}"'.format(k, v) for k, v in params.items()) html = super(MediumEditorTextarea, self).render(name, value, attrs) options = json.dumps(settings.MEDIUM_EDITOR_OPTIONS) html = mark_safe(u'''{} <div {}></div> <script type="text/javascript"> MediumEditorOptions={}; </script>'''.format(html, param_str, options)) return html class Media: css = {'all': ( '//cdn.jsdelivr.net/medium-editor/latest/css/' 'medium-editor.min.css', 'css/mediumeditor/django-mediumeditor.css', '//cdn.jsdelivr.net/medium-editor/latest/css/themes/{}.min.css'.format( settings.MEDIUM_EDITOR_THEME ) )} js = ( '//cdn.jsdelivr.net/medium-editor/latest/js/medium-editor.min.js', 'js/mediumeditor/django-mediumeditor.js', )
py
1a5281908a5329c61f48219e02a9c0ddd328bfd5
import os import tensorflow as tf from configparser import ConfigParser from utilities.set_dirs import get_conf_dir conf_dir = get_conf_dir(debug=False) parser = ConfigParser(os.environ) parser.read(os.path.join(conf_dir, 'neural_network.ini')) # AdamOptimizer beta1 = parser.getfloat('optimizer', 'beta1') beta2 = parser.getfloat('optimizer', 'beta2') epsilon = parser.getfloat('optimizer', 'epsilon') learning_rate = parser.getfloat('optimizer', 'learning_rate') def variable_on_cpu(name, shape, initializer): """ Next we concern ourselves with graph creation. However, before we do so we must introduce a utility function ``variable_on_cpu()`` used to create a variable in CPU memory. """ # Use the /cpu:0 device for scoped operations with tf.device('/cpu:0'): # Create or get apropos variable var = tf.get_variable(name=name, shape=shape, initializer=initializer) return var def create_optimizer(): optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=beta1, beta2=beta2, epsilon=epsilon) return optimizer
py
1a52837a95b8f281b0c73e5cd3cb76413e061ce3
from .expression import Params, ParamsExpression class Function(ParamsExpression): __visit_name__ = 'function' def __init__(self, filter=None, weight=None, **kwargs): self.filter = filter self.weight = weight super(Function, self).__init__(**kwargs) class Weight(Function): __func_name__ = 'weight' __visit_name__ = 'weight_function' def __init__(self, weight, filter=None): super(Weight, self).__init__(filter=filter, weight=weight) class FieldValueFactor(Function): __func_name__ = 'field_value_factor' def __init__( self, field, factor=None, modifier=None, missing=None, filter=None, **kwargs ): super(FieldValueFactor, self).__init__( field=field, factor=factor, modifier=modifier, missing=missing, filter=filter, **kwargs ) Factor = FieldValueFactor class ScriptScore(Function): __func_name__ = 'script_score' def __init__(self, script, filter=None, **kwargs): super(ScriptScore, self).__init__( script=script, filter=filter, **kwargs ) class RandomScore(Function): __func_name__ = 'random_score' def __init__(self, seed=None, filter=None, **kwargs): super(RandomScore, self).__init__(seed=seed, filter=filter, **kwargs) class DecayFunction(Function): __visit_name__ = 'decay_function' def __init__( self, field, origin, scale, offset=None, decay=None, multi_value_mode=None, **kwargs ): self.field = field self.decay_params = Params( origin=origin, scale=scale, offset=offset, decay=decay, ) super(DecayFunction, self).__init__( multi_value_mode=multi_value_mode, **kwargs ) class Gauss(DecayFunction): __func_name__ = 'gauss' class Exp(DecayFunction): __func_name__ = 'exp' class Linear(DecayFunction): __func_name__ = 'linear'
py
1a5284023b842ed6b279fe1c9393e9cb8cd8d537
import functools import requests import pyvo import pyvo.auth.authsession import warnings from rubin_jupyter_utils.helpers import get_access_token from rubin_jupyter_utils.config import RubinConfig def deprecated(new_name=''): def deprecated(func): """This is a decorator which can be used to mark functions as deprecated. It will result in a warning being emitted when the function is used.""" @functools.wraps(func) def new_func(*args, **kwargs): warnings.simplefilter("always", DeprecationWarning) # turn off filter if new_name: warnings.warn(f"Call to deprecated function {func.__name__}. " + "This function may be removed at any point in the future. " + f"Please use {new_name} instead.", category=DeprecationWarning, stacklevel=2) else: warnings.warn(f"Call to deprecated function {func.__name__}. " + "This function may be removed at any point in the future.", category=DeprecationWarning, stacklevel=2) warnings.simplefilter('default', DeprecationWarning) # reset filter return func(*args, **kwargs) return new_func return deprecated def _get_tap_url(): rc = RubinConfig() tapurl = rc.external_tap_url or (rc.external_instance_url + rc.tap_route) return tapurl def _get_auth(): tap_url = _get_tap_url() s = requests.Session() s.headers["Authorization"] = "Bearer " + get_access_token() auth = pyvo.auth.authsession.AuthSession() auth.credentials.set("lsst-token", s) auth.add_security_method_for_url(tap_url, "lsst-token") auth.add_security_method_for_url(tap_url + "/sync", "lsst-token") auth.add_security_method_for_url(tap_url + "/async", "lsst-token") auth.add_security_method_for_url(tap_url + "/tables", "lsst-token") return auth def get_tap_service(): return pyvo.dal.TAPService(_get_tap_url(), _get_auth()) @deprecated(new_name="get_tap_service") def get_catalog(): return get_tap_service() def retrieve_query(query_url): return pyvo.dal.AsyncTAPJob(query_url, _get_auth())
py
1a5284a92771225aa82d3837629e219ea69bb278
from django.db import models import datetime from django.utils import timezone # Create your models here. class Question(models.Model): question_text = models.CharField(max_length=350) pub_date = models.DateField('Date Published') def was_published_recently(self): now = timezone.now() diff = now - datetime.timedelta(days=1) return diff.date() <= self.pub_date <= now.date() was_published_recently.admin_order_field = 'pub_date' was_published_recently.boolean = True was_published_recently.short_description = 'Published recently?' def __str__(self): return self.question_text class Choice(models.Model): question = models.ForeignKey(Question, on_delete=models.CASCADE) choice_text = models.CharField(max_length=200) votes = models.IntegerField(default=0) def __str__(self): return self.choice_text
py
1a52851009f957a45ea51e62b11fdcc6302a15c4
from collections import defaultdict, Sized import numpy as np import pandas as pd from pandas._libs.lib import fast_zip from pandas._libs.parsers import union_categoricals from pandas.core.dtypes.common import is_numeric_dtype from scipy.sparse import csr_matrix from scipy.sparse.csgraph._traversal import connected_components def get_sequence_length(obj): if isinstance(obj, str) or not isinstance(obj, Sized): return -1 elif isinstance(obj, Sized) and all(not isinstance(i, Sized) and pd.isnull(i) for i in obj): return -2 else: return len(obj) def flatten(frame, index_name=None, as_index=False, keep_na=False, columns=None, tile_index=False): """ Flatten the input before the transformation Parameters ---------- frame: pandas.DataFrame index_name: str Name of the index to append to indentify each item uniquely keep_na: bool or str Should non-sequences elements (or sequences full of None) be kept in the dataframe as an empty row (value given is None and new index value is None also) columns: tuple of str Flatten only sequence in these columns if not None Returns ------- (pandas.DataFrame, pandas.DataFrame, callable) flattened input: Flattened input to transform length: Lengths of the sequences. We will actually only want to know if it was a sequence or not (see get_sequence_length(...)), during either unflattening if regroup is True or during rationale backpropagation sequence_constructor: Returns the "type" of the sequences contained in the frame, or more specifically the function used to build an instance of these sequences. Will be used during unflattening if self.regroup is True and during rationale backpropagation """ if isinstance(as_index, bool): as_column = not as_index elif isinstance(as_index, str) and index_name is None: index_name = as_index as_column = False else: raise Exception("as_index must be str or bool, and if str, index_name must be None") if isinstance(frame, pd.Series): res = flatten(pd.DataFrame({"X": frame}), index_name, as_column, keep_na, columns, tile_index) new_frame = res["X"] new_frame.name = frame.name return new_frame if keep_na is True: keep_na = 'null_index' elif keep_na is False: keep_na = 'remove' assert keep_na in ('null_index', 'as_single_item', 'remove') assert isinstance(frame, pd.DataFrame), "Can only flatten DataFrame" if columns is None: columns = frame.columns elif not isinstance(columns, (tuple, list)): columns = [columns] else: columns = list(columns) lengths = frame[columns].applymap(lambda seq: get_sequence_length(seq)) for col in frame.columns: if col not in columns: lengths[col] = -1 result_lengths = lengths.max(axis=1) # Each column element will be expanded on multiple rows, # even if it is a non-iterable object # We must know before how many rows will the expansion take # and we take this length from the maximum sequence size if keep_na == 'remove': bool_row_selector = result_lengths > 0 result_lengths = result_lengths[bool_row_selector] selected_lengths = lengths[bool_row_selector] frame = frame[bool_row_selector] nulls = None else: nulls = result_lengths < 0 # Non sequence or sequence full of None will give rise to 1 row result_lengths[nulls] = 1 selected_lengths = lengths nulls = result_lengths.cumsum()[nulls] - 1 categoricals = {} frame = frame.copy() for col in frame.columns: if hasattr(frame[col], 'cat'): categoricals[col] = frame[col].cat.categories frame[col] = frame[col].cat.codes flattened = {col: [] for col in frame.columns} for col_name, col in frame.iteritems(): for obj, res_length, length in zip(col.values, result_lengths, selected_lengths[col_name]): if length >= 0: # we have a normal sequence flattened[col_name].append(obj if isinstance(obj, pd.Series) else pd.Series(obj)) # Otherwise it a non sequence, create as many rows as needed for it else: # -2 means sequence full of None, we put a None instead here if length == -2: obj = None if res_length == 1: flattened[col_name].append(pd.Series([obj])) else: flattened[col_name].append(pd.Series([obj] * res_length)) index = frame.index.repeat(result_lengths) if index_name is not None else None for col_name in flattened: flattened[col_name] = pd.concat(flattened[col_name], ignore_index=True) if index is not None: flattened[col_name].index = index flattened = pd.DataFrame(flattened) # flattened = pd.DataFrame( # data={col_name: pd.concat(flattened[col_name], ignore_index=True) for col_name in flattened}, # index=frame.index.repeat(result_lengths) if index_name is not None else None) for name, categories in categoricals.items(): flattened[name] = pd.Categorical.from_codes(flattened[name], categories=categories) # Adds an index under the name `self.index_name` to identify uniquely every row # of the frame if index_name is not None: if index_name in flattened.columns: flattened.set_index(index_name, append=True, inplace=True) else: if tile_index: new_index_values = np.concatenate([np.arange(s) for s in result_lengths]) flattened[index_name] = new_index_values else: new_index_values = np.arange(len(flattened)) flattened[index_name] = new_index_values flattened[index_name] = flattened[index_name] flattened.set_index(index_name, append=True, inplace=True) if keep_na == 'null_index' and nulls is not None: new_labels = np.arange(len(flattened)) # noinspection PyUnresolvedReferences new_labels[nulls.values] = -1 flattened.index.set_codes( new_labels, level=index_name, inplace=True) if as_column: flattened.reset_index(index_name, inplace=True) flattened.reset_index(inplace=True, drop=True) # flattened.index = flattened.index.remove_unused_levels() return flattened def make_merged_names(left_span_names, right_span_names, left_on, right_on, left_columns, right_columns, suffixes=('_x', '_y')): right_columns = set(right_columns) - set(right_on) left_columns = set(left_columns) - set(left_on) left_merged = [name + (suffixes[0] if name in right_columns else '') for name in left_span_names] right_merged = [name + (suffixes[1] if name in left_columns else '') for name in right_span_names] return left_merged, right_merged def make_merged_names_map(left_columns, right_columns, left_on, right_on, suffixes=('_x', '_y')): right_columns = set(right_columns) - set(right_on) left_columns = set(left_columns) - set(left_on) left_merged = [name + (suffixes[0] if name in right_columns else '') for name in left_columns] right_merged = [name + (suffixes[1] if name in left_columns else '') for name in right_columns] return dict(zip(left_columns, left_merged)), dict(zip(right_columns, right_merged)) def merge_with_spans( left, right=None, how='inner', on=None, left_on=None, right_on=None, suffixes=('_x', '_y'), span_policy='partial_strict', placeholder_columns=(), **kwargs): """ Just like pandas.merge, but handles the merging of spans Any tuple in the "on" column will be considered a (begin, end) span How to merge those span Parameters ---------- left: pd.DataFrame right: pd.DataFrame how: str "inner", "outer", "left", "right" on: list of (str or tuple of str) left_on: list of (str or tuple of str) right_on: list of (str or tuple of str) suffixes: list of str span_policy: str How to merge spans ? One of: "partial", "exact", "partial_strict" placeholder_columns: Zero will be put as a value instead of nan for any empty cell in those columns after the merge kwargs: any Any kwargs for the pd.merge function Returns ------- pd.DataFrame """ if right is None: right = left left = left.copy() right = right.copy() if isinstance(on, str): on = [on] if left_on is None: left_on = on if right_on is None: right_on = on left_columns = left.columns if hasattr(left, 'columns') else [left.name] right_columns = right.columns if hasattr(right, 'columns') else [right.name] if left_on is None and right_on is None: left_on = right_on = list(set(left_columns) & set(right_columns)) left_on_spans = [o for o in left_on if isinstance(o, tuple)] right_on_spans = [o for o in right_on if isinstance(o, tuple)] left_on = [c for c in left_on if not isinstance(c, tuple)] # flatten_sequence(left_on) right_on = [c for c in right_on if not isinstance(c, tuple)] # flatten_sequence(right_on) left_names, right_names = make_merged_names( left_columns, right.columns, left_on=left_on, right_on=right_on, left_columns=left_columns, right_columns=right_columns, suffixes=suffixes) left_names_map = dict(zip(left_columns, left_names)) right_names_map = dict(zip(right_columns, right_names)) categoricals = {} for left_col, right_col in zip(left_on, right_on): left_cat = getattr(left[left_col] if hasattr(left, 'columns') else left, 'cat', None) right_cat = getattr(right[right_col] if hasattr(right, 'columns') else right, 'cat', None) if left_cat is not None or right_cat is not None: if (left_cat and right_cat and not (left_cat.categories is right_cat.categories)) or ( (left_cat is None) != (right_cat is None)): left[left_col] = left[left_col].astype('category') right[right_col] = right[right_col].astype('category') cat_merge = union_categoricals([left[left_col], right[right_col]]) if hasattr(left, 'columns'): left[left_col] = cat_merge[:len(left)] else: left = cat_merge[:len(left)] if hasattr(right, 'columns'): right[right_col] = cat_merge[len(left):] else: right = cat_merge[len(left):] categoricals[left_names_map[left_col]] = left[left_col].cat.categories categoricals[right_names_map[right_col]] = right[right_col].cat.categories if hasattr(left, 'columns'): left[left_col] = left[left_col].cat.codes else: left = left.cat.codes if hasattr(right, 'columns'): right[right_col] = right[right_col].cat.codes else: right = right.cat.codes if len(left_on_spans) == 0: merged = pd.merge(left, right, left_on=left_on, right_on=right_on, suffixes=suffixes, how=how, **kwargs) else: if how != 'inner': left['_left_index'] = np.arange(len(left)) right['_right_index'] = np.arange(len(right)) merged = pd.merge(left, right, left_on=left_on, right_on=right_on, suffixes=suffixes, how='inner', **kwargs) for i, (left_span_names, right_span_names) in enumerate(zip(left_on_spans, right_on_spans)): (left_begin, left_end), (right_begin, right_end) = make_merged_names( left_span_names, right_span_names, left_on=left_on, right_on=right_on, left_columns=left.columns, right_columns=right_columns, suffixes=suffixes) merged[f'overlap_size_{i}'] = np.minimum(merged[left_end], merged[right_end]) - np.maximum(merged[left_begin], merged[right_begin]) if span_policy != "none": results = [] chunk_size = 1000000 for chunk_i in range(0, len(merged), chunk_size): if span_policy == "partial_strict": results.append(merged.iloc[chunk_i:chunk_i + chunk_size].query(f'({right_end} > {left_begin} and {left_end} > {right_begin})')) elif span_policy == "partial": results.append(merged.iloc[chunk_i:chunk_i + chunk_size].query(f'({right_end} >= {left_begin} and {left_end} >= {right_begin})')) elif span_policy == "exact": results.append(merged.iloc[chunk_i:chunk_i + chunk_size].query(f'({left_begin} == {right_begin} and {left_end} == {right_end})')) else: results.append(merged.iloc[chunk_i:chunk_i + chunk_size].query(span_policy)) if len(results): merged = pd.concat(results, sort=False, ignore_index=True) else: merged = merged.iloc[:0] elif span_policy == "none": pass else: raise Exception(f"Unrecognized policy {span_policy}") if how != 'inner': if how in ('left', 'outer'): missing = left[~left['_left_index'].isin(merged['_left_index'])].copy() missing = missing.rename(left_names_map, axis=1) for col in right.columns: if hasattr(right[col], 'cat') and right_names_map[col] not in missing.columns: missing[right_names_map[col]] = pd.Categorical([None] * len(missing), categories=right[col].cat.categories) for col in placeholder_columns: if col not in left_on and right_names_map.get(col, col) not in left.columns: missing[right_names_map.get(col, col)] = 0 # -np.arange(len(missing)) - 1 merged = pd.concat([merged, missing.rename(dict(zip(left.columns, left_names)), axis=1)], sort=False, ignore_index=True) if how in ('right', 'outer'): missing = right[~right['_right_index'].isin(merged['_right_index'])].copy() missing = missing.rename(right_names_map, axis=1) for col in left.columns: if hasattr(left[col], 'cat') and left_names_map[col] not in missing.columns: missing[left_names_map[col]] = pd.Categorical([None] * len(missing), categories=left[col].cat.categories) for col in placeholder_columns: if col not in right_on and left_names_map.get(col, col) not in right.columns: missing[left_names_map.get(col, col)] = 0 # -np.arange(len(missing)) - 1 merged = pd.concat([merged, missing.rename(dict(zip(right.columns, right_names)), axis=1)], sort=False, ignore_index=True) merged = merged.sort_values(['_left_index', '_right_index']) del merged['_left_index'] del merged['_right_index'] merged = merged.reset_index(drop=True) for col, categories in categoricals.items(): merged[col] = pd.Categorical.from_codes(merged[col].fillna(-1).astype(int), categories=categories) return merged def make_id_from_merged(*indices_arrays, same_ids=False, apply_on=None): """ Compute new ids from connected components by looking at `indices_arrays` Parameters ---------- indices_arrays: collections.Sequence 1d array of positive integers same_ids: bool Do the multiple arrays represent the same ids ? (a 3 in one column should therefore be connected to a 3 in another, event if they are not on the same row) apply_on: list of (int, any) Return the new ids matching old ids for each (index, vector) in apply_on: return new_ids matching those in vector that should be considered the same of those of the vector number `index` in the `indices_arrays` Returns ------- list of np.ndarray """ if not same_ids: indices_arrays, unique_objects = zip(*(factorize_rows(array, return_categories=True) for array in indices_arrays)) else: indices_arrays, unique_objects = factorize_rows(indices_arrays, return_categories=True) unique_objects = [unique_objects] * len(indices_arrays) offset = max(indices_array.max() for indices_array in indices_arrays) + 1 N = offset * (len(indices_arrays) + 1) if same_ids: N = offset offset = 0 offseted_ids = [s + i * offset for i, s in enumerate(indices_arrays)] left_ids, right_ids = zip(*[(offseted_ids[i], offseted_ids[j]) for i in range(0, len(indices_arrays) - 1) for j in range(i + 1, len(indices_arrays))]) left_ids = np.concatenate(left_ids) right_ids = np.concatenate(right_ids) _, matches = connected_components(csr_matrix((np.ones(len(left_ids)), (left_ids, right_ids)), shape=(N, N))) matches = pd.factorize(matches)[0] if apply_on is None: return [ matches[s] for s in offseted_ids ] else: return [ matches[factorize_rows(s, categories=unique_objects[i], return_categories=False) + i * offset] for i, s in apply_on ] def df_to_csr(rows, cols, data=None, n_rows=None, n_cols=None): """ Transforms a dataframe into a csr_matrix Parameters ---------- data: pd.Series Data column (column full one True will be used if None) rows: pd.Series Column containing row indices (can be Categorical and then codes will be used) cols: pd.Series Column containing column indices (can be Categorical and then codes will be used) n_rows: int n_cols: int Returns ------- csr_matrix """ if data is None: data = np.ones(len(rows), dtype=bool) if hasattr(rows, 'cat'): n_rows = len(rows.cat.categories) rows, rows_cat = rows.cat.codes, rows.cat.categories else: n_rows = n_rows or (rows.max() + 1 if len(rows) > 0 else 0) if hasattr(cols, 'cat'): n_cols = len(cols.cat.categories) cols, cols_cat = cols.cat.codes, cols.cat.categories else: n_cols = n_cols or (cols.max() + 1 if len(cols) > 0 else 0) return csr_matrix((np.asarray(data), (np.asarray(rows), np.asarray(cols))), shape=(n_rows, n_cols)) def df_to_flatarray(rows, data, n_rows=None): """ Transforms a dataframe into a flat array Parameters ---------- data: pd.Series Data column (column full one True will be used if None) rows: pd.Series Column containing row indices (can be Categorical and then codes will be used) n_rows: int Returns ------- np.ndarray """ if hasattr(rows, 'cat'): n_rows = len(rows.cat.categories) rows, rows_cat = rows.cat.codes, rows.cat.categories else: n_rows = n_rows or (rows.max() + 1) res = np.zeros(n_rows, dtype=data.dtype) res[rows] = np.asarray(data) return res def csr_to_df(csr, row_categories=None, col_categories=None, row_name=None, col_name=None, value_name=None): """ Convert a csr_matrix to a dataframe Parameters ---------- csr: csr_matrix row_categories: any Categories to rebuild the real object from their row indices col_categories: any Categories to rebuild the real object from their col indices row_name: str What name to give to the column built from the row indices col_name: str What name to give to the column built from the col indices value_name: What name to give to the column built from the values If None, no value column will be built Returns ------- pd.DataFrame """ csr = csr.tocoo() rows, cols, values = csr.row, csr.col, csr.data if isinstance(row_categories, pd.DataFrame): rows_df = row_categories.iloc[rows] elif isinstance(row_categories, pd.Series): rows_df = pd.DataFrame({row_categories.name: row_categories.iloc[rows]}) elif isinstance(row_categories, pd.CategoricalDtype): rows_df = pd.DataFrame({row_name: pd.Categorical.from_codes(rows, dtype=row_categories)}) else: rows_df = pd.DataFrame({row_name: rows}) if isinstance(col_categories, pd.DataFrame): cols_df = col_categories.iloc[cols] elif isinstance(col_categories, pd.Series): cols_df = pd.DataFrame({col_categories.name: col_categories.iloc[cols]}) elif isinstance(col_categories, pd.CategoricalDtype): cols_df = pd.DataFrame({col_name: pd.Categorical.from_codes(cols, dtype=col_categories)}) else: cols_df = pd.DataFrame({col_name: cols}) res = (rows_df.reset_index(drop=True), cols_df.reset_index(drop=True)) if value_name is not None: res = res + (pd.DataFrame({value_name: values}),) return pd.concat(res, axis=1) def factorize_rows(rows, categories=None, group_nans=True, subset=None, freeze_categories=True, return_categories=True): if not isinstance(rows, list): was_list = False all_rows = [rows] else: all_rows = rows was_list = True del rows not_null_subset = (subset if subset is not None else all_rows[0].columns if hasattr(all_rows[0], 'columns') else [all_rows[0].name]) cat_arrays = [[] for _ in not_null_subset] for rows in (categories, *all_rows) if categories is not None else all_rows: for (col_name, col), dest in zip(([(0, rows)] if len(rows.shape) == 1 else rows[subset].items() if subset is not None else rows.items()), cat_arrays): dest.append(np.asarray(col)) cat_arrays = [np.concatenate(arrays) for arrays in cat_arrays] is_not_nan = None if not group_nans: is_not_nan = ~pd.isna(np.stack(cat_arrays, axis=1)).any(1) cat_arrays = [arrays[is_not_nan] for arrays in cat_arrays] if len(cat_arrays) > 1: relative_values, unique_values = pd.factorize(fast_zip(cat_arrays)) else: relative_values, unique_values = pd.factorize(cat_arrays[0]) if freeze_categories and categories is not None: relative_values[relative_values >= len(categories)] = -1 if not group_nans: new_relative_values = np.full(is_not_nan.shape, fill_value=-1, dtype=relative_values.dtype) new_relative_values[is_not_nan] = relative_values new_relative_values[~is_not_nan] = len(unique_values) + np.arange((~is_not_nan).sum()) relative_values = new_relative_values offset = len(categories) if categories is not None else 0 res = [] for rows in all_rows: new_rows = relative_values[offset:offset + len(rows)] if isinstance(rows, (pd.DataFrame, pd.Series)): new_rows = pd.Series(new_rows) new_rows.index = rows.index new_rows.name = "+".join(not_null_subset) res.append(new_rows) offset += len(rows) if categories is None and return_categories: if isinstance(all_rows[0], pd.DataFrame): if len(cat_arrays) > 1: categories = pd.DataFrame(dict(zip(not_null_subset, [np.asarray(l) for l in zip(*unique_values)]))) else: categories = pd.DataFrame({not_null_subset[0]: unique_values}) categories = categories.astype({k: dtype for k, dtype in next(rows for rows in all_rows if len(rows)).dtypes.items() if k in not_null_subset}) elif isinstance(all_rows[0], pd.Series): categories = pd.Series(unique_values) categories.name = all_rows[0].name categories = categories.astype(next(rows.dtype for rows in all_rows if len(rows))) else: categories = np.asarray([l for l in zip(*unique_values)]) if not was_list: res = res[0] if not return_categories: return res return res, categories def normalize_vocabularies(dfs, vocabularies=None, train_vocabularies=True, unk=None, verbose=0): """ Categorize the columns of the dataframes so that they share the same categories if they share the same columns If a column's name ends up with '_id', do not categorize it since it is no something we want to train on Parameters ---------- dfs: list of pd.DataFrame DataFrame whose columns will be categorized vocabularies: dict or None Existing vocabulary to use if any train_vocabularies: bool or dict of (str, bool) Which category to extend/create in the voc ? unk: dict of (str, any) Which filler should we put for an unknown object if we cannot train the corresponding voc ? verbose: int Returns ------- list of pd.DataFrame, dict """ # Define label vocabulary if unk is None: unk = {} if vocabularies is None: vocabularies = {} voc_order = list(vocabularies.keys()) if train_vocabularies is False: train_vocabularies = defaultdict(lambda: False) else: train_vocabularies_ = defaultdict(lambda: True) if isinstance(train_vocabularies, dict): train_vocabularies_.update(train_vocabularies) train_vocabularies = train_vocabularies_ del train_vocabularies_ for col_name in vocabularies: if col_name not in train_vocabularies: train_vocabularies[col_name] = False for df in dfs: for col_name in df: if not col_name.endswith('_id') and not is_numeric_dtype(df[col_name].dtype): if train_vocabularies[col_name]: train_vocabularies[col_name] = True else: train_vocabularies[col_name] = False for col_name, will_train in train_vocabularies.items(): if will_train and verbose: print(f"Will train vocabulary for {col_name}") for df in dfs: for col_name in df: if hasattr(df[col_name], 'cat') and col_name not in vocabularies and not col_name.endswith('_id'): if verbose: print(f"Discovered existing vocabulary ({len(df[col_name].cat.categories)} entities) for {col_name}") vocabularies[col_name] = list(df[col_name].dtype.categories) for voc_name, train_voc in train_vocabularies.items(): if train_voc: voc = list(vocabularies.get(voc_name, [])) if voc_name in unk and unk[voc_name] not in voc: voc.append(unk[voc_name]) if hasattr(voc, 'categories'): voc = list(voc.categories) for df in dfs: if voc_name in df: voc.extend(df[voc_name].astype("category").cat.categories) voc = pd.factorize(voc)[1] dtype = pd.CategoricalDtype(pd.factorize(voc)[1]) for df in dfs: if voc_name in df: df[voc_name] = df[voc_name].astype(dtype) vocabularies[voc_name] = voc if voc_name in unk: df[voc_name].fillna(unk[voc_name], inplace=True) else: voc = vocabularies.get(voc_name) if not hasattr(voc, 'categories'): voc = pd.CategoricalDtype(voc) for df in dfs: if voc_name in df: df[voc_name] = df[voc_name].astype(voc) if verbose: unk_msg = f"unk {unk[voc_name]}" if voc_name in unk else "no unk" print(f"Normalized {voc_name}, with given vocabulary and {unk_msg}") if voc_name in unk: df[voc_name].fillna(unk[voc_name], inplace=True) # Reorder vocabularies to keep same order as the vocabulary passed in parameters vocabularies = dict((*((c, vocabularies[c]) for c in voc_order if c in vocabularies), *((c, vocabularies[c]) for c in vocabularies if c not in voc_order))) # Reorder dataframes according to vocabulary order dfs = [ df[[*(c for c in vocabularies if c in df.columns), *(c for c in df.columns if c not in vocabularies)]] for df in dfs ] return dfs, vocabularies class FasterGroupBy: def __init__(self, groupby_object, dtypes, name=None): self.groupby_object = groupby_object self.dtypes = dtypes self.name = name def _retype(self, res): if self.name is None: return res.astype(self.dtypes) return (res.astype(self.dtypes) if self.dtypes is not None else res).reset_index().rename({0: self.name}, axis=1) def agg(self, *args, **kwargs): return self._retype(self.groupby_object.agg(*args, **kwargs)) def apply(self, *args, **kwargs): return self._retype(self.groupby_object.apply(*args, **kwargs)) def __getitem__(self, item): return FasterGroupBy(self.groupby_object[item], self.dtypes.get(item, None), item if not isinstance(item, (list, tuple)) else None) class NLStructAccessor(object): def __init__(self, pandas_obj): self._obj = pandas_obj def factorize(self, subset=None, categories=None, group_nans=False, return_categories=False, freeze_categories=True): return factorize_rows(self._obj, subset=subset, categories=categories, group_nans=group_nans, return_categories=return_categories, freeze_categories=freeze_categories) def flatten(self, *args, **kwargs): return flatten(self._obj, *args, **kwargs) def to_flatarray(self, row_column, data_column, n_rows=None): return df_to_flatarray(self._obj[row_column], self._obj[data_column], n_rows=n_rows) def to_csr(self, row_column, col_column, data_column=None, n_rows=None, n_cols=None): return df_to_csr(self._obj[row_column], self._obj[col_column], self._obj[data_column] if data_column is not None else None, n_rows=n_rows, n_cols=n_cols) def groupby(self, by, *args, decategorize=None, as_index=False, observed=True, **kwargs): if not as_index: if decategorize is None: decategorize = by new_dtypes = {k: v if not hasattr(v, 'categories') else v.categories.dtype for k, v in self._obj.dtypes[decategorize].items()} return FasterGroupBy(self._obj.astype(new_dtypes).groupby(by=by, *args, as_index=as_index, observed=observed, **kwargs), self._obj.dtypes[decategorize]) else: return self._obj.groupby(by=by, *args, as_index=as_index, **kwargs) def groupby_assign(self, by, agg, as_index=False, observed=True, **kwargs): res = self._obj.assign(_index=np.arange(len(self._obj))) res = res.drop(columns=list(agg.keys())).merge( # .astype({key: "category" for key in mentions_cluster_ids}) res.groupby(by, observed=observed, **kwargs) .agg({**agg, "_index": tuple}).reset_index(drop=True) .nlstruct.flatten("_index"), how='left', on='_index', ).drop(columns=["_index"]) if as_index: res = res.set_index(by) return res pd.api.extensions.register_dataframe_accessor("nlstruct")(NLStructAccessor) pd.api.extensions.register_series_accessor("nlstruct")(NLStructAccessor)
py
1a5285422d7d4124e987636ba4d13451f24b9b43
''' Function: 千千音乐下载: http://music.taihe.com/ Author: Charles 微信公众号: Charles的皮卡丘 声明: 代码仅供学习交流, 不得用于商业/非法使用. ''' import os import click import requests from contextlib import closing ''' Input: -mode: search(搜索模式)/download(下载模式) --search模式: ----songname: 搜索的歌名 --download模式: ----need_down_list: 需要下载的歌曲名列表 ----savepath: 下载歌曲保存路径 Return: -search模式: --search_results: 搜索结果 -download模式: --downed_list: 成功下载的歌曲名列表 ''' class qianqian(): def __init__(self): self.headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36', 'referer': 'http://music.baidu.com/' } self.search_url = "http://musicapi.qianqian.com/v1/restserver/ting" self.player_url = 'http://music.baidu.com/data/music/links' self.search_results = {} '''外部调用''' def get(self, mode='search', **kwargs): if mode == 'search': songname = kwargs.get('songname') self.search_results = self.__searchBySongname(songname) return self.search_results elif mode == 'download': need_down_list = kwargs.get('need_down_list') downed_list = [] savepath = kwargs.get('savepath') if kwargs.get('savepath') is not None else './results' if need_down_list is not None: for download_name in need_down_list: songid = self.search_results.get(download_name) params = {"songIds": songid} res = requests.get(self.player_url, params=params, headers=self.headers) if not res.json().get('data').get('songList'): continue download_url = res.json().get('data').get('songList')[0].get('songLink') if not download_url: continue res = self.__download(download_name, download_url, savepath) if res: downed_list.append(download_name) return downed_list else: raise ValueError('mode in qianqian().get must be <search> or <download>...') '''下载''' def __download(self, download_name, download_url, savepath): if not os.path.exists(savepath): os.mkdir(savepath) download_name = download_name.replace('<', '').replace('>', '').replace('\\', '').replace('/', '') \ .replace('?', '').replace(':', '').replace('"', '').replace(':', '') \ .replace('|', '').replace('?', '').replace('*', '') savename = 'qianqian_{}'.format(download_name) count = 0 while os.path.isfile(os.path.join(savepath, savename+'.mp3')): count += 1 savename = 'qianqian_{}_{}'.format(download_name, count) savename += '.mp3' try: print('[qianqian-INFO]: 正在下载 --> %s' % savename.split('.')[0]) with closing(requests.get(download_url, headers=self.headers, stream=True, verify=False)) as res: total_size = int(res.headers['content-length']) if res.status_code == 200: label = '[FileSize]:%0.2f MB' % (total_size/(1024*1024)) with click.progressbar(length=total_size, label=label) as progressbar: with open(os.path.join(savepath, savename), "wb") as f: for chunk in res.iter_content(chunk_size=1024): if chunk: f.write(chunk) progressbar.update(1024) else: raise RuntimeError('Connect error...') return True except: return False '''根据歌名搜索''' def __searchBySongname(self, songname): params = { "query": songname, "method": "baidu.ting.search.common", "format": "json", "page_no": 1, "page_size": 15 } res = requests.get(self.search_url, params=params, headers=self.headers) results = {} for song in res.json()['song_list']: songid = song.get('song_id') singers = song.get('author').replace("<em>", "").replace("</em>", "") album = song.get('album_title').replace("<em>", "").replace("</em>", "") download_name = '%s--%s--%s' % (song.get('title').replace("<em>", "").replace("</em>", ""), singers, album) count = 0 while download_name in results: count += 1 download_name = '%s(%d)--%s--%s' % (song.get('title'), count, singers, album) results[download_name] = songid return results '''测试用''' if __name__ == '__main__': qianqian_downloader = qianqian() res = qianqian_downloader.get(mode='search', songname='尾戒') qianqian_downloader.get(mode='download', need_down_list=list(res.keys())[:2])
py
1a52864af301ec1aaf53cb5aaaa053527159fd2e
# License: Apache-2.0 import databricks.koalas as ks import numpy as np import pandas as pd import pytest from pandas.testing import assert_frame_equal from gators.binning import QuantileDiscretizer ks.set_option("compute.default_index_type", "distributed-sequence") @pytest.fixture def data(): n_bins = 4 X = pd.DataFrame( { "A": [7.25, 71.2833, 7.925, 53.1, 8.05, 8.4583], "B": [1, 1, 0, 1, 0, 0], "C": ["a", "b", "c", "d", "e", "f"], "D": [22.0, 38.0, 26.0, 35.0, 35.0, 31.2], "F": [3, 1, 2, 1, 2, 3], } ) X_expected = pd.DataFrame( { "A": {0: 7.25, 1: 71.2833, 2: 7.925, 3: 53.1, 4: 8.05, 5: 8.4583}, "B": {0: 1, 1: 1, 2: 0, 3: 1, 4: 0, 5: 0}, "C": {0: "a", 1: "b", 2: "c", 3: "d", 4: "e", 5: "f"}, "D": {0: 22.0, 1: 38.0, 2: 26.0, 3: 35.0, 4: 35.0, 5: 31.2}, "F": {0: 3, 1: 1, 2: 2, 3: 1, 4: 2, 5: 3}, "A__bin": {0: "0.0", 1: "3.0", 2: "0.0", 3: "3.0", 4: "1.0", 5: "2.0"}, "B__bin": {0: "2.0", 1: "2.0", 2: "0.0", 3: "2.0", 4: "0.0", 5: "0.0"}, "D__bin": {0: "0.0", 1: "3.0", 2: "0.0", 3: "2.0", 4: "2.0", 5: "1.0"}, "F__bin": {0: "3.0", 1: "0.0", 2: "1.0", 3: "0.0", 4: "1.0", 5: "3.0"}, } ) obj = QuantileDiscretizer(n_bins).fit(X) return obj, X, X_expected @pytest.fixture def data_int16(): n_bins = 4 X = pd.DataFrame( { "A": [7.25, 71.2833, 7.925, 53.1, 8.05, 8.4583], "B": [1, 1, 0, 1, 0, 0], "C": ["a", "b", "c", "d", "e", "f"], "D": [22.0, 38.0, 26.0, 35.0, 35.0, 31.2], "F": [3, 1, 2, 1, 2, 3], } ) X[list("ABDF")] = X[list("ABDF")].astype(np.int16) X_expected = pd.DataFrame( { "A": {0: 7.25, 1: 71.2833, 2: 7.925, 3: 53.1, 4: 8.05, 5: 8.4583}, "B": {0: 1, 1: 1, 2: 0, 3: 1, 4: 0, 5: 0}, "C": {0: "a", 1: "b", 2: "c", 3: "d", 4: "e", 5: "f"}, "D": {0: 22.0, 1: 38.0, 2: 26.0, 3: 35.0, 4: 35.0, 5: 31.2}, "F": {0: 3, 1: 1, 2: 2, 3: 1, 4: 2, 5: 3}, "A__bin": {0: "0.0", 1: "3.0", 2: "0.0", 3: "3.0", 4: "1.0", 5: "2.0"}, "B__bin": {0: "2.0", 1: "2.0", 2: "0.0", 3: "2.0", 4: "0.0", 5: "0.0"}, "D__bin": {0: "0.0", 1: "3.0", 2: "0.0", 3: "2.0", 4: "2.0", 5: "1.0"}, "F__bin": {0: "3.0", 1: "0.0", 2: "1.0", 3: "0.0", 4: "1.0", 5: "3.0"}, } ) X_expected[list("ABDF")] = X_expected[list("ABDF")].astype(np.int16) obj = QuantileDiscretizer(n_bins).fit(X) return obj, X, X_expected @pytest.fixture def data_inplace(): n_bins = 4 X = pd.DataFrame( { "A": [7.25, 71.2833, 7.925, 53.1, 8.05, 8.4583], "B": [1, 1, 0, 1, 0, 0], "C": ["a", "b", "c", "d", "e", "f"], "D": [22.0, 38.0, 26.0, 35.0, 35.0, 31.2], "F": [3, 1, 2, 1, 2, 3], } ) X_expected = pd.DataFrame( { "A": {0: "0.0", 1: "3.0", 2: "0.0", 3: "3.0", 4: "1.0", 5: "2.0"}, "B": {0: "2.0", 1: "2.0", 2: "0.0", 3: "2.0", 4: "0.0", 5: "0.0"}, "C": {0: "a", 1: "b", 2: "c", 3: "d", 4: "e", 5: "f"}, "D": {0: "0.0", 1: "3.0", 2: "0.0", 3: "2.0", 4: "2.0", 5: "1.0"}, "F": {0: "3.0", 1: "0.0", 2: "1.0", 3: "0.0", 4: "1.0", 5: "3.0"}, } ) obj = QuantileDiscretizer(n_bins, inplace=True).fit(X) return obj, X, X_expected @pytest.fixture def data_no_num(): X = pd.DataFrame({"C": ["a", "b", "c", "d", "e", "f"]}) X_expected = pd.DataFrame({"C": ["a", "b", "c", "d", "e", "f"]}) n_bins = 3 obj = QuantileDiscretizer(n_bins).fit(X) return obj, X, X_expected @pytest.fixture def data_num(): n_bins = 4 X = pd.DataFrame( { "A": [7.25, 71.2833, 7.925, 53.1, 8.05, 8.4583], "B": [1, 1, 0, 1, 0, 0], "D": [22.0, 38.0, 26.0, 35.0, 35.0, 31.2], "F": [3, 1, 2, 1, 2, 3], } ) X_expected = pd.DataFrame( { "A": {0: 7.25, 1: 71.2833, 2: 7.925, 3: 53.1, 4: 8.05, 5: 8.4583}, "B": {0: 1, 1: 1, 2: 0, 3: 1, 4: 0, 5: 0}, "D": {0: 22.0, 1: 38.0, 2: 26.0, 3: 35.0, 4: 35.0, 5: 31.2}, "F": {0: 3, 1: 1, 2: 2, 3: 1, 4: 2, 5: 3}, "A__bin": {0: "0.0", 1: "3.0", 2: "0.0", 3: "3.0", 4: "1.0", 5: "2.0"}, "B__bin": {0: "2.0", 1: "2.0", 2: "0.0", 3: "2.0", 4: "0.0", 5: "0.0"}, "D__bin": {0: "0.0", 1: "3.0", 2: "0.0", 3: "2.0", 4: "2.0", 5: "1.0"}, "F__bin": {0: "3.0", 1: "0.0", 2: "1.0", 3: "0.0", 4: "1.0", 5: "3.0"}, } ) obj = QuantileDiscretizer(n_bins).fit(X) return obj, X, X_expected @pytest.fixture def data_num_inplace(): n_bins = 4 X = pd.DataFrame( { "A": [7.25, 71.2833, 7.925, 53.1, 8.05, 8.4583], "B": [1, 1, 0, 1, 0, 0], "D": [22.0, 38.0, 26.0, 35.0, 35.0, 31.2], "F": [3, 1, 2, 1, 2, 3], } ) X_expected = pd.DataFrame( { "A": {0: "0.0", 1: "3.0", 2: "0.0", 3: "3.0", 4: "1.0", 5: "2.0"}, "B": {0: "2.0", 1: "2.0", 2: "0.0", 3: "2.0", 4: "0.0", 5: "0.0"}, "D": {0: "0.0", 1: "3.0", 2: "0.0", 3: "2.0", 4: "2.0", 5: "1.0"}, "F": {0: "3.0", 1: "0.0", 2: "1.0", 3: "0.0", 4: "1.0", 5: "3.0"}, } ) obj = QuantileDiscretizer(n_bins, inplace=True).fit(X) return obj, X, X_expected ### @pytest.fixture def data_ks(): n_bins = 4 X = ks.DataFrame( { "A": [7.25, 71.2833, 7.925, 53.1, 8.05, 8.4583], "B": [1, 1, 0, 1, 0, 0], "C": ["a", "b", "c", "d", "e", "f"], "D": [22.0, 38.0, 26.0, 35.0, 35.0, 31.2], "F": [3, 1, 2, 1, 2, 3], } ) X_expected = pd.DataFrame( { "A": {0: 7.25, 1: 71.2833, 2: 7.925, 3: 53.1, 4: 8.05, 5: 8.4583}, "B": {0: 1, 1: 1, 2: 0, 3: 1, 4: 0, 5: 0}, "C": {0: "a", 1: "b", 2: "c", 3: "d", 4: "e", 5: "f"}, "D": {0: 22.0, 1: 38.0, 2: 26.0, 3: 35.0, 4: 35.0, 5: 31.2}, "F": {0: 3, 1: 1, 2: 2, 3: 1, 4: 2, 5: 3}, "A__bin": {0: "0.0", 1: "3.0", 2: "0.0", 3: "3.0", 4: "1.0", 5: "2.0"}, "B__bin": {0: "2.0", 1: "2.0", 2: "0.0", 3: "2.0", 4: "0.0", 5: "0.0"}, "D__bin": {0: "0.0", 1: "3.0", 2: "0.0", 3: "2.0", 4: "2.0", 5: "1.0"}, "F__bin": {0: "3.0", 1: "0.0", 2: "1.0", 3: "0.0", 4: "1.0", 5: "3.0"}, } ) obj = QuantileDiscretizer(n_bins).fit(X) return obj, X, X_expected @pytest.fixture def data_int16_ks(): n_bins = 4 X = ks.DataFrame( { "A": [7.25, 71.2833, 7.925, 53.1, 8.05, 8.4583], "B": [1, 1, 0, 1, 0, 0], "C": ["a", "b", "c", "d", "e", "f"], "D": [22.0, 38.0, 26.0, 35.0, 35.0, 31.2], "F": [3, 1, 2, 1, 2, 3], } ) X[list("ABDF")] = X[list("ABDF")].astype(np.int16) X_expected = pd.DataFrame( { "A": {0: 7.25, 1: 71.2833, 2: 7.925, 3: 53.1, 4: 8.05, 5: 8.4583}, "B": {0: 1, 1: 1, 2: 0, 3: 1, 4: 0, 5: 0}, "C": {0: "a", 1: "b", 2: "c", 3: "d", 4: "e", 5: "f"}, "D": {0: 22.0, 1: 38.0, 2: 26.0, 3: 35.0, 4: 35.0, 5: 31.2}, "F": {0: 3, 1: 1, 2: 2, 3: 1, 4: 2, 5: 3}, "A__bin": {0: "0.0", 1: "3.0", 2: "0.0", 3: "3.0", 4: "1.0", 5: "2.0"}, "B__bin": {0: "2.0", 1: "2.0", 2: "0.0", 3: "2.0", 4: "0.0", 5: "0.0"}, "D__bin": {0: "0.0", 1: "3.0", 2: "0.0", 3: "2.0", 4: "2.0", 5: "1.0"}, "F__bin": {0: "3.0", 1: "0.0", 2: "1.0", 3: "0.0", 4: "1.0", 5: "3.0"}, } ) X_expected[list("ABDF")] = X_expected[list("ABDF")].astype(np.int16) obj = QuantileDiscretizer(n_bins).fit(X) return obj, X, X_expected @pytest.fixture def data_inplace_ks(): n_bins = 4 X = ks.DataFrame( { "A": [7.25, 71.2833, 7.925, 53.1, 8.05, 8.4583], "B": [1, 1, 0, 1, 0, 0], "C": ["a", "b", "c", "d", "e", "f"], "D": [22.0, 38.0, 26.0, 35.0, 35.0, 31.2], "F": [3, 1, 2, 1, 2, 3], } ) X_expected = pd.DataFrame( { "A": {0: "0.0", 1: "3.0", 2: "0.0", 3: "3.0", 4: "1.0", 5: "2.0"}, "B": {0: "2.0", 1: "2.0", 2: "0.0", 3: "2.0", 4: "0.0", 5: "0.0"}, "C": {0: "a", 1: "b", 2: "c", 3: "d", 4: "e", 5: "f"}, "D": {0: "0.0", 1: "3.0", 2: "0.0", 3: "2.0", 4: "2.0", 5: "1.0"}, "F": {0: "3.0", 1: "0.0", 2: "1.0", 3: "0.0", 4: "1.0", 5: "3.0"}, } ) obj = QuantileDiscretizer(n_bins, inplace=True).fit(X) return obj, X, X_expected @pytest.fixture def data_no_num_ks(): n_bins = 3 X = ks.DataFrame({"C": ["a", "b", "c", "d", "e", "f"]}) X_expected = pd.DataFrame({"C": ["a", "b", "c", "d", "e", "f"]}) obj = QuantileDiscretizer(n_bins).fit(X) return obj, X, X_expected @pytest.fixture def data_num_ks(): n_bins = 4 X = ks.DataFrame( { "A": [7.25, 71.2833, 7.925, 53.1, 8.05, 8.4583], "B": [1, 1, 0, 1, 0, 0], "D": [22.0, 38.0, 26.0, 35.0, 35.0, 31.2], "F": [3, 1, 2, 1, 2, 3], } ) X_expected = pd.DataFrame( { "A": {0: 7.25, 1: 71.2833, 2: 7.925, 3: 53.1, 4: 8.05, 5: 8.4583}, "B": {0: 1, 1: 1, 2: 0, 3: 1, 4: 0, 5: 0}, "D": {0: 22.0, 1: 38.0, 2: 26.0, 3: 35.0, 4: 35.0, 5: 31.2}, "F": {0: 3, 1: 1, 2: 2, 3: 1, 4: 2, 5: 3}, "A__bin": {0: "0.0", 1: "3.0", 2: "0.0", 3: "3.0", 4: "1.0", 5: "2.0"}, "B__bin": {0: "2.0", 1: "2.0", 2: "0.0", 3: "2.0", 4: "0.0", 5: "0.0"}, "D__bin": {0: "0.0", 1: "3.0", 2: "0.0", 3: "2.0", 4: "2.0", 5: "1.0"}, "F__bin": {0: "3.0", 1: "0.0", 2: "1.0", 3: "0.0", 4: "1.0", 5: "3.0"}, } ) obj = QuantileDiscretizer(n_bins).fit(X) return obj, X, X_expected @pytest.fixture def data_num_inplace_ks(): n_bins = 4 X = ks.DataFrame( { "A": [7.25, 71.2833, 7.925, 53.1, 8.05, 8.4583], "B": [1, 1, 0, 1, 0, 0], "D": [22.0, 38.0, 26.0, 35.0, 35.0, 31.2], "F": [3, 1, 2, 1, 2, 3], } ) X_expected = pd.DataFrame( { "A": {0: "0.0", 1: "3.0", 2: "0.0", 3: "3.0", 4: "1.0", 5: "2.0"}, "B": {0: "2.0", 1: "2.0", 2: "0.0", 3: "2.0", 4: "0.0", 5: "0.0"}, "D": {0: "0.0", 1: "3.0", 2: "0.0", 3: "2.0", 4: "2.0", 5: "1.0"}, "F": {0: "3.0", 1: "0.0", 2: "1.0", 3: "0.0", 4: "1.0", 5: "3.0"}, } ) obj = QuantileDiscretizer(n_bins, inplace=True).fit(X) return obj, X, X_expected def test_pd(data): obj, X, X_expected = data X_new = obj.transform(X) assert_frame_equal(X_new, X_expected) @pytest.mark.koalas def test_ks(data_ks): obj, X, X_expected = data_ks X_new = obj.transform(X) X_new = X_new.to_pandas() assert_frame_equal(X_new, X_expected) def test_pd_np(data): obj, X, X_expected = data X_numpy_new = obj.transform_numpy(X.to_numpy()) X_new = pd.DataFrame( X_numpy_new, columns=X_expected.columns, index=X_expected.index ) assert_frame_equal(X_new, X_expected.astype(object)) @pytest.mark.koalas def test_ks_np(data_ks): obj, X, X_expected = data_ks X_numpy_new = obj.transform_numpy(X.to_numpy()) X_new = pd.DataFrame( X_numpy_new, columns=X_expected.columns, index=X_expected.index ) assert_frame_equal(X_new, X_expected.astype(object)) def test_no_num_pd(data_no_num): obj, X, X_expected = data_no_num X_new = obj.transform(X) assert_frame_equal(X_new, X_expected) @pytest.mark.koalas def test_no_num_ks(data_no_num_ks): obj, X, X_expected = data_no_num_ks X_new = obj.transform(X) X_new = X_new.to_pandas() assert_frame_equal(X_new, X_expected) def test_no_num_pd_np(data_no_num): obj, X, X_expected = data_no_num X_numpy_new = obj.transform_numpy(X.to_numpy()) X_new = pd.DataFrame( X_numpy_new, columns=X_expected.columns, index=X_expected.index ) assert_frame_equal(X_new, X_expected.astype(object)) @pytest.mark.koalas def test_no_num_ks_np(data_no_num_ks): obj, X, X_expected = data_no_num_ks X_numpy_new = obj.transform_numpy(X.to_numpy()) X_new = pd.DataFrame( X_numpy_new, columns=X_expected.columns, index=X_expected.index ) assert_frame_equal(X_new, X_expected.astype(object)) def test_num_pd(data_num): obj, X, X_expected = data_num X_new = obj.transform(X) assert_frame_equal(X_new, X_expected) @pytest.mark.koalas def test_num_ks(data_num_ks): obj, X, X_expected = data_num_ks X_new = obj.transform(X) X_new = X_new.to_pandas() assert_frame_equal(X_new, X_expected) def test_num_pd_np(data_num): obj, X, X_expected = data_num X_numpy_new = obj.transform_numpy(X.to_numpy()) X_new = pd.DataFrame( X_numpy_new, columns=X_expected.columns, index=X_expected.index ) assert_frame_equal(X_new, X_expected.astype(object)) @pytest.mark.koalas def test_num_ks_np(data_num_ks): obj, X, X_expected = data_num_ks X_numpy_new = obj.transform_numpy(X.to_numpy()) X_new = pd.DataFrame( X_numpy_new, columns=X_expected.columns, index=X_expected.index ) assert_frame_equal(X_new, X_expected.astype(object)) # # inplace def test_inplace_pd(data_inplace): obj, X, X_expected = data_inplace X_new = obj.transform(X) assert_frame_equal(X_new, X_expected) @pytest.mark.koalas def test_inplace_ks(data_inplace_ks): obj, X, X_expected = data_inplace_ks X_new = obj.transform(X) X_new = X_new.to_pandas() assert_frame_equal(X_new, X_expected) def test_inplace_pd_np(data_inplace): obj, X, X_expected = data_inplace X_numpy_new = obj.transform_numpy(X.to_numpy()) X_new = pd.DataFrame( X_numpy_new, columns=X_expected.columns, index=X_expected.index ) assert_frame_equal(X_new, X_expected.astype(object)) @pytest.mark.koalas def test_inplace_ks_np(data_inplace_ks): obj, X, X_expected = data_inplace_ks X_numpy_new = obj.transform_numpy(X.to_numpy()) X_new = pd.DataFrame( X_numpy_new, columns=X_expected.columns, index=X_expected.index ) assert_frame_equal(X_new, X_expected.astype(object)) def test_inplace_num_pd(data_num_inplace): obj, X, X_expected = data_num_inplace X_new = obj.transform(X) assert_frame_equal(X_new, X_expected) @pytest.mark.koalas def test_inplace_num_ks(data_num_inplace_ks): obj, X, X_expected = data_num_inplace_ks X_new = obj.transform(X) X_new = X_new.to_pandas() assert_frame_equal(X_new, X_expected) def test_inplace_num_pd_np(data_num_inplace): obj, X, X_expected = data_num_inplace X_numpy_new = obj.transform_numpy(X.to_numpy()) X_new = pd.DataFrame( X_numpy_new, columns=X_expected.columns, index=X_expected.index ) assert_frame_equal(X_new, X_expected.astype(object)) @pytest.mark.koalas def test_inplace_num_ks_np(data_num_inplace_ks): obj, X, X_expected = data_num_inplace_ks X_numpy_new = obj.transform_numpy(X.to_numpy()) X_new = pd.DataFrame( X_numpy_new, columns=X_expected.columns, index=X_expected.index ) assert_frame_equal(X_new, X_expected.astype(object)) def test_init(): with pytest.raises(TypeError): _ = QuantileDiscretizer(n_bins="a") with pytest.raises(TypeError): _ = QuantileDiscretizer(n_bins=2, inplace="a")
py
1a52877b6d69374c4a9d4dd564e4e8360dda4b8f
# Written by Dr Daniel Buscombe, Marda Science LLC # # MIT License # # Copyright (c) 2020, Marda Science LLC # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import os os.environ["TF_DETERMINISTIC_OPS"] = "1" ##calcs import tensorflow as tf #numerical operations on gpu import numpy as np import matplotlib.pyplot as plt SEED=42 np.random.seed(SEED) AUTO = tf.data.experimental.AUTOTUNE # used in tf.data.Dataset API tf.random.set_seed(SEED) print("Version: ", tf.__version__) print("Eager mode: ", tf.executing_eagerly()) print('GPU name: ', tf.config.experimental.list_physical_devices('GPU')) print("Num GPUs Available: ", len(tf.config.experimental.list_physical_devices('GPU'))) TARGET_SIZE = 1024 BATCH_SIZE = 4 @tf.autograph.experimental.do_not_convert #----------------------------------- def read_seg_tfrecord_multiclass(example): """ "read_seg_tfrecord_multiclass(example)" This function reads an example from a TFrecord file into a single image and label This is the "multiclass" version for imagery, where the classes are mapped as follows: INPUTS: * TFRecord example object OPTIONAL INPUTS: None GLOBAL INPUTS: TARGET_SIZE OUTPUTS: * image [tensor array] * class_label [tensor array] """ features = { "image": tf.io.FixedLenFeature([], tf.string), # tf.string = bytestring (not text string) "label": tf.io.FixedLenFeature([], tf.string), # shape [] means scalar } # decode the TFRecord example = tf.io.parse_single_example(example, features) image = tf.image.decode_png(example['image'], channels=3) image = tf.cast(image, tf.float32)/ 255.0 image = tf.reshape(image, [TARGET_SIZE,TARGET_SIZE, 3]) #image = tf.reshape(tf.image.rgb_to_grayscale(image), [TARGET_SIZE,TARGET_SIZE, 1]) label = tf.image.decode_png(example['label'], channels=1) label = tf.cast(label, tf.uint8)#/ 255.0 label = tf.reshape(label, [TARGET_SIZE,TARGET_SIZE, 1]) cond = tf.equal(label, tf.ones(tf.shape(label),dtype=tf.uint8)*7) label = tf.where(cond, tf.ones(tf.shape(label),dtype=tf.uint8)*6, label) label = tf.one_hot(tf.cast(label, tf.uint8), 6) #6 = 5 classes (undamaged, minor, major, destroyed, unclass) + null (0) label = tf.squeeze(label) image = tf.reshape(image, (image.shape[0], image.shape[1], image.shape[2])) #image = tf.image.per_image_standardization(image) return image, label #----------------------------------- def get_batched_dataset(filenames): """ "get_batched_dataset(filenames)" This function defines a workflow for the model to read data from tfrecord files by defining the degree of parallelism, batch size, pre-fetching, etc and also formats the imagery properly for model training INPUTS: * filenames [list] OPTIONAL INPUTS: None GLOBAL INPUTS: BATCH_SIZE, AUTO OUTPUTS: tf.data.Dataset object """ option_no_order = tf.data.Options() option_no_order.experimental_deterministic = True dataset = tf.data.Dataset.list_files(filenames) dataset = dataset.with_options(option_no_order) dataset = dataset.interleave(tf.data.TFRecordDataset, cycle_length=16, num_parallel_calls=AUTO) dataset = dataset.map(read_seg_tfrecord_multiclass, num_parallel_calls=AUTO) #dataset = dataset.cache() # This dataset fits in RAM dataset = dataset.repeat() #dataset = dataset.shuffle(2048) dataset = dataset.batch(BATCH_SIZE, drop_remainder=True) # drop_remainder will be needed on TPU dataset = dataset.prefetch(AUTO) # return dataset # from tensorflow.python.client import device_lib # # def get_available_devices(): # local_device_protos = device_lib.list_local_devices() # return [x.name for x in local_device_protos if x.device_type == 'GPU' or x.device_type == 'CPU'] #================================================================== for storm in ['matthew', 'michael', 'florence', 'harvey']: imdir = '/media/marda/TWOTB1/xBD/hurricanes/images/'+storm lab_path = '/media/marda/TWOTB1/xBD/hurricanes/labels2D/'+storm tfrecord_dir = '/media/marda/TWOTB1/xBD/hurricanes/tfrecords/'+storm+'/imseg' # # Run inference on CPU # with tf.device('/cpu:0'): ##test filenames = sorted(tf.io.gfile.glob(tfrecord_dir+'/*.jpg')) dataset = get_batched_dataset(filenames) B = [] for imgs,lbls in dataset.take(1): for count,(im,lab) in enumerate(zip(imgs,lbls)): print(np.shape(lab)) lab= np.argmax(lab,axis=-1) B.append(np.bincount(lab.flatten(),minlength=6)) plt.subplot(int(BATCH_SIZE/2),int(BATCH_SIZE/2),count+1) plt.imshow(im) del im plt.imshow(lab, alpha=0.5, cmap='bwr') plt.axis('off') del lab plt.show() np.sum(np.vstack(B),axis=0)
py
1a5287a8674c0d88ac89f0b0f949c1a2149f6102
############################################################ # log ############################################################ # Contains the custom logger object to be used. import logging import sys import os def setup_custom_logger(): """Setups the custom logger to be used globally. The logger object can be referenced via 'root' in logging.getLogger(). Returns: The logger object to be used in the script. """ logging.basicConfig(filename=os.getcwd() + '\\output.log', filemode='a', format='%(asctime)s,%(msecs)d %(name)s %(levelname)s %(message)s', datefmt='%H:%M:%S', level=logging.INFO) log = logging.getLogger() log.setLevel(logging.INFO) stdout_handler = logging.StreamHandler(sys.stdout) log.addHandler(stdout_handler) return log def get_logger(): """Returns the logger object to be used. """ log = setup_custom_logger() if not logging.getLogger('root').hasHandlers() \ else logging.getLogger('root') return log
py
1a52887a535a50fcdead0e0b92fba79786737004
#!/usr/bin/env python2 from db.models import * import sys allTweets = Tweet.select().count() byClassification = Tweet.select(Tweet.classification, fn.COUNT(Tweet.id).alias('num_tweets')).group_by(Tweet.classification) for classification in byClassification: print str(classification.classification)+": "+str(classification.num_tweets)
py
1a5288f8fa81521725a01544637d01a32fddb136
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from read_excel_MIK import read_excel_MIK from read_excel_Seichitech import read_excel_Seichitech from openpyxl import load_workbook import pandas class read_write_excel: """ For read/write and parse excel file """ def __init__(self, filename): ''' support both MIK and Seichitech platform ''' self.filename = filename fd = pandas.ExcelFile(self.filename) sheet_names = fd.sheet_names fd.close() if "Result Data" in sheet_names and "Graph" in sheet_names and "Raw Data" in sheet_names: self.fd = read_excel_MIK(self.filename) else: self.fd = read_excel_Seichitech(self.filename) def read_config(self): ''' read boundary, max_x, max_y information ''' return self.fd.read_config() def read_report_time(self): ''' read report time for line test ''' return self.fd.read_report_time() def read_target(self): ''' get target from excel ''' return self.fd.read_target() def read_measure(self): ''' get measure data from excel ''' return self.fd.read_measure() def read_target_and_measure(self): ''' read target and measure at the same time ''' target_list = self.read_target() measure_list_mm, measure_list_pixel = self.read_measure() return target_list, measure_list_mm, measure_list_pixel def write_excel(self, write_data): ''' write output to new sheet ''' df = pandas.DataFrame(write_data) book = load_workbook(self.filename) sheet_names = book.sheetnames for name in sheet_names: if "analysis_output" in name: book.remove(book[name]) writer = pandas.ExcelWriter(self.filename, engine = 'openpyxl') writer.book = book df.to_excel(writer, sheet_name='analysis_output', index=False) work_sheet = book["analysis_output"] for col in work_sheet.columns: max_length = 0 column = col[0].column # Get the column name for cell in col: try: # Necessary to avoid error on empty cells if len(str(cell.value)) > max_length: max_length = len(cell.value) except: pass adjusted_width = (max_length + 2) * 1.2 work_sheet.column_dimensions[column].width = adjusted_width writer.save() writer.close() def destroy(self): ''' destroy excel fd ''' self.fd.destroy() if __name__ == "__main__": """ This is for test purpose """ fd = read_write_excel("../H_Line/Result.xlsx") test_type, max_x, max_y, boundary_range = fd.read_config() target_list, measure_list = fd.read_target_and_measure() # print("This is %s, max_x = %f, max_y = %f, boundary_range = %f" % ( test_type, max_x, max_y, boundary_range )) # for i in range(len(target_list)): # print("\nNO.%d target line ---------------------- (%f, %f) -> (%f, %f)" % ( i + 1, target_list[i][0], target_list[i][1], target_list[i][2], target_list[i][3] )) # for j in range(len(measure_list[i])): # print("\tNO.%d measured point ---------------------------- (%f, %f)" % ( j + 1, measure_list[i][j][0], measure_list[i][j][1] )) # print("\n") test_dict = {'a':[1,2,3], 'b':[2,3,4], 'c':[3,4,5]} fd.write_excel(test_dict) fd = read_write_excel("../POINTS/20180918175024.xlsx") test_type, max_x, max_y, boundary_range = fd.read_config() target_list, measure_list = fd.read_target_and_measure() # print("This is %s, max_x = %f, max_y = %f, boundary_range = %f" % ( test_type, max_x, max_y, boundary_range )) # for i in range(len(target_list)): # print("\nNO.%d target point ---------------------- (%f, %f)" % ( i + 1, target_list[i][0], target_list[i][1] )) # for j in range(len(measure_list[i])): # print("\tRepeat %d" % ( j + 1 )) # for k in range(len(measure_list[i][j])): # print("\t\tNO.%d measured point ---------------------------- (%f, %f)" % ( k + 1, measure_list[i][j][k][0], measure_list[i][j][k][1] )) # print("\n")
py
1a5289983ff83edbf32e69b6fc3025ff3443aa93
#!/usr/bin/python # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. # ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'network'} DOCUMENTATION = ''' --- module: nxos_ntp_auth extends_documentation_fragment: nxos version_added: "2.2" short_description: Manages NTP authentication. description: - Manages NTP authentication. author: - Jason Edelman (@jedelman8) notes: - Tested against NXOSv 7.3.(0)D1(1) on VIRL - If C(state=absent), the module will remove the given key configuration if it exists. - If C(state=absent) and C(authentication=on), authentication will be turned off. options: key_id: description: - Authentication key identifier (numeric). md5string: description: - MD5 String. auth_type: description: - Whether the given md5string is in cleartext or has been encrypted. If in cleartext, the device will encrypt it before storing it. default: text choices: ['text', 'encrypt'] trusted_key: description: - Whether the given key is required to be supplied by a time source for the device to synchronize to the time source. choices: [ 'false', 'true' ] default: 'false' authentication: description: - Turns NTP authentication on or off. choices: ['on', 'off'] state: description: - Manage the state of the resource. default: present choices: ['present','absent'] ''' EXAMPLES = ''' # Basic NTP authentication configuration - nxos_ntp_auth: key_id: 32 md5string: hello auth_type: text ''' RETURN = ''' commands: description: command sent to the device returned: always type: list sample: ["ntp authentication-key 32 md5 helloWorld 0", "ntp trusted-key 32"] ''' import re from ansible.module_utils.network.nxos.nxos import get_config, load_config, run_commands from ansible.module_utils.network.nxos.nxos import nxos_argument_spec, check_args from ansible.module_utils.basic import AnsibleModule def execute_show_command(command, module): if 'show run' not in command: command = { 'command': command, 'output': 'json', } else: command = { 'command': command, 'output': 'text', } return run_commands(module, [command]) def flatten_list(command_lists): flat_command_list = [] for command in command_lists: if isinstance(command, list): flat_command_list.extend(command) else: flat_command_list.append(command) return flat_command_list def get_ntp_auth(module): command = 'show ntp authentication-status' body = execute_show_command(command, module)[0] ntp_auth_str = body['authentication'] if 'enabled' in ntp_auth_str: ntp_auth = True else: ntp_auth = False return ntp_auth def get_ntp_trusted_key(module): trusted_key_list = [] command = 'show run | inc ntp.trusted-key' trusted_key_str = execute_show_command(command, module)[0] if trusted_key_str: trusted_keys = trusted_key_str.splitlines() else: trusted_keys = [] for line in trusted_keys: if line: trusted_key_list.append(str(line.split()[2])) return trusted_key_list def get_ntp_auth_key(key_id, module): authentication_key = {} command = 'show run | inc ntp.authentication-key.{0}'.format(key_id) auth_regex = (r".*ntp\sauthentication-key\s(?P<key_id>\d+)\s" r"md5\s(?P<md5string>\S+)\s(?P<atype>\S+).*") body = execute_show_command(command, module)[0] try: match_authentication = re.match(auth_regex, body, re.DOTALL) group_authentication = match_authentication.groupdict() authentication_key['key_id'] = group_authentication['key_id'] authentication_key['md5string'] = group_authentication['md5string'] if group_authentication['atype'] == '7': authentication_key['auth_type'] = 'encrypt' else: authentication_key['auth_type'] = 'text' except (AttributeError, TypeError): authentication_key = {} return authentication_key def get_ntp_auth_info(key_id, module): auth_info = get_ntp_auth_key(key_id, module) trusted_key_list = get_ntp_trusted_key(module) auth_power = get_ntp_auth(module) if key_id in trusted_key_list: auth_info['trusted_key'] = 'true' else: auth_info['trusted_key'] = 'false' if auth_power: auth_info['authentication'] = 'on' else: auth_info['authentication'] = 'off' return auth_info def auth_type_to_num(auth_type): if auth_type == 'encrypt': return '7' else: return '0' def set_ntp_auth_key(key_id, md5string, auth_type, trusted_key, authentication): ntp_auth_cmds = [] if key_id and md5string: auth_type_num = auth_type_to_num(auth_type) ntp_auth_cmds.append( 'ntp authentication-key {0} md5 {1} {2}'.format( key_id, md5string, auth_type_num)) if trusted_key == 'true': ntp_auth_cmds.append( 'ntp trusted-key {0}'.format(key_id)) elif trusted_key == 'false': ntp_auth_cmds.append( 'no ntp trusted-key {0}'.format(key_id)) if authentication == 'on': ntp_auth_cmds.append( 'ntp authenticate') elif authentication == 'off': ntp_auth_cmds.append( 'no ntp authenticate') return ntp_auth_cmds def remove_ntp_auth_key(key_id, md5string, auth_type, trusted_key, authentication): auth_remove_cmds = [] if key_id: auth_type_num = auth_type_to_num(auth_type) auth_remove_cmds.append( 'no ntp authentication-key {0} md5 {1} {2}'.format( key_id, md5string, auth_type_num)) if authentication: auth_remove_cmds.append( 'no ntp authenticate') return auth_remove_cmds def main(): argument_spec = dict( key_id=dict(type='str'), md5string=dict(type='str'), auth_type=dict(choices=['text', 'encrypt'], default='text'), trusted_key=dict(choices=['true', 'false'], default='false'), authentication=dict(choices=['on', 'off']), state=dict(choices=['absent', 'present'], default='present'), ) argument_spec.update(nxos_argument_spec) module = AnsibleModule(argument_spec=argument_spec, supports_check_mode=True) warnings = list() check_args(module, warnings) key_id = module.params['key_id'] md5string = module.params['md5string'] auth_type = module.params['auth_type'] trusted_key = module.params['trusted_key'] authentication = module.params['authentication'] state = module.params['state'] if key_id: if not trusted_key and not md5string: module.fail_json(msg='trusted_key or md5string MUST be specified') args = dict(key_id=key_id, md5string=md5string, auth_type=auth_type, trusted_key=trusted_key, authentication=authentication) changed = False proposed = dict((k, v) for k, v in args.items() if v is not None) existing = get_ntp_auth_info(key_id, module) end_state = existing delta = dict(set(proposed.items()).difference(existing.items())) commands = [] if state == 'present': if delta: command = set_ntp_auth_key( key_id, md5string, delta.get('auth_type'), delta.get('trusted_key'), delta.get('authentication')) if command: commands.append(command) elif state == 'absent': auth_toggle = None if existing.get('authentication') == 'on': auth_toggle = True if not existing.get('key_id'): key_id = None command = remove_ntp_auth_key( key_id, md5string, auth_type, trusted_key, auth_toggle) if command: commands.append(command) cmds = flatten_list(commands) if cmds: if module.check_mode: module.exit_json(changed=True, commands=cmds) else: load_config(module, cmds) end_state = get_ntp_auth_info(key_id, module) delta = dict(set(end_state.items()).difference(existing.items())) if delta or (len(existing) != len(end_state)): changed = True if 'configure' in cmds: cmds.pop(0) results = {} results['proposed'] = proposed results['existing'] = existing results['updates'] = cmds results['changed'] = changed results['warnings'] = warnings results['end_state'] = end_state module.exit_json(**results) if __name__ == '__main__': main()