ext
stringclasses 9
values | sha
stringlengths 40
40
| content
stringlengths 3
1.04M
|
---|---|---|
py | 1a39e037f4288271865061568120e95f606e09ea | """
Add an excerpt field to the page.
"""
from django.db import models
from django.utils.translation import ugettext_lazy as _
from feincms import extensions
class Extension(extensions.Extension):
def handle_model(self):
self.model.add_to_class('partner_login_required', models.BooleanField(
_('partner login required'),
help_text=_('If changed all children of this page will be marked with the same value. '
'If checked viewing this page will be restricted to partner login only.')))
def handle_modeladmin(self, modeladmin):
modeladmin.list_display.extend(['partner_login_required'])
modeladmin.list_filter.extend(['partner_login_required'])
modeladmin.add_extension_options('partner_login_required') |
py | 1a39e0f140a044e9e75aed3e31a8474f40a9ee40 | from django.shortcuts import render
from vdw.raw.sources.models import Source
def sources(request):
sources = Source.objects.filter(published=True, archived=False)\
.select_related('stats')
return render(request, 'sources/sources.html', {
'sources': sources,
})
|
py | 1a39e113b9e363a015085e4adc7805958ad5d8a3 |
from setuptools import find_packages, setup
with open('README.md', 'r') as fh:
long_description = fh.read()
setup(
name='backoid',
description='backoid',
version="0.0.1",
long_description=long_description,
long_description_content_type="text/markdown",
packages=find_packages("src"),
package_dir={"": "src"},
install_requires=[
'pymysql>=0.9.3',
'azure-storage-blob',
'pyyaml'
],
classifiers=[
"Natural Language :: English",
"Operating System :: POSIX",
"Operating System :: POSIX :: Linux",
"Programming Language :: Python :: 3.7",
],
entry_points={
'console_scripts': [
'backoid = backoid.cli:main'
]
}
)
|
py | 1a39e1bad164394e7faf594536049754a76fb416 | import numpy as np
'''
TODO:
- statistics in table as an attribute
- using the already built-in index to compute the attributes
- Set the MAX freq, NORMAL while a building the index
'''
def get_olken_sample_2way(table1, table2, join_column):
N1 = len(table1.data[join_column])
retval = None
flag = False
while(not flag):
rand_idx1 = np.random.randint(low=0, high=N1)
t1_val = table1.data[join_column][rand_idx1]
joining_tups = table2.index[join_column][t1_val] # using the table-index
rand_idx2 = np.random.randint(low=0, high=len(joining_tups))
# Get the frquency of t1_val in table2 (in the join_column)
freq_v = table2.get_freq(join_column, t1_val)
maxval = table2.get_max_freq(join_column)
accept_prob = freq_v * 1.0 / maxval
random_toss = np.random.random_sample()
if random_toss <= accept_prob:
flag = True
retval = (rand_idx1, rand_idx2)
return retval
|
py | 1a39e1f78725c172941fb9c8f1f858cfee9eb49e | # coding=utf-8
# Copyright 2016 Pants project contributors (see CONTRIBUTORS.md).
# Licensed under the Apache License, Version 2.0 (see LICENSE).
from __future__ import absolute_import, division, print_function, unicode_literals
import os
from pants.base.file_system_project_tree import FileSystemProjectTree
from pants_test.pants_run_integration_test import PantsRunIntegrationTest
class FilemapIntegrationTest(PantsRunIntegrationTest):
PATH_PREFIX = 'testprojects/tests/python/pants/file_sets/'
TEST_EXCLUDE_FILES = {
'a.py', 'aa.py', 'aaa.py', 'ab.py', 'aabb.py', 'test_a.py',
'dir1/a.py', 'dir1/aa.py', 'dir1/aaa.py',
'dir1/ab.py', 'dir1/aabb.py', 'dir1/dirdir1/a.py', 'dir1/dirdir1/aa.py', 'dir1/dirdir1/ab.py'
}
def setUp(self):
super(FilemapIntegrationTest, self).setUp()
project_tree = FileSystemProjectTree(os.path.abspath(self.PATH_PREFIX), ['BUILD', '.*'])
scan_set = set()
def should_ignore(file):
return file.endswith('.pyc')
for root, dirs, files in project_tree.walk(''):
scan_set.update({os.path.join(root, f) for f in files if not should_ignore(f)})
self.assertEqual(scan_set, self.TEST_EXCLUDE_FILES)
def _mk_target(self, test_name):
return '{}:{}'.format(self.PATH_PREFIX, test_name)
def _extract_exclude_output(self, test_name):
stdout_data = self.do_command('filemap',
self._mk_target(test_name),
success=True).stdout_data
return {s.split(' ')[0].replace(self.PATH_PREFIX, '')
for s in stdout_data.split('\n') if s.startswith(self.PATH_PREFIX)}
def test_testprojects(self):
self.do_command('filemap', 'testprojects::', success=True)
def test_python_sources(self):
run = self.do_command('filemap',
'testprojects/src/python/sources',
success=True)
self.assertIn('testprojects/src/python/sources/sources.py', run.stdout_data)
def test_exclude_invalid_string(self):
build_path = os.path.join(self.PATH_PREFIX, 'BUILD.invalid')
build_content = '''python_library(name='exclude_strings_disallowed',
sources=rglobs('*.py', exclude='aa.py'))'''
with self.temporary_file_content(build_path, build_content):
pants_run = self.do_command('filemap',
self._mk_target('exclude_strings_disallowed'),
success=False)
self.assertRegexpMatches(pants_run.stderr_data,
r'Excludes of type `.*` are not supported')
def test_exclude_list_of_strings(self):
test_out = self._extract_exclude_output('exclude_list_of_strings')
self.assertEqual(self.TEST_EXCLUDE_FILES - {'aaa.py', 'dir1/aaa.py'},
test_out)
def test_exclude_globs(self):
test_out = self._extract_exclude_output('exclude_globs')
self.assertEqual(self.TEST_EXCLUDE_FILES - {'aabb.py', 'dir1/dirdir1/aa.py'},
test_out)
def test_exclude_strings(self):
test_out = self._extract_exclude_output('exclude_strings')
self.assertEqual(self.TEST_EXCLUDE_FILES - {'aa.py', 'ab.py'},
test_out)
def test_exclude_set(self):
test_out = self._extract_exclude_output('exclude_set')
self.assertEqual(self.TEST_EXCLUDE_FILES - {'aaa.py', 'a.py'},
test_out)
def test_exclude_rglobs(self):
test_out = self._extract_exclude_output('exclude_rglobs')
self.assertEqual(self.TEST_EXCLUDE_FILES - {'ab.py', 'aabb.py', 'dir1/ab.py', 'dir1/aabb.py', 'dir1/dirdir1/ab.py'},
test_out)
def test_exclude_zglobs(self):
test_out = self._extract_exclude_output('exclude_zglobs')
self.assertEqual(self.TEST_EXCLUDE_FILES - {'ab.py', 'aabb.py', 'dir1/ab.py', 'dir1/aabb.py', 'dir1/dirdir1/ab.py'},
test_out)
def test_exclude_composite(self):
test_out = self._extract_exclude_output('exclude_composite')
self.assertEqual(self.TEST_EXCLUDE_FILES -
{'a.py', 'aaa.py', 'dir1/a.py', 'dir1/dirdir1/a.py'},
test_out)
def test_implicit_sources(self):
test_out = self._extract_exclude_output('implicit_sources')
self.assertEqual({'a.py', 'aa.py', 'aaa.py', 'aabb.py', 'ab.py'},
test_out)
test_out = self._extract_exclude_output('test_with_implicit_sources')
self.assertEqual({'test_a.py'}, test_out)
|
py | 1a39e2a7ee171056c233df29e26c37a8f29b4a64 | """AccountReports API Version 1.0.
This API client was generated using a template. Make sure this code is valid before using it.
"""
import logging
from datetime import date, datetime
from .base import BaseCanvasAPI
from .base import BaseModel
class AccountReportsAPI(BaseCanvasAPI):
"""AccountReports API Version 1.0."""
def __init__(self, *args, **kwargs):
"""Init method for AccountReportsAPI."""
super(AccountReportsAPI, self).__init__(*args, **kwargs)
self.logger = logging.getLogger("py3canvas.AccountReportsAPI")
def list_available_reports(self, account_id):
"""
List Available Reports.
Returns a paginated list of reports for the current context.
"""
path = {}
data = {}
params = {}
# REQUIRED - PATH - account_id
"""
ID
"""
path["account_id"] = account_id
self.logger.debug(
"GET /api/v1/accounts/{account_id}/reports with query params: {params} and form data: {data}".format(
params=params, data=data, **path
)
)
return self.generic_request(
"GET",
"/api/v1/accounts/{account_id}/reports".format(**path),
data=data,
params=params,
no_data=True,
)
def start_report(
self,
account_id,
report,
parameters=None,
parameters_course_id=None,
parameters_users=None,
):
"""
Start a Report.
Generates a report instance for the account. Note that "report" in the
request must match one of the available report names. To fetch a list of
available report names and parameters for each report (including whether or
not those parameters are required), see
{api:AccountReportsController#available_reports List Available Reports}.
"""
path = {}
data = {}
params = {}
# REQUIRED - PATH - account_id
"""
ID
"""
path["account_id"] = account_id
# REQUIRED - PATH - report
"""
ID
"""
path["report"] = report
# OPTIONAL - parameters
"""
The parameters will vary for each report. To fetch a list
of available parameters for each report, see {api:AccountReportsController#available_reports List Available Reports}.
A few example parameters have been provided below. Note that the example
parameters provided below may not be valid for every report.
"""
if parameters is not None:
data["parameters"] = parameters
# OPTIONAL - parameters[course_id]
"""
The id of the course to report on.
Note: this parameter has been listed to serve as an example and may not be
valid for every report.
"""
if parameters_course_id is not None:
data["parameters[course_id]"] = parameters_course_id
# OPTIONAL - parameters[users]
"""
If true, user data will be included. If
false, user data will be omitted. Note: this parameter has been listed to
serve as an example and may not be valid for every report.
"""
if parameters_users is not None:
data["parameters[users]"] = parameters_users
self.logger.debug(
"POST /api/v1/accounts/{account_id}/reports/{report} with query params: {params} and form data: {data}".format(
params=params, data=data, **path
)
)
return self.generic_request(
"POST",
"/api/v1/accounts/{account_id}/reports/{report}".format(**path),
data=data,
params=params,
single_item=True,
)
def index_of_reports(self, account_id, report):
"""
Index of Reports.
Shows all reports that have been run for the account of a specific type.
"""
path = {}
data = {}
params = {}
# REQUIRED - PATH - account_id
"""
ID
"""
path["account_id"] = account_id
# REQUIRED - PATH - report
"""
ID
"""
path["report"] = report
self.logger.debug(
"GET /api/v1/accounts/{account_id}/reports/{report} with query params: {params} and form data: {data}".format(
params=params, data=data, **path
)
)
return self.generic_request(
"GET",
"/api/v1/accounts/{account_id}/reports/{report}".format(**path),
data=data,
params=params,
all_pages=True,
)
def status_of_report(self, account_id, id, report):
"""
Status of a Report.
Returns the status of a report.
"""
path = {}
data = {}
params = {}
# REQUIRED - PATH - account_id
"""
ID
"""
path["account_id"] = account_id
# REQUIRED - PATH - report
"""
ID
"""
path["report"] = report
# REQUIRED - PATH - id
"""
ID
"""
path["id"] = id
self.logger.debug(
"GET /api/v1/accounts/{account_id}/reports/{report}/{id} with query params: {params} and form data: {data}".format(
params=params, data=data, **path
)
)
return self.generic_request(
"GET",
"/api/v1/accounts/{account_id}/reports/{report}/{id}".format(**path),
data=data,
params=params,
single_item=True,
)
def delete_report(self, account_id, id, report):
"""
Delete a Report.
Deletes a generated report instance.
"""
path = {}
data = {}
params = {}
# REQUIRED - PATH - account_id
"""
ID
"""
path["account_id"] = account_id
# REQUIRED - PATH - report
"""
ID
"""
path["report"] = report
# REQUIRED - PATH - id
"""
ID
"""
path["id"] = id
self.logger.debug(
"DELETE /api/v1/accounts/{account_id}/reports/{report}/{id} with query params: {params} and form data: {data}".format(
params=params, data=data, **path
)
)
return self.generic_request(
"DELETE",
"/api/v1/accounts/{account_id}/reports/{report}/{id}".format(**path),
data=data,
params=params,
single_item=True,
)
class Report(BaseModel):
"""Report Model."""
def __init__(
self,
id=None,
report=None,
file_url=None,
attachment=None,
status=None,
created_at=None,
started_at=None,
ended_at=None,
parameters=None,
progress=None,
current_line=None,
):
"""Init method for Report class."""
self._id = id
self._report = report
self._file_url = file_url
self._attachment = attachment
self._status = status
self._created_at = created_at
self._started_at = started_at
self._ended_at = ended_at
self._parameters = parameters
self._progress = progress
self._current_line = current_line
self.logger = logging.getLogger("py3canvas.Report")
@property
def id(self):
"""The unique identifier for the report."""
return self._id
@id.setter
def id(self, value):
"""Setter for id property."""
self.logger.warn(
"Setting values on id will NOT update the remote Canvas instance."
)
self._id = value
@property
def report(self):
"""The type of report."""
return self._report
@report.setter
def report(self, value):
"""Setter for report property."""
self.logger.warn(
"Setting values on report will NOT update the remote Canvas instance."
)
self._report = value
@property
def file_url(self):
"""The url to the report download."""
return self._file_url
@file_url.setter
def file_url(self, value):
"""Setter for file_url property."""
self.logger.warn(
"Setting values on file_url will NOT update the remote Canvas instance."
)
self._file_url = value
@property
def attachment(self):
"""The attachment api object of the report. Only available after the report has completed."""
return self._attachment
@attachment.setter
def attachment(self, value):
"""Setter for attachment property."""
self.logger.warn(
"Setting values on attachment will NOT update the remote Canvas instance."
)
self._attachment = value
@property
def status(self):
"""The status of the report."""
return self._status
@status.setter
def status(self, value):
"""Setter for status property."""
self.logger.warn(
"Setting values on status will NOT update the remote Canvas instance."
)
self._status = value
@property
def created_at(self):
"""The date and time the report was created."""
return self._created_at
@created_at.setter
def created_at(self, value):
"""Setter for created_at property."""
self.logger.warn(
"Setting values on created_at will NOT update the remote Canvas instance."
)
self._created_at = value
@property
def started_at(self):
"""The date and time the report started processing."""
return self._started_at
@started_at.setter
def started_at(self, value):
"""Setter for started_at property."""
self.logger.warn(
"Setting values on started_at will NOT update the remote Canvas instance."
)
self._started_at = value
@property
def ended_at(self):
"""The date and time the report finished processing."""
return self._ended_at
@ended_at.setter
def ended_at(self, value):
"""Setter for ended_at property."""
self.logger.warn(
"Setting values on ended_at will NOT update the remote Canvas instance."
)
self._ended_at = value
@property
def parameters(self):
"""The report parameters."""
return self._parameters
@parameters.setter
def parameters(self, value):
"""Setter for parameters property."""
self.logger.warn(
"Setting values on parameters will NOT update the remote Canvas instance."
)
self._parameters = value
@property
def progress(self):
"""The progress of the report."""
return self._progress
@progress.setter
def progress(self, value):
"""Setter for progress property."""
self.logger.warn(
"Setting values on progress will NOT update the remote Canvas instance."
)
self._progress = value
@property
def current_line(self):
"""This is the current line count being written to the report. It updates every 1000 records."""
return self._current_line
@current_line.setter
def current_line(self, value):
"""Setter for current_line property."""
self.logger.warn(
"Setting values on current_line will NOT update the remote Canvas instance."
)
self._current_line = value
class Reportparameters(BaseModel):
"""Reportparameters Model.
The parameters returned will vary for each report."""
def __init__(
self,
enrollment_term_id=None,
include_deleted=None,
course_id=None,
order=None,
users=None,
accounts=None,
terms=None,
courses=None,
sections=None,
enrollments=None,
groups=None,
xlist=None,
sis_terms_csv=None,
sis_accounts_csv=None,
include_enrollment_state=None,
enrollment_state=None,
start_at=None,
end_at=None,
):
"""Init method for Reportparameters class."""
self._enrollment_term_id = enrollment_term_id
self._include_deleted = include_deleted
self._course_id = course_id
self._order = order
self._users = users
self._accounts = accounts
self._terms = terms
self._courses = courses
self._sections = sections
self._enrollments = enrollments
self._groups = groups
self._xlist = xlist
self._sis_terms_csv = sis_terms_csv
self._sis_accounts_csv = sis_accounts_csv
self._include_enrollment_state = include_enrollment_state
self._enrollment_state = enrollment_state
self._start_at = start_at
self._end_at = end_at
self.logger = logging.getLogger("py3canvas.Reportparameters")
@property
def enrollment_term_id(self):
"""The canvas id of the term to get grades from."""
return self._enrollment_term_id
@enrollment_term_id.setter
def enrollment_term_id(self, value):
"""Setter for enrollment_term_id property."""
self.logger.warn(
"Setting values on enrollment_term_id will NOT update the remote Canvas instance."
)
self._enrollment_term_id = value
@property
def include_deleted(self):
"""If true, deleted objects will be included. If false, deleted objects will be omitted."""
return self._include_deleted
@include_deleted.setter
def include_deleted(self, value):
"""Setter for include_deleted property."""
self.logger.warn(
"Setting values on include_deleted will NOT update the remote Canvas instance."
)
self._include_deleted = value
@property
def course_id(self):
"""The id of the course to report on."""
return self._course_id
@course_id.setter
def course_id(self, value):
"""Setter for course_id property."""
self.logger.warn(
"Setting values on course_id will NOT update the remote Canvas instance."
)
self._course_id = value
@property
def order(self):
"""The sort order for the csv, Options: 'users', 'courses', 'outcomes'."""
return self._order
@order.setter
def order(self, value):
"""Setter for order property."""
self.logger.warn(
"Setting values on order will NOT update the remote Canvas instance."
)
self._order = value
@property
def users(self):
"""If true, user data will be included. If false, user data will be omitted."""
return self._users
@users.setter
def users(self, value):
"""Setter for users property."""
self.logger.warn(
"Setting values on users will NOT update the remote Canvas instance."
)
self._users = value
@property
def accounts(self):
"""If true, account data will be included. If false, account data will be omitted."""
return self._accounts
@accounts.setter
def accounts(self, value):
"""Setter for accounts property."""
self.logger.warn(
"Setting values on accounts will NOT update the remote Canvas instance."
)
self._accounts = value
@property
def terms(self):
"""If true, term data will be included. If false, term data will be omitted."""
return self._terms
@terms.setter
def terms(self, value):
"""Setter for terms property."""
self.logger.warn(
"Setting values on terms will NOT update the remote Canvas instance."
)
self._terms = value
@property
def courses(self):
"""If true, course data will be included. If false, course data will be omitted."""
return self._courses
@courses.setter
def courses(self, value):
"""Setter for courses property."""
self.logger.warn(
"Setting values on courses will NOT update the remote Canvas instance."
)
self._courses = value
@property
def sections(self):
"""If true, section data will be included. If false, section data will be omitted."""
return self._sections
@sections.setter
def sections(self, value):
"""Setter for sections property."""
self.logger.warn(
"Setting values on sections will NOT update the remote Canvas instance."
)
self._sections = value
@property
def enrollments(self):
"""If true, enrollment data will be included. If false, enrollment data will be omitted."""
return self._enrollments
@enrollments.setter
def enrollments(self, value):
"""Setter for enrollments property."""
self.logger.warn(
"Setting values on enrollments will NOT update the remote Canvas instance."
)
self._enrollments = value
@property
def groups(self):
"""If true, group data will be included. If false, group data will be omitted."""
return self._groups
@groups.setter
def groups(self, value):
"""Setter for groups property."""
self.logger.warn(
"Setting values on groups will NOT update the remote Canvas instance."
)
self._groups = value
@property
def xlist(self):
"""If true, data for crosslisted courses will be included. If false, data for crosslisted courses will be omitted."""
return self._xlist
@xlist.setter
def xlist(self, value):
"""Setter for xlist property."""
self.logger.warn(
"Setting values on xlist will NOT update the remote Canvas instance."
)
self._xlist = value
@property
def sis_terms_csv(self):
"""sis_terms_csv."""
return self._sis_terms_csv
@sis_terms_csv.setter
def sis_terms_csv(self, value):
"""Setter for sis_terms_csv property."""
self.logger.warn(
"Setting values on sis_terms_csv will NOT update the remote Canvas instance."
)
self._sis_terms_csv = value
@property
def sis_accounts_csv(self):
"""sis_accounts_csv."""
return self._sis_accounts_csv
@sis_accounts_csv.setter
def sis_accounts_csv(self, value):
"""Setter for sis_accounts_csv property."""
self.logger.warn(
"Setting values on sis_accounts_csv will NOT update the remote Canvas instance."
)
self._sis_accounts_csv = value
@property
def include_enrollment_state(self):
"""If true, enrollment state will be included. If false, enrollment state will be omitted. Defaults to false."""
return self._include_enrollment_state
@include_enrollment_state.setter
def include_enrollment_state(self, value):
"""Setter for include_enrollment_state property."""
self.logger.warn(
"Setting values on include_enrollment_state will NOT update the remote Canvas instance."
)
self._include_enrollment_state = value
@property
def enrollment_state(self):
"""Include enrollment state. Defaults to 'all' Options: ['active'| 'invited'| 'creation_pending'| 'deleted'| 'rejected'| 'completed'| 'inactive'| 'all']."""
return self._enrollment_state
@enrollment_state.setter
def enrollment_state(self, value):
"""Setter for enrollment_state property."""
self.logger.warn(
"Setting values on enrollment_state will NOT update the remote Canvas instance."
)
self._enrollment_state = value
@property
def start_at(self):
"""The beginning date for submissions. Max time range is 2 weeks."""
return self._start_at
@start_at.setter
def start_at(self, value):
"""Setter for start_at property."""
self.logger.warn(
"Setting values on start_at will NOT update the remote Canvas instance."
)
self._start_at = value
@property
def end_at(self):
"""The end date for submissions. Max time range is 2 weeks."""
return self._end_at
@end_at.setter
def end_at(self, value):
"""Setter for end_at property."""
self.logger.warn(
"Setting values on end_at will NOT update the remote Canvas instance."
)
self._end_at = value
|
py | 1a39e2d3204be70809d8aa8c51568e29d1a5e90b | from torch.nn import BCELoss
import time
import torch
def criterion(pred,gt):
# weight_map=torch.ones_like(gt)
# weight_map[gt>=0.5]*=100
# weight_map[gt<0.5]*=0.01
bceloss=BCELoss()
loss=bceloss(pred,gt)
return loss
def iou_loss(pred,gt):
# B,_,H,W=pred.size()
intersect=(pred*gt).sum()
union=pred.sum()+gt.sum()-intersect
loss=1-intersect/union
return loss
def get_time():
T = time.strftime('%m.%d.%H.%M.%S', time.localtime())
return T
def get_info(head,loss_dict):
for k,v in loss_dict.items():
head+='{}:{:6f} '.format(k,v)
return head |
py | 1a39e2dd0dd907a18525e5bb52b946189c39d945 | import json
import zipfile
import os
import sys
import pytest
from click.testing import CliRunner
import mock
from chalice import cli
from chalice.cli import factory
from chalice.config import Config
from chalice.utils import record_deployed_values
from chalice import local
from chalice.constants import DEFAULT_APIGATEWAY_STAGE_NAME
@pytest.fixture
def runner():
return CliRunner()
@pytest.fixture
def mock_cli_factory():
cli_factory = mock.Mock(spec=factory.CLIFactory)
cli_factory.create_config_obj.return_value = Config.create(project_dir='.')
cli_factory.create_botocore_session.return_value = mock.sentinel.Session
return cli_factory
def assert_chalice_app_structure_created(dirname):
app_contents = os.listdir(os.path.join(os.getcwd(), dirname))
assert 'app.py' in app_contents
assert 'requirements.txt' in app_contents
assert '.chalice' in app_contents
assert '.gitignore' in app_contents
def _run_cli_command(runner, function, args, cli_factory=None):
# Handles passing in 'obj' so we can get commands
# that use @pass_context to work properly.
# click doesn't support this natively so we have to duplicate
# what 'def cli(...)' is doing.
if cli_factory is None:
cli_factory = factory.CLIFactory('.')
result = runner.invoke(
function, args, obj={'project_dir': '.', 'debug': False,
'factory': cli_factory})
return result
def test_create_new_project_creates_app(runner):
with runner.isolated_filesystem():
result = runner.invoke(cli.new_project, ['testproject'])
assert result.exit_code == 0
# The 'new-project' command creates a directory based on
# the project name
assert os.listdir(os.getcwd()) == ['testproject']
assert_chalice_app_structure_created(dirname='testproject')
def test_create_project_with_prompted_app_name(runner):
with runner.isolated_filesystem():
result = runner.invoke(cli.new_project, input='testproject')
assert result.exit_code == 0
assert os.listdir(os.getcwd()) == ['testproject']
assert_chalice_app_structure_created(dirname='testproject')
def test_error_raised_if_dir_already_exists(runner):
with runner.isolated_filesystem():
os.mkdir('testproject')
result = runner.invoke(cli.new_project, ['testproject'])
assert result.exit_code == 1
assert 'Directory already exists: testproject' in result.output
def test_can_load_project_config_after_project_creation(runner):
with runner.isolated_filesystem():
result = runner.invoke(cli.new_project, ['testproject'])
assert result.exit_code == 0
config = factory.CLIFactory('testproject').load_project_config()
assert config == {
'version': '2.0',
'app_name': 'testproject',
'stages': {
'dev': {'api_gateway_stage': DEFAULT_APIGATEWAY_STAGE_NAME},
}
}
def test_default_new_project_adds_index_route(runner):
with runner.isolated_filesystem():
result = runner.invoke(cli.new_project, ['testproject'])
assert result.exit_code == 0
app = factory.CLIFactory('testproject').load_chalice_app()
assert '/' in app.routes
def test_gen_policy_command_creates_policy(runner):
with runner.isolated_filesystem():
cli.create_new_project_skeleton('testproject')
os.chdir('testproject')
result = runner.invoke(cli.cli, ['gen-policy'], obj={})
assert result.exit_code == 0
# The output should be valid JSON.
parsed_policy = json.loads(result.output)
# We don't want to validate the specific parts of the policy
# (that's tested elsewhere), but we'll check to make sure
# it looks like a policy document.
assert 'Version' in parsed_policy
assert 'Statement' in parsed_policy
def test_can_package_command(runner):
with runner.isolated_filesystem():
cli.create_new_project_skeleton('testproject')
os.chdir('testproject')
result = _run_cli_command(runner, cli.package, ['outdir'])
assert result.exit_code == 0, result.output
assert os.path.isdir('outdir')
dir_contents = os.listdir('outdir')
assert 'sam.json' in dir_contents
assert 'deployment.zip' in dir_contents
def test_can_package_with_single_file(runner):
with runner.isolated_filesystem():
cli.create_new_project_skeleton('testproject')
os.chdir('testproject')
result = _run_cli_command(
runner, cli.package, ['--single-file', 'package.zip'])
assert result.exit_code == 0, result.output
assert os.path.isfile('package.zip')
with zipfile.ZipFile('package.zip', 'r') as f:
assert sorted(f.namelist()) == ['deployment.zip', 'sam.json']
def test_does_deploy_with_default_api_gateway_stage_name(runner,
mock_cli_factory):
with runner.isolated_filesystem():
cli.create_new_project_skeleton('testproject')
os.chdir('testproject')
# This isn't perfect as we're assuming we know how to
# create the config_obj like the deploy() command does,
# it should give us more confidence that the api gateway
# stage defaults are still working.
cli_factory = factory.CLIFactory('.')
config = cli_factory.create_config_obj(
chalice_stage_name='dev',
autogen_policy=None,
api_gateway_stage=None
)
assert config.api_gateway_stage == DEFAULT_APIGATEWAY_STAGE_NAME
def test_can_specify_api_gateway_stage(runner, mock_cli_factory):
with runner.isolated_filesystem():
cli.create_new_project_skeleton('testproject')
os.chdir('testproject')
result = _run_cli_command(runner, cli.deploy,
['--api-gateway-stage', 'notdev'],
cli_factory=mock_cli_factory)
assert result.exit_code == 0
mock_cli_factory.create_config_obj.assert_called_with(
autogen_policy=None, chalice_stage_name='dev',
api_gateway_stage='notdev'
)
def test_can_deploy_specify_connection_timeout(runner, mock_cli_factory):
with runner.isolated_filesystem():
cli.create_new_project_skeleton('testproject')
os.chdir('testproject')
result = _run_cli_command(runner, cli.deploy,
['--connection-timeout', 100],
cli_factory=mock_cli_factory)
assert result.exit_code == 0
mock_cli_factory.create_botocore_session.assert_called_with(
connection_timeout=100
)
def test_can_retrieve_url(runner, mock_cli_factory):
deployed_values_dev = {
"schema_version": "2.0",
"resources": [
{"rest_api_url": "https://dev-url/",
"name": "rest_api",
"resource_type": "rest_api"},
]
}
deployed_values_prod = {
"schema_version": "2.0",
"resources": [
{"rest_api_url": "https://prod-url/",
"name": "rest_api",
"resource_type": "rest_api"},
]
}
with runner.isolated_filesystem():
cli.create_new_project_skeleton('testproject')
os.chdir('testproject')
deployed_dir = os.path.join('.chalice', 'deployed')
os.makedirs(deployed_dir)
record_deployed_values(
deployed_values_dev,
os.path.join(deployed_dir, 'dev.json')
)
record_deployed_values(
deployed_values_prod,
os.path.join(deployed_dir, 'prod.json')
)
result = _run_cli_command(runner, cli.url, [],
cli_factory=mock_cli_factory)
assert result.exit_code == 0
assert result.output == 'https://dev-url/\n'
prod_result = _run_cli_command(runner, cli.url, ['--stage', 'prod'],
cli_factory=mock_cli_factory)
assert prod_result.exit_code == 0
assert prod_result.output == 'https://prod-url/\n'
def test_error_when_no_deployed_record(runner, mock_cli_factory):
with runner.isolated_filesystem():
cli.create_new_project_skeleton('testproject')
os.chdir('testproject')
result = _run_cli_command(runner, cli.url, [],
cli_factory=mock_cli_factory)
assert result.exit_code == 2
assert 'not find' in result.output
@pytest.mark.skipif(sys.version_info[0] == 3,
reason=('Python Version 3 cannot create pipelines due to '
'CodeBuild not having a Python 3.6 image. This '
'mark can be removed when that image exists.'))
def test_can_generate_pipeline_for_all(runner):
with runner.isolated_filesystem():
cli.create_new_project_skeleton('testproject')
os.chdir('testproject')
result = _run_cli_command(
runner, cli.generate_pipeline, ['pipeline.json'])
assert result.exit_code == 0, result.output
assert os.path.isfile('pipeline.json')
with open('pipeline.json', 'r') as f:
template = json.load(f)
# The actual contents are tested in the unit
# tests. Just a sanity check that it looks right.
assert "AWSTemplateFormatVersion" in template
assert "Outputs" in template
def test_no_errors_if_override_codebuild_image(runner):
with runner.isolated_filesystem():
cli.create_new_project_skeleton('testproject')
os.chdir('testproject')
result = _run_cli_command(
runner, cli.generate_pipeline,
['-i', 'python:3.6.1', 'pipeline.json'])
assert result.exit_code == 0, result.output
assert os.path.isfile('pipeline.json')
with open('pipeline.json', 'r') as f:
template = json.load(f)
# The actual contents are tested in the unit
# tests. Just a sanity check that it looks right.
image = template['Parameters']['CodeBuildImage']['Default']
assert image == 'python:3.6.1'
def test_can_configure_github(runner):
with runner.isolated_filesystem():
cli.create_new_project_skeleton('testproject')
os.chdir('testproject')
# The -i option is provided so we don't have to skip this
# test on python3.6
result = _run_cli_command(
runner, cli.generate_pipeline,
['--source', 'github', '-i' 'python:3.6.1', 'pipeline.json'])
assert result.exit_code == 0, result.output
assert os.path.isfile('pipeline.json')
with open('pipeline.json', 'r') as f:
template = json.load(f)
# The template is already tested in the unit tests
# for template generation. We just want a basic
# sanity check to make sure things are mapped
# properly.
assert 'GithubOwner' in template['Parameters']
assert 'GithubRepoName' in template['Parameters']
def test_can_extract_buildspec_yaml(runner):
with runner.isolated_filesystem():
cli.create_new_project_skeleton('testproject')
os.chdir('testproject')
result = _run_cli_command(
runner, cli.generate_pipeline,
['--buildspec-file', 'buildspec.yml',
'-i', 'python:3.6.1',
'pipeline.json'])
assert result.exit_code == 0, result.output
assert os.path.isfile('buildspec.yml')
with open('buildspec.yml') as f:
data = f.read()
# The contents of this file are tested elsewhere,
# we just want a basic sanity check here.
assert 'chalice package' in data
def test_env_vars_set_in_local(runner, mock_cli_factory,
monkeypatch):
local_server = mock.Mock(spec=local.LocalDevServer)
mock_cli_factory.create_local_server.return_value = local_server
mock_cli_factory.create_config_obj.return_value = Config.create(
project_dir='.', environment_variables={'foo': 'bar'})
actual_env = {}
monkeypatch.setattr(os, 'environ', actual_env)
with runner.isolated_filesystem():
cli.create_new_project_skeleton('testproject')
os.chdir('testproject')
_run_cli_command(runner, cli.local, [],
cli_factory=mock_cli_factory)
assert actual_env['foo'] == 'bar'
def test_can_specify_profile_for_logs(runner, mock_cli_factory):
with runner.isolated_filesystem():
cli.create_new_project_skeleton('testproject')
os.chdir('testproject')
result = _run_cli_command(
runner, cli.logs, ['--profile', 'my-profile'],
cli_factory=mock_cli_factory
)
assert result.exit_code == 0
assert mock_cli_factory.profile == 'my-profile'
|
py | 1a39e2ee24ee867ea6888714b73baffde7db98c6 | import os
import pandas as pd
def read_synchronisation_file(experiment_root):
filepath = os.path.join(experiment_root, "labels", "synchronisation.csv")
return pd.read_csv(filepath)
def convert_timestamps(experiment_root, timestamps, from_reference, to_reference):
"""
Convert numeric timestamps (seconds for start of the video or posix timestamp) of a reference time (e.g. P3_eyetracker) to a different reference time (e.g. video time)
Parameters
----------
experiment_root: str
Root of the current experiment (to find the right synchronisation matrix)
timestamps: float or array like
timestamps to be converted
from_reference: str
name of the reference of the original timestamps
to_reference: str
name of the reference time the timestamp has to be converted to
Returns
-------
converted_timestamps: float or array like
Timestamps given in to_reference time values
"""
synchronisation_file = read_synchronisation_file(experiment_root)
offset = synchronisation_file.loc[synchronisation_file["from"] == from_reference, to_reference].values[0]
converted_timestamps = timestamps + offset
return converted_timestamps
if __name__ == '__main__':
exp_root = "/Volumes/DataDrive/igroups_recordings/igroups_experiment_8"
print(convert_timestamps(exp_root, [1482326641, 1482326642], "P3_eyetracker", "video")) |
py | 1a39e3456d4013db296f6e476742b11a2dd88d62 | # coding: utf-8
# Copyright (c) Max-Planck-Institut für Eisenforschung GmbH - Computational Materials Design (CM) Department
# Distributed under the terms of "New BSD License", see the LICENSE file.
import unittest
from pyiron_base.job.template import PythonTemplateJob
from pyiron_base._tests import TestWithProject
class ToyJob(PythonTemplateJob):
def __init__(self, project, job_name):
super(ToyJob, self).__init__(project, job_name)
self.input['input_energy'] = 100
def run_static(self):
with self.project_hdf5.open("output/generic") as h5out:
h5out["energy_tot"] = self.input["input_energy"]
self.status.finished = True
class TestProjectData(TestWithProject):
@classmethod
def setUpClass(cls):
super().setUpClass()
for i, c in enumerate("abcd"):
j = cls.project.create_job(ToyJob, f"test_{c}")
j.input['input_energy'] = i
j.run()
def setUp(self):
self.table = self.project.create.table('test_table')
self.table.filter_function = lambda j: j.name in ["test_a", "test_b"]
self.table.add['name'] = lambda j: j.name
self.table.run()
def tearDown(self):
self.project.remove_job(self.table.name)
def test_filter(self):
"""Filter functions should restrict jobs included in the table."""
df = self.table.get_dataframe()
self.assertEqual(2, len(df), "Table not correctly filtered.")
self.assertEqual(["test_a", "test_b"], df.name.to_list(), "Table not correctly filtered.")
def test_filter_reload(self):
"""Lambdas should work as filter functions even if read from HDF5."""
try:
table_loaded = self.project.load(self.table.name)
except:
self.fail("Error on reloading table with filter lambda.")
if __name__ == '__main__':
unittest.main()
|
py | 1a39e37c37b90f7e1b111d6d13a4f64b30df51f2 | """
Calculations that deal with seismic moment tensors.
Notes from Lay and Wallace Chapter 8:
* Decomposition 1: Mij = isotropic + deviatoric
* Decomposition 2: Mij = isotropic + 3 vector dipoles
* Decomposition 3: Mij = isotropic + 3 double couples
* Decomposition 4: Mij = isotropic + 3 CLVDs
* Decomposition 5: Mij = isotropic + major DC + minor DC
* Decomposition 6: Mij = isotropic + DC + CLVD
The most useful in practice are Decomposition 1 and Decomposition 6.
"""
import numpy as np
def get_MT(mrr, mtt, mpp, mrt, mrp, mtp):
"""Build a matrix from the six components of the moment tensor"""
MT = np.array([[mrr, mrt, mrp], [mrt, mtt, mtp], [mrp, mtp, mpp]]);
return MT;
def diagonalize_MT(MT):
"""Return a diagonal matrix whose elements are the ordered eigenvalues."""
eigvals, eigvecs = np.linalg.eig(MT);
eigvals = sorted(eigvals)[::-1];
return np.diag(eigvals);
def get_deviatoric_MT(MT):
"""Get deviatoric MT (returns a matrix)"""
iso_MT = get_iso_MT(MT);
M_dev = np.subtract(MT, iso_MT);
return M_dev;
def get_iso_MT(MT):
"""Return the isotropic moment tensor (returns a matrix)"""
x = (1 / 3) * np.trace(MT);
iso_MT = np.multiply(np.eye(3), x);
return iso_MT
def get_clvd_dc_from_deviatoric_MT(MT):
"""
Return the dc and clvd components of a deviatoric MT, from Shearer Equation 9.14.
Returns two matricies.
"""
eigenvalues = np.diag(MT);
assert(eigenvalues[0] > eigenvalues[1] > eigenvalues[2]), ValueError("Deviatoric eigenvalues out of order.")
dc_component = (1/2)*(eigenvalues[0]-eigenvalues[2]);
clvd_component = eigenvalues[1]*(1/2);
M_dc = np.diag([dc_component, 0, -dc_component]);
M_clvd = np.diag([-clvd_component, 2*clvd_component, -clvd_component]);
return M_clvd, M_dc;
def decompose_iso_dc_clvd(MT):
"""
A useful function to decompose a full moment tensor into an isotropic part, a double-couple, and a CLVD component.
Returns three matrices.
"""
diag_MT = diagonalize_MT(MT); # equivalent to a coordinate transformation
M_iso = get_iso_MT(diag_MT); # get the trace
M_dev = get_deviatoric_MT(diag_MT);
M_dev = diagonalize_MT(M_dev); # diagonalized in the proper order
M_clvd, M_dc = get_clvd_dc_from_deviatoric_MT(M_dev);
return M_iso, M_clvd, M_dc;
# def get_separate_scalar_moments(MT):
# """return isotropic, clvd, and double couple moments. Not frequently used."""
# M_iso, M_clvd, M_dc = decompose_iso_dc_clvd(MT);
# iso_moment = abs(M_iso[0][0]);
# clvd_moment = abs(M_clvd[0][0]);
# dc_moment = abs(M_dc[0][0]);
# return iso_moment, clvd_moment, dc_moment;
def get_total_scalar_moment(MT):
"""Shearer Equation 9.8: quadratic sum of element of moment tensor components, in newton-meters"""
MT = np.divide(MT, 1e16); # done to prevent computer buffer overflow
total = 0;
for i in range(3):
for j in range(3):
total = total + MT[i][j]*MT[i][j];
Mo = (1/np.sqrt(2)) * np.sqrt(total);
Mo = np.multiply(Mo, 1e16);
return Mo;
def get_percent_double_couple(MT):
"""Get the percent double couple and percent clvd moment from a deviatoric moment tensor.
When isotropic term is involved, this can get more complicated and there are several approaches.
See Shearer equation 9.17 for epsilon.
See Vavrycuk, 2001 for other approaches when isotropic component is involved. """
m_dev = diagonalize_MT(get_deviatoric_MT(MT));
epsilon = np.diag(m_dev)[1] / np.max([np.abs(np.diag(m_dev)[0]), np.abs(np.diag(m_dev)[2])]);
fraction = epsilon * 2;
perc_clvd = 100 * (abs(fraction));
perc_dc = 100 - perc_clvd;
return perc_dc, perc_clvd;
|
py | 1a39e4db1eeb2e5f8952dd585719cf322469ad59 | # Copyright 2019 ZTE corporation. All Rights Reserved.
# SPDX-License-Identifier: Apache-2.0
from typing import Any, Mapping, NamedTuple, Optional, Sequence
from itertools import zip_longest
from . import utilities
from .models.data_format import DataFormat
def get_tensor_by_fuzzy_name(graph, name):
if ':' in name:
tensor = graph.get_tensor_by_name(name)
else:
tensor = graph.get_operation_by_name(name).outputs[0]
return tensor
class Config(NamedTuple):
input_names: Optional[Sequence[str]]
data_formats: Sequence[Optional[DataFormat]]
output_names: Optional[Sequence[str]]
@staticmethod
def from_json(value: Mapping[str, Any]) -> 'Config':
return Config(input_names=value.get('input_names'),
data_formats=utilities.get_data_formats(value.get('input_formats')),
output_names=value.get('output_names'))
@staticmethod
def from_env(env: Mapping[str, str]) -> 'Config':
return Config(input_names=utilities.split_by(env.get('INPUT_NAMES'), ','),
data_formats=utilities.get_data_formats(utilities.split_by(env.get('INPUT_FORMATS'), ',')),
output_names=utilities.split_by(env.get('OUTPUT_NAMES'), ','))
def get_input_tensors_from_graph(self, graph):
if self.input_names is None:
input_tensors = [operation.outputs[0]
for operation in graph.get_operations()
if operation.type == 'Placeholder']
else:
input_tensors = [get_tensor_by_fuzzy_name(graph, name) for name in self.input_names]
return input_tensors
def get_output_tensors_from_graph(self, graph):
if self.output_names is None:
output_tensors = [output_tensor for operation in graph.get_operations()
if operation.type not in
['Assign', 'Const', 'Identity', 'IsVariableInitialized', 'NoOp', 'Placeholder', 'SaveV2',
'VarIsInitializedOp']
for output_tensor in operation.outputs
if not output_tensor.consumers()]
else:
output_tensors = [get_tensor_by_fuzzy_name(graph, name) for name in self.output_names]
return output_tensors
def get_inputs(graph, config):
return zip_longest(config.get_input_tensors_from_graph(graph), config.data_formats)
|
py | 1a39e50257fbddc2eb675087dd06e0c681b1c2dd | #!/usr/bin/env python3
# Copyright 2021 The Pigweed Authors
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may not
# use this file except in compliance with the License. You may obtain a copy of
# the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations under
# the License.
"""Command line interface for mcuxpresso_builder."""
import argparse
import pathlib
import sys
from pw_build_mcuxpresso import components
def _parse_args() -> argparse.Namespace:
"""Setup argparse and parse command line args."""
parser = argparse.ArgumentParser()
subparsers = parser.add_subparsers(dest='command',
metavar='<command>',
required=True)
project_parser = subparsers.add_parser(
'project', help='output components of an MCUXpresso project')
project_parser.add_argument('manifest_filename', type=pathlib.Path)
project_parser.add_argument('--include', type=str, action='append')
project_parser.add_argument('--exclude', type=str, action='append')
project_parser.add_argument('--prefix', dest='path_prefix', type=str)
return parser.parse_args()
def main():
"""Main command line function."""
args = _parse_args()
if args.command == 'project':
components.project(args.manifest_filename,
include=args.include,
exclude=args.exclude,
path_prefix=args.path_prefix)
sys.exit(0)
if __name__ == '__main__':
main()
|
py | 1a39e7fea3362154425660bbdeaa39f5d2a22858 | # -*- coding: utf-8 -*-
r"""
Overconvergent `p`-adic modular forms for small primes
This module implements computations of Hecke operators and `U_p`-eigenfunctions
on `p`-adic overconvergent modular forms of tame level 1, where `p` is one of
the primes `\{2, 3, 5, 7, 13\}`, using the algorithms described in [Loe2007]_.
- [Loe2007]_
AUTHORS:
- David Loeffler (August 2008): initial version
- David Loeffler (March 2009): extensively reworked
- Lloyd Kilford (May 2009): add
:meth:`~sage.modular.overconvergent.genus0.OverconvergentModularFormsSpace.slopes`
method
- David Loeffler (June 2009): miscellaneous bug fixes and usability improvements
The Theory
~~~~~~~~~~
Let `p` be one of the above primes, so `X_0(p)` has genus 0, and let
.. MATH::
f_p = \sqrt[p-1]{\frac{\Delta(pz)}{\Delta(z)}}
(an `\eta`-product of level `p` -- see module :mod:`sage.modular.etaproducts`).
Then one can show that `f_p` gives an isomorphism `X_0(p) \to \mathbb{P}^1`.
Furthermore, if we work over `\CC_p`, the `r`-overconvergent locus on `X_0(p)`
(or of `X_0(1)`, via the canonical subgroup lifting), corresponds to the
`p`-adic disc
.. MATH::
|f_p|_p \le p^{\frac{12r}{p-1}}.
(This is Theorem 1 of [Loe2007]_.)
Hence if we fix an element `c` with `|c| = p^{-\frac{12r}{p-1}}`, the space
`S_k^\dag(1, r)` of overconvergent `p`-adic modular forms has an orthonormal
basis given by the functions `(cf)^n`. So any element can be written in the
form `E_k \times \sum_{n \ge 0} a_n (cf)^n`, where `a_n \to 0` as `N \to
\infty`, and any such sequence `a_n` defines a unique overconvergent form.
One can now find the matrix of Hecke operators in this basis, either by
calculating `q`-expansions, or (for the special case of `U_p`) using a
recurrence formula due to Kolberg.
An Extended Example
~~~~~~~~~~~~~~~~~~~
We create a space of 3-adic modular forms::
sage: M = OverconvergentModularForms(3, 8, 1/6, prec=60)
Creating an element directly as a linear combination of basis vectors.
.. link
::
sage: f1 = M.3 + M.5; f1.q_expansion()
27*q^3 + 1055916/1093*q^4 + 19913121/1093*q^5 + 268430112/1093*q^6 + ...
sage: f1.coordinates(8)
[0, 0, 0, 1, 0, 1, 0, 0]
We can coerce from elements of classical spaces of modular forms:
.. link
::
sage: f2 = M(CuspForms(3, 8).0); f2
3-adic overconvergent modular form of weight-character 8 with q-expansion q + 6*q^2 - 27*q^3 - 92*q^4 + 390*q^5 - 162*q^6 ...
We express this in a basis, and see that the coefficients go to zero very fast:
.. link
::
sage: [x.valuation(3) for x in f2.coordinates(60)]
[+Infinity, -1, 3, 6, 10, 13, 18, 20, 24, 27, 31, 34, 39, 41, 45, 48, 52, 55, 61, 62, 66, 69, 73, 76, 81, 83, 87, 90, 94, 97, 102, 104, 108, 111, 115, 118, 124, 125, 129, 132, 136, 139, 144, 146, 150, 153, 157, 160, 165, 167, 171, 174, 178, 181, 188, 188, 192, 195, 199, 202]
This form has more level at `p`, and hence is less overconvergent:
.. link
::
sage: f3 = M(CuspForms(9, 8).0); [x.valuation(3) for x in f3.coordinates(60)]
[+Infinity, -1, -1, 0, -4, -4, -2, -3, 0, 0, -1, -1, 1, 0, 3, 3, 3, 3, 5, 3, 7, 7, 6, 6, 8, 7, 10, 10, 8, 8, 10, 9, 12, 12, 12, 12, 14, 12, 17, 16, 15, 15, 17, 16, 19, 19, 18, 18, 20, 19, 22, 22, 22, 22, 24, 21, 25, 26, 24, 24]
An error will be raised for forms which are not sufficiently overconvergent:
.. link
::
sage: M(CuspForms(27, 8).0)
Traceback (most recent call last):
...
ValueError: Form is not overconvergent enough (form is only 1/12-overconvergent)
Let's compute some Hecke operators. Note that the coefficients of this matrix are `p`-adically tiny:
.. link
::
sage: M.hecke_matrix(3, 4).change_ring(Qp(3,prec=1))
[ 1 + O(3) 0 0 0]
[ 0 2*3^3 + O(3^4) 2*3^3 + O(3^4) 3^2 + O(3^3)]
[ 0 2*3^7 + O(3^8) 2*3^8 + O(3^9) 3^6 + O(3^7)]
[ 0 2*3^10 + O(3^11) 2*3^10 + O(3^11) 2*3^9 + O(3^10)]
We compute the eigenfunctions of a 4x4 truncation:
.. link
::
sage: efuncs = M.eigenfunctions(4)
sage: for i in [1..3]:
....: print(efuncs[i].q_expansion(prec=4).change_ring(Qp(3,prec=20)))
(1 + O(3^20))*q + (2*3 + 3^15 + 3^16 + 3^17 + 2*3^19 + 2*3^20 + O(3^21))*q^2 + (2*3^3 + 2*3^4 + 2*3^5 + 2*3^6 + 2*3^7 + 2*3^8 + 2*3^9 + 2*3^10 + 2*3^11 + 2*3^12 + 2*3^13 + 2*3^14 + 2*3^15 + 2*3^16 + 3^17 + 2*3^18 + 2*3^19 + 3^21 + 3^22 + O(3^23))*q^3 + O(q^4)
(1 + O(3^20))*q + (3 + 2*3^2 + 3^3 + 3^4 + 3^12 + 3^13 + 2*3^14 + 3^15 + 2*3^17 + 3^18 + 3^19 + 3^20 + O(3^21))*q^2 + (3^7 + 3^13 + 2*3^14 + 2*3^15 + 3^16 + 3^17 + 2*3^18 + 3^20 + 2*3^21 + 2*3^22 + 2*3^23 + 2*3^25 + O(3^27))*q^3 + O(q^4)
(1 + O(3^20))*q + (2*3 + 3^3 + 2*3^4 + 3^6 + 2*3^8 + 3^9 + 3^10 + 2*3^11 + 2*3^13 + 3^16 + 3^18 + 3^19 + 3^20 + O(3^21))*q^2 + (3^9 + 2*3^12 + 3^15 + 3^17 + 3^18 + 3^19 + 3^20 + 2*3^22 + 2*3^23 + 2*3^27 + 2*3^28 + O(3^29))*q^3 + O(q^4)
The first eigenfunction is a classical cusp form of level 3:
.. link
::
sage: (efuncs[1] - M(CuspForms(3, 8).0)).valuation()
13
The second is an Eisenstein series!
.. link
::
sage: (efuncs[2] - M(EisensteinForms(3, 8).1)).valuation()
10
The third is a genuinely new thing (not a classical modular form at all); the
coefficients are almost certainly not algebraic over `\QQ`. Note that the slope
is 9, so Coleman's classicality criterion (forms of slope `< k-1` are
classical) does not apply.
.. link
::
sage: a3 = efuncs[3].q_expansion()[3]; a3
3^9 + 2*3^12 + 3^15 + 3^17 + 3^18 + 3^19 + 3^20 + 2*3^22 + 2*3^23 + 2*3^27 + 2*3^28 + 3^32 + 3^33 + 2*3^34 + 3^38 + 2*3^39 + 3^40 + 2*3^41 + 3^44 + 3^45 + 3^46 + 2*3^47 + 2*3^48 + 3^49 + 3^50 + 2*3^51 + 2*3^52 + 3^53 + 2*3^54 + 3^55 + 3^56 + 3^57 + 2*3^58 + 2*3^59 + 3^60 + 2*3^61 + 2*3^63 + 2*3^64 + 3^65 + 2*3^67 + 3^68 + 2*3^69 + 2*3^71 + 3^72 + 2*3^74 + 3^75 + 3^76 + 3^79 + 3^80 + 2*3^83 + 2*3^84 + 3^85 + 2*3^87 + 3^88 + 2*3^89 + 2*3^90 + 2*3^91 + 3^92 + O(3^98)
sage: efuncs[3].slope()
9
-----------
"""
#*****************************************************************************
# Copyright (C) 2008 William Stein <[email protected]>
# 2008-9 David Loeffler <[email protected]>
#
# Distributed under the terms of the GNU General Public License (GPL)
# https://www.gnu.org/licenses/
#*****************************************************************************
from sage.matrix.all import matrix, MatrixSpace, diagonal_matrix
from sage.misc.verbose import verbose
from sage.misc.cachefunc import cached_method
from sage.modular.all import (trivial_character, EtaProduct,
j_invariant_qexp, hecke_operator_on_qexp)
from sage.modular.arithgroup.all import is_Gamma0, is_Gamma1
from sage.modular.modform.element import ModularFormElement
from sage.modules.all import vector
from sage.modules.module import Module
from sage.structure.element import Vector, ModuleElement
from sage.structure.richcmp import richcmp
from sage.plot.plot import plot
from sage.rings.all import (O, Infinity, ZZ, QQ, pAdicField, PolynomialRing, PowerSeriesRing, is_pAdicField)
import weakref
from .weightspace import WeightSpace_constructor as WeightSpace, WeightCharacter
__ocmfdict = {}
####################
# Factory function #
####################
def OverconvergentModularForms(prime, weight, radius, base_ring=QQ, prec = 20, char = None):
r"""
Create a space of overconvergent `p`-adic modular forms of level
`\Gamma_0(p)`, over the given base ring. The base ring need not be a
`p`-adic ring (the spaces we compute with typically have bases over
`\QQ`).
INPUT:
- ``prime`` - a prime number `p`, which must be one of the primes `\{2, 3,
5, 7, 13\}`, or the congruence subgroup `\Gamma_0(p)` where `p` is one of these
primes.
- ``weight`` - an integer (which at present must be 0 or `\ge 2`), the
weight.
- ``radius`` - a rational number in the interval `\left( 0, \frac{p}{p+1}
\right)`, the radius of overconvergence.
- ``base_ring`` (default: `\QQ`), a ring over which to compute. This
need not be a `p`-adic ring.
- ``prec`` - an integer (default: 20), the number of `q`-expansion terms to
compute.
- ``char`` - a Dirichlet character modulo `p` or ``None`` (the default).
Here ``None`` is interpreted as the trivial character modulo `p`.
The character `\chi` and weight `k` must satisfy `(-1)^k = \chi(-1)`, and
the base ring must contain an element `v` such that
`{\rm ord}_p(v) = \frac{12 r}{p-1}` where `r` is the radius of
overconvergence (and `{\rm ord}_p` is normalised so `{\rm ord}_p(p) = 1`).
EXAMPLES::
sage: OverconvergentModularForms(3, 0, 1/2)
Space of 3-adic 1/2-overconvergent modular forms of weight-character 0 over Rational Field
sage: OverconvergentModularForms(3, 16, 1/2)
Space of 3-adic 1/2-overconvergent modular forms of weight-character 16 over Rational Field
sage: OverconvergentModularForms(3, 3, 1/2, char = DirichletGroup(3,QQ).0)
Space of 3-adic 1/2-overconvergent modular forms of weight-character (3, 3, [-1]) over Rational Field
"""
if is_Gamma0(prime) or is_Gamma1(prime):
prime = prime.level()
else:
prime = ZZ(prime)
if char is None:
char = trivial_character(prime, base_ring=QQ)
if int(prime) not in [2, 3, 5, 7, 13]:
raise ValueError("p must be one of {2, 3, 5, 7, 13}")
key = (prime, weight, radius, base_ring, prec, char)
if key in __ocmfdict:
w = __ocmfdict[key]
M = w()
if not (M is None):
return M
M = OverconvergentModularFormsSpace(*key)
__ocmfdict[key] = weakref.ref(M)
return M
#########################
# Main class definition #
#########################
class OverconvergentModularFormsSpace(Module):
r"""
A space of overconvergent modular forms of level `\Gamma_0(p)`,
where `p` is a prime such that `X_0(p)` has genus 0.
Elements are represented as power series, with a formal power series `F`
corresponding to the modular form `E_k^\ast \times F(g)` where `E_k^\ast`
is the `p`-deprived Eisenstein series of weight-character `k`, and `g` is a
uniformiser of `X_0(p)` normalised so that the `r`-overconvergent region
`X_0(p)_{\ge r}` corresponds to `|g| \le 1`.
TESTS::
sage: K.<w> = Qp(13).extension(x^2-13); M = OverconvergentModularForms(13, 20, radius=1/2, base_ring=K)
sage: M is loads(dumps(M))
True
"""
###############
# Init script #
###############
def __init__(self, prime, weight, radius, base_ring, prec, char):
r"""
Create a space of overconvergent `p`-adic modular forms of level
`\Gamma_0(p)`, over the given base ring. The base ring need not be a
`p`-adic ring (the spaces we compute with typically have bases over
`\QQ`).
EXAMPLES::
sage: OverconvergentModularForms(3, 0, 1/2)
Space of 3-adic 1/2-overconvergent modular forms of weight-character 0 over Rational Field
"""
self._p = prime
if not ( base_ring == QQ or is_pAdicField(base_ring) ):
raise TypeError("Base ring must be QQ or a p-adic field")
if base_ring != QQ and base_ring.prime() != self._p:
raise TypeError("Residue characteristic of base ring (=%s) must be %s" % (base_ring, self._p))
if isinstance(weight, WeightCharacter):
self._wtchar = weight
else:
self._wtchar = WeightSpace(prime, base_ring = char.base_ring())(weight, char, algebraic=True)
if not self._wtchar.is_even():
raise ValueError("Weight-character must be even")
Module.__init__(self, base_ring)
self._prec = prec
self._qsr = PowerSeriesRing(base_ring, 'q', prec) # q-series ring
self._gsr = PowerSeriesRing(base_ring, 'g', prec) # g-adic expansions, g = c*f
self._cached_recurrence_matrix = None
self._set_radius(radius)
self._basis_cache = [self._wtchar.pAdicEisensteinSeries(self._qsr, self.prec())]
self._uniformiser = self._qsr(EtaProduct(prime, {prime: 24/ZZ(prime-1), ZZ(1):-24/ZZ(prime-1)}).qexp(self.prec()))
for i in range(1, self.prec()):
self._basis_cache.append(self._basis_cache[-1] * self._uniformiser * self._const)
#####################################
# Methods called by the init script #
#####################################
def _set_radius(self, radius):
r"""
Set the radius of overconvergence to be `r`, where `r` is a rational
number in the interval `0 < r < \frac{p}{p+1}`.
This only makes sense if the base ring contains an element of
normalised valuation `\frac{12r}{p-1}`. If this valuation is an
integer, we use the appropriate power of `p`. Otherwise, we assume the
base ring has a ``uniformiser`` method and take an appropriate power of
the uniformiser, raising an error if no such element exists.
EXAMPLES::
sage: M = OverconvergentModularForms(3, 2, 1/2) # indirect doctest
sage: M._set_radius(1/3); M
Space of 3-adic 1/3-overconvergent modular forms of weight-character 2 over Rational Field
sage: L.<w> = Qp(3).extension(x^5 - 3)
sage: OverconvergentModularForms(3, 2, 1/30, base_ring=L).normalising_factor() # indirect doctest
w + O(w^101)
sage: OverconvergentModularForms(3, 2, 1/40, base_ring=L)
Traceback (most recent call last):
...
ValueError: no element of base ring (=3-adic Eisenstein Extension ...) has normalised valuation 3/20
"""
p = ZZ(self.prime())
if (radius < 0 or radius > p/(p+1)):
raise ValueError("radius (=%s) must be between 0 and p/(p+1)" % radius)
d = 12/(p-1)*radius
if d.is_integral():
self._const = p ** ZZ(d)
self._radius = radius
else:
try:
pi = self.base_ring().uniformiser()
e = d / pi.normalized_valuation()
except AttributeError: # base ring isn't a p-adic ring
pi = p
e = d
if not e.is_integral():
raise ValueError("no element of base ring (=%s) has normalised valuation %s" % (self.base_ring(), radius * 12 /(p-1)))
self._radius = radius
self._const = pi ** ZZ(e)
##############################################
# Boring functions that access internal data #
##############################################
def is_exact(self):
r"""
True if elements of this space are represented exactly, i.e., there is
no precision loss when doing arithmetic. As this is never true for
overconvergent modular forms spaces, this returns False.
EXAMPLES::
sage: OverconvergentModularForms(13, 12, 0).is_exact()
False
"""
return False
def change_ring(self, ring):
r"""
Return the space corresponding to self but over the given base ring.
EXAMPLES::
sage: M = OverconvergentModularForms(2, 0, 1/2)
sage: M.change_ring(Qp(2))
Space of 2-adic 1/2-overconvergent modular forms of weight-character 0 over 2-adic Field with ...
"""
return OverconvergentModularForms(self.prime(), self.weight(), self.radius(), ring, self.prec(), self.character())
def base_extend(self, ring):
r"""
Return the base extension of self to the given base ring. There must be
a canonical map to this ring from the current base ring, otherwise a
TypeError will be raised.
EXAMPLES::
sage: M = OverconvergentModularForms(2, 0, 1/2, base_ring = Qp(2))
sage: M.base_extend(Qp(2).extension(x^2 - 2, names="w"))
Space of 2-adic 1/2-overconvergent modular forms of weight-character 0 over 2-adic Eisenstein Extension ...
sage: M.base_extend(QQ)
Traceback (most recent call last):
...
TypeError: Base extension of self (over '2-adic Field with capped relative precision 20') to ring 'Rational Field' not defined.
"""
if ring.has_coerce_map_from(self.base_ring()):
return self.change_ring(ring)
else:
raise TypeError("Base extension of self (over '%s') to ring '%s' not defined." % (self.base_ring(), ring))
def _an_element_(self):
r"""
Return an element of this space (used by the coercion machinery).
EXAMPLES::
sage: OverconvergentModularForms(3, 2, 1/3, prec=4).an_element() # indirect doctest
3-adic overconvergent modular form of weight-character 2 with q-expansion 9*q + 216*q^2 + 2430*q^3 + O(q^4)
"""
return OverconvergentModularFormElement(self, self._gsr.an_element())
def character(self):
r"""
Return the character of self. For overconvergent forms, the weight and
the character are unified into the concept of a weight-character, so
this returns exactly the same thing as self.weight().
EXAMPLES::
sage: OverconvergentModularForms(3, 0, 1/2).character()
0
sage: type(OverconvergentModularForms(3, 0, 1/2).character())
<class '...weightspace.AlgebraicWeight'>
sage: OverconvergentModularForms(3, 3, 1/2, char=DirichletGroup(3,QQ).0).character()
(3, 3, [-1])
"""
return self._wtchar
def weight(self):
r"""
Return the character of self. For overconvergent forms, the weight and
the character are unified into the concept of a weight-character, so
this returns exactly the same thing as self.character().
EXAMPLES::
sage: OverconvergentModularForms(3, 0, 1/2).weight()
0
sage: type(OverconvergentModularForms(3, 0, 1/2).weight())
<class '...weightspace.AlgebraicWeight'>
sage: OverconvergentModularForms(3, 3, 1/2, char=DirichletGroup(3,QQ).0).weight()
(3, 3, [-1])
"""
return self._wtchar
def normalising_factor(self):
r"""
The normalising factor `c` such that `g = c f` is a parameter for the
`r`-overconvergent disc in `X_0(p)`, where `f` is the standard
uniformiser.
EXAMPLES::
sage: L.<w> = Qp(7).extension(x^2 - 7)
sage: OverconvergentModularForms(7, 0, 1/4, base_ring=L).normalising_factor()
w + O(w^41)
"""
return self._const
def __eq__(self, other):
r"""
Check whether ``self`` is equal to ``other``.
EXAMPLES::
sage: OverconvergentModularForms(3, 12, 1/2) == ModularForms(3, 12)
False
sage: OverconvergentModularForms(3, 0, 1/2) == OverconvergentModularForms(3, 0, 1/3)
False
sage: OverconvergentModularForms(3, 0, 1/2) == OverconvergentModularForms(3, 0, 1/2, base_ring = Qp(3))
False
sage: OverconvergentModularForms(3, 0, 1/2) == OverconvergentModularForms(3, 0, 1/2)
True
"""
if not isinstance(other, OverconvergentModularFormsSpace):
return False
else:
return self._params() == other._params()
def __ne__(self, other):
"""
Check whether ``self`` is not equal to ``other``.
EXAMPLES::
sage: OverconvergentModularForms(3, 12, 1/2) != ModularForms(3, 12)
True
sage: OverconvergentModularForms(3, 0, 1/2) != OverconvergentModularForms(3, 0, 1/3)
True
sage: OverconvergentModularForms(3, 0, 1/2) != OverconvergentModularForms(3, 0, 1/2, base_ring = Qp(3))
True
sage: OverconvergentModularForms(3, 0, 1/2) != OverconvergentModularForms(3, 0, 1/2)
False
"""
return not (self == other)
def __hash__(self):
"""
Return the hash of ``self``.
EXAMPLES::
sage: h1 = hash(OverconvergentModularForms(3, 12, 1/2))
sage: h2 = hash(OverconvergentModularForms(3, 12, 1/2))
sage: h3 = hash(OverconvergentModularForms(3, 0, 1/2))
sage: h1 == h2 and h1 != h3
True
"""
return hash(self._params())
def _params(self):
r"""
Return the parameters that define this module uniquely: prime, weight,
character, radius of overconvergence and base ring. Mostly used for
pickling.
EXAMPLES::
sage: L.<w> = Qp(7).extension(x^2 - 7)
sage: OverconvergentModularForms(7, 0, 1/4, base_ring=L)._params()
(7,
0,
1/4,
7-adic Eisenstein Extension Field in w defined by x^2 - 7,
20,
Dirichlet character modulo 7 of conductor 1 mapping 3 |--> 1)
"""
return (self.prime(), self.weight().k(), self.radius(), self.base_ring(), self.prec(), self.weight().chi())
def __reduce__(self):
r"""
Return the function and arguments used to construct self. Used for pickling.
EXAMPLES::
sage: L.<w> = Qp(7).extension(x^2 - 7)
sage: OverconvergentModularForms(7, 0, 1/4, base_ring=L).__reduce__()
(<function OverconvergentModularForms at ...>,
(7,
0,
1/4,
7-adic Eisenstein Extension Field in w defined by x^2 - 7,
20,
Dirichlet character modulo 7 of conductor 1 mapping 3 |--> 1))
"""
return (OverconvergentModularForms, self._params())
def gen(self, i):
r"""
Return the ith module generator of self.
EXAMPLES::
sage: M = OverconvergentModularForms(3, 2, 1/2, prec=4)
sage: M.gen(0)
3-adic overconvergent modular form of weight-character 2 with q-expansion 1 + 12*q + 36*q^2 + 12*q^3 + O(q^4)
sage: M.gen(1)
3-adic overconvergent modular form of weight-character 2 with q-expansion 27*q + 648*q^2 + 7290*q^3 + O(q^4)
sage: M.gen(30)
3-adic overconvergent modular form of weight-character 2 with q-expansion O(q^4)
"""
return OverconvergentModularFormElement(self, gexp=self._gsr.gen()**i)
def _repr_(self):
r"""
Return a string representation of self.
EXAMPLES::
sage: OverconvergentModularForms(3, 0, 1/2)._repr_()
'Space of 3-adic 1/2-overconvergent modular forms of weight-character 0 over Rational Field'
"""
return "Space of %s-adic %s-overconvergent modular forms of weight-character %s over %s" % (self.prime(), self.radius(), self.weight(), self.base_ring())
def prime(self):
r"""
Return the residue characteristic of self, i.e. the prime `p` such that
this is a `p`-adic space.
EXAMPLES::
sage: OverconvergentModularForms(5, 12, 1/3).prime()
5
"""
return self._p
def radius(self):
r"""
The radius of overconvergence of this space.
EXAMPLES::
sage: OverconvergentModularForms(3, 0, 1/3).radius()
1/3
"""
return self._radius
def gens(self):
r"""
Return a generator object that iterates over the (infinite) set of
basis vectors of self.
EXAMPLES::
sage: o = OverconvergentModularForms(3, 12, 1/2)
sage: t = o.gens()
sage: next(t)
3-adic overconvergent modular form of weight-character 12 with q-expansion 1 - 32760/61203943*q - 67125240/61203943*q^2 - ...
sage: next(t)
3-adic overconvergent modular form of weight-character 12 with q-expansion 27*q + 19829193012/61203943*q^2 + 146902585770/61203943*q^3 + ...
"""
i = 0
while True:
yield self.gen(i)
i += 1
def prec(self):
r"""
Return the series precision of self. Note that this is different from
the `p`-adic precision of the base ring.
EXAMPLES::
sage: OverconvergentModularForms(3, 0, 1/2).prec()
20
sage: OverconvergentModularForms(3, 0, 1/2,prec=40).prec()
40
"""
return self._prec
#####################################
# Element construction and coercion #
#####################################
def _element_constructor_(self, input):
r"""
Create an element of this space. Allowable inputs are:
- elements of compatible spaces of modular forms or overconvergent
modular forms
- arbitrary power series in `q`
- lists of elements of the base ring (interpreted as vectors in the
basis given by self.gens()).
Precision may be specified by padding lists at the end with zeros;
inputs with a higher precision than the set precision of this space
will be rounded.
EXAMPLES:
From a `q`-expansion::
sage: M = OverconvergentModularForms(3, 0, 1/2, prec=5)
sage: R.<q> = QQ[[]]
sage: f=M(q + q^2 - q^3 + O(q^16)); f
3-adic overconvergent modular form of weight-character 0 with q-expansion q + q^2 - q^3 + O(q^5)
sage: M.coordinate_vector(f)
(0, 1/27, -11/729, 173/19683, -3172/531441)
From a list or a vector::
sage: M([1,0,1])
3-adic overconvergent modular form of weight-character 0 with q-expansion 1 + 729*q^2 + O(q^3)
sage: M([1,0,1,0,0])
3-adic overconvergent modular form of weight-character 0 with q-expansion 1 + 729*q^2 + 17496*q^3 + 236196*q^4 + O(q^5)
sage: f = M([1,0,1,0,0]); v = M.coordinate_vector(f); v
(1, 0, 1, 0, 0)
sage: M(v) == f
True
From a classical modular form::
sage: f = CuspForms(Gamma0(3), 12).0; f
q - 176*q^4 + 2430*q^5 + O(q^6)
sage: fdag = OverconvergentModularForms(3, 12, 1/3, prec=8)(f); fdag
3-adic overconvergent modular form of weight-character 12 with q-expansion q - 176*q^4 + 2430*q^5 - 5832*q^6 - 19336*q^7 + O(q^8)
sage: fdag.parent().coordinate_vector(f)*(1 + O(3^2))
(0, 3^-2 + O(3^0), 2*3^-3 + 2*3^-2 + O(3^-1), 3^-4 + 3^-3 + O(3^-2), 2 + 3 + O(3^2), 2*3 + 3^2 + O(3^3), 2*3^4 + 2*3^5 + O(3^6), 3^5 + 3^6 + O(3^7))
sage: OverconvergentModularForms(3, 6, 1/3)(f)
Traceback (most recent call last):
...
TypeError: Cannot create an element of 'Space of 3-adic ...' from element of incompatible space 'Cuspidal subspace ...'
We test that zero elements are handled properly::
sage: M(0)
3-adic overconvergent modular form of weight-character 0 with q-expansion O(q^5)
sage: M(O(q^3))
3-adic overconvergent modular form of weight-character 0 with q-expansion O(q^3)
We test coercion between spaces of different precision::
sage: M10 = OverconvergentModularForms(3, 0, 1/2, prec=10)
sage: f = M10.1
sage: M(f)
3-adic overconvergent modular form of weight-character 0 with q-expansion 27*q + 324*q^2 + 2430*q^3 + 13716*q^4 + O(q^5)
sage: M10(M(f))
3-adic overconvergent modular form of weight-character 0 with q-expansion 27*q + 324*q^2 + 2430*q^3 + 13716*q^4 + O(q^5)
"""
if isinstance(input, int):
input = ZZ(input)
if isinstance(input, OverconvergentModularFormElement):
return self._coerce_from_ocmf(input)
elif isinstance(input, ModularFormElement):
if ( (input.level() == 1 or input.level().prime_factors() == [self.prime()])
and input.weight() == self.weight().k()
and input.character().primitive_character() == self.weight().chi().primitive_character()):
p = ZZ(self.prime())
nu = (input.level() == 1 and p/(p+1)) or (1 / (p + 1) * p**(2 - input.level().valuation(p)))
if self.radius() > nu:
raise ValueError("Form is not overconvergent enough (form is only %s-overconvergent)" % nu)
else:
return self(self._qsr(input.q_expansion(self.prec())))
else:
raise TypeError("Cannot create an element of '%s' from element of incompatible space '%s'" % (self, input.parent()))
elif isinstance(input, (list, tuple, Vector)):
v = list(input)
n = len(v)
return OverconvergentModularFormElement(self, gexp=self._gsr(v).add_bigoh(n), qexp=None)
elif self._qsr.has_coerce_map_from(input.parent()):
return OverconvergentModularFormElement(self, gexp=None, qexp=self._qsr(input))
else:
raise TypeError("Don't know how to create an overconvergent modular form from %s" % input)
@cached_method
def zero(self):
"""
Return the zero of this space.
EXAMPLES::
sage: K.<w> = Qp(13).extension(x^2-13); M = OverconvergentModularForms(13, 20, radius=1/2, base_ring=K)
sage: K.zero()
0
"""
return self(0)
def _coerce_from_ocmf(self, f):
r"""
Try to convert the overconvergent modular form `f` into an element of self.
An error will be raised if this is obviously nonsense.
EXAMPLES::
sage: M = OverconvergentModularForms(3, 0, 1/2)
sage: MM = M.base_extend(Qp(3))
sage: R.<q> = Qp(3)[[]]; f = MM(q + O(q^2)); f
3-adic overconvergent modular form of weight-character 0 with q-expansion (1 + O(3^20))*q + O(q^2)
sage: M._coerce_from_ocmf(f)
3-adic overconvergent modular form of weight-character 0 with q-expansion q + O(q^2)
sage: f in M # indirect doctest
True
"""
prime, weight, radius, base_ring, prec, char = f.parent()._params()
if (prime, weight, char) != (self.prime(), self.weight().k(), self.weight().chi()):
raise TypeError("Cannot create an element of '%s' from element of incompatible space '%s'" % (self, input.parent()))
return self(self._qsr(f.q_expansion()))
def _coerce_map_from_(self, other):
r"""
Canonical coercion of x into self. Here the possibilities for x are
more restricted.
TESTS::
sage: M = OverconvergentModularForms(3, 0, 1/2)
sage: MM = M.base_extend(Qp(3))
sage: MM.has_coerce_map_from(M) # indirect doctest
True
sage: MM.coerce(M.1)
3-adic overconvergent modular form of weight-character 0 with q-expansion (3^3 + O(3^23))*q + (3^4 + 3^5 + O(3^24))*q^2 ...
sage: M.has_coerce_map_from(MM)
False
sage: M.coerce(1)
3-adic overconvergent modular form of weight-character 0 with q-expansion 1 + O(q^20)
"""
if (isinstance(other, OverconvergentModularFormsSpace) and
self.base_ring().has_coerce_map_from(other.base_ring())):
return True
else:
return self.base_ring().has_coerce_map_from(other)
def coordinate_vector(self, x):
r"""
Write x as a vector with respect to the basis given by self.basis().
Here x must be an element of this space or something that can be
converted into one. If x has precision less than the default precision
of self, then the returned vector will be shorter.
EXAMPLES::
sage: M = OverconvergentModularForms(Gamma0(3), 0, 1/3, prec=4)
sage: M.coordinate_vector(M.gen(2))
(0, 0, 1, 0)
sage: q = QQ[['q']].gen(); M.coordinate_vector(q - q^2 + O(q^4))
(0, 1/9, -13/81, 74/243)
sage: M.coordinate_vector(q - q^2 + O(q^3))
(0, 1/9, -13/81)
"""
if hasattr(x, 'base_ring') and x.base_ring() != self.base_ring():
return self.base_extend(x.base_ring()).coordinate_vector(x)
if x.parent() != self:
x = self(x)
return vector(self.base_ring(), x.gexp().padded_list(x.gexp().prec()))
##########################################################
# Pointless routines required by parent class definition #
##########################################################
def ngens(self):
r"""
The number of generators of self (as a module over its base ring), i.e. infinity.
EXAMPLES::
sage: M = OverconvergentModularForms(2, 4, 1/6)
sage: M.ngens()
+Infinity
"""
return Infinity
def gens_dict(self):
r"""
Return a dictionary mapping the names of generators of this space to
their values. (Required by parent class definition.) As this does not
make any sense here, this raises a TypeError.
EXAMPLES::
sage: M = OverconvergentModularForms(2, 4, 1/6)
sage: M.gens_dict()
Traceback (most recent call last):
...
TypeError: gens_dict does not make sense as number of generators is infinite
"""
raise TypeError("gens_dict does not make sense as number of generators is infinite")
#####################################
# Routines with some actual content #
#####################################
def hecke_operator(self, f, m):
r"""
Given an element `f` and an integer `m`, calculates the Hecke operator
`T_m` acting on `f`.
The input may be either a "bare" power series, or an
OverconvergentModularFormElement object; the return value will be of
the same type.
EXAMPLES::
sage: M = OverconvergentModularForms(3, 0, 1/2)
sage: f = M.1
sage: M.hecke_operator(f, 3)
3-adic overconvergent modular form of weight-character 0 with q-expansion 2430*q + 265356*q^2 + 10670373*q^3 + 249948828*q^4 + 4113612864*q^5 + 52494114852*q^6 + O(q^7)
sage: M.hecke_operator(f.q_expansion(), 3)
2430*q + 265356*q^2 + 10670373*q^3 + 249948828*q^4 + 4113612864*q^5 + 52494114852*q^6 + O(q^7)
"""
# This should just be an instance of hecke_operator_on_qexp but that
# won't accept arbitrary power series as input, although it's clearly
# supposed to, which seems rather to defy the point but never mind...
if f.parent() is self:
return self(self.hecke_operator(f.q_expansion(), m))
elif isinstance(f, OverconvergentModularFormElement):
if f.parent() is self.base_extend(f.parent().base_ring()):
return f.parent().hecke_operator(f, m)
else:
raise TypeError("Not an element of this space")
else:
return hecke_operator_on_qexp(f, m, self.weight().k(), eps=self.weight().chi())
def _convert_to_basis(self, qexp):
r"""
Given a `q`-expansion, converts it to a vector in the basis of this
space, to the maximum possible precision (which is the minimum of the
`q`-adic precision of the `q`-expansion and the precision of self).
EXAMPLES::
sage: M = OverconvergentModularForms(2, 0, 1/2)
sage: R.<q> = QQ[[]]
sage: M._convert_to_basis(q + q^2 + O(q^4))
1/64*g - 23/4096*g^2 + 201/65536*g^3 + O(g^4)
"""
n = min(qexp.prec(), self.prec())
x = qexp
g = self._gsr.gen()
answer = self._gsr(0)
for i in range(n):
assert(x.valuation() >= i)
answer += (x[i] / self._basis_cache[i][i])*g**i
x = x - self._basis_cache[i] * answer[i]
return answer + O(g**n)
def hecke_matrix(self, m, n, use_recurrence = False, exact_arith = False):
r"""
Calculate the matrix of the `T_m` operator in the basis of this space,
truncated to an `n \times n` matrix. Conventions are that operators act
on the left on column vectors (this is the opposite of the conventions
of the sage.modules.matrix_morphism class!) Uses naive `q`-expansion
arguments if use_recurrence=False and uses the Kolberg style
recurrences if use_recurrence=True.
The argument "exact_arith" causes the computation to be done with
rational arithmetic, even if the base ring is an inexact `p`-adic ring.
This is useful as there can be precision loss issues (particularly with
use_recurrence=False).
EXAMPLES::
sage: OverconvergentModularForms(2, 0, 1/2).hecke_matrix(2, 4)
[ 1 0 0 0]
[ 0 24 64 0]
[ 0 32 1152 4608]
[ 0 0 3072 61440]
sage: OverconvergentModularForms(2, 12, 1/2, base_ring=pAdicField(2)).hecke_matrix(2, 3) * (1 + O(2^2))
[ 1 + O(2^2) 0 0]
[ 0 2^3 + O(2^5) 2^6 + O(2^8)]
[ 0 2^4 + O(2^6) 2^7 + 2^8 + O(2^9)]
sage: OverconvergentModularForms(2, 12, 1/2, base_ring=pAdicField(2)).hecke_matrix(2, 3, exact_arith=True)
[ 1 0 0]
[ 0 33881928/1414477 64]
[ 0 -192898739923312/2000745183529 1626332544/1414477]
"""
if exact_arith and not self.base_ring().is_exact():
return self.change_ring(QQ).hecke_matrix(m, n, use_recurrence)
M = MatrixSpace(self.base_ring(), n)
mat = M(0)
for j in range(min(n, self.prime())):
l = self._convert_to_basis(self.hecke_operator(self._basis_cache[j], m))
for i in range(n):
try:
mat[i,j] = l[i]
except IndexError:
if not self.weight().is_zero():
raise ValueError("n is too large for current precision")
else:
if i <= self.prime() * j:
raise ValueError("n is too large computing initial conds: can't work out u[%s, %s]" % (i,j))
else:
mat[i,j] = 0 # computations are exact for weight 0, and we know these terms are zero
if use_recurrence:
if m != self.prime():
raise ValueError("Recurrence method not valid when m != p")
for j in range(self.prime(), n):
# can only apply recurrence if have i,j both >= p.
if j >= self.prec():
for i in range(self.prime()):
if self.weight() != 0:
raise ValueError("n is too large for current precision")
else:
if j <= self.prime() * i:
raise ValueError("n is too large computing initial conds: can't work out u[%s,%s]" % (i,j))
mat[i,j] = 0
else:
l = self._convert_to_basis(self.hecke_operator(self._basis_cache[j], m))
for i in range(self.prime()):
mat[i,j] = l[i]
for i in range(self.prime(), n):
for u in range(self.prime()):
for v in range(self.prime()):
mat[i,j] = mat[i,j] + mat[i-u-1, j-v-1]*self.recurrence_matrix()[u,v]
else:
if n * self.prime() > self.prec():
raise ValueError("n is too large")
for j in range(self.prime(), n):
l = self._convert_to_basis(self.hecke_operator(self._basis_cache[j], m))
for i in range(n):
mat[i, j] = l[i]
return mat
def slopes(self, n, use_recurrence=False):
r"""
Compute the slopes of the `U_p` operator acting on self, using an n x n matrix.
EXAMPLES::
sage: OverconvergentModularForms(5,2,1/3,base_ring=Qp(5),prec=100).slopes(5)
[0, 2, 5, 6, 9]
sage: OverconvergentModularForms(2,1,1/3,char=DirichletGroup(4,QQ).0).slopes(5)
[0, 2, 4, 6, 8]
"""
if self.base_ring() == QQ:
slopelist=self.cps_u(n).truncate().newton_slopes(self.prime())
elif is_pAdicField(self.base_ring()):
slopelist=self.cps_u(n).truncate().newton_slopes()
else:
print("slopes are only defined for base field QQ or a p-adic field")
return [-i for i in slopelist]
def eigenfunctions(self, n, F = None, exact_arith=True):
"""
Calculate approximations to eigenfunctions of self. These are the
eigenfunctions of self.hecke_matrix(p, n), which are approximations to
the true eigenfunctions. Returns a list of
OverconvergentModularFormElement objects, in increasing order of slope.
INPUT:
- ``n`` - integer. The size of the matrix to use.
- ``F`` - None, or a field over which to calculate eigenvalues. If the
field is None, the current base ring is used. If the base ring is not
a `p`-adic ring, an error will be raised.
- ``exact_arith`` - True or False (default True). If True, use exact
rational arithmetic to calculate the matrix of the `U` operator and its
characteristic power series, even when the base ring is an inexact
`p`-adic ring. This is typically slower, but more numerically stable.
NOTE: Try using ``set_verbose(1, 'sage/modular/overconvergent')`` to
get more feedback on what is going on in this algorithm. For even more
feedback, use 2 instead of 1.
EXAMPLES::
sage: X = OverconvergentModularForms(2, 2, 1/6).eigenfunctions(8, Qp(2, 100))
sage: X[1]
2-adic overconvergent modular form of weight-character 2 with q-expansion (1 + O(2^74))*q + (2^4 + 2^5 + 2^9 + 2^10 + 2^12 + 2^13 + 2^15 + 2^17 + 2^19 + 2^20 + 2^21 + 2^23 + 2^28 + 2^30 + 2^31 + 2^32 + 2^34 + 2^36 + 2^37 + 2^39 + 2^40 + 2^43 + 2^44 + 2^45 + 2^47 + 2^48 + 2^52 + 2^53 + 2^54 + 2^55 + 2^56 + 2^58 + 2^59 + 2^60 + 2^61 + 2^67 + 2^68 + 2^70 + 2^71 + 2^72 + 2^74 + 2^76 + O(2^78))*q^2 + (2^2 + 2^7 + 2^8 + 2^9 + 2^12 + 2^13 + 2^16 + 2^17 + 2^21 + 2^23 + 2^25 + 2^28 + 2^33 + 2^34 + 2^36 + 2^37 + 2^42 + 2^45 + 2^47 + 2^49 + 2^50 + 2^51 + 2^54 + 2^55 + 2^58 + 2^60 + 2^61 + 2^67 + 2^71 + 2^72 + O(2^76))*q^3 + (2^8 + 2^11 + 2^14 + 2^19 + 2^21 + 2^22 + 2^24 + 2^25 + 2^26 + 2^27 + 2^28 + 2^29 + 2^32 + 2^33 + 2^35 + 2^36 + 2^44 + 2^45 + 2^46 + 2^47 + 2^49 + 2^50 + 2^53 + 2^54 + 2^55 + 2^56 + 2^57 + 2^60 + 2^63 + 2^66 + 2^67 + 2^69 + 2^74 + 2^76 + 2^79 + 2^80 + 2^81 + O(2^82))*q^4 + (2 + 2^2 + 2^9 + 2^13 + 2^15 + 2^17 + 2^19 + 2^21 + 2^23 + 2^26 + 2^27 + 2^28 + 2^30 + 2^33 + 2^34 + 2^35 + 2^36 + 2^37 + 2^38 + 2^39 + 2^41 + 2^42 + 2^43 + 2^45 + 2^58 + 2^59 + 2^60 + 2^61 + 2^62 + 2^63 + 2^65 + 2^66 + 2^68 + 2^69 + 2^71 + 2^72 + O(2^75))*q^5 + (2^6 + 2^7 + 2^15 + 2^16 + 2^21 + 2^24 + 2^25 + 2^28 + 2^29 + 2^33 + 2^34 + 2^37 + 2^44 + 2^45 + 2^48 + 2^50 + 2^51 + 2^54 + 2^55 + 2^57 + 2^58 + 2^59 + 2^60 + 2^64 + 2^69 + 2^71 + 2^73 + 2^75 + 2^78 + O(2^80))*q^6 + (2^3 + 2^8 + 2^9 + 2^10 + 2^11 + 2^12 + 2^14 + 2^15 + 2^17 + 2^19 + 2^20 + 2^21 + 2^23 + 2^25 + 2^26 + 2^34 + 2^37 + 2^38 + 2^39 + 2^40 + 2^41 + 2^45 + 2^47 + 2^49 + 2^51 + 2^53 + 2^54 + 2^55 + 2^57 + 2^58 + 2^59 + 2^60 + 2^61 + 2^66 + 2^69 + 2^70 + 2^71 + 2^74 + 2^76 + O(2^77))*q^7 + O(q^8)
sage: [x.slope() for x in X]
[0, 4, 8, 14, 16, 18, 26, 30]
"""
if F is None:
F = self.base_ring()
if F.is_exact():
#raise TypeError, "cannot calculate eigenfunctions over exact base fields"
F = pAdicField(self.prime(), 100)
m = self.hecke_matrix(self.prime(), n, use_recurrence=True, exact_arith=exact_arith)
cp = m.charpoly()
eigenvalues = cp.roots(F)
eigenfunctions = []
verbose("Expected %s eigenvalues, got %s" % (n, len(eigenvalues)))
for (r, d) in eigenvalues:
if d != 1:
continue
mr = m.__pari__() - r.__pari__()
# Annoying thing: r isn't quite as precise as it claims to be
# (bug reported to sage-support list)
while F(mr.matdet()) != 0:
verbose("p-adic solver returned wrong result in slope %s; refining" % r.valuation(), level=2)
r = r - cp(r)/cp.derivative()(r)
mr2 = m.__pari__() - r.__pari__()
if mr2.matdet().valuation(self.prime()) > mr.matdet().valuation(self.prime()):
mr = mr2
else:
mr = None
break
if mr is None:
verbose("Unable to calculate exact root in slope %s" % r.valuation())
continue
# now calculate the kernel using PARI
v = mr.matker()
if repr(v) == "[;]":
verbose("PARI returned empty eigenspace in slope %s" % r.valuation())
continue
# Can't happen? Does PARI always return a
# nonempty kernel for matrices that have det
# indistinguishable from 0?
if v.ncols() != 1:
verbose("PARI returned non-simple eigenspace in slope %s" % r.valuation())
continue
gexp = self._gsr(0)
for i in range(v.nrows()):
gexp += self._gsr.gen()**i * F(v[i,0])
gexp = gexp + O(self._gsr.gen()**int(v.nrows()))
if gexp[0] != 0:
gexp = gexp/gexp[0]
elif gexp[1] != 0:
gexp = gexp/gexp[1]/self._const
# This is slightly subtle. We want all eigenfunctions to have q-exps in Z_p.
# Normalising the q-term to be 1 doesn't work for the Eisenstein series if
# we're in the 0 component of weight-character space. But normalising the const term
# to 1 works as *none of the small primes we deal with are irregular*! :-)
else:
raise ValueError("Constant and linear terms both zero!")
# if this gets called something is very wrong.
efunc = OverconvergentModularFormElement(self.base_extend(F), gexp=gexp)
efunc._notify_eigen(r)
assert efunc.is_integral()
# This sometimes fails if n is too large -- last row of matrix fills
# up with garbage. I don't know why. XXX FIX THIS XXX
eigenfunctions.append((r.valuation(), efunc))
eigenfunctions.sort() # sort by slope
return [f for _,f in eigenfunctions]
def recurrence_matrix(self, use_smithline=True):
r"""
Return the recurrence matrix satisfied by the coefficients of `U`,
that is a matrix `R =(r_{rs})_{r,s=1 \dots p}` such that `u_{ij} =
\sum_{r,s=1}^p r_{rs} u_{i-r, j-s}`. Uses an elegant construction which
I believe is due to Smithline. See [Loe2007]_.
EXAMPLES::
sage: OverconvergentModularForms(2, 0, 0).recurrence_matrix()
[ 48 1]
[4096 0]
sage: OverconvergentModularForms(2, 0, 1/2).recurrence_matrix()
[48 64]
[64 0]
sage: OverconvergentModularForms(3, 0, 0).recurrence_matrix()
[ 270 36 1]
[ 26244 729 0]
[531441 0 0]
sage: OverconvergentModularForms(5, 0, 0).recurrence_matrix()
[ 1575 1300 315 30 1]
[ 162500 39375 3750 125 0]
[ 4921875 468750 15625 0 0]
[ 58593750 1953125 0 0 0]
[244140625 0 0 0 0]
sage: OverconvergentModularForms(7, 0, 0).recurrence_matrix()
[ 4018 8624 5915 1904 322 28 1]
[ 422576 289835 93296 15778 1372 49 0]
[ 14201915 4571504 773122 67228 2401 0 0]
[ 224003696 37882978 3294172 117649 0 0 0]
[ 1856265922 161414428 5764801 0 0 0 0]
[ 7909306972 282475249 0 0 0 0 0]
[13841287201 0 0 0 0 0 0]
sage: OverconvergentModularForms(13, 0, 0).recurrence_matrix()
[ 15145 124852 354536 ...
"""
if self._cached_recurrence_matrix is not None:
return self._cached_recurrence_matrix
MM = OverconvergentModularForms(self.prime(), 0, 0, base_ring=QQ)
m = MM._discover_recurrence_matrix(use_smithline = True).base_extend(self.base_ring())
r = diagonal_matrix([self._const**i for i in range(self.prime())])
self._cached_recurrence_matrix = (r**(-1)) * m * r
self._cached_recurrence_matrix.set_immutable()
return self._cached_recurrence_matrix
def _discover_recurrence_matrix(self, use_smithline=True):
r"""
Does hard work of calculating recurrence matrix, which is cached to avoid doing this every time.
EXAMPLES::
sage: o = OverconvergentModularForms(3,12,0)
sage: o._discover_recurrence_matrix() == o.recurrence_matrix()
True
"""
(f_ring, f) = PolynomialRing(self.base_ring(), "f").objgen()
if use_smithline:
# Compute Smithline's polynomial H_p
jq = self._qsr(j_invariant_qexp(1+self.prime()).shift(1).power_series())
# avoid dividing by q so as not to instantiate a Laurent series
h = self._uniformiser.shift(-1) * jq
fi = self._qsr(1)
coeffs = []
for i in range(self.prime()+2):
if not h.valuation() >= i:
raise ValueError("Something strange is happening here")
coeffs.append(h[i] / fi[i])
h = h - coeffs[-1] * fi
fi = fi*self._uniformiser
SmiH = f_ring(coeffs)
assert SmiH.degree() == self.prime() + 1
xyring = PolynomialRing(self.base_ring(), ["x","y"], 2)
x,y = xyring.gens()
cc = self.prime() ** (-12/(self.prime() - 1))
bigI = x*SmiH(y*cc)- y*cc*SmiH(x)
smallI = xyring(bigI / (x - cc*y))
r = matrix(ZZ, self.prime(), self.prime())
for i in range(self.prime()):
for j in range(self.prime()):
r[i,j] = -smallI[i+1, j+1]
return r
else:
# compute from U(f^j) for small j via Newton's identities
# to be implemented when I can remember Newton's identities!
raise NotImplementedError
def cps_u(self, n, use_recurrence=False):
r"""
Compute the characteristic power series of `U_p` acting on self, using
an n x n matrix.
EXAMPLES::
sage: OverconvergentModularForms(3, 16, 1/2, base_ring=Qp(3)).cps_u(4)
1 + O(3^20) + (2 + 2*3 + 2*3^2 + 2*3^4 + 3^5 + 3^6 + 3^7 + 3^11 + 3^12 + 2*3^14 + 3^16 + 3^18 + O(3^19))*T + (2*3^3 + 3^5 + 3^6 + 3^7 + 2*3^8 + 2*3^9 + 2*3^10 + 3^11 + 3^12 + 2*3^13 + 2*3^16 + 2*3^18 + O(3^19))*T^2 + (2*3^15 + 2*3^16 + 2*3^19 + 2*3^20 + 2*3^21 + O(3^22))*T^3 + (3^17 + 2*3^18 + 3^19 + 3^20 + 3^22 + 2*3^23 + 2*3^25 + 3^26 + O(3^27))*T^4
sage: OverconvergentModularForms(3, 16, 1/2, base_ring=Qp(3), prec=30).cps_u(10)
1 + O(3^20) + (2 + 2*3 + 2*3^2 + 2*3^4 + 3^5 + 3^6 + 3^7 + 2*3^15 + O(3^16))*T + (2*3^3 + 3^5 + 3^6 + 3^7 + 2*3^8 + 2*3^9 + 2*3^10 + 2*3^11 + 2*3^12 + 2*3^13 + 3^14 + 3^15 + O(3^16))*T^2 + (3^14 + 2*3^15 + 2*3^16 + 3^17 + 3^18 + O(3^19))*T^3 + (3^17 + 2*3^18 + 3^19 + 3^20 + 3^21 + O(3^24))*T^4 + (3^29 + 2*3^32 + O(3^33))*T^5 + (2*3^44 + O(3^45))*T^6 + (2*3^59 + O(3^60))*T^7 + (2*3^78 + O(3^79))*T^8
.. NOTE::
Uses the Hessenberg form of the Hecke matrix to compute
the characteristic polynomial. Because of the use of
relative precision here this tends to give better
precision in the p-adic coefficients.
"""
m = self.hecke_matrix(self.prime(), n, use_recurrence)
A = PowerSeriesRing(self.base_ring(), 'T')
# From a conversation with David Loeffler, apparently self.base_ring()
# is either the field of rational numbers or some p-adic field. In the
# first case we want to use the linbox algorithm, and in the second
# case the Hessenberg form algorithm.
#
if self.base_ring().is_exact():
g = A(m.charpoly('T').reverse())
else:
g = A(m.charpoly('T', "hessenberg").reverse())
return g
class OverconvergentModularFormElement(ModuleElement):
r"""
A class representing an element of a space of overconvergent modular forms.
EXAMPLES::
sage: K.<w> = Qp(5).extension(x^7 - 5); s = OverconvergentModularForms(5, 6, 1/21, base_ring=K).0
sage: s == loads(dumps(s))
True
"""
def __init__(self, parent, gexp=None, qexp=None):
r"""
Create an element of this space.
EXAMPLES::
sage: OverconvergentModularForms(3, 2, 1/6,prec=5).an_element() # indirect doctest
3-adic overconvergent modular form of weight-character 2 with q-expansion 3*q + 72*q^2 + 810*q^3 + 6096*q^4 + O(q^5)
"""
ModuleElement.__init__(self, parent)
self._p = self.parent().prime()
#self.weight = self.parent().weight
if (gexp is None and qexp is None) or (gexp is not None and qexp is not None):
raise ValueError("Must supply exactly one of a q-expansion and a g-expansion")
if gexp is not None:
self._gexp = gexp.add_bigoh(self.parent().prec())
self._qexp = sum([self.parent()._basis_cache[i] * gexp[i] for i in range(min(gexp.prec(), self.parent().prec()))])
self._qexp = self._qexp.add_bigoh(self._gexp.prec())
else: # qexp is not None
self._qexp = qexp.add_bigoh(self.parent().prec())
self._gexp = self.parent()._convert_to_basis(self._qexp)
self._is_eigen = False
self._eigenvalue = None
self._slope = None
def _add_(self, other):
r"""
Add self to other (where other has the same parent as self).
EXAMPLES::
sage: M = OverconvergentModularForms(2, 12, 1/6)
sage: f = M.0
sage: f + f # indirect doctest
2-adic overconvergent modular form of weight-character 12 with q-expansion 2 - 131040/1414477*q ...
"""
return OverconvergentModularFormElement(self.parent(), gexp = self.gexp() + other.gexp())
def _lmul_(self, x):
r"""
Left multiplication by other.
EXAMPLES::
sage: M = OverconvergentModularForms(2, 12, 1/6)
sage: f = M.0
sage: 2*f # indirect doctest
2-adic overconvergent modular form of weight-character 12 with q-expansion 2 - 131040/1414477*q ...
"""
return OverconvergentModularFormElement(self.parent(), gexp = x * self.gexp())
def _rmul_(self, x):
r"""
Right multiplication by other.
EXAMPLES::
sage: M = OverconvergentModularForms(2, 12, 1/6)
sage: f = M.0
sage: f * 3 # indirect doctest
2-adic overconvergent modular form of weight-character 12 with q-expansion 3 - 196560/1414477*q ...
"""
return OverconvergentModularFormElement(self.parent(), gexp = x * self.gexp())
def prec(self):
r"""
Return the series expansion precision of this overconvergent modular
form. (This is not the same as the `p`-adic precision of the
coefficients.)
EXAMPLES::
sage: OverconvergentModularForms(5, 6, 1/3,prec=15).gen(1).prec()
15
"""
return self.gexp().prec()
def is_eigenform(self):
r"""
Return True if this is an eigenform. At present this returns False
unless this element was explicitly flagged as an eigenform, using the
_notify_eigen function.
EXAMPLES::
sage: M = OverconvergentModularForms(3, 0, 1/2)
sage: f = M.eigenfunctions(3)[1]
sage: f.is_eigenform()
True
sage: M.gen(4).is_eigenform()
False
"""
return self._is_eigen
def slope(self):
r"""
Return the slope of this eigenform, i.e. the valuation of its
`U_p`-eigenvalue. Raises an error unless this element was explicitly
flagged as an eigenform, using the _notify_eigen function.
EXAMPLES::
sage: M = OverconvergentModularForms(3, 0, 1/2)
sage: f = M.eigenfunctions(3)[1]
sage: f.slope()
2
sage: M.gen(4).slope()
Traceback (most recent call last):
...
TypeError: slope only defined for eigenfunctions
"""
if not self.is_eigenform():
raise TypeError("slope only defined for eigenfunctions")
return self._slope
def eigenvalue(self):
r"""
Return the `U_p`-eigenvalue of this eigenform. Raises an error unless
this element was explicitly flagged as an eigenform, using the
_notify_eigen function.
EXAMPLES::
sage: M = OverconvergentModularForms(3, 0, 1/2)
sage: f = M.eigenfunctions(3)[1]
sage: f.eigenvalue()
3^2 + 3^4 + 2*3^6 + 3^7 + 3^8 + 2*3^9 + 2*3^10 + 3^12 + 3^16 + 2*3^17 + 3^18 + 3^20 + 2*3^21 + 3^22 + 2*3^23 + 3^25 + 3^26 + 2*3^27 + 2*3^29 + 3^30 + 3^31 + 3^32 + 3^33 + 3^34 + 3^36 + 3^40 + 2*3^41 + 3^43 + 3^44 + 3^45 + 3^46 + 3^48 + 3^49 + 3^50 + 2*3^51 + 3^52 + 3^54 + 2*3^57 + 2*3^59 + 3^60 + 3^61 + 2*3^63 + 2*3^66 + 2*3^67 + 3^69 + 2*3^72 + 3^74 + 2*3^75 + 3^76 + 2*3^77 + 2*3^78 + 2*3^80 + 3^81 + 2*3^82 + 3^84 + 2*3^85 + 2*3^86 + 3^87 + 3^88 + 2*3^89 + 2*3^91 + 3^93 + 3^94 + 3^95 + 3^96 + 3^98 + 2*3^99 + O(3^100)
sage: M.gen(4).eigenvalue()
Traceback (most recent call last):
...
TypeError: eigenvalue only defined for eigenfunctions
"""
if not self.is_eigenform():
raise TypeError("eigenvalue only defined for eigenfunctions")
return self._eigenvalue
def q_expansion(self, prec=None):
r"""
Return the `q`-expansion of self, to as high precision as it is known.
EXAMPLES::
sage: OverconvergentModularForms(3, 4, 1/2).gen(0).q_expansion()
1 - 120/13*q - 1080/13*q^2 - 120/13*q^3 - 8760/13*q^4 - 15120/13*q^5 - 1080/13*q^6 - 41280/13*q^7 - 5400*q^8 - 120/13*q^9 - 136080/13*q^10 - 159840/13*q^11 - 8760/13*q^12 - 263760/13*q^13 - 371520/13*q^14 - 15120/13*q^15 - 561720/13*q^16 - 45360*q^17 - 1080/13*q^18 - 823200/13*q^19 + O(q^20)
"""
if prec is None:
return self._qexp
elif prec > self.prec():
raise ValueError
else:
return self._qexp.add_bigoh(prec)
def gexp(self):
r"""
Return the formal power series in `g` corresponding to this
overconvergent modular form (so the result is `F` where this modular form
is `E_k^\ast \times F(g)`, where `g` is the appropriately normalised
parameter of `X_0(p)`).
EXAMPLES::
sage: M = OverconvergentModularForms(3, 0, 1/2)
sage: f = M.eigenfunctions(3)[1]
sage: f.gexp()
(3^-3 + O(3^95))*g + (3^-1 + 1 + 2*3 + 3^2 + 2*3^3 + 3^5 + 3^7 + 3^10 + 3^11 + 3^14 + 3^15 + 3^16 + 2*3^19 + 3^21 + 3^22 + 2*3^23 + 2*3^24 + 3^26 + 2*3^27 + 3^29 + 3^31 + 3^34 + 2*3^35 + 2*3^36 + 3^38 + 2*3^39 + 3^41 + 2*3^42 + 2*3^43 + 2*3^44 + 2*3^46 + 2*3^47 + 3^48 + 2*3^49 + 2*3^50 + 3^51 + 2*3^54 + 2*3^55 + 2*3^56 + 3^57 + 2*3^58 + 2*3^59 + 2*3^60 + 3^61 + 3^62 + 3^63 + 3^64 + 2*3^65 + 3^67 + 3^68 + 2*3^69 + 3^70 + 2*3^71 + 2*3^74 + 3^76 + 2*3^77 + 3^78 + 2*3^79 + 2*3^80 + 3^84 + 2*3^85 + 2*3^86 + 3^88 + 2*3^89 + 3^91 + 3^92 + 2*3^94 + 3^95 + O(3^97))*g^2 + O(g^3)
"""
return self._gexp
def coordinates(self, prec=None):
r"""
Return the coordinates of this modular form in terms of the basis of this space.
EXAMPLES::
sage: M = OverconvergentModularForms(3, 0, 1/2, prec=15)
sage: f = (M.0 + M.3); f.coordinates()
[1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
sage: f.coordinates(6)
[1, 0, 0, 1, 0, 0]
sage: OverconvergentModularForms(3, 0, 1/6)(f).coordinates(6)
[1, 0, 0, 729, 0, 0]
sage: f.coordinates(100)
Traceback (most recent call last):
...
ValueError: Precision too large for space
"""
if prec > self.prec():
raise ValueError("Precision too large for space")
if prec is None:
prec = self.prec()
return self._gexp.padded_list(prec)
def prime(self):
r"""
If this is a `p`-adic modular form, return `p`.
EXAMPLES::
sage: OverconvergentModularForms(2, 0, 1/2).an_element().prime()
2
"""
return self._p
def _notify_eigen(self, eigenvalue):
"""
Flags this element as an eigenform. It then remembers some extra data.
EXAMPLES::
sage: OverconvergentModularForms(3, 16, 1/3).eigenfunctions(4) # indirect doctest
[...]
"""
self._is_eigen = True
self._eigenvalue = eigenvalue
self._slope = eigenvalue.normalized_valuation()
def is_integral(self):
r"""
Test whether or not this element has `q`-expansion coefficients that
are `p`-adically integral. This should always be the case with eigenfunctions, but sometimes
if n is very large this breaks down for unknown reasons!
EXAMPLES::
sage: M = OverconvergentModularForms(2, 0, 1/3)
sage: q = QQ[['q']].gen()
sage: M(q - 17*q^2 + O(q^3)).is_integral()
True
sage: M(q - q^2/2 + 6*q^7 + O(q^9)).is_integral()
False
"""
for co in self.q_expansion().list():
if (co * (1 + O(self.prime()))).valuation() < 0: # have to force it into ZZ_p
return False
return True
def _repr_(self):
r"""
String representation of self.
EXAMPLES::
sage: o=OverconvergentModularForms(3, 0, 1/2)
sage: o([1, 0, 1, 3])._repr_()
'3-adic overconvergent modular form of weight-character 0 with q-expansion 1 + 729*q^2 + 76545*q^3 + O(q^4)'
"""
return "%s-adic overconvergent modular form of weight-character %s with q-expansion %s" % (self.prime(), self.weight(), self.q_expansion())
def _richcmp_(self, other, op):
r"""
Compare self to other.
EXAMPLES::
sage: o = OverconvergentModularForms(3, 0, 1/2)
sage: o([1, 1, 1, 0, 0, 0, 0]) == o([2, 1, 0])
False
sage: o([1, 1, 1, 0, 0, 0, 0]) == o([1,1])
True
"""
return richcmp(self.gexp(), other.gexp(), op)
def r_ord(self, r):
r"""
The `p`-adic valuation of the norm of self on the `r`-overconvergent region.
EXAMPLES::
sage: o=OverconvergentModularForms(3, 0, 1/2)
sage: t = o([1, 1, 1/3])
sage: t.r_ord(1/2)
1
sage: t.r_ord(2/3)
3
"""
ord = -Infinity
p = self.prime()
s = self.parent().radius()
F = self.parent().base_ring()
if not is_pAdicField(F):
F = pAdicField(p)
for i in range(self.prec()):
ord = max( ord, 12/ZZ(p - 1)*i*(r - s) - F(self.gexp()[i]).normalized_valuation())
return ord
def valuation(self):
r"""
Return the `p`-adic valuation of this form (i.e. the minimum of the
`p`-adic valuations of its coordinates).
EXAMPLES::
sage: M = OverconvergentModularForms(3, 0, 1/2)
sage: (M.7).valuation()
0
sage: (3^18 * (M.2)).valuation()
18
"""
if is_pAdicField(self.parent().base_ring()):
v = lambda u: u.normalized_valuation()
else:
v = lambda u: u.valuation(self.parent().prime())
return min([v(x) for x in self.gexp().list()])
def governing_term(self, r):
r"""
The degree of the series term with largest norm on the `r`-overconvergent region.
EXAMPLES::
sage: o=OverconvergentModularForms(3, 0, 1/2)
sage: f=o.eigenfunctions(10)[1]
sage: f.governing_term(1/2)
1
"""
p = self.prime()
F = self.parent().base_ring()
if not is_pAdicField(F):
F = pAdicField(p)
s = self.parent().radius()
p = self.prime()
for i in range(self.gexp().prec()):
if 12/ZZ(p - 1)*i*(r - s) - F(self.gexp()[i]).normalized_valuation() == self.r_ord(r):
return i
raise RuntimeError("Can't get here")
def valuation_plot(self, rmax = None):
r"""
Draw a graph depicting the growth of the norm of this overconvergent
modular form as it approaches the boundary of the overconvergent
region.
EXAMPLES::
sage: o=OverconvergentModularForms(3, 0, 1/2)
sage: f=o.eigenfunctions(4)[1]
sage: f.valuation_plot()
Graphics object consisting of 1 graphics primitive
"""
if rmax is None:
rmax = ZZ(self.prime())/ZZ(1 + self.prime())
return plot(self.r_ord, (0, rmax) )
def weight(self):
r"""
Return the weight of this overconvergent modular form.
EXAMPLES::
sage: M = OverconvergentModularForms(13, 10, 1/2, base_ring = Qp(13).extension(x^2 - 13,names='a'))
sage: M.gen(0).weight()
10
"""
return self.parent().weight()
def additive_order(self):
r"""
Return the additive order of this element (required attribute for all
elements deriving from sage.modules.ModuleElement).
EXAMPLES::
sage: M = OverconvergentModularForms(13, 10, 1/2, base_ring = Qp(13).extension(x^2 - 13,names='a'))
sage: M.gen(0).additive_order()
+Infinity
sage: M(0).additive_order()
1
"""
from sage.rings.infinity import Infinity
if self.is_zero():
return ZZ(1)
else:
return Infinity
def base_extend(self, R):
r"""
Return a copy of self but with coefficients in the given ring.
EXAMPLES::
sage: M = OverconvergentModularForms(7, 10, 1/2, prec=5)
sage: f = M.1
sage: f.base_extend(Qp(7, 4))
7-adic overconvergent modular form of weight-character 10 with q-expansion (7 + O(7^5))*q + (6*7 + 4*7^2 + 7^3 + 6*7^4 + O(7^5))*q^2 + (5*7 + 5*7^2 + 7^4 + O(7^5))*q^3 + (7^2 + 4*7^3 + 3*7^4 + 2*7^5 + O(7^6))*q^4 + O(q^5)
"""
S = self.parent().base_extend(R)
return S(self)
def __pari__(self):
r"""
Return the Pari object corresponding to self, which is just the
`q`-expansion of self as a formal power series.
EXAMPLES::
sage: f = OverconvergentModularForms(3, 0, 1/2).1
sage: pari(f) # indirect doctest
27*q + 324*q^2 + 2430*q^3 + 13716*q^4 + 64557*q^5 + 265356*q^6 + 983556*q^7 + 3353076*q^8 + 10670373*q^9 + 32031288*q^10 + 91455804*q^11 + 249948828*q^12 + 657261999*q^13 + 1669898592*q^14 + 4113612864*q^15 + 9853898292*q^16 + 23010586596*q^17 + 52494114852*q^18 + 117209543940*q^19 + O(q^20)
sage: pari(f.base_extend(Qp(3))) # indirect doctest
(3^3 + O(3^23))*q + (3^4 + 3^5 + O(3^24))*q^2 + (3^5 + 3^7 + O(3^25))*q^3 + (3^3 + 3^4 + 2*3^5 + 2*3^8 + O(3^23))*q^4 + (2*3^4 + 3^5 + 3^6 + 2*3^7 + 3^10 + O(3^24))*q^5 + (3^6 + 3^7 + 3^8 + 3^9 + 3^10 + 3^11 + O(3^26))*q^6 + (2*3^3 + 3^4 + 2*3^6 + 2*3^7 + 2*3^8 + 3^9 + 3^10 + 2*3^11 + 3^12 + O(3^23))*q^7 + (2*3^4 + 3^5 + 3^8 + 2*3^9 + 2*3^10 + 2*3^13 + O(3^24))*q^8 + (3^7 + 2*3^9 + 2*3^12 + 2*3^14 + O(3^27))*q^9 + (2*3^5 + 3^8 + 3^9 + 2*3^10 + 2*3^13 + 2*3^15 + O(3^25))*q^10 + (3^4 + 2*3^5 + 2*3^6 + 3^8 + 2*3^9 + 3^12 + 3^14 + 2*3^16 + O(3^24))*q^11 + (3^5 + 3^6 + 2*3^8 + 2*3^9 + 2*3^10 + 2*3^12 + 3^14 + 2*3^15 + 2*3^16 + 3^17 + O(3^25))*q^12 + (2*3^3 + 2*3^4 + 2*3^5 + 3^8 + 2*3^9 + 2*3^11 + 3^13 + 2*3^14 + 2*3^17 + 3^18 + O(3^23))*q^13 + (2*3^4 + 2*3^6 + 2*3^7 + 3^8 + 2*3^9 + 3^10 + 3^12 + 3^14 + 2*3^15 + 2*3^16 + 3^18 + 3^19 + O(3^24))*q^14 + (2*3^6 + 3^7 + 3^9 + 3^10 + 3^11 + 2*3^14 + 3^15 + 2*3^16 + 3^17 + 3^18 + 3^20 + O(3^26))*q^15 + (3^3 + 2*3^4 + 2*3^7 + 2*3^8 + 3^9 + 3^10 + 2*3^11 + 3^12 + 2*3^14 + 2*3^15 + 3^17 + 3^18 + 2*3^19 + 2*3^20 + O(3^23))*q^16 + (2*3^5 + 2*3^7 + 2*3^8 + 3^10 + 3^11 + 2*3^12 + 2*3^13 + 3^14 + 3^15 + 3^17 + 2*3^18 + 3^19 + 2*3^21 + O(3^25))*q^17 + (3^8 + 3^9 + 2*3^10 + 2*3^11 + 3^12 + 3^14 + 3^15 + 3^16 + 3^17 + 2*3^21 + 3^22 + O(3^28))*q^18 + (2*3^3 + 3^5 + 2*3^6 + 2*3^8 + 2*3^9 + 3^11 + 2*3^12 + 3^13 + 3^14 + 2*3^15 + 3^16 + 3^17 + 2*3^18 + 3^19 + 2*3^21 + O(3^23))*q^19 + O(q^20)
"""
return self.q_expansion().__pari__()
|
py | 1a39e832253b1494af238a4fca91613cc3e33228 | import cv2
import os
import scipy as scp
import scipy.misc
import matplotlib
from sklearn.cluster import KMeans
import numpy as np
import evaluationClass_tools as evTools
import random
from sklearn import svm
from sklearn import preprocessing
import pickle
import triangle_detection as triang
def oneClass(image_seg):
rows, cols = image_seg.shape[:2]
color = [0, 0, 0]
for i in range(rows):
for j in range(cols):
if (image_seg[i][j][0] == 0 and image_seg[i][j][1] == 0 and image_seg[i][j][2] == 0):
continue
else:
if (color[0] == 0 and color[1] == 0 and color[2] == [0]):
color[0] = image_seg[i][j][0]
color[1] = image_seg[i][j][1]
color[2] = image_seg[i][j][2]
continue
if (image_seg[i][j][0] != color[0] or image_seg[i][j][1] != color[1] and image_seg[i][j][2] != color[2]):
return False
return True, color
# def triangStats(img, singleColor = True):
# imggray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# ret, imbw = cv2.threshold(imggray, 10, 255, 0)
# _, contours, _ = cv2.findContours(imbw, 1, 2)
# maxArea = 0;
# Ax = Ay = Bx = By = Cx = Cy = 0
# areaCnt = 0
# maxCnt = None
# idx = -1
# for cnt in contours:
# idx += 1
# retval, triangle = cv2.minEnclosingTriangle(cnt)
# if (triangle is None):
# continue
# areaCnt = cv2.contourArea(cnt)
# if (areaCnt <= maxArea):
# continue
# maxArea = areaCnt
# maxCnt = idx
# Ax = triangle[0][0][0]
# Ay = triangle[0][0][1]
# Bx = triangle[1][0][0]
# By = triangle[1][0][1]
# Cx = triangle[2][0][0]
# Cy = triangle[2][0][1]
# if (maxArea < 0.1 * imggray.shape[0] * imggray.shape[1]):
# return False, None, None, None
# v1x = 0
# v1y = 0
# v2x = 0
# v2y = 0
# v3x = 0
# v3y = 0
# imgCnt = np.zeros((img.shape[0], img.shape[1], 3), np.uint8)
# mask = np.zeros((img.shape[0], img.shape[1], 3), np.uint8)
# cv2.drawContours(mask, contours, maxCnt, color=(255, 255, 255), thickness=cv2.FILLED)
# color = [0, 0, 0]
# contActivePixels = 0
# valret = True
# for i in range(mask.shape[0]):
# for j in range(mask.shape[1]):
# if (mask[i, j, 0] == 255 and mask[i, j, 1] == 255 and mask[i, j, 2] == 255):
# if(img[i, j, 0] != 0 or img[i, j, 1] != 0 or img[i, j, 2] != 0):
# contActivePixels+=1
# if (color[0] == 0 and color[1] == 0 and color[2] == 0):
# color[0] = int(img[i][j][0])
# color[1] = int(img[i][j][1])
# color[2] = int(img[i][j][2])
# else:
# if (img[i][j][0] != color[0] or img[i][j][1] != color[1] or img[i][j][2] != color[2]):
# valret = False
# if(singleColor == True and valret == False):
# return False, None, None, None
# cv2.drawContours(imgCnt, contours, maxCnt, color=color, thickness=cv2.FILLED)
# if (Cy < By and Cy < Ay):
# v1y = Cy
# v1x = Cx
# if (Ax < Bx):
# v2x = Ax
# v2y = Ay
# v3x = Bx
# v3y = By
# else:
# v2x = Bx
# v2y = By
# v3x = Ax
# v3y = Ay
# elif (By < Cy and By < Ay):
# v1y = By
# v1x = Bx
# if (Ax < Cx):
# v2x = Ax
# v2y = Ay
# v3x = Cx
# v3y = Cy
# else:
# v2x = Cx
# v2y = Cy
# v3x = Ax
# v3y = Ay
# else:
# v1y = Ay
# v1x = Ax
# if (Bx < Cx):
# v2x = Bx
# v2y = By
# v3x = Cx
# v3y = Cy
# else:
# v2x = Cx
# v2y = Cy
# v3x = Bx
# v3y = By
# # (x,y),radius = cv2.minEnclosingCircle(cnt)
# triangleArea = abs((v2x * (v1y - v3y) + v1x * (v3y - v2y) + v3x * (v2y - v1y)) / 2)
# # print(f"({v1x},{v1y}) ({v2x},{v2y}) ({v3x},{v3y}) {maxArea} {triangleArea}")
# # a=input('pare')
# # center = (int(x),int(y))
# # radius = int(radius)
# # cv2.circle(img,center,radius,(255,255,0),2)
# #desc = [maxArea / triangleArea, 0 if v3y - v1y == 0 else (v2y - v1y) / (v3y - v1y),
# #1 if v1x - v2x > 0 and v3x - v1x > 0 else 0, np.rad2deg(np.arctan( abs(v3y-v2y) / (v3x - v2x)))]
# desc = [contActivePixels/triangleArea, np.rad2deg(np.arctan(abs(v3y - v2y) / (v3x - v2x))), 1 if v1x - v2x > 0 and v3x - v1x > 0 else 0 ]
# return True, np.array([desc]), imgCnt, color
def applySmv(desc, svmModel):
return svmModel.predict(desc)
def sortImgByNumberOfActivePixels(elem):
return elem[1]
def sortImgByFilledTriangPerc(elem):
return elem[1]
def allPxDominantStreet(image_seg, avgPavedPx, avgRockPx, avgNonPavedPx, th):
rows,cols = image_seg.shape[:2]
endLoop = 0
validNonZeroPx = 0
for i in range(rows):
for j in range(cols):
if (image_seg[i][j][0] == 0 and image_seg[i][j][1] == 0 and image_seg[i][j][2] == 0):
continue
if avgPavedPx >= th:
if (image_seg[i][j][0] != 0 or image_seg[i][j][1] != 0 or image_seg[i][j][2] != 255):
return False
else:
validNonZeroPx = validNonZeroPx + 1
if avgRockPx >= th:
if (image_seg[i][j][0] != 255 or image_seg[i][j][1] != 0 or image_seg[i][j][2] != 0):
return False
else:
validNonZeroPx = validNonZeroPx + 1
if avgNonPavedPx >= th:
if (image_seg[i][j][0] != 0 or (image_seg[i][j][1] != 255 and image_seg[i][j][1] != 100) or image_seg[i][j][2] != 0):
return False
else:
validNonZeroPx = validNonZeroPx + 1
if validNonZeroPx == 0:
return False, 0
else:
return True, validNonZeroPx
file_smv_model = 'svm_model3.sav'
svm_model = pickle.load(open(file_smv_model, 'rb'))
baseGTtrainfile = 'gt_image_4_balanced_train.txt'
baseGTvalfile = 'gt_image_4_balanced_val.txt'
file_scaler = 'scaler3.sav'
scaler = pickle.load(open(file_scaler, 'rb'))
classes = evTools.ClassesDef.PAVED_NONPAVED_ROCK
basedirretrain='retrain_SVM_balanced_novo_1'
dir_test = 'C:\\Pesquisa\\codigos\\KittiSeg_shivam\\KittiSeg\\data\\dataset_Olinda_varHeading_fov90\\teste2\\';
dir_segmented = 'C:\\Pesquisa\\codigos\\KittiSeg_shivam\\KittiSeg\\RUNS\\'+basedirretrain+'\\results\\';
path_retraindataset = 'C:\\Pesquisa\\codigos\\KittiSeg_shivam\\KittiSeg\\data\\data_road\\training\\'
dir_retraindataset = 'image_4retrain'
dir_gt_retraindataset = 'retrain_SVM_balanced_novo'
dirpath = 'RUNS\\'+basedirretrain
txt_retrain_name = 'retrain_SVM_balanced_novo_2_train.txt'
txt_val_retrain_name = 'retrain_SVM_balanced_novo_2_val.txt'
txtBestResults = 'retrain_SVM_balanced_novo_updatedResults.txt';
firstRetrain = False
try:
fileBestResults = open(txtBestResults, 'r')
except IOError:
firstRetrain = True
fileBestResults = open(txtBestResults, 'w')
fileBestResults.close()
fileBestResults = open(txtBestResults, 'r')
fileBestResults.close()
newBestResults = []
resFile = open(os.path.join(dirpath,'results.txt'),'r', encoding="utf8")
line = resFile.readline()
labelGT = '?'
count = 0
streetsPaved = []
streetsRock = []
streetsNP = []
while line:
streetname = line.replace('\t',' ')
streetname = streetname.split(' [')[0]
print('PROCESSING STREET: '+streetname)
th = 0.99
fileBestResults = open(txtBestResults, 'r')
lineBestResult = fileBestResults.readline()
newLineBestResult = line
bestResultUpdated = False
while lineBestResult:
streetnameBestResult = lineBestResult.replace('\t',' ')
streetnameBestResult = streetnameBestResult.split(' [')[0]
if streetname == streetnameBestResult:
break
lineBestResult = fileBestResults.readline()
fileBestResults.close()
# label, npav, nrock, nnonp, avgPavedPx, avgRockPx, avgNonPavedPx = evTools.getNumberOfImagesFromClass(line,classes,0)
# labelBR, npavBR, nrockBR, nnonpBR, avgPavedPxBR, avgRockPxBR, avgNonPavedPxBR = evTools.getNumberOfImagesFromClass(lineBestResult,classes,0)
# print(lineBestResult)
# if (avgPavedPxBR >= th and avgPavedPxBR > avgPavedPx) or (avgRockPxBR >= th and avgRockPxBR > avgRockPx) or (avgNonPavedPxBR >= th and avgNonPavedPxBR >= avgNonPavedPx):
# newLineBestResult = lineBestResult
# if avgNonPavedPx < th and avgRockPx < th and avgPavedPx < th and avgNonPavedPxBR < th and avgRockPxBR < th and avgPavedPxBR < th:
# line = resFile.readline()
# newBestResults.append(newLineBestResult)
# continue
streetpath_test = os.path.join(dir_test,streetname)
streetpath_seg = os.path.join(dir_segmented,streetname)
for filename in os.listdir(streetpath_test):
filename_seg = filename.replace('.png','_raw.png');
# print(filename_seg)
dirToSaveResult = path_retraindataset+dir_gt_retraindataset+'\\'+streetname+'\\';
# currentImgForegPix = 0
# BRimgForegPix = 0
# try:
# current_image_seg = scp.misc.imread(streetpath_seg+'\\'+filename_seg,mode='')
# if avgNonPavedPx < th and avgRockPx < th and avgPavedPx < th:
# currentimgOK = False
# print('currentimgok = -false')
# else:
# currentimgOK, currentImgForegPix = allPxDominantStreet(current_image_seg, avgPavedPx, avgRockPx, avgNonPavedPx, th)
# #currentimgOK = currentimgOK and evTools.good_res_image(current_image_seg)
# print('currentimgok = '+str(currentimgOK))
# except Exception as e:
# print('exc curr: '+ str(e))
# print('error to read curr img: '+os.path.join(streetpath_seg,filename_seg))
# currentimgOK = False
# try:
# BR_image_seg = scp.misc.imread(dirToSaveResult+filename_seg,mode='')
# if avgNonPavedPxBR < th and avgRockPxBR < th and avgPavedPxBR < th:
# BRimgOK = False
# print('brimgok = -false')
# else:
# BRimgOK, BRimgForegPix = allPxDominantStreet(BR_image_seg, avgPavedPxBR, avgRockPxBR, avgNonPavedPxBR, th)
# #BRimgOK = BRimgOK and evTools.good_res_image(BR_image_seg)
# print('brimgok = '+str(BRimgOK))
# except Exception as e:
# print('Exc: '+ str(e))
# print('error to read BR: '+os.path.join(dirToSaveResult+filename_seg))
# BRimgOK = False
# if currentimgOK == False and BRimgOK == False:
# print('continue')
# continue
try:
current_image_seg = scp.misc.imread(streetpath_seg+'\\'+filename_seg,mode='')
currentimgOK = True
except Exception as e:
currentimgOK = False
try:
BR_image_seg = scp.misc.imread(dirToSaveResult+filename_seg,mode='')
BRimgOK = True
except Exception as e:
BRimgOK = False
perfCurrentImage = 0
if currentimgOK:
oneClassContour,descCurrImg, _, curImgTriang, colorCurrImg = triang.triangStats(current_image_seg)
if(oneClassContour):
goodCurImg = applySmv(scaler.transform(descCurrImg),svm_model)
if(goodCurImg==1):
perfCurrentImage = descCurrImg[0][0]
perfBRImage = 0
if BRimgOK:
oneClassContour, descBRImg,_, brImgTriang, colorBRImg = triang.triangStats(BR_image_seg)
#goodBRImage = applySmv(scaler.transform(descBRImg),svm_model)
#if(goodBRImage==1):
perfBRImage = descBRImg[0][0]
#if avgPavedPx >= th or avgPavedPxBR >= th:
if perfCurrentImage > perfBRImage:
if not os.path.exists(dirToSaveResult):
os.makedirs(dirToSaveResult)
print('image updated')
print('path saved to file:')
print('training/'+ dir_retraindataset +'/'+streetname+ '/' +filename+ ' '+'training/'+ dir_gt_retraindataset+'/'+streetname+ '/' +filename_seg+'\n')
arr = ['training/'+ dir_retraindataset +'/'+streetname+ '/' +filename+ ' '+'training/'+ dir_gt_retraindataset+'/'+streetname+ '/' +filename_seg+'\n',perfCurrentImage]
if (colorCurrImg[0] == 255 and colorCurrImg[1] == 0 and colorCurrImg[2] == 0):
streetsPaved.append(arr)
elif colorCurrImg[0] == 0 and colorCurrImg[1] == 255 and colorCurrImg[2] == 0:
streetsNP.append(arr)
else:
streetsRock.append(arr)
scp.misc.imsave(dirToSaveResult+filename_seg, curImgTriang)
elif BRimgOK:
arr = ['training/'+ dir_retraindataset +'/'+streetname+ '/' +filename+ ' '+'training/'+ dir_gt_retraindataset+'/'+streetname+ '/' +filename_seg+'\n',perfBRImage]
if (colorBRImg[0] == 255 and colorBRImg[1] == 0 and colorBRImg[2] == 0):
streetsPaved.append(arr)
elif (colorBRImg[0] == 0 and colorBRImg[1] == 255 and colorBRImg[2] == 0):
streetsNP.append(arr)
else:
streetsRock.append(arr)
#scp.misc.imsave(dirToSaveResult+filename_seg, BR_image_seg)
newBestResults.append(newLineBestResult)
line = resFile.readline()
fileBestResults = open(txtBestResults, 'w')
for l in newBestResults:
fileBestResults.write(l)
fileBestResults.close()
#trainfile = open(os.path.join(dirpath,'train4_retrainpercsemlateral3.txt'),'a')
#valfile = open(os.path.join(dirpath,'val4_retrainpercsemlateral3.txt'),'a')
trainfile = open(os.path.join(dirpath,txt_retrain_name),'w')
valfile = open(os.path.join(dirpath,txt_val_retrain_name),'w')
with open(baseGTtrainfile) as f:
for line in f:
trainfile.write(line)
trainfile.write('\n')
with open(baseGTvalfile) as f:
for line in f:
valfile.write(line)
valfile.write('\n')
#streetsPaved.sort(key=sortImgByFilledTriangPerc, reverse=True)
#streetsNP.sort(key=sortImgByFilledTriangPerc, reverse=True)
#streetsRock.sort(key=sortImgByFilledTriangPerc, reverse=True)
print(len(streetsPaved))
print(len(streetsNP))
print(len(streetsRock))
#minClass = min(len(streetsPaved),len(streetsNP))
#minClass = min(minClass,len(streetsRock))
# for i in range(minClass):
# if i % 3 != 0:
# trainfile.write(streetsPaved[i][0])
# trainfile.write(streetsNP[i][0])
# #trainfile.write(streetsRock[i][0])
# else:
# valfile.write(streetsPaved[i][0])
# valfile.write(streetsNP[i][0])
# #valfile.write(streetsRock[i][0])
# maxClass = max(len(streetsPaved),len(streetsNP))
# maxClass= max(maxClass,len(streetsRock))
# for i in range(maxClass):
# if i % 3 != 0:
# if i < len(streetsPaved):
# trainfile.write(streetsPaved[i][0])
# print(f"train paved: {streetsPaved[i][0]}")
# if i < len(streetsRock):
# trainfile.write(streetsRock[i][0])
# print(f"train rock: {streetsRock[i][0]}")
# if i < len(streetsNP):
# trainfile.write(streetsNP[i][0])
# print(f"train nonpaved: {streetsNP[i][0]}")
# else:
# if i < len(streetsPaved):
# valfile.write(streetsPaved[i][0])
# print(f"val paved: {streetsPaved[i][0]}")
# if i < len(streetsRock):
# valfile.write(streetsRock[i][0])
# print(f"val rock: {streetsRock[i][0]}")
# if i < len(streetsNP):
# valfile.write(streetsNP[i][0])
# print(f"val nonpaved: {streetsNP[i][0]}")
minClass = min(len(streetsPaved)+len(streetsRock),len(streetsNP))
flagRock = False
ipaved = 0
irock = 0
inonpaved = 0
for i in range(minClass):
if i % 3 != 0:
if( i % 2 == 0):
trainfile.write(streetsNP[inonpaved][0])
inonpaved += 1
else:
if(flagRock == True or ipaved >= len(streetsPaved)):
trainfile.write(streetsRock[irock][0])
flagRock = False
irock += 1
elif(flagRock == False or irock >= len(streetsRock)):
trainfile.write(streetsPaved[ipaved][0])
flagRock = True
ipaved += 1
else:
if( i % 2 == 0):
valfile.write(streetsNP[inonpaved][0])
inonpaved += 1
else:
if(flagRock == True or ipaved >= len(streetsPaved)):
valfile.write(streetsRock[irock][0])
flagRock = False
irock += 1
elif(flagRock == False or irock >= len(streetsRock)):
valfile.write(streetsPaved[ipaved][0])
flagRock = True
ipaved += 1
trainfile.close();
valfile.close();
|
py | 1a39e85d3ef5725ff5b30875f4dced382897f2f8 | # encoding: utf-8
import datetime
from django.test import TestCase
from haystack import connections
from haystack.inputs import AltParser, Exact
from haystack.models import SearchResult
from haystack.query import SQ, SearchQuerySet
from ..core.models import AnotherMockModel, MockModel
class SolrSearchQueryTestCase(TestCase):
fixtures = ["base_data"]
def setUp(self):
super(SolrSearchQueryTestCase, self).setUp()
self.sq = connections["solr"].get_query()
def test_build_query_all(self):
self.assertEqual(self.sq.build_query(), "*:*")
def test_build_query_single_word(self):
self.sq.add_filter(SQ(content="hello"))
self.assertEqual(self.sq.build_query(), "(hello)")
def test_build_query_boolean(self):
self.sq.add_filter(SQ(content=True))
self.assertEqual(self.sq.build_query(), "(true)")
def test_build_query_datetime(self):
self.sq.add_filter(SQ(content=datetime.datetime(2009, 5, 8, 11, 28)))
self.assertEqual(self.sq.build_query(), "(2009-05-08T11:28:00Z)")
def test_build_query_multiple_words_and(self):
self.sq.add_filter(SQ(content="hello"))
self.sq.add_filter(SQ(content="world"))
self.assertEqual(self.sq.build_query(), "((hello) AND (world))")
def test_build_query_multiple_words_not(self):
self.sq.add_filter(~SQ(content="hello"))
self.sq.add_filter(~SQ(content="world"))
self.assertEqual(self.sq.build_query(), "(NOT ((hello)) AND NOT ((world)))")
def test_build_query_multiple_words_or(self):
self.sq.add_filter(~SQ(content="hello"))
self.sq.add_filter(SQ(content="hello"), use_or=True)
self.assertEqual(self.sq.build_query(), "(NOT ((hello)) OR (hello))")
def test_build_query_multiple_words_mixed(self):
self.sq.add_filter(SQ(content="why"))
self.sq.add_filter(SQ(content="hello"), use_or=True)
self.sq.add_filter(~SQ(content="world"))
self.assertEqual(
self.sq.build_query(), "(((why) OR (hello)) AND NOT ((world)))"
)
def test_build_query_phrase(self):
self.sq.add_filter(SQ(content="hello world"))
self.assertEqual(self.sq.build_query(), "(hello AND world)")
self.sq.add_filter(SQ(content__exact="hello world"))
self.assertEqual(
self.sq.build_query(), '((hello AND world) AND ("hello world"))'
)
def test_build_query_boost(self):
self.sq.add_filter(SQ(content="hello"))
self.sq.add_boost("world", 5)
self.assertEqual(self.sq.build_query(), "(hello) world^5")
def test_correct_exact(self):
self.sq.add_filter(SQ(content=Exact("hello world")))
self.assertEqual(self.sq.build_query(), '("hello world")')
def test_build_query_multiple_filter_types(self):
self.sq.add_filter(SQ(content="why"))
self.sq.add_filter(SQ(pub_date__lte=Exact("2009-02-10 01:59:00")))
self.sq.add_filter(SQ(author__gt="daniel"))
self.sq.add_filter(SQ(created__lt=Exact("2009-02-12 12:13:00")))
self.sq.add_filter(SQ(title__gte="B"))
self.sq.add_filter(SQ(id__in=[1, 2, 3]))
self.sq.add_filter(SQ(rating__range=[3, 5]))
self.assertEqual(
self.sq.build_query(),
'((why) AND pub_date:([* TO "2009-02-10 01:59:00"]) AND author:({"daniel" TO *}) AND created:({* TO "2009-02-12 12:13:00"}) AND title:(["B" TO *]) AND id:("1" OR "2" OR "3") AND rating:(["3" TO "5"]))',
)
def test_build_complex_altparser_query(self):
self.sq.add_filter(SQ(content=AltParser("dismax", "Don't panic", qf="text")))
self.sq.add_filter(SQ(pub_date__lte=Exact("2009-02-10 01:59:00")))
self.sq.add_filter(SQ(author__gt="daniel"))
self.sq.add_filter(SQ(created__lt=Exact("2009-02-12 12:13:00")))
self.sq.add_filter(SQ(title__gte="B"))
self.sq.add_filter(SQ(id__in=[1, 2, 3]))
self.sq.add_filter(SQ(rating__range=[3, 5]))
query = self.sq.build_query()
self.assertTrue('(_query_:"{!dismax qf=text}Don\'t panic")' in query)
self.assertTrue('pub_date:([* TO "2009-02-10 01:59:00"])' in query)
self.assertTrue('author:({"daniel" TO *})' in query)
self.assertTrue('created:({* TO "2009-02-12 12:13:00"})' in query)
self.assertTrue('title:(["B" TO *])' in query)
self.assertTrue('id:("1" OR "2" OR "3")' in query)
self.assertTrue('rating:(["3" TO "5"])' in query)
def test_build_query_multiple_filter_types_with_datetimes(self):
self.sq.add_filter(SQ(content="why"))
self.sq.add_filter(SQ(pub_date__lte=datetime.datetime(2009, 2, 10, 1, 59, 0)))
self.sq.add_filter(SQ(author__gt="daniel"))
self.sq.add_filter(SQ(created__lt=datetime.datetime(2009, 2, 12, 12, 13, 0)))
self.sq.add_filter(SQ(title__gte="B"))
self.sq.add_filter(SQ(id__in=[1, 2, 3]))
self.sq.add_filter(SQ(rating__range=[3, 5]))
self.assertEqual(
self.sq.build_query(),
'((why) AND pub_date:([* TO "2009-02-10T01:59:00Z"]) AND author:({"daniel" TO *}) AND created:({* TO "2009-02-12T12:13:00Z"}) AND title:(["B" TO *]) AND id:("1" OR "2" OR "3") AND rating:(["3" TO "5"]))',
)
def test_build_query_in_filter_multiple_words(self):
self.sq.add_filter(SQ(content="why"))
self.sq.add_filter(SQ(title__in=["A Famous Paper", "An Infamous Article"]))
self.assertEqual(
self.sq.build_query(),
'((why) AND title:("A Famous Paper" OR "An Infamous Article"))',
)
def test_build_query_in_filter_datetime(self):
self.sq.add_filter(SQ(content="why"))
self.sq.add_filter(SQ(pub_date__in=[datetime.datetime(2009, 7, 6, 1, 56, 21)]))
self.assertEqual(
self.sq.build_query(), '((why) AND pub_date:("2009-07-06T01:56:21Z"))'
)
def test_build_query_in_with_set(self):
self.sq.add_filter(SQ(content="why"))
self.sq.add_filter(SQ(title__in=set(["A Famous Paper", "An Infamous Article"])))
query = self.sq.build_query()
self.assertTrue("(why)" in query)
# Because ordering in Py3 is now random.
if 'title:("A ' in query:
self.assertTrue(
'title:("A Famous Paper" OR "An Infamous Article")' in query
)
else:
self.assertTrue(
'title:("An Infamous Article" OR "A Famous Paper")' in query
)
def test_build_query_with_contains(self):
self.sq.add_filter(SQ(content="circular"))
self.sq.add_filter(SQ(title__contains="haystack"))
self.assertEqual(self.sq.build_query(), "((circular) AND title:(*haystack*))")
def test_build_query_with_endswith(self):
self.sq.add_filter(SQ(content="circular"))
self.sq.add_filter(SQ(title__endswith="haystack"))
self.assertEqual(self.sq.build_query(), "((circular) AND title:(*haystack))")
def test_build_query_wildcard_filter_types(self):
self.sq.add_filter(SQ(content="why"))
self.sq.add_filter(SQ(title__startswith="haystack"))
self.assertEqual(self.sq.build_query(), "((why) AND title:(haystack*))")
def test_build_query_fuzzy_filter_types(self):
self.sq.add_filter(SQ(content="why"))
self.sq.add_filter(SQ(title__fuzzy="haystack"))
self.assertEqual(self.sq.build_query(), "((why) AND title:(haystack~))")
def test_clean(self):
self.assertEqual(self.sq.clean("hello world"), "hello world")
self.assertEqual(self.sq.clean("hello AND world"), "hello and world")
self.assertEqual(
self.sq.clean(
'hello AND OR NOT TO + - && || ! ( ) { } [ ] ^ " ~ * ? : \ / world'
),
'hello and or not to \\+ \\- \\&& \\|| \\! \\( \\) \\{ \\} \\[ \\] \\^ \\" \\~ \\* \\? \\: \\\\ \\/ world',
)
self.assertEqual(
self.sq.clean("so please NOTe i am in a bAND and bORed"),
"so please NOTe i am in a bAND and bORed",
)
def test_build_query_with_models(self):
self.sq.add_filter(SQ(content="hello"))
self.sq.add_model(MockModel)
self.assertEqual(self.sq.build_query(), "(hello)")
self.sq.add_model(AnotherMockModel)
self.assertEqual(self.sq.build_query(), "(hello)")
def test_set_result_class(self):
# Assert that we're defaulting to ``SearchResult``.
self.assertTrue(issubclass(self.sq.result_class, SearchResult))
# Custom class.
class IttyBittyResult(object):
pass
self.sq.set_result_class(IttyBittyResult)
self.assertTrue(issubclass(self.sq.result_class, IttyBittyResult))
# Reset to default.
self.sq.set_result_class(None)
self.assertTrue(issubclass(self.sq.result_class, SearchResult))
def test_in_filter_values_list(self):
self.sq.add_filter(SQ(content="why"))
self.sq.add_filter(SQ(title__in=MockModel.objects.values_list("id", flat=True)))
self.assertEqual(self.sq.build_query(), '((why) AND title:("1" OR "2" OR "3"))')
def test_narrow_sq(self):
sqs = SearchQuerySet(using="solr").narrow(SQ(foo="moof"))
self.assertTrue(isinstance(sqs, SearchQuerySet))
self.assertEqual(len(sqs.query.narrow_queries), 1)
self.assertEqual(sqs.query.narrow_queries.pop(), "foo:(moof)")
def test_query__in(self):
sqs = SearchQuerySet(using="solr").filter(id__in=[1, 2, 3])
self.assertEqual(sqs.query.build_query(), 'id:("1" OR "2" OR "3")')
def test_query__in_empty_list(self):
"""Confirm that an empty list avoids a Solr exception"""
sqs = SearchQuerySet(using="solr").filter(id__in=[])
self.assertEqual(sqs.query.build_query(), "id:(!*:*)")
|
py | 1a39e85f2ff65ac2065bc019cb520c0c0c09617e | from select import select
from scapy.all import conf, ETH_P_ALL, MTU, plist
# Stop sniff() asynchronously
# Source: https://github.com/secdev/scapy/issues/989#issuecomment-380044430
def sniff(store=False, prn=None, lfilter=None,
stop_event=None, refresh=.1, *args, **kwargs):
"""Sniff packets
sniff([count=0,] [prn=None,] [store=1,] [offline=None,] [lfilter=None,] + L2ListenSocket args)
store: wether to store sniffed packets or discard them
prn: function to apply to each packet. If something is returned,
it is displayed. Ex:
ex: prn = lambda x: x.summary()
lfilter: python function applied to each packet to determine
if further action may be done
ex: lfilter = lambda x: x.haslayer(Padding)
stop_event: Event that stops the function when set
refresh: check stop_event.set() every refresh seconds
"""
s = conf.L2listen(type=ETH_P_ALL, *args, **kwargs)
lst = []
try:
while True:
if stop_event and stop_event.is_set():
break
sel = select([s], [], [], refresh)
if s in sel[0]: # if the packet s is ready to be read from
p = s.recv(MTU) # recieve from somewhere ()
if p is None:
break
if lfilter and not lfilter(p):
continue
if store:
lst.append(p)
if prn:
r = prn(p)
if r is not None:
print(r)
except KeyboardInterrupt:
pass
finally:
s.close()
return plist.PacketList(lst, "Sniffed")
|
py | 1a39e9a9d81e187fae028ec673101cc5b4d43472 | #!/usr/bin/env python
import unittest
from framework import VppTestCase, VppTestRunner
from vpp_ip import DpoProto
from vpp_ip_route import VppIpMRoute, VppMRoutePath, VppMFibSignal, \
MRouteItfFlags, MRouteEntryFlags, VppIpTable
from scapy.packet import Raw
from scapy.layers.l2 import Ether
from scapy.layers.inet import IP, UDP, getmacbyip
from scapy.layers.inet6 import IPv6, getmacbyip6
#
# The number of packets sent is set to 91 so that when we replicate more than 3
# times, which we do for some entries, we will generate more than 256 packets
# to the next node in the VLIB graph. Thus we are testing the code's
# correctness handling this over-flow.
# It's also an odd number so we hit any single loops.
#
N_PKTS_IN_STREAM = 91
class TestMFIB(VppTestCase):
""" MFIB Test Case """
def setUp(self):
super(TestMFIB, self).setUp()
def test_mfib(self):
""" MFIB Unit Tests """
error = self.vapi.cli("test mfib")
if error:
self.logger.critical(error)
self.assertEqual(error.find("Failed"), -1)
class TestIPMcast(VppTestCase):
""" IP Multicast Test Case """
def setUp(self):
super(TestIPMcast, self).setUp()
# create 8 pg interfaces
self.create_pg_interfaces(range(9))
# setup interfaces
for i in self.pg_interfaces[:8]:
i.admin_up()
i.config_ip4()
i.config_ip6()
i.resolve_arp()
i.resolve_ndp()
# one more in a vrf
tbl4 = VppIpTable(self, 10)
tbl4.add_vpp_config()
self.pg8.set_table_ip4(10)
self.pg8.config_ip4()
tbl6 = VppIpTable(self, 10, is_ip6=1)
tbl6.add_vpp_config()
self.pg8.set_table_ip6(10)
self.pg8.config_ip6()
def tearDown(self):
for i in self.pg_interfaces:
i.unconfig_ip4()
i.unconfig_ip6()
i.admin_down()
self.pg8.set_table_ip4(0)
self.pg8.set_table_ip6(0)
super(TestIPMcast, self).tearDown()
def create_stream_ip4(self, src_if, src_ip, dst_ip, payload_size=0):
pkts = []
# default to small packet sizes
p = (Ether(dst=src_if.local_mac, src=src_if.remote_mac) /
IP(src=src_ip, dst=dst_ip) /
UDP(sport=1234, dport=1234))
if not payload_size:
payload_size = 64 - len(p)
p = p / Raw('\xa5' * payload_size)
for i in range(0, N_PKTS_IN_STREAM):
pkts.append(p)
return pkts
def create_stream_ip6(self, src_if, src_ip, dst_ip):
pkts = []
for i in range(0, N_PKTS_IN_STREAM):
info = self.create_packet_info(src_if, src_if)
payload = self.info_to_payload(info)
p = (Ether(dst=src_if.local_mac, src=src_if.remote_mac) /
IPv6(src=src_ip, dst=dst_ip) /
UDP(sport=1234, dport=1234) /
Raw(payload))
info.data = p.copy()
pkts.append(p)
return pkts
def verify_filter(self, capture, sent):
if not len(capture) == len(sent):
# filter out any IPv6 RAs from the captur
for p in capture:
if (p.haslayer(IPv6)):
capture.remove(p)
return capture
def verify_capture_ip4(self, rx_if, sent, dst_mac=None):
rxd = rx_if.get_capture(len(sent))
try:
capture = self.verify_filter(rxd, sent)
self.assertEqual(len(capture), len(sent))
for i in range(len(capture)):
tx = sent[i]
rx = capture[i]
eth = rx[Ether]
self.assertEqual(eth.type, 0x800)
tx_ip = tx[IP]
rx_ip = rx[IP]
if dst_mac is None:
dst_mac = getmacbyip(rx_ip.dst)
# check the MAC address on the RX'd packet is correctly formed
self.assertEqual(eth.dst, dst_mac)
self.assertEqual(rx_ip.src, tx_ip.src)
self.assertEqual(rx_ip.dst, tx_ip.dst)
# IP processing post pop has decremented the TTL
self.assertEqual(rx_ip.ttl + 1, tx_ip.ttl)
except:
raise
def verify_capture_ip6(self, rx_if, sent):
capture = rx_if.get_capture(len(sent))
self.assertEqual(len(capture), len(sent))
for i in range(len(capture)):
tx = sent[i]
rx = capture[i]
eth = rx[Ether]
self.assertEqual(eth.type, 0x86DD)
tx_ip = tx[IPv6]
rx_ip = rx[IPv6]
# check the MAC address on the RX'd packet is correctly formed
self.assertEqual(eth.dst, getmacbyip6(rx_ip.dst))
self.assertEqual(rx_ip.src, tx_ip.src)
self.assertEqual(rx_ip.dst, tx_ip.dst)
# IP processing post pop has decremented the TTL
self.assertEqual(rx_ip.hlim + 1, tx_ip.hlim)
def test_ip_mcast(self):
""" IP Multicast Replication """
#
# a stream that matches the default route. gets dropped.
#
self.vapi.cli("clear trace")
tx = self.create_stream_ip4(self.pg0, "1.1.1.1", "232.1.1.1")
self.pg0.add_stream(tx)
self.pg_enable_capture(self.pg_interfaces)
self.pg_start()
self.pg0.assert_nothing_captured(
remark="IP multicast packets forwarded on default route")
#
# A (*,G).
# one accepting interface, pg0, 7 forwarding interfaces
# many forwarding interfaces test the case where the replicare DPO
# needs to use extra cache lines for the buckets.
#
route_232_1_1_1 = VppIpMRoute(
self,
"0.0.0.0",
"232.1.1.1", 32,
MRouteEntryFlags.MFIB_ENTRY_FLAG_NONE,
[VppMRoutePath(self.pg0.sw_if_index,
MRouteItfFlags.MFIB_ITF_FLAG_ACCEPT),
VppMRoutePath(self.pg1.sw_if_index,
MRouteItfFlags.MFIB_ITF_FLAG_FORWARD),
VppMRoutePath(self.pg2.sw_if_index,
MRouteItfFlags.MFIB_ITF_FLAG_FORWARD),
VppMRoutePath(self.pg3.sw_if_index,
MRouteItfFlags.MFIB_ITF_FLAG_FORWARD),
VppMRoutePath(self.pg4.sw_if_index,
MRouteItfFlags.MFIB_ITF_FLAG_FORWARD),
VppMRoutePath(self.pg5.sw_if_index,
MRouteItfFlags.MFIB_ITF_FLAG_FORWARD),
VppMRoutePath(self.pg6.sw_if_index,
MRouteItfFlags.MFIB_ITF_FLAG_FORWARD),
VppMRoutePath(self.pg7.sw_if_index,
MRouteItfFlags.MFIB_ITF_FLAG_FORWARD)])
route_232_1_1_1.add_vpp_config()
#
# An (S,G).
# one accepting interface, pg0, 2 forwarding interfaces
#
route_1_1_1_1_232_1_1_1 = VppIpMRoute(
self,
"1.1.1.1",
"232.1.1.1", 64,
MRouteEntryFlags.MFIB_ENTRY_FLAG_NONE,
[VppMRoutePath(self.pg0.sw_if_index,
MRouteItfFlags.MFIB_ITF_FLAG_ACCEPT),
VppMRoutePath(self.pg1.sw_if_index,
MRouteItfFlags.MFIB_ITF_FLAG_FORWARD),
VppMRoutePath(self.pg2.sw_if_index,
MRouteItfFlags.MFIB_ITF_FLAG_FORWARD)])
route_1_1_1_1_232_1_1_1.add_vpp_config()
#
# An (S,G).
# one accepting interface, pg0, 2 forwarding interfaces
# that use unicast next-hops
#
route_1_1_1_1_232_1_1_2 = VppIpMRoute(
self,
"1.1.1.1",
"232.1.1.2", 64,
MRouteEntryFlags.MFIB_ENTRY_FLAG_NONE,
[VppMRoutePath(self.pg0.sw_if_index,
MRouteItfFlags.MFIB_ITF_FLAG_ACCEPT),
VppMRoutePath(self.pg1.sw_if_index,
MRouteItfFlags.MFIB_ITF_FLAG_FORWARD,
nh=self.pg1.remote_ip4),
VppMRoutePath(self.pg2.sw_if_index,
MRouteItfFlags.MFIB_ITF_FLAG_FORWARD,
nh=self.pg2.remote_ip4)])
route_1_1_1_1_232_1_1_2.add_vpp_config()
#
# An (*,G/m).
# one accepting interface, pg0, 1 forwarding interfaces
#
route_232 = VppIpMRoute(
self,
"0.0.0.0",
"232.0.0.0", 8,
MRouteEntryFlags.MFIB_ENTRY_FLAG_NONE,
[VppMRoutePath(self.pg0.sw_if_index,
MRouteItfFlags.MFIB_ITF_FLAG_ACCEPT),
VppMRoutePath(self.pg1.sw_if_index,
MRouteItfFlags.MFIB_ITF_FLAG_FORWARD)])
route_232.add_vpp_config()
#
# a stream that matches the route for (1.1.1.1,232.1.1.1)
# small packets
#
self.vapi.cli("clear trace")
tx = self.create_stream_ip4(self.pg0, "1.1.1.1", "232.1.1.1")
self.pg0.add_stream(tx)
self.pg_enable_capture(self.pg_interfaces)
self.pg_start()
self.assertEqual(route_1_1_1_1_232_1_1_1.get_stats()['packets'],
len(tx))
# We expect replications on Pg1->7
self.verify_capture_ip4(self.pg1, tx)
self.verify_capture_ip4(self.pg2, tx)
# no replications on Pg0
self.pg0.assert_nothing_captured(
remark="IP multicast packets forwarded on PG0")
self.pg3.assert_nothing_captured(
remark="IP multicast packets forwarded on PG3")
#
# a stream that matches the route for (1.1.1.1,232.1.1.1)
# large packets
#
self.vapi.cli("clear trace")
tx = self.create_stream_ip4(self.pg0, "1.1.1.1", "232.1.1.1",
payload_size=1024)
self.pg0.add_stream(tx)
self.pg_enable_capture(self.pg_interfaces)
self.pg_start()
# We expect replications on Pg1->7
self.verify_capture_ip4(self.pg1, tx)
self.verify_capture_ip4(self.pg2, tx)
self.assertEqual(route_1_1_1_1_232_1_1_1.get_stats()['packets'],
2*len(tx))
# no replications on Pg0
self.pg0.assert_nothing_captured(
remark="IP multicast packets forwarded on PG0")
self.pg3.assert_nothing_captured(
remark="IP multicast packets forwarded on PG3")
#
# a stream to the unicast next-hops
#
self.vapi.cli("clear trace")
tx = self.create_stream_ip4(self.pg0, "1.1.1.1", "232.1.1.2")
self.pg0.add_stream(tx)
self.pg_enable_capture(self.pg_interfaces)
self.pg_start()
# We expect replications on Pg1->7
self.verify_capture_ip4(self.pg1, tx, dst_mac=self.pg1.remote_mac)
self.verify_capture_ip4(self.pg2, tx, dst_mac=self.pg2.remote_mac)
# no replications on Pg0 nor pg3
self.pg0.assert_nothing_captured(
remark="IP multicast packets forwarded on PG0")
self.pg3.assert_nothing_captured(
remark="IP multicast packets forwarded on PG3")
#
# a stream that matches the route for (*,232.0.0.0/8)
# Send packets with the 9th bit set so we test the correct clearing
# of that bit in the mac rewrite
#
self.vapi.cli("clear trace")
tx = self.create_stream_ip4(self.pg0, "1.1.1.1", "232.255.255.255")
self.pg0.add_stream(tx)
self.pg_enable_capture(self.pg_interfaces)
self.pg_start()
# We expect replications on Pg1 only
self.verify_capture_ip4(self.pg1, tx)
self.assertEqual(route_232.get_stats()['packets'], len(tx))
# no replications on Pg0, Pg2 not Pg3
self.pg0.assert_nothing_captured(
remark="IP multicast packets forwarded on PG0")
self.pg2.assert_nothing_captured(
remark="IP multicast packets forwarded on PG2")
self.pg3.assert_nothing_captured(
remark="IP multicast packets forwarded on PG3")
#
# a stream that matches the route for (*,232.1.1.1)
#
self.vapi.cli("clear trace")
tx = self.create_stream_ip4(self.pg0, "1.1.1.2", "232.1.1.1")
self.pg0.add_stream(tx)
self.pg_enable_capture(self.pg_interfaces)
self.pg_start()
# We expect replications on Pg1->7
self.verify_capture_ip4(self.pg1, tx)
self.verify_capture_ip4(self.pg2, tx)
self.verify_capture_ip4(self.pg3, tx)
self.verify_capture_ip4(self.pg4, tx)
self.verify_capture_ip4(self.pg5, tx)
self.verify_capture_ip4(self.pg6, tx)
self.verify_capture_ip4(self.pg7, tx)
# no replications on Pg0
self.pg0.assert_nothing_captured(
remark="IP multicast packets forwarded on PG0")
def test_ip6_mcast(self):
""" IPv6 Multicast Replication """
#
# a stream that matches the default route. gets dropped.
#
self.vapi.cli("clear trace")
tx = self.create_stream_ip6(self.pg0, "2001::1", "ff01::1")
self.pg0.add_stream(tx)
self.pg_enable_capture(self.pg_interfaces)
self.pg_start()
self.pg0.assert_nothing_captured(
remark="IPv6 multicast packets forwarded on default route")
#
# A (*,G).
# one accepting interface, pg0, 3 forwarding interfaces
#
route_ff01_1 = VppIpMRoute(
self,
"::",
"ff01::1", 128,
MRouteEntryFlags.MFIB_ENTRY_FLAG_NONE,
[VppMRoutePath(self.pg0.sw_if_index,
MRouteItfFlags.MFIB_ITF_FLAG_ACCEPT,
proto=DpoProto.DPO_PROTO_IP6),
VppMRoutePath(self.pg1.sw_if_index,
MRouteItfFlags.MFIB_ITF_FLAG_FORWARD,
proto=DpoProto.DPO_PROTO_IP6),
VppMRoutePath(self.pg2.sw_if_index,
MRouteItfFlags.MFIB_ITF_FLAG_FORWARD,
proto=DpoProto.DPO_PROTO_IP6),
VppMRoutePath(self.pg3.sw_if_index,
MRouteItfFlags.MFIB_ITF_FLAG_FORWARD,
proto=DpoProto.DPO_PROTO_IP6)],
is_ip6=1)
route_ff01_1.add_vpp_config()
#
# An (S,G).
# one accepting interface, pg0, 2 forwarding interfaces
#
route_2001_ff01_1 = VppIpMRoute(
self,
"2001::1",
"ff01::1", 256,
MRouteEntryFlags.MFIB_ENTRY_FLAG_NONE,
[VppMRoutePath(self.pg0.sw_if_index,
MRouteItfFlags.MFIB_ITF_FLAG_ACCEPT,
proto=DpoProto.DPO_PROTO_IP6),
VppMRoutePath(self.pg1.sw_if_index,
MRouteItfFlags.MFIB_ITF_FLAG_FORWARD,
proto=DpoProto.DPO_PROTO_IP6),
VppMRoutePath(self.pg2.sw_if_index,
MRouteItfFlags.MFIB_ITF_FLAG_FORWARD,
proto=DpoProto.DPO_PROTO_IP6)],
is_ip6=1)
route_2001_ff01_1.add_vpp_config()
#
# An (*,G/m).
# one accepting interface, pg0, 1 forwarding interface
#
route_ff01 = VppIpMRoute(
self,
"::",
"ff01::", 16,
MRouteEntryFlags.MFIB_ENTRY_FLAG_NONE,
[VppMRoutePath(self.pg0.sw_if_index,
MRouteItfFlags.MFIB_ITF_FLAG_ACCEPT,
proto=DpoProto.DPO_PROTO_IP6),
VppMRoutePath(self.pg1.sw_if_index,
MRouteItfFlags.MFIB_ITF_FLAG_FORWARD,
proto=DpoProto.DPO_PROTO_IP6)],
is_ip6=1)
route_ff01.add_vpp_config()
#
# a stream that matches the route for (*, ff01::/16)
# sent on the non-accepting interface
#
self.vapi.cli("clear trace")
tx = self.create_stream_ip6(self.pg1, "2002::1", "ff01:2::255")
self.send_and_assert_no_replies(self.pg1, tx, "RPF miss")
#
# a stream that matches the route for (*, ff01::/16)
# sent on the accepting interface
#
self.vapi.cli("clear trace")
tx = self.create_stream_ip6(self.pg0, "2002::1", "ff01:2::255")
self.pg0.add_stream(tx)
self.pg_enable_capture(self.pg_interfaces)
self.pg_start()
# We expect replications on Pg1
self.verify_capture_ip6(self.pg1, tx)
# no replications on Pg0, Pg3
self.pg0.assert_nothing_captured(
remark="IP multicast packets forwarded on PG0")
self.pg2.assert_nothing_captured(
remark="IP multicast packets forwarded on PG2")
self.pg3.assert_nothing_captured(
remark="IP multicast packets forwarded on PG3")
#
# Bounce the interface and it should still work
#
self.pg1.admin_down()
self.pg0.add_stream(tx)
self.pg_enable_capture(self.pg_interfaces)
self.pg_start()
self.pg1.assert_nothing_captured(
remark="IP multicast packets forwarded on down PG1")
self.pg1.admin_up()
self.pg0.add_stream(tx)
self.pg_enable_capture(self.pg_interfaces)
self.pg_start()
self.verify_capture_ip6(self.pg1, tx)
#
# a stream that matches the route for (*,ff01::1)
#
self.vapi.cli("clear trace")
tx = self.create_stream_ip6(self.pg0, "2002::2", "ff01::1")
self.pg0.add_stream(tx)
self.pg_enable_capture(self.pg_interfaces)
self.pg_start()
# We expect replications on Pg1, 2, 3.
self.verify_capture_ip6(self.pg1, tx)
self.verify_capture_ip6(self.pg2, tx)
self.verify_capture_ip6(self.pg3, tx)
# no replications on Pg0
self.pg0.assert_nothing_captured(
remark="IPv6 multicast packets forwarded on PG0")
#
# a stream that matches the route for (2001::1, ff00::1)
#
self.vapi.cli("clear trace")
tx = self.create_stream_ip6(self.pg0, "2001::1", "ff01::1")
self.pg0.add_stream(tx)
self.pg_enable_capture(self.pg_interfaces)
self.pg_start()
# We expect replications on Pg1, 2,
self.verify_capture_ip6(self.pg1, tx)
self.verify_capture_ip6(self.pg2, tx)
# no replications on Pg0, Pg3
self.pg0.assert_nothing_captured(
remark="IP multicast packets forwarded on PG0")
self.pg3.assert_nothing_captured(
remark="IP multicast packets forwarded on PG3")
def _mcast_connected_send_stream(self, dst_ip):
self.vapi.cli("clear trace")
tx = self.create_stream_ip4(self.pg0,
self.pg0.remote_ip4,
dst_ip)
self.pg0.add_stream(tx)
self.pg_enable_capture(self.pg_interfaces)
self.pg_start()
# We expect replications on Pg1.
self.verify_capture_ip4(self.pg1, tx)
return tx
def test_ip_mcast_connected(self):
""" IP Multicast Connected Source check """
#
# A (*,G).
# one accepting interface, pg0, 1 forwarding interfaces
#
route_232_1_1_1 = VppIpMRoute(
self,
"0.0.0.0",
"232.1.1.1", 32,
MRouteEntryFlags.MFIB_ENTRY_FLAG_NONE,
[VppMRoutePath(self.pg0.sw_if_index,
MRouteItfFlags.MFIB_ITF_FLAG_ACCEPT),
VppMRoutePath(self.pg1.sw_if_index,
MRouteItfFlags.MFIB_ITF_FLAG_FORWARD)])
route_232_1_1_1.add_vpp_config()
route_232_1_1_1.update_entry_flags(
MRouteEntryFlags.MFIB_ENTRY_FLAG_CONNECTED)
#
# Now the (*,G) is present, send from connected source
#
tx = self._mcast_connected_send_stream("232.1.1.1")
#
# Constrct a representation of the signal we expect on pg0
#
signal_232_1_1_1_itf_0 = VppMFibSignal(self,
route_232_1_1_1,
self.pg0.sw_if_index,
tx[0])
#
# read the only expected signal
#
signals = self.vapi.mfib_signal_dump()
self.assertEqual(1, len(signals))
signal_232_1_1_1_itf_0.compare(signals[0])
#
# reading the signal allows for the generation of another
# so send more packets and expect the next signal
#
tx = self._mcast_connected_send_stream("232.1.1.1")
signals = self.vapi.mfib_signal_dump()
self.assertEqual(1, len(signals))
signal_232_1_1_1_itf_0.compare(signals[0])
#
# A Second entry with connected check
# one accepting interface, pg0, 1 forwarding interfaces
#
route_232_1_1_2 = VppIpMRoute(
self,
"0.0.0.0",
"232.1.1.2", 32,
MRouteEntryFlags.MFIB_ENTRY_FLAG_NONE,
[VppMRoutePath(self.pg0.sw_if_index,
MRouteItfFlags.MFIB_ITF_FLAG_ACCEPT),
VppMRoutePath(self.pg1.sw_if_index,
MRouteItfFlags.MFIB_ITF_FLAG_FORWARD)])
route_232_1_1_2.add_vpp_config()
route_232_1_1_2.update_entry_flags(
MRouteEntryFlags.MFIB_ENTRY_FLAG_CONNECTED)
#
# Send traffic to both entries. One read should net us two signals
#
signal_232_1_1_2_itf_0 = VppMFibSignal(self,
route_232_1_1_2,
self.pg0.sw_if_index,
tx[0])
tx = self._mcast_connected_send_stream("232.1.1.1")
tx2 = self._mcast_connected_send_stream("232.1.1.2")
#
# read the only expected signal
#
signals = self.vapi.mfib_signal_dump()
self.assertEqual(2, len(signals))
signal_232_1_1_1_itf_0.compare(signals[1])
signal_232_1_1_2_itf_0.compare(signals[0])
route_232_1_1_1.update_entry_flags(
MRouteEntryFlags.MFIB_ENTRY_FLAG_NONE)
route_232_1_1_2.update_entry_flags(
MRouteEntryFlags.MFIB_ENTRY_FLAG_NONE)
def test_ip_mcast_signal(self):
""" IP Multicast Signal """
#
# A (*,G).
# one accepting interface, pg0, 1 forwarding interfaces
#
route_232_1_1_1 = VppIpMRoute(
self,
"0.0.0.0",
"232.1.1.1", 32,
MRouteEntryFlags.MFIB_ENTRY_FLAG_NONE,
[VppMRoutePath(self.pg0.sw_if_index,
MRouteItfFlags.MFIB_ITF_FLAG_ACCEPT),
VppMRoutePath(self.pg1.sw_if_index,
MRouteItfFlags.MFIB_ITF_FLAG_FORWARD)])
route_232_1_1_1.add_vpp_config()
route_232_1_1_1.update_entry_flags(
MRouteEntryFlags.MFIB_ENTRY_FLAG_SIGNAL)
#
# Now the (*,G) is present, send from connected source
#
tx = self._mcast_connected_send_stream("232.1.1.1")
#
# Constrct a representation of the signal we expect on pg0
#
signal_232_1_1_1_itf_0 = VppMFibSignal(self,
route_232_1_1_1,
self.pg0.sw_if_index,
tx[0])
#
# read the only expected signal
#
signals = self.vapi.mfib_signal_dump()
self.assertEqual(1, len(signals))
signal_232_1_1_1_itf_0.compare(signals[0])
#
# reading the signal allows for the generation of another
# so send more packets and expect the next signal
#
tx = self._mcast_connected_send_stream("232.1.1.1")
signals = self.vapi.mfib_signal_dump()
self.assertEqual(1, len(signals))
signal_232_1_1_1_itf_0.compare(signals[0])
#
# Set the negate-signal on the accepting interval - the signals
# should stop
#
route_232_1_1_1.update_path_flags(
self.pg0.sw_if_index,
(MRouteItfFlags.MFIB_ITF_FLAG_ACCEPT |
MRouteItfFlags.MFIB_ITF_FLAG_NEGATE_SIGNAL))
self.vapi.cli("clear trace")
tx = self._mcast_connected_send_stream("232.1.1.1")
signals = self.vapi.mfib_signal_dump()
self.assertEqual(0, len(signals))
#
# Clear the SIGNAL flag on the entry and the signals should
# come back since the interface is still NEGATE-SIGNAL
#
route_232_1_1_1.update_entry_flags(
MRouteEntryFlags.MFIB_ENTRY_FLAG_NONE)
tx = self._mcast_connected_send_stream("232.1.1.1")
signals = self.vapi.mfib_signal_dump()
self.assertEqual(1, len(signals))
signal_232_1_1_1_itf_0.compare(signals[0])
#
# Lastly remove the NEGATE-SIGNAL from the interface and the
# signals should stop
#
route_232_1_1_1.update_path_flags(self.pg0.sw_if_index,
MRouteItfFlags.MFIB_ITF_FLAG_ACCEPT)
tx = self._mcast_connected_send_stream("232.1.1.1")
signals = self.vapi.mfib_signal_dump()
self.assertEqual(0, len(signals))
def test_ip_mcast_vrf(self):
""" IP Multicast Replication in non-default table"""
#
# An (S,G).
# one accepting interface, pg0, 2 forwarding interfaces
#
route_1_1_1_1_232_1_1_1 = VppIpMRoute(
self,
"1.1.1.1",
"232.1.1.1", 64,
MRouteEntryFlags.MFIB_ENTRY_FLAG_NONE,
[VppMRoutePath(self.pg8.sw_if_index,
MRouteItfFlags.MFIB_ITF_FLAG_ACCEPT),
VppMRoutePath(self.pg1.sw_if_index,
MRouteItfFlags.MFIB_ITF_FLAG_FORWARD),
VppMRoutePath(self.pg2.sw_if_index,
MRouteItfFlags.MFIB_ITF_FLAG_FORWARD)],
table_id=10)
route_1_1_1_1_232_1_1_1.add_vpp_config()
#
# a stream that matches the route for (1.1.1.1,232.1.1.1)
# small packets
#
self.vapi.cli("clear trace")
tx = self.create_stream_ip4(self.pg8, "1.1.1.1", "232.1.1.1")
self.pg8.add_stream(tx)
self.pg_enable_capture(self.pg_interfaces)
self.pg_start()
# We expect replications on Pg1 & 2
self.verify_capture_ip4(self.pg1, tx)
self.verify_capture_ip4(self.pg2, tx)
def test_ip6_mcast_vrf(self):
""" IPv6 Multicast Replication in non-default table"""
#
# An (S,G).
# one accepting interface, pg0, 2 forwarding interfaces
#
route_2001_ff01_1 = VppIpMRoute(
self,
"2001::1",
"ff01::1", 256,
MRouteEntryFlags.MFIB_ENTRY_FLAG_NONE,
[VppMRoutePath(self.pg8.sw_if_index,
MRouteItfFlags.MFIB_ITF_FLAG_ACCEPT,
proto=DpoProto.DPO_PROTO_IP6),
VppMRoutePath(self.pg1.sw_if_index,
MRouteItfFlags.MFIB_ITF_FLAG_FORWARD,
proto=DpoProto.DPO_PROTO_IP6),
VppMRoutePath(self.pg2.sw_if_index,
MRouteItfFlags.MFIB_ITF_FLAG_FORWARD,
proto=DpoProto.DPO_PROTO_IP6)],
table_id=10,
is_ip6=1)
route_2001_ff01_1.add_vpp_config()
#
# a stream that matches the route for (2001::1, ff00::1)
#
self.vapi.cli("clear trace")
tx = self.create_stream_ip6(self.pg8, "2001::1", "ff01::1")
self.pg8.add_stream(tx)
self.pg_enable_capture(self.pg_interfaces)
self.pg_start()
# We expect replications on Pg1, 2,
self.verify_capture_ip6(self.pg1, tx)
self.verify_capture_ip6(self.pg2, tx)
def test_bidir(self):
""" IP Multicast Bi-directional """
#
# A (*,G). The set of accepting interfaces matching the forwarding
#
route_232_1_1_1 = VppIpMRoute(
self,
"0.0.0.0",
"232.1.1.1", 32,
MRouteEntryFlags.MFIB_ENTRY_FLAG_NONE,
[VppMRoutePath(self.pg0.sw_if_index,
MRouteItfFlags.MFIB_ITF_FLAG_ACCEPT |
MRouteItfFlags.MFIB_ITF_FLAG_FORWARD),
VppMRoutePath(self.pg1.sw_if_index,
MRouteItfFlags.MFIB_ITF_FLAG_ACCEPT |
MRouteItfFlags.MFIB_ITF_FLAG_FORWARD),
VppMRoutePath(self.pg2.sw_if_index,
MRouteItfFlags.MFIB_ITF_FLAG_ACCEPT |
MRouteItfFlags.MFIB_ITF_FLAG_FORWARD),
VppMRoutePath(self.pg3.sw_if_index,
MRouteItfFlags.MFIB_ITF_FLAG_ACCEPT |
MRouteItfFlags.MFIB_ITF_FLAG_FORWARD)])
route_232_1_1_1.add_vpp_config()
tx = self.create_stream_ip4(self.pg0, "1.1.1.1", "232.1.1.1")
self.pg0.add_stream(tx)
self.pg_enable_capture(self.pg_interfaces)
self.pg_start()
# We expect replications on Pg1, 2, 3, but not on pg0
self.verify_capture_ip4(self.pg1, tx)
self.verify_capture_ip4(self.pg2, tx)
self.verify_capture_ip4(self.pg3, tx)
self.pg0.assert_nothing_captured(
remark="IP multicast packets forwarded on PG0")
if __name__ == '__main__':
unittest.main(testRunner=VppTestRunner)
|
py | 1a39e9d6625f856625b0b787215d54e78cf23a1e | import logging as log
from django.core.management.base import BaseCommand
from django.contrib.auth import get_user_model
from django_keycloak.keycloak import Connect
class Command(BaseCommand):
help = "Synchronize users with keycloak"
def handle(self, *args, **options):
keycloak = Connect()
User = get_user_model()
remote_users = set([user.get("id") for user in keycloak.get_users()])
local_users = set(str(_u.id) for _u in User.objects.all())
users_to_remove = local_users.difference(remote_users)
users_to_add = remote_users.difference(local_users)
# Delete users that are no longer in keycloak
User.objects.filter(id__in=list(users_to_remove)).delete()
log.info(
"Removed {} users".format(len(users_to_remove)),
"and there are {} new users in keycloak that are not"
" locally".format(len(users_to_add)),
)
|
py | 1a39ea85dbfd0eec1f8681faf30cdf664614a7d1 | # Auto generated by generator.py. Delete this line if you make modification.
from scrapy.spiders import Rule
from scrapy.linkextractors import LinkExtractor
XPATH = {
'name' : "//div[@id='team_images']/div[@class='mid']/ul/li[1]/img/@alt",
'price' : "//div[@class='deal-buy']/p[@class='deal-price']/strong",
'category' : "",
'description' : "//div[@id='diem-noi-bat']/div[@class='digest']/p",
'images' : "//div[@id='team_images']/div[@class='mid']/ul/li/img/@src",
'canonical' : "",
'base_url' : "",
'brand' : ""
}
name = 'sieuthithoitrang.vn'
allowed_domains = ['sieuthithoitrang.vn']
start_urls = ['http://sieuthithoitrang.vn']
tracking_url = ''
sitemap_urls = ['']
sitemap_rules = [('', 'parse_item')]
sitemap_follow = []
rules = [
Rule(LinkExtractor(allow=['/\d+$']), 'parse_item'),
Rule(LinkExtractor(allow=['/danh-muc/']), 'parse'),
#Rule(LinkExtractor(), 'parse_item_and_links'),
]
|
py | 1a39ead249bdf4fee1ac5679700e67989c23afd2 | import os
import logging
from functools import partial
import pandas as pd
from solarforecastarbiter.io.fetch import eia
from solarforecastarbiter.io.reference_observations import (
common, default_forecasts)
from requests.exceptions import HTTPError
logger = logging.getLogger('reference_data')
def initialize_site_observations(api, site):
"""Creates an observation at the site.
Parameters
----------
api : solarforecastarbiter.io.api.APISession
API Session object, authenticated for the Reference user.
site : solarforecastarbiter.datamodel.Site
The site object for which to create the Observations.
Notes
-----
Currently only creates observations for net load [MW]
(`f"EBA.{eia_site_id}.D.H"`), but EIA contains other variables that may be
incorporated later (e.g. solar generation:
`f"EBA.{eia_site_id}.NG.SUN.H"`).
"""
sfa_var = "net_load"
logger.info(f'Creating {sfa_var} at {site.name}')
try:
common.create_observation(api, site, sfa_var)
except HTTPError as e:
logger.error(f'Could not create Observation for "{sfa_var}" '
f'at EIA site {site.name}')
logger.debug(f'Error: {e.response.text}')
def initialize_site_forecasts(api, site):
"""Creates a forecast at the site.
Parameters
----------
api : solarforecastarbiter.io.api.APISession
API Session object, authenticated for the Reference user.
site : solarforecastarbiter.datamodel.Site
The site object for which to create the Observations.
"""
common.create_forecasts(
api, site, ["net_load"],
default_forecasts.TEMPLATE_NETLOAD_PERSISTENCE_FORECASTS)
def fetch(api, site, start, end, *, eia_api_key):
"""Retrieve observation data for a EIA site between start and end.
Parameters
----------
api : solarforecastarbiter.io.APISession
Unused but conforms to common.update_site_observations call
site : solarforecastarbiter.datamodel.Site
Site object with the appropriate metadata.
start : datetime
The beginning of the period to request data for.
end : datetime
The end of the period to request data for.
eia_api_key : str
API key for api.eia.gov
Returns
-------
data : pandas.DataFrame
All of the requested data as a single DataFrame.
Notes
-----
Currently only fetches observations for net load [MW]
(`f"EBA.{eia_site_id}.D.H"`), but EIA contains other variables that may be
incorporated later (e.g. solar generation:
`f"EBA.{eia_site_id}.NG.SUN.H"`).
"""
try:
site_extra_params = common.decode_extra_parameters(site)
except ValueError:
return pd.DataFrame()
eia_site_id = site_extra_params['network_api_id']
series_id = f"EBA.{eia_site_id}.D.H" # hourly net load (demand)
obs_df = eia.get_eia_data(
series_id, eia_api_key,
start,
end
)
if obs_df.empty:
logger.warning(f'Data for site {site.name} contained no '
f'entries from {start} to {end}.')
return pd.DataFrame()
obs_df = obs_df.rename(columns={"value": "net_load"})
return obs_df
def update_observation_data(api, sites, observations, start, end):
"""Retrieve data from the network, and then format and post it to each
observation at the site.
Parameters
----------
api : solarforecastarbiter.io.api.APISession
An active Reference user session.
sites: list of solarforecastarbiter.datamodel.Site
List of all reference sites.
observations: list of solarforecastarbiter.datamodel.Observation
List of all reference observations.
start : datetime
The beginning of the period to request data for.
end : datetime
The end of the period to request data for.
Raises
------
KeyError
If EIA_API_KEY environmental variable is not set.
"""
eia_api_key = os.getenv("EIA_API_KEY")
if eia_api_key is None:
raise KeyError('"EIA_API_KEY" environment variable must be '
'set to update EIA observation data.')
eia_sites = common.filter_by_networks(sites, ['EIA'])
for site in eia_sites:
common.update_site_observations(
api, partial(fetch, eia_api_key=eia_api_key),
site, observations, start, end)
|
py | 1a39eadfcd6195b2245d62fe16281d8853bbe621 | """ Uhh... Here we import stuff """
from .do import do
from .api3 import API as api3
from .api3 import JWT as jwt
from .sub import blueprint as subs
|
py | 1a39eafa45528d91971755bbf825ff6496015779 | from django.contrib import admin
from .models import Listing
class ListingAdmin(admin.ModelAdmin):
list_display = ('id', 'title', 'price', 'is_published', 'list_date', 'realtor')
list_display_links = ('id', 'title')
list_filter = ('realtor',)
list_editable = ('is_published',)
search_fields = ('title', 'description', 'address', 'city', 'state', 'zipcode', 'price')
list_per_page = 25
admin.site.register(Listing, ListingAdmin)
|
py | 1a39eb548b61d6fbc6303d2827c9c2d9705df980 | import math
file = open('day-5.input')
result = 0
# F, ==> lower half ==> [min, math.floor((max - min) / 2)]
# B,R ==> upper half
def get_row(expression):
min = 0
max = 127
for i in range(7):
selector = expression[i]
if selector == 'F':
max = math.floor((max+min)/ 2)
elif selector == 'B':
min = math.ceil((max + min) / 2)
return max
def get_column(expression):
min = 0
max = 7
for i in range(3):
selector = expression[i]
if selector == 'L':
max = math.floor((max+min)/ 2)
elif selector == 'R':
min = math.ceil((max + min) / 2)
return max
def get_seat_id(seat_row, seat_column):
return 8 * seat_row + seat_column
all_seats =[]
min_found_seat_row = 127
max_found_seat_row = 0
for row in range(1,126): #exclude very front and very back rows
for column in range(8):
all_seats.append((row, column))
for line in file:
line = line.strip()
seat_row = get_row(line[0:7])
if seat_row < min_found_seat_row:
min_found_seat_row = seat_row
if seat_row > max_found_seat_row:
max_found_seat_row = seat_row
seat_column = get_column(line[-3:])
all_seats.remove((seat_row, seat_column))
for (row, column) in all_seats[:]:
if row < min_found_seat_row + 1:
all_seats.remove((row, column))
if row > max_found_seat_row - 1:
all_seats.remove((row, column))
print(min_found_seat_row)
print(max_found_seat_row)
found_seat = all_seats[0]
result = get_seat_id(found_seat[0], found_seat[1])
print(result) |
py | 1a39eb72cb6ccf2f02e7e6aa60c05ea03196f4dd | # coding: utf-8
"""
NiFi Rest Api
The Rest Api provides programmatic access to command and control a NiFi instance in real time. Start and stop processors, monitor queues, query provenance data, and more. Each endpoint below includes a description, definitions of the expected input and output, potential response codes, and the authorizations required to invoke each service.
OpenAPI spec version: 1.11.1-SNAPSHOT
Contact: [email protected]
Generated by: https://github.com/swagger-api/swagger-codegen.git
"""
from pprint import pformat
from six import iteritems
import re
class PositionDTO(object):
"""
NOTE: This class is auto generated by the swagger code generator program.
Do not edit the class manually.
"""
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'x': 'float',
'y': 'float'
}
attribute_map = {
'x': 'x',
'y': 'y'
}
def __init__(self, x=None, y=None):
"""
PositionDTO - a model defined in Swagger
"""
self._x = None
self._y = None
if x is not None:
self.x = x
if y is not None:
self.y = y
@property
def x(self):
"""
Gets the x of this PositionDTO.
The x coordinate.
:return: The x of this PositionDTO.
:rtype: float
"""
return self._x
@x.setter
def x(self, x):
"""
Sets the x of this PositionDTO.
The x coordinate.
:param x: The x of this PositionDTO.
:type: float
"""
self._x = x
@property
def y(self):
"""
Gets the y of this PositionDTO.
The y coordinate.
:return: The y of this PositionDTO.
:rtype: float
"""
return self._y
@y.setter
def y(self, y):
"""
Sets the y of this PositionDTO.
The y coordinate.
:param y: The y of this PositionDTO.
:type: float
"""
self._y = y
def to_dict(self):
"""
Returns the model properties as a dict
"""
result = {}
for attr, _ in iteritems(self.swagger_types):
value = getattr(self, attr)
if isinstance(value, list):
result[attr] = list(map(
lambda x: x.to_dict() if hasattr(x, "to_dict") else x,
value
))
elif hasattr(value, "to_dict"):
result[attr] = value.to_dict()
elif isinstance(value, dict):
result[attr] = dict(map(
lambda item: (item[0], item[1].to_dict())
if hasattr(item[1], "to_dict") else item,
value.items()
))
else:
result[attr] = value
return result
def to_str(self):
"""
Returns the string representation of the model
"""
return pformat(self.to_dict())
def __repr__(self):
"""
For `print` and `pprint`
"""
return self.to_str()
def __eq__(self, other):
"""
Returns true if both objects are equal
"""
if not isinstance(other, PositionDTO):
return False
return self.__dict__ == other.__dict__
def __ne__(self, other):
"""
Returns true if both objects are not equal
"""
return not self == other
|
py | 1a39eba12b1e4088a4b3b81fcd9aee9902347b20 | #!/usr/bin/env python3
#-------------------------------------------------------------------------------
# ============LICENSE_START=======================================================
# Copyright (C) 2018 Sven van der Meer. All rights reserved.
# ================================================================================
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
# ============LICENSE_END=========================================================
#-------------------------------------------------------------------------------
##
## acronyms-val - validates YAML files of SKB acronyms
##
## @author Sven van der Meer <[email protected]>
## @version v0.0.0
##
##
## Includes, all we need
##
import yaml ## parsing YAML files
import os ## operating system, e.g. file handling
from os import walk ## for walking directories
import functools ## some tools for functions
import sys, getopt ## system for exit, getopt for CLI parsing
import glob ## gobal globbing to get YAML files recursively
import pathlib ## mkdirs in Python
import datetime ## to get date/time for ADOC files
##
## Global variables
##
task_level = "warn" ## warning level
yaml_dir = '' ## YAML directory
acronyms = {} ## dictionary of acronyms
##
## DO NOT CHANGE CODE BELOW, unless you know what you are doing
##
##
## function: print help, for empty or wrong command line
##
def help():
print("")
print("acronyms-val - validates YAML files of SKB acronyms\n")
print(" Usage: acronyms-val [options]\n")
print(" Options")
print(" [-h | --help] - this help screen")
print(" [-T | --task-level] <level> - task log level: error, warn, warn-strict, info, debug, trace")
print(" [-y | --yaml-directory] <dir> - top YAML directory")
print("\n")
##
## function: parse command line
##
def cli(argv):
global yaml_dir
global task_level
try:
opts, args = getopt.getopt(argv,"hT:y:",["yaml-directory=","help","task-level="])
except getopt.GetoptError:
help()
sys.exit(70)
for opt, arg in opts:
if opt in ("-h", "--help"):
help()
sys.exit(0)
elif opt in ("-T", "--task-level"):
task_level = arg
elif opt in ("-y", "--yaml-directory"):
yaml_dir = arg
##
## function: validates a single YAML file
##
def validate_file(file, entries, key):
## check for required keys
found_keys = True
expected_keys = ( 'short' , 'short-target', 'long', 'long-target', 'description', 'notes', 'urls')
errors = ""
if not 'short' in entries:
errors += " --> did not find key 'short'\n"
found_keys = False
else:
if len(entries['short']) == 0:
errors += " --> key 'short' with no entry\n"
found_keys = False
if not 'long' in entries:
errors += " --> did not find key 'long'\n"
found_keys = False
else:
if len(entries['long']) == 0:
errors += " --> key 'long' with no entry\n"
found_keys = False
if 'long-target' in entries and len(entries['long-target']) == 0:
errors += " --> key 'long-target' with no entry\n"
found_keys = False
if 'description' in entries and len(entries['description']) == 0:
errors += " --> key 'description' with no entry\n"
found_keys = False
if 'notes' in entries and len(entries['notes']) == 0:
errors += " --> key 'notes' with no entry\n"
found_keys = False
if 'urls' in entries and len(entries['urls']) == 0:
errors += " --> key 'urls' with no entry\n"
found_keys = False
if not all(elem in expected_keys for elem in entries):
errors += " --> unknown key\n"
found_keys = False
file_short = file[len(yaml_dir)+1:]
dir_short = file_short.rsplit('/', 1)[0]
key_short = key.rsplit('/', 1)[0]
if not key_short == dir_short:
errors += " --> something wrong in key path (" + key_short + ") and directory (" + dir_short + ")\n"
found_keys = False
if found_keys == False:
print(" -> validation failed")
print("%s" % errors)
sys.exit(80)
##
## function: process a single YAML file
##
def process_file(file):
file_exists = os.path.isfile(file)
if file_exists == True:
stream = open(file,'r')
data = yaml.load(stream)
stream.close()
entries = data[list(data.keys())[0]] ## dictionary with all entries
key = list(data.keys())[0] ## key name of the YAML spec
validate_file(file, entries, key)
if not key in acronyms:
entries['src-file'] = file
acronyms[key] = entries
else:
print(" -> key %s already in dictionary, defined in %s" % (key, acronyms[key]['src-file']))
sys.exit(80)
else:
print("error: could not open file: %s" % file)
sys.exit(72)
##
## function: main function
##
def main(argv):
cli(argv)
print(" > YAML directory: %s" % yaml_dir)
dir_exists = os.path.isdir(yaml_dir)
if dir_exists == True:
files = glob.glob(yaml_dir + '/**/*.yaml', recursive=True)
for file in files:
print("\n > processing: .../%s" % file[len(yaml_dir)+1:])
process_file(file)
print("\n > processed %d YAML files, found %d acronyms" % (len(files), len(acronyms)))
else:
print("error: could not open YAML directory: %s" % yaml_dir)
sys.exit(71)
##
## Call main
##
if __name__ == "__main__":
main(sys.argv[1:])
print(" > done")
|
py | 1a39eba6c9dd2c862004673052d25edec6e29ad2 | # Generated by Django 4.0 on 2022-01-11 17:28
from django.db import migrations, models
import django.db.models.deletion
class Migration(migrations.Migration):
initial = True
dependencies = [
('account', '0006_alter_business_options'),
]
operations = [
migrations.CreateModel(
name='Order',
fields=[
('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('created_on', models.DateTimeField(blank=True, null=True)),
('updated_on', models.DateTimeField(blank=True, null=True)),
('created_by', models.CharField(blank=True, max_length=255, null=True)),
('updated_by', models.CharField(blank=True, max_length=255, null=True)),
('total_amount', models.DecimalField(decimal_places=2, default=0, max_digits=9)),
('net_amount', models.DecimalField(decimal_places=2, default=0, max_digits=9)),
('paid_amount', models.DecimalField(decimal_places=2, default=0, max_digits=9)),
('discount', models.DecimalField(decimal_places=1, default=0, max_digits=4)),
('delivery_date', models.DateTimeField()),
('order_status', models.CharField(default='Not yet started', max_length=64)),
('comments', models.TextField(blank=True, default='', max_length=1024)),
('is_one_time_delivery', models.BooleanField(default=True)),
('is_deleted', models.BooleanField(default=False)),
('customer', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='account.user')),
],
options={
'ordering': ('-created_on',),
},
),
migrations.CreateModel(
name='OrderItem',
fields=[
('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('created_on', models.DateTimeField(blank=True, null=True)),
('updated_on', models.DateTimeField(blank=True, null=True)),
('created_by', models.CharField(blank=True, max_length=255, null=True)),
('updated_by', models.CharField(blank=True, max_length=255, null=True)),
('item_type', models.CharField(max_length=255)),
('item_price', models.DecimalField(decimal_places=2, default=0, max_digits=7)),
('quantity', models.IntegerField(default=1)),
('status', models.CharField(default='Not yet started', max_length=64)),
('delivery_date', models.DateTimeField()),
('comments', models.TextField(blank=True, default='', max_length=512)),
('is_deleted', models.BooleanField(default=False)),
('order', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='order_items', related_query_name='order_item', to='order.order')),
],
options={
'ordering': ('-id',),
},
),
]
|
py | 1a39ec048da7f24aa9147424d449ace62f3d8826 | """
The Sponge Roll Problem with Columnwise Column Generation for the PuLP Modeller
Authors: Antony Phillips, Dr Stuart Mitchell 2008
"""
# Import Column Generation functions
from CGcolumnwise import *
# The Master Problem is created
prob, obj, constraints = createMaster()
# A list of starting patterns is created
newPatterns = [[1,0,0],[0,1,0],[0,0,1]]
# New patterns will be added until newPatterns is an empty list
while newPatterns:
# The new patterns are added to the problem
addPatterns(obj,constraints,newPatterns)
# The master problem is solved, and the dual variables are returned
duals = masterSolve(prob)
# The sub problem is solved and a new pattern will be returned if there is one
# which can reduce the master objective function
newPatterns = subSolve(duals)
# The master problem is solved with Integer Constraints not relaxed
solution, varsdict = masterSolve(prob,relax = False)
# Display Solution
for i,j in list(varsdict.items()):
print(i, "=", j)
print("objective = ", solution) |
py | 1a39ec7e2c003f2805f3a3931a3ca6337af5393a | # Generated by Django 2.2.9 on 2021-11-05 01:51
from django.conf import settings
from django.db import migrations, models
import django.db.models.deletion
class Migration(migrations.Migration):
dependencies = [
('posts', '0005_auto_20211104_0012'),
]
operations = [
migrations.AlterModelOptions(
name='group',
options={'ordering': ['title']},
),
migrations.AlterModelOptions(
name='post',
options={'ordering': ['-pub_date', 'author']},
),
migrations.AlterField(
model_name='group',
name='description',
field=models.TextField(blank=True, default='', verbose_name='Описание'),
),
migrations.AlterField(
model_name='group',
name='slug',
field=models.SlugField(max_length=200, unique=True, verbose_name='Подзаголовок'),
),
migrations.AlterField(
model_name='group',
name='title',
field=models.CharField(max_length=200, verbose_name='Заголовок'),
),
migrations.AlterField(
model_name='post',
name='author',
field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='posts', to=settings.AUTH_USER_MODEL, verbose_name='Автор'),
),
migrations.AlterField(
model_name='post',
name='group',
field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='groups', to='posts.Group', verbose_name='Группа'),
),
migrations.AlterField(
model_name='post',
name='pub_date',
field=models.DateTimeField(auto_now_add=True, verbose_name='Дата'),
),
migrations.AlterField(
model_name='post',
name='text',
field=models.TextField(verbose_name='Текст'),
),
migrations.AddIndex(
model_name='group',
index=models.Index(fields=['title'], name='title_idx'),
),
migrations.AddIndex(
model_name='post',
index=models.Index(fields=['author'], name='author_idx'),
),
migrations.AddIndex(
model_name='post',
index=models.Index(fields=['text'], name='search_text_idx'),
),
migrations.AlterModelTable(
name='group',
table='groups',
),
migrations.AlterModelTable(
name='post',
table='posts',
),
]
|
py | 1a39ed0b29a68325fe667fffcf8ba3dc488a5978 | from django.conf.urls import url, include
from front_end.views.user import sign_in, sign_up, settings
from front_end.views.user import training_information
from front_end.views.user import search_user
from front_end.views.user import following_followers
from front_end.views.user import user_group
urlpatterns = [
url(r'^login/', sign_in, name='sign_in'),
url(r'^register/', sign_up, name='sign_up'),
url(r'^settings/(\S+)/', settings, name='user_settings'),
url(r'^info/(\S+)/', training_information, name='user_training_info'),
url(r'^follow/(\S+)/', following_followers, name='following_followers'),
url(r'^group/(\S+)/', user_group, name='user_group'),
url(r'^search/(\S+)/(\d+)/(\d+)/', search_user, name='search_user'),
url(r'^submissions/', include('front_end.url.submissions')),
url(r'^problems/', include('front_end.url.problems')),
url(r'^categories/', include('front_end.url.categories')),
]
|
py | 1a39ee4b48491a7784db9b304b583e188e934161 | # Unless explicitly stated otherwise all files in this repository are licensed under the Apache-2.0 License.
# This product includes software developed at Datadog (https://www.datadoghq.com/).
# Copyright 2019-Present Datadog, Inc.
import re # noqa: F401
import sys # noqa: F401
from datadog_api_client.v2.model_utils import ( # noqa: F401
ApiTypeError,
ModelComposed,
ModelNormal,
ModelSimple,
cached_property,
change_keys_js_to_python,
convert_js_args_to_python_args,
date,
datetime,
file_type,
none_type,
validate_get_composed_info,
)
class LogsListRequestPage(ModelNormal):
"""NOTE: This class is auto generated by OpenAPI Generator.
Ref: https://openapi-generator.tech
Do not edit the class manually.
Attributes:
allowed_values (dict): The key is the tuple path to the attribute
and the for var_name this is (var_name,). The value is a dict
with a capitalized key describing the allowed value and an allowed
value. These dicts store the allowed enum values.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
discriminator_value_class_map (dict): A dict to go from the discriminator
variable value to the discriminator class name.
validations (dict): The key is the tuple path to the attribute
and the for var_name this is (var_name,). The value is a dict
that stores validations for max_length, min_length, max_items,
min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum,
inclusive_minimum, and regex.
additional_properties_type (tuple): A tuple of classes accepted
as additional properties values.
"""
allowed_values = {}
validations = {
("limit",): {
"inclusive_maximum": 1000,
},
}
additional_properties_type = None
_nullable = False
@cached_property
def openapi_types():
"""
This must be a method because a model may have properties that are
of type self, this must run after the class is loaded
Returns
openapi_types (dict): The key is attribute name
and the value is attribute type.
"""
return {
"cursor": (str,), # noqa: E501
"limit": (int,), # noqa: E501
}
@cached_property
def discriminator():
return None
attribute_map = {
"cursor": "cursor", # noqa: E501
"limit": "limit", # noqa: E501
}
_composed_schemas = {}
required_properties = set(
[
"_data_store",
"_check_type",
"_spec_property_naming",
"_path_to_item",
"_configuration",
"_visited_composed_classes",
]
)
@convert_js_args_to_python_args
def __init__(self, *args, **kwargs): # noqa: E501
"""LogsListRequestPage - a model defined in OpenAPI
Keyword Args:
_check_type (bool): if True, values for parameters in openapi_types
will be type checked and a TypeError will be
raised if the wrong type is input.
Defaults to True
_path_to_item (tuple/list): This is a list of keys or values to
drill down to the model in received_data
when deserializing a response
_spec_property_naming (bool): True if the variable names in the input data
are serialized names, as specified in the OpenAPI document.
False if the variable names in the input data
are pythonic names, e.g. snake case (default)
_configuration (Configuration): the instance to use when
deserializing a file_type parameter.
If passed, type conversion is attempted
If omitted no type conversion is done.
_visited_composed_classes (tuple): This stores a tuple of
classes that we have traveled through so that
if we see that class again we will not use its
discriminator again.
When traveling through a discriminator, the
composed schema that is
is traveled through is added to this set.
For example if Animal has a discriminator
petType and we pass in "Dog", and the class Dog
allOf includes Animal, we move through Animal
once using the discriminator, and pick Dog.
Then in Dog, we will make an instance of the
Animal class but this time we won't travel
through its discriminator because we passed in
_visited_composed_classes = (Animal,)
cursor (str): List following results with a cursor provided in the previous query.. [optional] # noqa: E501
limit (int): Maximum number of logs in the response.. [optional] if omitted the server will use the default value of 10 # noqa: E501
"""
_check_type = kwargs.pop("_check_type", True)
_spec_property_naming = kwargs.pop("_spec_property_naming", False)
_path_to_item = kwargs.pop("_path_to_item", ())
_configuration = kwargs.pop("_configuration", None)
_visited_composed_classes = kwargs.pop("_visited_composed_classes", ())
if args:
raise ApiTypeError(
"Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments."
% (
args,
self.__class__.__name__,
),
path_to_item=_path_to_item,
valid_classes=(self.__class__,),
)
self._data_store = {}
self._check_type = _check_type
self._spec_property_naming = _spec_property_naming
self._path_to_item = _path_to_item
self._configuration = _configuration
self._visited_composed_classes = _visited_composed_classes + (self.__class__,)
for var_name, var_value in kwargs.items():
if (
var_name not in self.attribute_map
and self._configuration is not None
and self._configuration.discard_unknown_keys
and self.additional_properties_type is None
):
# discard variable.
continue
setattr(self, var_name, var_value)
|
py | 1a39ef7fc27b09c1cb763099bbe711822a642bc1 | # Copyright 2021, The TensorFlow Federated Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# pytype: skip-file
# This modules disables the Pytype analyzer, see
# https://github.com/tensorflow/federated/blob/main/docs/pytype.md for more
# information.
"""A set of utility methods for serializing Value protos using pybind11 bindings."""
import collections
import os
import os.path
import tempfile
from typing import Any, Collection, List, Mapping, Optional, Sequence, Tuple, Union
import warnings
import zipfile
import numpy as np
import tensorflow as tf
from tensorflow_federated.proto.v0 import computation_pb2
from tensorflow_federated.proto.v0 import executor_pb2
from tensorflow_federated.python.common_libs import py_typecheck
from tensorflow_federated.python.common_libs import structure
from tensorflow_federated.python.common_libs import tracing
from tensorflow_federated.python.core.impl.computation import computation_impl
from tensorflow_federated.python.core.impl.executors import executor_bindings
from tensorflow_federated.python.core.impl.executors import executor_utils
from tensorflow_federated.python.core.impl.types import computation_types
from tensorflow_federated.python.core.impl.types import placements
from tensorflow_federated.python.core.impl.types import type_analysis
from tensorflow_federated.python.core.impl.types import type_conversions
from tensorflow_federated.python.core.impl.types import type_serialization
from tensorflow_federated.python.core.impl.types import type_transformations
from tensorflow_federated.python.core.impl.utils import tensorflow_utils
_SerializeReturnType = Tuple[executor_pb2.Value, computation_types.Type]
_DeserializeReturnType = Tuple[Any, computation_types.Type]
# The maximum size allowed for serialized sequence values. Sequence that
# serialize to values larger than this will result in errors being raised. This
# likely occurs when the sequence is dependent on, and thus pulling in, many of
# variables from the graph.
_DEFAULT_MAX_SERIALIZED_SEQUENCE_SIZE_BYTES = 20 * (1024**2) # 20 MB
class DatasetSerializationError(Exception):
"""Error raised during Dataset serialization or deserialization."""
pass
@tracing.trace
def _serialize_computation(
comp: computation_pb2.Computation,
type_spec: Optional[computation_types.Type]) -> _SerializeReturnType:
"""Serializes a TFF computation."""
type_spec = executor_utils.reconcile_value_type_with_type_spec(
type_serialization.deserialize_type(comp.type), type_spec)
return executor_pb2.Value(computation=comp), type_spec
@tracing.trace
def _serialize_tensor_value(
value: Any, type_spec: computation_types.TensorType
) -> Tuple[executor_pb2.Value, computation_types.TensorType]:
"""Serializes a tensor value into `executor_pb2.Value`.
Args:
value: A Numpy array or other object understood by `tf.make_tensor_proto`.
type_spec: A `tff.TensorType`.
Returns:
A tuple `(value_proto, ret_type_spec)` in which `value_proto` is an instance
of `executor_pb2.Value` with the serialized content of `value`,
and `ret_type_spec` is the type of the serialized value. The `ret_type_spec`
is the same as the argument `type_spec` if that argument was not `None`. If
the argument was `None`, `ret_type_spec` is a type determined from `value`.
Raises:
TypeError: If the arguments are of the wrong types.
ValueError: If the value is malformed.
"""
original_value = value
if tf.is_tensor(value):
if isinstance(value, tf.Variable):
value = value.read_value()
if tf.executing_eagerly():
value = value.numpy()
else:
# Attempt to extract the value using the current graph context.
with tf.compat.v1.Session() as sess:
value = sess.run(value)
# If we got a string or bytes scalar, wrap it in numpy so it has a dtype and
# shape.
if isinstance(value, bytes):
value = np.bytes_(value)
elif isinstance(value, str):
value = np.str_(value)
else:
value = np.asarray(value)
if not tf.TensorShape(value.shape).is_compatible_with(type_spec.shape):
raise TypeError(f'Cannot serialize tensor with shape {value.shape} to '
f'shape {type_spec.shape}.')
if value.dtype != type_spec.dtype.as_numpy_dtype:
try:
value = value.astype(type_spec.dtype.as_numpy_dtype, casting='same_kind')
except TypeError as te:
value_type_string = py_typecheck.type_string(type(original_value))
raise TypeError(
f'Failed to serialize value of Python type {value_type_string} to '
f'a tensor of type {type_spec}.\nValue: {original_value}') from te
return executor_bindings.serialize_tensor_value(value), type_spec
def _serialize_dataset(
dataset,
max_serialized_size_bytes=_DEFAULT_MAX_SERIALIZED_SEQUENCE_SIZE_BYTES):
"""Serializes a `tf.data.Dataset` value into a `bytes` object.
Args:
dataset: A `tf.data.Dataset`.
max_serialized_size_bytes: An `int` size in bytes designating the threshold
on when to raise an error if the resulting serialization is too big.
Returns:
A `bytes` object that can be sent to
`tensorflow_serialization.deserialize_dataset` to recover the original
`tf.data.Dataset`.
Raises:
SerializationError: if there was an error in TensorFlow during
serialization.
"""
py_typecheck.check_type(dataset,
type_conversions.TF_DATASET_REPRESENTATION_TYPES)
dataset_graph = tf.raw_ops.DatasetToGraphV2(
input_dataset=tf.data.experimental.to_variant(dataset))
if tf.executing_eagerly():
dataset_graph_def_bytes = dataset_graph.numpy()
else:
dataset_graph_def_bytes = tf.compat.v1.Session().run(dataset_graph)
if len(dataset_graph_def_bytes) > max_serialized_size_bytes:
raise ValueError('Serialized size of Dataset ({:d} bytes) exceeds maximum '
'allowed ({:d} bytes)'.format(
len(dataset_graph_def_bytes),
max_serialized_size_bytes))
return dataset_graph_def_bytes
def _check_container_compat_with_tf_nest(type_spec: computation_types.Type):
"""Asserts that all `StructTypes` with names have OrderedDict containers."""
def _names_are_in_sorted_order(name_sequence: Sequence[str]) -> bool:
return sorted(name_sequence) == name_sequence
def _check_ordereddict_container_for_struct(type_to_check):
if not type_to_check.is_struct():
return type_to_check, False
# We can't use `dir` here, since it sorts the names before returning. We
# also must filter to names which are actually present.
names_in_sequence_order = structure.name_list(type_to_check)
names_are_sorted = _names_are_in_sorted_order(names_in_sequence_order)
has_no_names = not bool(names_in_sequence_order)
if has_no_names or (names_in_sequence_order and names_are_sorted):
# If alphabetical order matches sequence order, TFF's deserialization will
# traverse the structure correctly; there is no ambiguity here. On the
# other hand, if there are no names, sequence order is the only method of
# traversal, so there is no ambiguity here either.
return type_to_check, False
elif not type_to_check.is_struct_with_python():
raise ValueError('Attempting to serialize a named struct type with '
'ambiguous traversal order (sequence order distinct '
'from alphabetical order) without a Python container; '
'this is an unsafe operation, as TFF cannot determine '
'the intended traversal order after deserializing the '
'proto due to inconsistent behavior of tf.nest.')
container_type = computation_types.StructWithPythonType.get_container_type(
type_to_check)
if (not names_are_sorted) and container_type is not collections.OrderedDict:
raise ValueError('Attempted to serialize a dataset yielding named '
'elements in non-sorted sequence order with '
f'non-OrderedDict container (type {container_type}). '
'This is an ambiguous operation; `tf.nest` behaves in '
'a manner which depends on the Python type of this '
'container, so coercing the dataset reconstructed '
'from the resulting Value proto depends on assuming a '
'single Python type here. Please prefer to use '
'`collections.OrderedDict` containers for the elements '
'your dataset yields.')
return type_to_check, False
type_transformations.transform_type_postorder(
type_spec, _check_ordereddict_container_for_struct)
@tracing.trace
def _serialize_sequence_value(
value: Union[Union[type_conversions.TF_DATASET_REPRESENTATION_TYPES],
List[Any]], type_spec: computation_types.SequenceType
) -> computation_types.SequenceType:
"""Serializes a `tf.data.Dataset` value into `executor_pb2.Value`.
Args:
value: A `tf.data.Dataset`, or equivalent list of values convertible to
(potentially structures of) tensors.
type_spec: A `computation_types.Type` specifying the TFF sequence type of
`value.`
Returns:
A tuple `(value_proto, type_spec)` in which `value_proto` is an instance
of `executor_pb2.Value` with the serialized content of `value`,
and `type_spec` is the type of the serialized value.
"""
if isinstance(value, list):
value = tensorflow_utils.make_data_set_from_elements(
None, value, type_spec.element)
if not isinstance(value, type_conversions.TF_DATASET_REPRESENTATION_TYPES):
raise TypeError(
'Cannot serialize Python type {!s} as TFF type {!s}.'.format(
py_typecheck.type_string(type(value)),
type_spec if type_spec is not None else 'unknown'))
element_type = computation_types.to_type(value.element_spec)
_check_container_compat_with_tf_nest(element_type)
value_type = computation_types.SequenceType(element_type)
if not type_spec.is_assignable_from(value_type):
raise TypeError(
'Cannot serialize dataset with elements of type {!s} as TFF type {!s}.'
.format(value_type, type_spec if type_spec is not None else 'unknown'))
value_proto = executor_pb2.Value()
# TFF must store the type spec here because TF will lose the ordering of the
# names for `tf.data.Dataset` that return elements of
# `collections.abc.Mapping` type. This allows TFF to preserve and restore the
# key ordering upon deserialization.
value_proto.sequence.serialized_graph_def = _serialize_dataset(value)
value_proto.sequence.element_type.CopyFrom(
type_serialization.serialize_type(element_type))
return value_proto, type_spec
@tracing.trace
def _serialize_struct_type(
struct_typed_value: Any,
type_spec: computation_types.StructType,
) -> computation_types.StructType:
"""Serializes a value of tuple type."""
value_structure = structure.from_container(struct_typed_value)
if len(value_structure) != len(type_spec):
raise TypeError('Cannot serialize a struct value of '
f'{len(value_structure)} elements to a struct type '
f'requiring {len(type_spec)} elements. Trying to serialize'
f'\n{struct_typed_value!r}\nto\n{type_spec}.')
type_elem_iter = structure.iter_elements(type_spec)
val_elem_iter = structure.iter_elements(value_structure)
elements = []
for (e_name, e_type), (_, e_val) in zip(type_elem_iter, val_elem_iter):
e_value, _ = serialize_value(e_val, e_type)
if e_name:
element = executor_pb2.Value.Struct.Element(name=e_name, value=e_value)
else:
element = executor_pb2.Value.Struct.Element(value=e_value)
elements.append(element)
value_proto = executor_pb2.Value(
struct=executor_pb2.Value.Struct(element=elements))
return value_proto, type_spec
@tracing.trace
def _serialize_federated_value(
federated_value: Any, type_spec: computation_types.FederatedType
) -> computation_types.FederatedType:
"""Serializes a value of federated type."""
if type_spec.all_equal:
value = [federated_value]
else:
value = federated_value
py_typecheck.check_type(value, list)
value_proto = executor_pb2.Value()
for v in value:
federated_value_proto, it_type = serialize_value(v, type_spec.member)
type_spec.member.check_assignable_from(it_type)
value_proto.federated.value.append(federated_value_proto)
value_proto.federated.type.CopyFrom(
type_serialization.serialize_type(type_spec).federated)
return value_proto, type_spec
@tracing.trace
def serialize_value(
value: Any,
type_spec: Optional[computation_types.Type] = None,
) -> _SerializeReturnType:
"""Serializes a value into `executor_pb2.Value`.
We use a switch/function pattern in the body here (and in `deserialize_value`
below in order to persist more information in traces and profiling.
Args:
value: A value to be serialized.
type_spec: Optional type spec, a `tff.Type` or something convertible to it.
Returns:
A 2-tuple of serialized value and `tff.Type` that represents the TFF type of
the serialized value.
Raises:
TypeError: If the arguments are of the wrong types.
ValueError: If the value is malformed.
"""
type_spec = computation_types.to_type(type_spec)
if isinstance(value, computation_pb2.Computation):
return _serialize_computation(value, type_spec)
elif isinstance(value, computation_impl.ConcreteComputation):
return _serialize_computation(
computation_impl.ConcreteComputation.get_proto(value),
executor_utils.reconcile_value_with_type_spec(value, type_spec))
elif type_spec is None:
raise TypeError('A type hint is required when serializing a value which '
'is not a TFF computation. Asked to serialized value {v} '
' of type {t} with None type spec.'.format(
v=value, t=type(value)))
elif type_spec.is_tensor():
return _serialize_tensor_value(value, type_spec)
elif type_spec.is_sequence():
return _serialize_sequence_value(value, type_spec)
elif type_spec.is_struct():
return _serialize_struct_type(value, type_spec)
elif type_spec.is_federated():
return _serialize_federated_value(value, type_spec)
else:
raise ValueError(
'Unable to serialize value with Python type {} and {} TFF type.'.format(
str(py_typecheck.type_string(type(value))),
str(type_spec) if type_spec is not None else 'unknown'))
@tracing.trace
def _deserialize_computation(
value_proto: executor_pb2.Value) -> _DeserializeReturnType:
"""Deserializes a TFF computation."""
return (value_proto.computation,
type_serialization.deserialize_type(value_proto.computation.type))
@tracing.trace
def _deserialize_tensor_value(
value_proto: executor_pb2.Value) -> _DeserializeReturnType:
"""Deserializes a tensor value from `.Value`.
Args:
value_proto: An instance of `executor_pb2.Value`.
Returns:
A tuple `(value, type_spec)`, where `value` is a Numpy array that represents
the deserialized value, and `type_spec` is an instance of `tff.TensorType`
that represents its type.
Raises:
TypeError: If the arguments are of the wrong types.
ValueError: If the value is malformed.
"""
value = executor_bindings.deserialize_tensor_value(value_proto)
value_type = computation_types.TensorType(
dtype=value.dtype, shape=value.shape)
if not value.shape:
# Unwrap the scalar array as just a primitive numeric.
value = value.dtype.type(value)
return value, value_type
def _deserialize_dataset_from_zipped_saved_model(serialized_bytes):
"""Deserializes a zipped SavedModel `bytes` object to a `tf.data.Dataset`.
DEPRECATED: this method is deprecated and replaced by
`_deserialize_dataset_from_graph_def`.
Args:
serialized_bytes: `bytes` object produced by older versions of
`tensorflow_serialization.serialize_dataset` that produced zipped
SavedModel `bytes` strings.
Returns:
A `tf.data.Dataset` instance.
Raises:
SerializationError: if there was an error in TensorFlow during
serialization.
"""
py_typecheck.check_type(serialized_bytes, bytes)
temp_dir = tempfile.mkdtemp('dataset')
fd, temp_zip = tempfile.mkstemp('zip')
os.close(fd)
try:
with open(temp_zip, 'wb') as f:
f.write(serialized_bytes)
with zipfile.ZipFile(temp_zip, 'r') as z:
z.extractall(path=temp_dir)
loaded = tf.saved_model.load(temp_dir)
# TODO(b/156302055): Follow up here when bug is resolved, either remove
# if this function call stops failing by default, or leave if this is
# working as intended.
with tf.device('cpu'):
ds = loaded.dataset_fn()
except Exception as e: # pylint: disable=broad-except
raise DatasetSerializationError(
'Error deserializing tff.Sequence value. Inner error: {!s}'.format(
e)) from e
finally:
tf.io.gfile.rmtree(temp_dir)
tf.io.gfile.remove(temp_zip)
return ds
def _deserialize_dataset_from_graph_def(serialized_graph_def: bytes,
element_type: computation_types.Type):
"""Deserializes a serialized `tf.compat.v1.GraphDef` to a `tf.data.Dataset`.
Args:
serialized_graph_def: `bytes` object produced by
`tensorflow_serialization.serialize_dataset`
element_type: a `tff.Type` object representing the type structure of the
elements yielded from the dataset.
Returns:
A `tf.data.Dataset` instance.
"""
py_typecheck.check_type(element_type, computation_types.Type)
type_analysis.check_tensorflow_compatible_type(element_type)
def transform_to_tff_known_type(
type_spec: computation_types.Type) -> Tuple[computation_types.Type, bool]:
"""Transforms `StructType` to `StructWithPythonType`."""
if type_spec.is_struct() and not type_spec.is_struct_with_python():
field_is_named = tuple(
name is not None for name, _ in structure.iter_elements(type_spec))
has_names = any(field_is_named)
is_all_named = all(field_is_named)
if is_all_named:
return computation_types.StructWithPythonType(
elements=structure.iter_elements(type_spec),
container_type=collections.OrderedDict), True
elif not has_names:
return computation_types.StructWithPythonType(
elements=structure.iter_elements(type_spec),
container_type=tuple), True
else:
raise TypeError('Cannot represent TFF type in TF because it contains '
f'partially named structures. Type: {type_spec}')
return type_spec, False
if element_type.is_struct():
# TF doesn't support `structure.Struct` types, so we must transform the
# `StructType` into a `StructWithPythonType` for use as the
# `tf.data.Dataset.element_spec` later.
tf_compatible_type, _ = type_transformations.transform_type_postorder(
element_type, transform_to_tff_known_type)
else:
# We've checked this is only a struct or tensors, so we know this is a
# `TensorType` here and will use as-is.
tf_compatible_type = element_type
def type_to_tensorspec(t: computation_types.TensorType) -> tf.TensorSpec:
return tf.TensorSpec(shape=t.shape, dtype=t.dtype)
element_spec = type_conversions.structure_from_tensor_type_tree(
type_to_tensorspec, tf_compatible_type)
ds = tf.data.experimental.from_variant(
tf.raw_ops.DatasetFromGraph(graph_def=serialized_graph_def),
structure=element_spec)
# If a serialized dataset had elements of nested structes of tensors (e.g.
# `dict`, `OrderedDict`), the deserialized dataset will return `dict`,
# `tuple`, or `namedtuple` (loses `collections.OrderedDict` in a conversion).
#
# Since the dataset will only be used inside TFF, we wrap the dictionary
# coming from TF in an `OrderedDict` when necessary (a type that both TF and
# TFF understand), using the field order stored in the TFF type stored during
# serialization.
return tensorflow_utils.coerce_dataset_elements_to_tff_type_spec(
ds, tf_compatible_type)
@tracing.trace
def _deserialize_sequence_value(
sequence_value_proto: executor_pb2.Value.Sequence,
type_hint: Optional[computation_types.Type] = None
) -> _DeserializeReturnType:
"""Deserializes a `tf.data.Dataset`.
Args:
sequence_value_proto: `Sequence` protocol buffer message.
type_hint: A `computation_types.Type` that hints at what the value type
should be for executors that only return values. If the
`sequence_value_proto.element_type` field was not set, the `type_hint` is
used instead.
Returns:
A tuple of `(tf.data.Dataset, tff.Type)`.
"""
if sequence_value_proto.HasField('element_type'):
element_type = type_serialization.deserialize_type(
sequence_value_proto.element_type)
elif type_hint is not None:
element_type = type_hint.element
else:
raise ValueError(
'Cannot deserialize a sequence Value proto that without one of '
'`element_type` proto field or `element_type_hint`')
which_value = sequence_value_proto.WhichOneof('value')
if which_value == 'zipped_saved_model':
warnings.warn(
'Deserializng a sequence value that was encoded as a zipped SavedModel.'
' This is a deprecated path, please update the binary that is '
'serializing the sequences.', DeprecationWarning)
ds = _deserialize_dataset_from_zipped_saved_model(
sequence_value_proto.zipped_saved_model)
ds = tensorflow_utils.coerce_dataset_elements_to_tff_type_spec(
ds, element_type)
elif which_value == 'serialized_graph_def':
ds = _deserialize_dataset_from_graph_def(
sequence_value_proto.serialized_graph_def, element_type)
else:
raise NotImplementedError(
'Deserializing Sequences enocded as {!s} has not been implemented'
.format(which_value))
return ds, computation_types.SequenceType(element=element_type)
@tracing.trace
def _deserialize_struct_value(
value_proto: executor_pb2.Value,
type_hint: Optional[computation_types.Type] = None
) -> _DeserializeReturnType:
"""Deserializes a value of struct type."""
val_elems = []
type_elems = []
if type_hint is not None:
element_types = tuple(type_hint)
else:
element_types = [None] * len(value_proto.struct.element)
for e, e_type in zip(value_proto.struct.element, element_types):
name = e.name if e.name else None
e_val, e_type = deserialize_value(e.value, e_type)
val_elems.append((name, e_val))
type_elems.append((name, e_type) if name else e_type)
return (structure.Struct(val_elems), computation_types.StructType(type_elems))
def _ensure_deserialized_types_compatible(
previous_type: Optional[computation_types.Type],
next_type: computation_types.Type) -> computation_types.Type:
"""Ensures one of `previous_type` or `next_type` is assignable to the other.
Returns the type which is assignable from the other.
Args:
previous_type: Instance of `computation_types.Type` or `None`.
next_type: Instance of `computation_types.Type`.
Returns:
The supertype of `previous_type` and `next_type`.
Raises:
TypeError if neither type is assignable from the other.
"""
if previous_type is None:
return next_type
else:
if next_type.is_assignable_from(previous_type):
return next_type
elif previous_type.is_assignable_from(next_type):
return previous_type
raise TypeError('Type mismatch checking member assignability under a '
'federated value. Deserialized type {} is incompatible '
'with previously deserialized {}.'.format(
next_type, previous_type))
@tracing.trace
def _deserialize_federated_value(
value_proto: executor_pb2.Value,
type_hint: Optional[computation_types.Type] = None
) -> _DeserializeReturnType:
"""Deserializes a value of federated type."""
if not value_proto.federated.value:
raise ValueError('Attempting to deserialize federated value with no data.')
# The C++ runtime doesn't use the `all_equal` boolean (and doesn't report it
# in returned values), however the type_hint on the computation may contain
# it.
if type_hint is not None:
all_equal = type_hint.all_equal
else:
all_equal = value_proto.federated.type.all_equal
placement_uri = value_proto.federated.type.placement.value.uri
# item_type will represent a supertype of all deserialized member types in the
# federated value. This will be the hint used for deserialize member values.
if type_hint is not None:
item_type_hint = type_hint.member
else:
item_type_hint = None
item_type = None
if all_equal:
# As an optimization, we only deserialize the first value of an
# `all_equal=True` federated value.
items = [value_proto.federated.value[0]]
else:
items = value_proto.federated.value
value = []
for item in items:
item_value, next_item_type = deserialize_value(item, item_type_hint)
item_type = _ensure_deserialized_types_compatible(item_type, next_item_type)
value.append(item_value)
type_spec = computation_types.FederatedType(
item_type,
placement=placements.uri_to_placement_literal(placement_uri),
all_equal=all_equal)
if all_equal:
value = value[0]
return value, type_spec
@tracing.trace
def deserialize_value(
value_proto: executor_pb2.Value,
type_hint: Optional[computation_types.Type] = None
) -> _DeserializeReturnType:
"""Deserializes a value (of any type) from `executor_pb2.Value`.
Args:
value_proto: An instance of `executor_pb2.Value`.
type_hint: A `comptuations_types.Type` that hints at what the value type
should be for executors that only return values.
Returns:
A tuple `(value, type_spec)`, where `value` is a deserialized
representation of the transmitted value (e.g., Numpy array, or a
`pb.Computation` instance), and `type_spec` is an instance of
`tff.TensorType` that represents its type.
Raises:
TypeError: If the arguments are of the wrong types.
ValueError: If the value is malformed.
"""
if not hasattr(value_proto, 'WhichOneof'):
raise TypeError('`value_proto` must be a protocol buffer message with a '
'`value` oneof field.')
which_value = value_proto.WhichOneof('value')
if which_value == 'tensor':
return _deserialize_tensor_value(value_proto)
elif which_value == 'computation':
return _deserialize_computation(value_proto)
elif which_value == 'sequence':
return _deserialize_sequence_value(value_proto.sequence, type_hint)
elif which_value == 'struct':
return _deserialize_struct_value(value_proto, type_hint)
elif which_value == 'federated':
return _deserialize_federated_value(value_proto, type_hint)
else:
raise ValueError(
'Unable to deserialize a value of type {}.'.format(which_value))
CardinalitiesType = Mapping[placements.PlacementLiteral, int]
def serialize_cardinalities(
cardinalities: CardinalitiesType) -> List[executor_pb2.Cardinality]:
serialized_cardinalities = []
for placement, cardinality in cardinalities.items():
cardinality_message = executor_pb2.Cardinality(
placement=computation_pb2.Placement(uri=placement.uri),
cardinality=cardinality)
serialized_cardinalities.append(cardinality_message)
return serialized_cardinalities
def deserialize_cardinalities(
serialized_cardinalities: Collection[executor_pb2.Cardinality]
) -> CardinalitiesType:
cardinalities_dict = {}
for cardinality_spec in serialized_cardinalities:
literal = placements.uri_to_placement_literal(
cardinality_spec.placement.uri)
cardinalities_dict[literal] = cardinality_spec.cardinality
return cardinalities_dict
|
py | 1a39efc164cd0e339f9d879a1bf7c35098b436e4 | #!/usr/bin/env python3
"""
Utility functions for testing.
"""
import copy
import numpy as np
SEED = 42
def round_dict(d, precision=3):
"""Round all numerical values in a dictionary recursively."""
d = copy.deepcopy(d)
if isinstance(d, dict):
for k, v in d.items():
try:
d[k] = round(v, precision)
except TypeError:
d[k] = round_dict(v)
return d
elif isinstance(d, list):
return [round_dict(v) for v in d]
elif isinstance(d, tuple):
return tuple([round_dict(v) for v in d])
return d
def random_real_series(x, add_null=False, limit_from=0, limit_to=5, seed=SEED):
np.random.seed(seed)
s = np.random.normal(x['mean'], x['std'], size=limit_to)
s = np.minimum(np.maximum(s, x['minValue']), x['maxValue'])
if add_null and len(s):
s[np.random.choice(limit_to)] = None
return list(s)[limit_from:]
def random_integer_series(x, **kwargs):
s = random_real_series(x, **kwargs)
return [int(e) if e is not None else None for e in s]
def random_nominal_series(x, add_null=False, limit_from=0, limit_to=5, seed=SEED):
np.random.seed(seed)
s = np.random.choice(x['type']['enumeration'], size=limit_to)
if add_null and len(s):
s[np.random.choice(limit_to)] = None
return list(s)[limit_from:]
def independent(include_real=True, include_integer=True, include_nominal=False, **kwargs):
if 'add_independent_null' in kwargs:
kwargs['add_null'] = kwargs.pop('add_independent_null')
ret = []
if include_real:
x = {
'name': 'subjectage',
'type': {
'name': 'real'
},
'series': [],
'mean': 70.4,
'std': 8.3,
'minValue': 30.,
'maxValue': 90.,
'label': 'Exact age'
}
x['series'] = random_real_series(x, seed=1, **kwargs)
ret.append(x)
if include_integer:
x = {
'name': 'minimentalstate',
'type': {
'name': 'integer'
},
'series': [],
'mean': 24.4,
'std': 5.2,
'minValue': 0,
'maxValue': 30,
'label': 'MMSE Total scores'
}
x['series'] = random_integer_series(x, seed=2, **kwargs)
ret.append(x)
if include_nominal:
x = {
'name': 'agegroup',
'type': {
'name': 'polynominal',
'enumeration': ['-50y', '50-59y']
},
'label': 'Age Group',
'series': []
}
x['series'] = random_nominal_series(x, seed=3, **kwargs)
ret.append(x)
return ret
def inputs_regression(add_null=False, limit_from=0, limit_to=5, **kwargs):
x = {
'name': 'lefthippocampus',
'label': 'Left Hippocampus',
'type': {
'name': 'real'
},
'series': [],
'mean': 3.,
'std': 0.39,
'minValue': 1.,
'maxValue': 5.,
}
x['series'] = random_real_series(x, seed=4, add_null=add_null, limit_from=limit_from, limit_to=limit_to)
return {
'data': {
'dependent': [x],
'independent': independent(limit_from=limit_from, limit_to=limit_to, **kwargs)
},
'parameters': []
}
def inputs_classification(add_null=False, limit_from=0, limit_to=5, **kwargs):
x = {
'name': 'adnicategory',
'label': 'ADNI category',
'type': {
'name': 'polynominal',
'enumeration': ['AD', 'CN', 'Other'],
'enumeration_labels': ['Alzheimers disease', 'Cognitively Normal', 'Other']
},
'series': []
}
x['series'] = random_nominal_series(x, seed=5, add_null=add_null, limit_from=limit_from, limit_to=limit_to)
return {
'data': {
'dependent': [x],
'independent': independent(limit_from=limit_from, limit_to=limit_to, **kwargs)
},
'parameters': []
}
|
py | 1a39f04e988e6466059ad098998e977b4b610afe | import random
import os.path
import sys
import logging
import gtk
import gs
import gs.ui.rtgraph as rtgraph
import gs.config as config
LOG = logging.getLogger("graph")
class FieldChannel(rtgraph.Channel):
def __init__(self, msg, field):
rtgraph.Channel.__init__(self)
i = 0
for f in msg.fields:
if f.name == field.name:
self._fidx = i
i += 1
self._val = 0
def getValue(self):
return self._val
def update_msg_value(self, vals):
self._val = vals[self._fidx]
class RandomChannel(FieldChannel):
def getValue(self):
return random.random()
class Graph(rtgraph.HScrollLineGraph):
def __init__(self, source, msg, field, double_buffer, ymin=0.0, ymax=1.0, width=150, height=50, rate=30):
rtgraph.HScrollLineGraph.__init__(self,
scrollRate=rate,
size=(width,height),
range=(ymin,ymax),
autoScale=True,
axisLabel=True,
channels=[FieldChannel(msg, field)],
doubleBuffer=double_buffer
)
self._source = source
self._source.register_interest(self._on_msg, 0, msg.name)
def _on_msg(self, msg, header, payload):
vals = msg.unpack_values(payload)
for f in self.channels:
f.update_msg_value(vals)
def get_scroll_rate_widget(self):
return self.getTweakControls()[0]
def delete(self):
self._source.unregister_interest(self._on_msg)
class _GraphRange(gtk.VBox):
def __init__(self, graph):
gtk.VBox.__init__(self)
graph.connect("range-changed", self._on_range_changed)
mal = gtk.Label("Max:")
self.maxadj = gtk.Adjustment()
self._update_adjustment(self.maxadj)
masb = gtk.SpinButton(self.maxadj)
masb.props.digits = 1
self.maxadj.connect("value-changed", self._on_adj_changed, graph, 1)
mil = gtk.Label("Min:")
self.minadj = gtk.Adjustment()
self._update_adjustment(self.minadj)
misb = gtk.SpinButton(self.minadj)
misb.props.digits = 1
self.minadj.connect("value-changed", self._on_adj_changed, graph, 0)
self.pack_start(mal, False)
self.pack_start(masb, False)
self.pack_start(mil, False)
self.pack_start(misb, False)
def _update_adjustment(self, adj, value=0.0, lower=0.0, upper=0.0):
adj.lower = lower
adj.page_increment = 1.0
adj.step_increment = 0.1
adj.upper = upper
adj.value = value
def _on_range_changed(self, graph, min_, max_):
self._update_adjustment(self.maxadj, value=max_, lower=min_, upper=(max_*1.5))
self._update_adjustment(self.minadj, value=min_, lower=(min_*1.5), upper=max_)
def _on_adj_changed(self, adj, graph, idx):
graph.handler_block_by_func(self._on_range_changed)
graph.rescale(adj.get_value(), idx)
graph.handler_unblock_by_func(self._on_range_changed)
class GraphHolder(gtk.HBox):
"""
Composite widget holding a rtgraph and controls
graph is a hbox:
frame |
[\___ ] | vertical buttons (pause, remove, etc)
[ \ ] | range widgets
"""
def __init__(self, g, name, adjustable, on_pause, on_print, on_remove, on_fullscreen, on_log_data):
gtk.HBox.__init__(self, spacing=5)
self.graph = g
frame = gtk.Frame(name)
vb = gtk.VBox()
vb.pack_start(g, True, True)
tweak = None
if adjustable:
tweak = g.get_scroll_rate_widget()
vb.pack_start(tweak.widget, False, False)
frame.add(vb)
self.pack_start(frame)
vb = gtk.VBox()
bbox = gtk.VButtonBox()
bbox.set_layout(gtk.BUTTONBOX_END)
vb.pack_start(bbox, True, True)
if on_pause:
b = gs.ui.get_button(stock=gtk.STOCK_MEDIA_PAUSE, xalign=0)
b.connect("clicked", on_pause, tweak)
bbox.pack_start(b, False, False)
if on_print:
b = gs.ui.get_button(stock=gtk.STOCK_PRINT, xalign=0)
b.connect("clicked", on_print, g, name)
bbox.pack_start(b, False, False)
if on_remove:
b = gs.ui.get_button(stock=gtk.STOCK_REMOVE, xalign=0)
b.connect("clicked", on_remove, name)
bbox.pack_start(b, False, False)
if on_fullscreen:
b = gs.ui.get_button(stock=gtk.STOCK_FULLSCREEN, xalign=0)
b.connect("clicked", on_fullscreen, name)
bbox.pack_start(b, False, False)
if on_log_data:
b = gs.ui.get_button("Log Message",image_stock=gtk.STOCK_FILE, xalign=0)
b.connect("clicked", on_log_data, name)
bbox.pack_start(b, False, False)
if adjustable:
r = _GraphRange(g)
vb.pack_start(r, False, False)
self.pack_start(vb, False, False)
self.show_all()
class GraphManager(config.ConfigurableIface):
CONFIG_SECTION = "GRAPHMANAGER"
def __init__(self, conf, source, messages, box, main_window):
config.ConfigurableIface.__init__(self, conf)
self._source = source
self._messages = messages
self._box = box
self._main_window = main_window
self._graphs = {}
def _on_log_data(self, sender, name):
self._source.register_csv_logger(None, name.split(':')[0])
def _on_pause(self, sender, tweakScrollRate):
if tweakScrollRate:
tweakScrollRate.setValue(0)
tweakScrollRate.refresh()
def _on_remove(self, sender, name):
gh = self._graphs[name]
gh.graph.delete()
self._box.remove(gh)
del(self._graphs[name])
def _on_print(self, sender, graph, name):
def on_print_page(operation, context, page_nr):
cr = context.get_cairo_context()
graph.drawIntoCairoContext(cr, name=name)
print_op = gtk.PrintOperation()
print_op.set_n_pages(1)
print_op.connect("draw_page", on_print_page)
res = print_op.run(gtk.PRINT_OPERATION_ACTION_PRINT_DIALOG, None)
def _on_fs_window_closed(self, widget, event, name, btn):
gh = self._graphs[name]
gh.hide()
gh.reparent(self._box)
gh.show_all()
btn.set_sensitive(True)
def _on_fullscreen(self, btn, name):
gh = self._graphs[name]
w = gtk.Window()
w.connect("delete-event", self._on_fs_window_closed, name, btn)
w.set_title(name)
gh.hide()
gh.reparent(w)
w.show_all()
btn.set_sensitive(False)
def update_state_from_config(self):
num = self.config_get("num_graphs", 0)
if num:
LOG.info("Restoring %s graphs" % num)
for i in range(0, int(num)):
name = self.config_get("graph_%d" % i, ":")
try:
msg_name, field_name = name.split(":")
if msg_name and field_name:
msg = self._messages.get_message_by_name(msg_name)
field = msg.get_field_by_name(field_name)
if msg and field:
self.add_graph(msg, field)
except Exception:
LOG.warn("Error adding graph", exc_info=True)
def update_config_from_state(self):
self.config_delete_keys_in_section()
num = 0
for name in self._graphs:
self.config_set("graph_%d" % num, name)
num += 1
LOG.info("Saved %s graphs" % num)
self.config_set("num_graphs", num)
def add_graph(self, msg, field, adjustable=True, double_buffer=False):
name = "%s:%s" % (msg.name, field.name)
if name not in self._graphs:
LOG.info("Adding graph: %s" % name)
gh = GraphHolder(
Graph(self._source, msg, field, double_buffer),
name,
adjustable,
self._on_pause,
self._on_print,
self._on_remove,
self._on_fullscreen,
self._on_log_data)
self._box.pack_start(gh)
self._graphs[name] = gh
|
py | 1a39f0ac1b52e80601d37b28ec8d2bbc57258c03 | #!/usr/bin/env python3
# coding: utf8
"""
Description:
Using fasta files (scaffold/chromosme/contig file, protein file), gff file, annotation tsv file and the species name
this script writes a genbank file.
The annotation tsv file contains association between gene and annotation (EC number, GO term, Interpro)
to add information to the genbank.
The species name needs to be compatible with the taxonomy of the EBI.
Informations need a good formating:
gene ID should be correctly written (like XXX_001 and no XXX_1 if you got more thant 100 genes).
Currently when there is multiple GO terms/InterPro/EC the script split them when they are separated by ";" or by "," like GO:0006979;GO:0020037;GO:0004601,
if you use another separator add to the re.split(',|;').
For the gff file ensure that the element start position is at least 1.
If it's 0 gffutils will return an error (source : https://github.com/daler/gffutils/issues/104).
Other informations can be added by adding a dictionary with gene ID as key and the information
as value and adapt the condition used for the others annotations (EC, Interpro, Go term).
Usage:
gbk_creator_from_gff.py -fg <Genome fasta file> -fp <Protein Fasta file> -a <Annotation TSV file> -g <GFF file> -s <Species name> -o <GBK Output file name>
"""
import argparse
import datetime
import gffutils
import numpy as np
import os
import pandas as pa
import pronto
import re
import requests
import shutil
from Bio import SeqFeature as sf
from Bio import SeqIO
from Bio.Seq import Seq
from Bio.SeqRecord import SeqRecord
from collections import OrderedDict
try:
from Bio.Alphabet import IUPAC
except ImportError:
IUPAC = None
def merging_mini_gff(gff_folder):
"""
Merge multiple gff files into one.
Return the path to the merged file.
"""
mini_gff_path = os.path.dirname(os.path.realpath(os.listdir(gff_folder)[0])) + "/" + gff_folder + "/"
gff_merged_path = mini_gff_path + 'merged_gff.gff'
with open(gff_merged_path, 'w') as gff_file_merged:
gff_files = os.listdir(gff_folder)
gff_files.remove('merged_gff.gff')
for mini_gff in gff_files:
with open(mini_gff_path + mini_gff, 'rb') as mini_gff_file:
shutil.copyfileobj(mini_gff_file, gff_file_merged)
return gff_merged_path
def create_GO_dataframes():
"""
Use pronto to query the Gene Ontology and to create the Ontology.
Create a dataframe which contains for all GO terms their GO namespaces (molecular_function, ..).
Create a second dataframe containing alternative ID for some GO terms (deprecated ones).
"""
go_ontology = pronto.Ontology('http://purl.obolibrary.org/obo/go/go-basic.obo')
# For each GO terms look to the namespaces associated with them.
go_namespaces = {}
for go_term in go_ontology:
if 'GO:' in go_term:
go_namespaces[go_term] = go_ontology[go_term].namespace
df_go_namespace = pa.DataFrame.from_dict(go_namespaces, orient='index')
df_go_namespace.reset_index(inplace=True)
df_go_namespace.columns = ['GO', 'namespace']
# For each GO terms look if there is an alternative ID fo them.
go_alt_ids = {}
for go_term in go_ontology:
if go_ontology[go_term].alternate_ids != frozenset():
for go_alt in go_ontology[go_term].alternate_ids:
go_alt_ids[go_alt] = go_term
df_go_alternative = pa.DataFrame.from_dict(go_alt_ids, orient='index')
df_go_alternative.reset_index(inplace=True)
df_go_alternative.columns = ['GO', 'alternative_GO']
return df_go_namespace, df_go_alternative
def create_taxonomic_data(species_name):
"""
Query the EBI with the species name to create a dictionary containing taxon id,
taxonomy and some other informations.
"""
species_informations = {}
species_name_url = species_name.replace(' ', '%20')
url = 'https://www.ebi.ac.uk/ena/data/taxonomy/v1/taxon/scientific-name/' + species_name_url
response = requests.get(url)
temp_species_informations = response.json()[0]
for temp_species_information in temp_species_informations:
if temp_species_information == 'lineage':
species_informations['taxonomy'] = temp_species_informations[temp_species_information].split('; ')[:-1]
elif temp_species_information == 'division':
species_informations['data_file_division'] = temp_species_informations[temp_species_information]
elif temp_species_information == 'taxId':
species_informations['db_xref'] = 'taxon:' + str(temp_species_informations[temp_species_information])
else:
species_informations[temp_species_information] = temp_species_informations[temp_species_information]
compatible_species_name = species_name.replace('/', '_')
species_informations['description'] = compatible_species_name + ' genome'
species_informations['organism'] = compatible_species_name
species_informations['keywords'] = [compatible_species_name]
return species_informations
def find_column_of_interest(df):
'''
Gene column is supposed to be the first one.
Detect columns containing GO number, EC number and Interpro ID.
To do this, regular expression are used, for each types of data.
The occurrence of each regular expression is counted.
Then the column containing the maximum of occurrence for a type of data is associated with it by returning it's name.
'''
columns = df.columns.tolist()
gene_column = columns[0]
go_number_expression = r"[FPC]?:?GO[:_][\d]{7}"
ec_expression = r"[Ee]?[Cc]?:?[\d]{1}[\.]{1}[\d]{,2}[\.]{,1}[\d]{,2}[\.]{,1}[\d]{,3}"
ipr_expression = r"IPR[\d]{6}"
go_number_columns = {}
ec_columns = {}
ipr_columns = {}
for column in columns:
df[column] = df[column].astype(str)
go_number_columns[column] = len(df[df[column].str.match(go_number_expression)])
ec_columns[column] = len(df[df[column].str.match(ec_expression)])
ipr_columns[column] = len(df[df[column].str.match(ipr_expression)])
if go_number_columns:
go_number_column = max(go_number_columns, key=go_number_columns.get)
go_column = go_number_column
if ec_columns != []:
ec_column = max(ec_columns, key=ec_columns.get)
else:
ec_column = np.nan
if ipr_columns != []:
ipr_column = max(ipr_columns, key=ipr_columns.get)
else:
ipr_column = np.nan
return gene_column, go_column, ec_column, ipr_column
def contig_info(contig_id, contig_seq, species_informations):
"""
Create contig information from species_informations dictionary and contig id and contig seq.
"""
record = SeqRecord(contig_seq, id=contig_id, name=contig_id,
description=species_informations['description'],
annotations={"molecule_type": "DNA"})
if IUPAC:
record.seq.alphabet = IUPAC.ambiguous_dna
if 'data_file_division' in species_informations:
record.annotations['data_file_division'] = species_informations['data_file_division']
record.annotations['date'] = datetime.date.today().strftime('%d-%b-%Y').upper()
if 'topology' in species_informations:
record.annotations['topology'] = species_informations['topology']
record.annotations['accessions'] = contig_id
if 'organism' in species_informations:
record.annotations['organism'] = species_informations['organism']
# Use of literal_eval for taxonomy and keywords to retrieve list.
if 'taxonomy' in species_informations:
record.annotations['taxonomy'] = species_informations['taxonomy']
if 'keywords' in species_informations:
record.annotations['keywords'] = species_informations['keywords']
if 'source' in species_informations:
record.annotations['source'] = species_informations['source']
new_feature_source = sf.SeqFeature(sf.FeatureLocation(1-1,
len(contig_seq)),
type="source")
new_feature_source.qualifiers['scaffold'] = contig_id
if 'isolate' in species_informations:
new_feature_source.qualifiers['isolate'] = species_informations['isolate']
# db_xref corresponds to the taxon NCBI ID.
# Important if you want to use Pathway Tools after.
if 'db_xref' in species_informations:
new_feature_source.qualifiers['db_xref'] = species_informations['db_xref']
if 'cell_type' in species_informations:
new_feature_source.qualifiers['cell_type'] = species_informations['cell_type']
if 'dev_stage' in species_informations:
new_feature_source.qualifiers['dev_stage'] = species_informations['dev_stage']
if 'mol_type' in species_informations:
new_feature_source.qualifiers['mol_type'] = species_informations['mol_type']
record.features.append(new_feature_source)
return record
def strand_change(input_strand):
"""
The input is strand in str ('-', '+') modify it to be a strand in int (-1, +1) to
be compatible with SeqIO strand reading.
"""
if isinstance(input_strand, str):
if input_strand == '-':
new_strand = -1
elif input_strand == '+':
new_strand = +1
if input_strand == '.':
new_strand = None
elif input_strand == '?':
new_strand = 0
elif isinstance(input_strand, int):
if input_strand == -1:
new_strand = input_strand
elif input_strand == +1:
new_strand = input_strand
return new_strand
def search_and_add_RNA(gff_database, gene_informations, record, type_RNA):
"""
Search in the gff_database if the gene have RNA of the (type_RNA).
For the RNA it will add a feature to the contig record of the genbank.
Then it returns the contig record.
gene_informations contain:
[0] -> gene feature
[1] -> gene ID cleaned
[2] -> gene start position
[3] -> gene end postion
[4] -> gene strand modified (str -> int)
"""
for rna in gff_database.children(gene_informations[0], featuretype=type_RNA, order_by='start'):
new_feature_RNA = sf.SeqFeature(sf.FeatureLocation(gene_informations[2],
gene_informations[3],
gene_informations[4]),
type=type_RNA)
new_feature_RNA.qualifiers['locus_tag'] = gene_informations[1]
record.features.append(new_feature_RNA)
return record
def search_and_add_pseudogene(gff_database, gene, record, df_exons, gene_protein_seq):
"""
Search in the gff_database if the gene is a pseudogene.
Add it to the record.
"""
location_exons = []
for pseudogene in gff_database.children(gene, featuretype="pseudogene", order_by='start'):
# Select exon corresponding to the gene.
# Then iterate for each exon and extract information.
df_temp = df_exons[df_exons['gene_id'] == pseudogene.id]
for _, row in df_temp.iterrows():
new_feature_location_exons = sf.FeatureLocation(row['start'],
row['end'],
row['strand'])
location_exons.append(new_feature_location_exons)
if location_exons and len(location_exons)>=2:
exon_compound_locations = sf.CompoundLocation(location_exons, operator='join')
new_feature_cds = sf.SeqFeature(exon_compound_locations, type='CDS')
else:
start_position = gene.start -1
end_position = gene.end
strand = strand_change(gene.strand)
new_feature_cds = sf.SeqFeature(sf.FeatureLocation(start_position,
end_position,
strand),
type="CDS")
new_feature_cds.qualifiers['translation'] = gene_protein_seq[pseudogene.id]
new_feature_cds.qualifiers['locus_tag'] = gene.id
new_feature_cds.qualifiers['pseudo'] = None
record.features.append(new_feature_cds)
return record
def gff_to_gbk(genome_fasta, prot_fasta, annot_table, gff_file, species_name, gbk_out):
"""
From a genome fasta (containing each contigs of the genome),
a protein fasta (containing each protein sequence),
an annotation table (containing gene name associated with GO terms, InterPro and EC),
a gff file (containing gene, exon, mRNA, ncRNA, tRNA),
a contig information table (containing species name, taxon ID, ..)
create a genbank file.
"""
print('Creating GFF database (gffutils)')
# Create the gff database file.
# gffutils use sqlite3 file-based database to access data inside GFF.
# ':memory:' ask gffutils to keep database in memory instead of writting in a file.
gff_database = gffutils.create_db(gff_file, ':memory:', force=True, keep_order=True, merge_strategy='merge', sort_attribute_values=True)
# Length of your gene ID.
# Catch it in the GFF database.
# It's pretty dumb as we go into a loop for one information.
# But I don't find another way to catch the length of gene_id.
length_gene_id = 0
for gene in gff_database.features_of_type('gene'):
length_gene_id = len(gene.id.replace('gene:', ''))
break
# Get the longest contig ID to check if all contig IDs have the
# same length, if not add 0 (at the supposed position of the number).
longest_contig_id = ""
for contig_for_length_id in gff_database.features_of_type('sequence_assembly'):
if len(longest_contig_id) < len(contig_for_length_id.id):
longest_contig_id = contig_for_length_id.id
print('Formatting fasta and annotation file')
# Dictionary with scaffold/chromosome id as key and sequence as value.
contig_seqs = OrderedDict()
for record in SeqIO.parse(genome_fasta, "fasta"):
id_contig = record.id
contig_seqs[id_contig] = record.seq
# Dictionary with gene id as key and protein sequence as value.
gene_protein_seq = {}
for record in SeqIO.parse(prot_fasta, "fasta"):
gene_protein_seq[record.id] = record.seq
# Create a taxonomy dictionary querying the EBI.
species_informations = create_taxonomic_data(species_name)
# Read a tsv file containing GO terms, Interpro and EC associated with gene name.
mapping_data = pa.read_csv(annot_table, sep='\t')
mapping_data.replace(np.nan, '', inplace=True)
gene_column, go_column, ec_column, ipr_column = find_column_of_interest(mapping_data)
mapping_data.set_index(gene_column, inplace=True)
# Dictionary with gene id as key and GO terms/Interpro/EC as value.
annot_GOs = mapping_data[go_column].to_dict()
annot_IPRs = mapping_data[ipr_column].to_dict()
annot_ECs = mapping_data[ec_column].to_dict()
# Query Gene Ontology to extract namespaces and alternative IDs.
df_go_namespace, df_go_alternative = create_GO_dataframes()
# Dictionary GO id as term and GO namespace as value.
df_go_namespace.set_index('GO', inplace=True)
go_namespaces = df_go_namespace['namespace'].to_dict()
# Dictionary GO id as term and GO alternatives id as value.
df_go_alternative.set_index('GO', inplace=True)
go_alternatives = df_go_alternative['alternative_GO'].to_dict()
# Create a dataframe containing each exon with informations (gene, start, end and strand)
df_exons = pa.DataFrame(columns=['exon_id', 'gene_id', 'start', 'end', 'strand'])
print('Searching for exons')
temporary_datas = []
# Search for all exons in gff database and extract start position (have to minus one to get the right position)
# the end position, the strand (have to change from str to int) and the gene ID.
# Then add it to a list of dictionary that will be added to the dataframe.
for exon in gff_database.features_of_type('exon'):
start_position = exon.start - 1
end_position = exon.end
strand = strand_change(exon.strand)
gene_id = exon.id.replace('exon:', '')[:-2]
temporary_datas.append({'exon_id': exon.id, 'gene_id': gene_id,
'start': start_position, 'end':end_position, 'strand': strand})
df_exons = df_exons.append(temporary_datas)
# All SeqRecord objects will be stored in a list and then give to the SeqIO writer to create the genbank.
seq_objects = []
print('Assembling Genbank informations')
# Iterate through each contig.
# Then iterate through gene and throug RNA linked with the gene.
# Then look if protein informations are available.
for contig_id in sorted(contig_seqs):
# Data for each contig.
record = contig_info(contig_id, contig_seqs[contig_id], species_informations)
for gene in gff_database.features_of_type('gene'):
gene_contig = gene.chrom
if gene_contig == contig_id:
id_gene = gene.id
start_position = gene.start -1
end_position = gene.end
strand = strand_change(gene.strand)
new_feature_gene = sf.SeqFeature(sf.FeatureLocation(start_position,
end_position,
strand),
type="gene")
new_feature_gene.qualifiers['locus_tag'] = id_gene
# Add gene information to contig record.
record.features.append(new_feature_gene)
# Search and add RNAs.
gene_informations = [gene, id_gene, start_position, end_position, strand]
record = search_and_add_RNA(gff_database, gene_informations, record, 'mRNA')
record = search_and_add_RNA(gff_database, gene_informations, record,'tRNA')
record = search_and_add_RNA(gff_database, gene_informations, record, 'ncRNA')
record = search_and_add_RNA(gff_database, gene_informations, record, 'lncRNA')
# Search for pseudogene and add them.
record = search_and_add_pseudogene(gff_database, gene, record, df_exons, gene_protein_seq)
# Create CDS using exons, if no exon use gene information
location_exons = []
# Use parent mRNA in gff to find CDS.
# With this we take the isoform of gene.
for mrna in gff_database.children(gene, featuretype="mRNA", order_by='start'):
mrna_id = mrna.id
# Select exon corresponding to the gene.
# Then iterate for each exon and extract information.
df_temp = df_exons[df_exons['gene_id'] == mrna_id]
for _, row in df_temp.iterrows():
new_feature_location_exons = sf.FeatureLocation(row['start'],
row['end'],
row['strand'])
location_exons.append(new_feature_location_exons)
if location_exons and len(location_exons)>=2:
exon_compound_locations = sf.CompoundLocation(location_exons, operator='join')
new_feature_cds = sf.SeqFeature(exon_compound_locations, type='CDS')
else:
new_feature_cds = sf.SeqFeature(sf.FeatureLocation(start_position,
end_position,
strand),
type="CDS")
new_feature_cds.qualifiers['translation'] = gene_protein_seq[mrna_id]
new_feature_cds.qualifiers['locus_tag'] = id_gene
# Add GO annotation according to the namespace.
if mrna_id in annot_GOs:
gene_gos = re.split(';|,', annot_GOs[mrna_id])
if gene_gos != [""]:
go_components = []
go_functions = []
go_process = []
for go in gene_gos:
# Check if GO term is not a deprecated one.
# If yes take the corresponding one in alternative GO.
if go not in go_namespaces:
go_test = go_alternatives[go]
else:
go_test = go
if go_namespaces[go_test] == 'cellular_component':
go_components.append(go)
if go_namespaces[go_test] == 'molecular_function':
go_functions.append(go)
if go_namespaces[go_test] == 'biological_process':
go_process.append(go)
new_feature_cds.qualifiers['go_component'] = go_components
new_feature_cds.qualifiers['go_function'] = go_functions
new_feature_cds.qualifiers['go_process'] = go_process
# Add InterPro annotation.
if mrna_id in annot_IPRs:
gene_iprs = re.split(';|,', annot_IPRs[mrna_id])
if gene_iprs != [""]:
new_feature_cds.qualifiers['db_xref'] = ["InterPro:"+interpro for interpro in gene_iprs]
# Add EC annotation.
if mrna_id in annot_ECs:
gene_ecs = re.split(';|,', annot_ECs[mrna_id])
if gene_ecs != [""]:
new_feature_cds.qualifiers['EC_number'] = [ec.replace('ec:', '') for ec in gene_ecs]
# Add CDS information to contig record
record.features.append(new_feature_cds)
seq_objects.append(record)
# Create Genbank with the list of SeqRecord.
SeqIO.write(seq_objects, gbk_out, 'genbank')
def main(genome_fasta, prot_fasta, annot_table, gff_file_folder, species_name, gbk_out):
# Check if gff is a file or is multiple files in a folder.
# If it's multiple files, it wil merge them in one.
if os.path.isfile(gff_file_folder):
gff_file = gff_file_folder
if not os.path.isfile(gff_file_folder):
gff_file = merging_mini_gff(gff_file_folder)
gff_to_gbk(genome_fasta, prot_fasta, annot_table, gff_file, species_name, gbk_out)
def run():
parser = argparse.ArgumentParser(prog = "gbk_creator_from_gff.py")
parser.add_argument("-fg", "--fgen", dest = "genome_fasta", metavar = "FILE", help = "contig fasta file", required = True)
parser.add_argument("-fp", "--fprot", dest = "prot_fasta", metavar = "FILE", help = "protein fasta file", required = True)
parser.add_argument("-a", "--annot", dest = "annot_table", metavar = "FILE", help = "annotation tsv file", required = True)
parser.add_argument("-g", "--gff", dest = "gff_file_folder", metavar = "FILE or FOLDER", help = "gff file or folder containing multiple gff", required = True)
parser.add_argument("-s", "--speciesname", dest = "species_name", metavar = "STRING", help = "species scientific name", required = True)
parser.add_argument("-o", "--output", dest = "gbk_out", metavar = "FILE", help = "output file", default = "mygbk.gbk")
args = parser.parse_args()
main(genome_fasta=args.genome_fasta, prot_fasta=args.prot_fasta, annot_table=args.annot_table,
gff_file_folder=args.gff_file_folder, species_name=args.species_name, gbk_out=args.gbk_out)
if __name__ == '__main__':
run()
|
py | 1a39f11c5db39744e265d89e2a0b7a7754a16662 | #! /usr/bin/env python
# -*- coding: utf-8 -*-
from django.conf.urls import url, include
from config import views
urlpatterns = [
url(r'^$', views.index, name='config'),
url(r'^config_save/$', views.config_save, name='config_save'),
url(r'^token/', views.get_token, name='token'),
] |
py | 1a39f14776c3795f540806eef713f13dd691ec99 | from functools import partial
import pandas as pd
from cellphonedb.src.core.core_logger import core_logger
from cellphonedb.src.core.exceptions.AllCountsFilteredException import AllCountsFilteredException
from cellphonedb.src.core.exceptions.NoInteractionsFound import NoInteractionsFound
from cellphonedb.src.core.methods import cpdb_statistical_analysis_helper
def call(meta: pd.DataFrame,
counts: pd.DataFrame,
counts_data: str,
interactions: pd.DataFrame,
genes: pd.DataFrame,
complexes: pd.DataFrame,
complex_compositions: pd.DataFrame,
pvalue: float,
separator: str,
iterations: int = 1000,
threshold: float = 0.1,
threads: int = 4,
debug_seed: int = -1,
result_precision: int = 3,
) -> (pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame):
core_logger.info(
'[Cluster Statistical Analysis] '
'Threshold:{} Iterations:{} Debug-seed:{} Threads:{} Precision:{}'.format(threshold,
iterations,
debug_seed,
threads,
result_precision))
if debug_seed >= 0:
pd.np.random.seed(debug_seed)
core_logger.warning('Debug random seed enabled. Setted to {}'.format(debug_seed))
cells_names = sorted(counts.columns)
interactions.set_index('id_interaction', drop=True, inplace=True)
interactions_reduced = interactions[['multidata_1_id', 'multidata_2_id']].drop_duplicates()
complex_compositions.set_index('id_complex_composition', inplace=True, drop=True)
# Add id multidata to counts input
counts: pd.DataFrame = counts.merge(genes[['id_multidata', 'ensembl', 'gene_name', 'hgnc_symbol']],
left_index=True, right_on=counts_data)
counts_relations = counts[['id_multidata', 'ensembl', 'gene_name', 'hgnc_symbol']].copy()
counts.set_index('id_multidata', inplace=True, drop=True)
counts = counts[cells_names]
counts = counts.astype('float32')
counts = counts.groupby(counts.index).mean()
if counts.empty:
raise AllCountsFilteredException(hint='Are you using human data?')
# End add id multidata
interactions_filtered, counts_filtered, complex_composition_filtered = \
cpdb_statistical_analysis_helper.prefilters(interactions_reduced,
counts,
complexes,
complex_compositions)
if interactions_filtered.empty:
raise NoInteractionsFound()
clusters = cpdb_statistical_analysis_helper.build_clusters(meta, counts_filtered, complex_composition_filtered)
core_logger.info('Running Real Analysis')
cluster_interactions = cpdb_statistical_analysis_helper.get_cluster_combinations(clusters['names'])
base_result = cpdb_statistical_analysis_helper.build_result_matrix(interactions_filtered,
cluster_interactions,
separator)
real_mean_analysis = cpdb_statistical_analysis_helper.mean_analysis(interactions_filtered,
clusters,
cluster_interactions,
base_result,
separator)
real_percents_analysis = cpdb_statistical_analysis_helper.percent_analysis(clusters,
threshold,
interactions_filtered,
cluster_interactions,
base_result,
separator)
core_logger.info('Running Statistical Analysis')
statistical_mean_analysis = cpdb_statistical_analysis_helper.shuffled_analysis(iterations,
meta,
counts_filtered,
interactions_filtered,
cluster_interactions,
complex_composition_filtered,
base_result,
threads,
separator)
result_percent = cpdb_statistical_analysis_helper.build_percent_result(real_mean_analysis,
real_percents_analysis,
statistical_mean_analysis,
interactions_filtered,
cluster_interactions,
base_result,
separator)
pvalues_result, means_result, significant_means, deconvoluted_result = build_results(
interactions_filtered,
interactions,
counts_relations,
real_mean_analysis,
result_percent,
clusters['means'],
complex_composition_filtered,
counts,
genes,
result_precision,
pvalue,
counts_data
)
return pvalues_result, means_result, significant_means, deconvoluted_result
def build_results(interactions: pd.DataFrame,
interactions_original: pd.DataFrame,
counts_relations: pd.DataFrame,
real_mean_analysis: pd.DataFrame,
result_percent: pd.DataFrame,
clusters_means: pd.DataFrame,
complex_compositions: pd.DataFrame,
counts: pd.DataFrame,
genes: pd.DataFrame,
result_precision: int,
pvalue: float,
counts_data: str
) -> (pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame):
"""
Sets the results data structure from method generated data. Results documents are defined by specs.
"""
core_logger.info('Building results')
interactions: pd.DataFrame = interactions_original.loc[interactions.index]
interactions['interaction_index'] = interactions.index
interactions = interactions.merge(counts_relations, how='left', left_on='multidata_1_id', right_on='id_multidata', )
interactions = interactions.merge(counts_relations, how='left', left_on='multidata_2_id', right_on='id_multidata',
suffixes=('_1', '_2'))
interactions.set_index('interaction_index', inplace=True, drop=True)
interacting_pair = cpdb_statistical_analysis_helper.interacting_pair_build(interactions)
def simple_complex_indicator(interaction: pd.Series, suffix: str) -> str:
"""
Add simple/complex prefixes to interaction components
"""
if interaction['is_complex{}'.format(suffix)]:
return 'complex:{}'.format(interaction['name{}'.format(suffix)])
return 'simple:{}'.format(interaction['name{}'.format(suffix)])
interactions['partner_a'] = interactions.apply(lambda interaction: simple_complex_indicator(interaction, '_1'),
axis=1)
interactions['partner_b'] = interactions.apply(lambda interaction: simple_complex_indicator(interaction, '_2'),
axis=1)
significant_mean_rank, significant_means = cpdb_statistical_analysis_helper.build_significant_means(
real_mean_analysis, result_percent, pvalue)
significant_means = significant_means.round(result_precision)
gene_columns = ['{}_{}'.format(counts_data, suffix) for suffix in ('1', '2')]
gene_renames = {column: 'gene_{}'.format(suffix) for column, suffix in zip(gene_columns, ['a', 'b'])}
# Remove useless columns
interactions_data_result = pd.DataFrame(
interactions[['id_cp_interaction', 'partner_a', 'partner_b', 'receptor_1', 'receptor_2', *gene_columns,
'annotation_strategy']].copy())
interactions_data_result = pd.concat([interacting_pair, interactions_data_result], axis=1, sort=False)
interactions_data_result['secreted'] = (interactions['secreted_1'] | interactions['secreted_2'])
interactions_data_result['is_integrin'] = (interactions['integrin_1'] | interactions['integrin_2'])
interactions_data_result.rename(
columns={**gene_renames, 'receptor_1': 'receptor_a', 'receptor_2': 'receptor_b'},
inplace=True)
# Dedupe rows and filter only desired columns
interactions_data_result.drop_duplicates(inplace=True)
means_columns = ['id_cp_interaction', 'interacting_pair', 'partner_a', 'partner_b', 'gene_a', 'gene_b', 'secreted',
'receptor_a', 'receptor_b', 'annotation_strategy', 'is_integrin']
interactions_data_result = interactions_data_result[means_columns]
real_mean_analysis = real_mean_analysis.round(result_precision)
significant_means = significant_means.round(result_precision)
# Round result decimals
for key, cluster_means in clusters_means.items():
clusters_means[key] = cluster_means.round(result_precision)
# Document 1
pvalues_result = pd.concat([interactions_data_result, result_percent], axis=1, join='inner', sort=False)
# Document 2
means_result = pd.concat([interactions_data_result, real_mean_analysis], axis=1, join='inner', sort=False)
# Document 3
significant_means_result = pd.concat([interactions_data_result, significant_mean_rank, significant_means], axis=1,
join='inner', sort=False)
# Document 5
deconvoluted_result = deconvoluted_complex_result_build(clusters_means,
interactions,
complex_compositions,
counts,
genes,
counts_data)
return pvalues_result, means_result, significant_means_result, deconvoluted_result
def deconvoluted_complex_result_build(clusters_means: pd.DataFrame,
interactions: pd.DataFrame,
complex_compositions: pd.DataFrame,
counts: pd.DataFrame,
genes: pd.DataFrame,
counts_data: str) -> pd.DataFrame:
genes_counts = list(counts.index)
genes_filtered = genes[genes['id_multidata'].apply(lambda gene: gene in genes_counts)]
deconvoluted_complex_result_1 = deconvolute_complex_interaction_component(complex_compositions,
genes_filtered,
interactions,
'_1',
counts_data)
deconvoluted_simple_result_1 = deconvolute_interaction_component(interactions,
'_1',
counts_data)
deconvoluted_complex_result_2 = deconvolute_complex_interaction_component(complex_compositions,
genes_filtered,
interactions,
'_2',
counts_data)
deconvoluted_simple_result_2 = deconvolute_interaction_component(interactions,
'_2',
counts_data)
deconvoluted_result = deconvoluted_complex_result_1.append(
[deconvoluted_simple_result_1, deconvoluted_complex_result_2, deconvoluted_simple_result_2], sort=False)
deconvoluted_result.set_index('multidata_id', inplace=True, drop=True)
deconvoluted_columns = ['gene_name', 'name', 'is_complex', 'protein_name', 'complex_name', 'id_cp_interaction',
'gene']
deconvoluted_result = deconvoluted_result[deconvoluted_columns]
deconvoluted_result.rename({'name': 'uniprot'}, axis=1, inplace=True)
deconvoluted_result = pd.concat([deconvoluted_result, clusters_means], axis=1, join='inner', sort=False)
deconvoluted_result.set_index('gene', inplace=True, drop=True)
deconvoluted_result.drop_duplicates(inplace=True)
return deconvoluted_result
def deconvolute_interaction_component(interactions, suffix, counts_data):
interactions = interactions[~interactions['is_complex{}'.format(suffix)]]
deconvoluted_result = pd.DataFrame()
deconvoluted_result['gene'] = interactions['{}{}'.format(counts_data, suffix)]
deconvoluted_result[
['multidata_id', 'protein_name', 'gene_name', 'name', 'is_complex', 'id_cp_interaction', 'receptor']] = \
interactions[
['multidata{}_id'.format(suffix), 'protein_name{}'.format(suffix), 'gene_name{}'.format(suffix),
'name{}'.format(suffix),
'is_complex{}'.format(suffix), 'id_cp_interaction', 'receptor{}'.format(suffix)]]
deconvoluted_result['complex_name'] = pd.np.nan
return deconvoluted_result
def deconvolute_complex_interaction_component(complex_compositions,
genes_filtered,
interactions,
suffix,
counts_data):
return_properties = [counts_data, 'protein_name', 'gene_name', 'name', 'is_complex', 'id_cp_interaction',
'receptor', 'complex_name']
if complex_compositions.empty:
return pd.DataFrame(
columns=return_properties)
deconvoluted_result = pd.DataFrame()
component = pd.DataFrame()
component[counts_data] = interactions['{}{}'.format(counts_data, suffix)]
component[[counts_data, 'protein_name', 'gene_name', 'name', 'is_complex', 'id_cp_interaction', 'id_multidata',
'receptor']] = \
interactions[['{}{}'.format(counts_data, suffix), 'protein_name{}'.format(suffix), 'gene_name{}'.format(suffix),
'name{}'.format(suffix), 'is_complex{}'.format(suffix), 'id_cp_interaction',
'multidata{}_id'.format(suffix), 'receptor{}'.format(suffix)]]
deconvolution_complex = pd.merge(complex_compositions,
component,
left_on='complex_multidata_id',
right_on='id_multidata')
deconvolution_complex = pd.merge(deconvolution_complex,
genes_filtered,
left_on='protein_multidata_id',
right_on='protein_multidata_id',
suffixes=['_complex', '_simple'])
deconvoluted_result['gene'] = deconvolution_complex['{}_simple'.format(counts_data)]
deconvoluted_result[
['multidata_id', 'protein_name', 'gene_name', 'name', 'is_complex', 'id_cp_interaction', 'receptor',
'complex_name']] = \
deconvolution_complex[
['complex_multidata_id', 'protein_name_simple', 'gene_name_simple', 'name_simple',
'is_complex_complex', 'id_cp_interaction', 'receptor_simple', 'name_complex']]
return deconvoluted_result
|
py | 1a39f2f1a3c2d523cf7fe76dc58c70e9b2e269a4 | #!/usr/bin/python
# -*- coding:utf-8 -*-
"""
CNN/Convnets/Convolutional neural networks
keras tensorflow
"""
from keras.datasets import cifar10
from keras.models import Sequential
from keras.layers.convolutional import Conv2D
from keras.layers.convolutional import MaxPooling2D
from keras.layers import Dense
from keras.constraints import maxnorm
from keras.layers import Dropout
from keras.layers import Flatten
from keras.utils import np_utils
from keras.optimizers import SGD
def train():
"""
训练
"""
epochs = 10
lrate = 0.01
decay = lrate/epochs
sgd = SGD(lr=lrate, momentum=0.9, decay=decay, nesterov=False)
model = create_model()
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
print(model.summary())
model.fit(X_train, Y_train, validation_data=(X_test, Y_test), epochs=epochs, batch_size=32)
return model
def create_model():
"""
创建模型
"""
model = Sequential()
# 52.59%的准确率(3, 32, 32)
#model.add(Conv2D(32, (3, 3), activation="relu", input_shape=(3, 32, 32), padding = "same", kernel_constraint=maxnorm(3)))
#model.add(Conv2D(32, (3, 3), activation="relu", input_shape=(3, 32, 32), padding="same", kernel_constraint=maxnorm(3)))
# 68.28%的准确率(32, 32, 3)
model.add(Conv2D(32, (3, 3), activation="relu", input_shape=(32, 32, 3), padding = "same", kernel_constraint=maxnorm(3)))
model.add(Conv2D(32, (3, 3), activation="relu", input_shape=(32, 32, 3), padding="same", kernel_constraint=maxnorm(3)))
# 防止过拟合
# model.add(Dropout(0.2))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Flatten())
model.add(Dense(512, activation='relu', kernel_constraint=maxnorm(3)))
# model.add(Dropout(0.2))
model.add(Dense(10, activation='softmax'))
return model
if __name__ == '__main__':
# 加载测试数据,一堆32*32*3的图片
# 10类
# 50000训练数据
# 10000测试数据
(X_train,Y_train),(X_test,Y_test)=cifar10.load_data()
print(X_train.shape)
print(X_test.shape)
# 将数据转换为0-1的浮点数
X_train=X_train/255.0
X_test=X_test/255.0
# 将Y转换为标签矩阵
# 属于哪一类,哪一列为1,其余为0
Y_train=np_utils.to_categorical(Y_train)
Y_test=np_utils.to_categorical(Y_test)
# reshape for tf
#X_train = X_train.reshape(X_train.shape[0], 3, 32, 32)
#X_test = X_test.reshape(-1, 3, 32, 32)
# 训练
model = train()
# 模型准群率评估
# 52.59%的准确率(3, 32, 32)
# 68.28%的准确率(32, 32, 3)
scores = model.evaluate(X_test, Y_test, verbose=0)
print("Final Accuracy: %.2f%%" % (scores[1]*100))
#保存模型及训练结果
jsonFile=model.to_json()
with open('output/cifar10.json','w') as file:
file.write(jsonFile)
model.save_weights('output/cifar10.h5')
|
py | 1a39f300cf3f4f88ec8a92c915557820289101d4 | # -*- coding: utf-8 -*-
# -----------------------------------------------------------------------------
# Copyright (c) 2014, Vispy Development Team. All Rights Reserved.
# Distributed under the (new) BSD License. See LICENSE.txt for more info.
# -----------------------------------------------------------------------------
# Author: Nicolas P .Rougier
# Date: 04/03/2014
# -----------------------------------------------------------------------------
from vispy import gloo, app
from vispy.gloo import Program
vertex = """
uniform float theta;
attribute vec4 color;
attribute vec2 position;
varying vec4 v_color;
void main()
{
float ct = cos(theta);
float st = sin(theta);
float x = 0.75* (position.x*ct - position.y*st);
float y = 0.75* (position.x*st + position.y*ct);
gl_Position = vec4(x, y, 0.0, 1.0);
v_color = color;
} """
fragment = """
varying vec4 v_color;
void main()
{
gl_FragColor = v_color;
} """
class Canvas(app.Canvas):
def __init__(self):
app.Canvas.__init__(self, size=(512, 512), title='Rotating quad',
close_keys='escape')
self.timer = app.Timer(1./60., self.on_timer)
def on_initialize(self, event):
# Build program & data
self.program = Program(vertex, fragment, count=4)
self.program['color'] = [(1, 0, 0, 1), (0, 1, 0, 1),
(0, 0, 1, 1), (1, 1, 0, 1)]
self.program['position'] = [(-1, -1), (-1, +1),
(+1, -1), (+1, +1)]
self.clock = 0
self.timer.start()
def on_draw(self, event):
gloo.set_clear_color('white')
gloo.clear(color=True)
self.program.draw('triangle_strip')
def on_resize(self, event):
gloo.set_viewport(0, 0, *event.size)
def on_timer(self, event):
self.clock += 0.001 * 1000.0 / 60.
self.program['theta'] = self.clock
self.update()
if __name__ == '__main__':
c = Canvas()
c.show()
app.run()
|
py | 1a39f30758f9d0333f038a543d420b026351e722 | from sklearn.mixture import GaussianMixture
import operator
import numpy as np
import math
class GMMSet:
def __init__(self, gmm_order = 32):
self.gmms = []
self.gmm_order = gmm_order
self.y = []
def fit_new(self, x, label):
self.y.append(label)
gmm = GaussianMixture(self.gmm_order)
# gmm = GaussianMixture(n_components=8, max_iter=200, covariance_type='diag', n_init=3)
gmm.fit(x)
self.gmms.append(gmm)
def gmm_score(self, gmm, x):
return np.sum(gmm.score(x))
@staticmethod
def softmax(scores):
scores_sum = sum([math.exp(i) for i in scores])
score_max = math.exp(max(scores))
return round(score_max / scores_sum, 3)
def predict_one(self, x):
scores = [self.gmm_score(gmm, x) / len(x) for gmm in self.gmms]
p = sorted(enumerate(scores), key=operator.itemgetter(1), reverse=True)
p = [(str(self.y[i]), y, p[0][1] - y) for i, y in p]
result = [(self.y[index], value) for (index, value) in enumerate(scores)]
p = max(result, key=operator.itemgetter(1))
softmax_score = self.softmax(scores)
return p[0], softmax_score
def before_pickle(self):
pass
def after_pickle(self):
pass
|
py | 1a39f31396e7884d51334d5506878486168d0235 | from icalendar import vCalAddress
from app.config import ICAL_VERSION, PRODUCT_ID
from app.routers.export import (
create_ical_calendar, create_ical_event, event_to_ical
)
class TestExport:
def test_create_ical_calendar(self):
cal = create_ical_calendar()
assert cal.get('version') == ICAL_VERSION
assert cal.get('prodid') == PRODUCT_ID
def test_create_ical_event(self, event):
ical_event = create_ical_event(event)
assert event.owner.email in ical_event.get('organizer')
assert ical_event.get('summary') == event.title
def test_add_attendees(self, event, user):
ical_event = create_ical_event(event)
ical_event.add(
'attendee',
vCalAddress(f'MAILTO:{user.email}'),
encode=0
)
attendee = vCalAddress(f'MAILTO:{user.email}')
assert attendee == ical_event.get('attendee')
def test_event_to_ical(self, user, event):
ical_event = event_to_ical(event, [user.email])
def does_contain(item: str) -> bool:
"""Returns if calendar contains item."""
return bytes(item, encoding='utf8') in bytes(ical_event)
assert does_contain(ICAL_VERSION)
assert does_contain(PRODUCT_ID)
assert does_contain(event.owner.email)
assert does_contain(event.title)
|
py | 1a39f404371ab6d21a1008ed4bfd7497324a6e8d | # Generated by Django 3.0.1 on 2019-12-23 03:29
from django.db import migrations, models
import django.db.models.deletion
class Migration(migrations.Migration):
initial = True
dependencies = [
]
operations = [
migrations.CreateModel(
name='Question',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('question_text', models.CharField(max_length=200)),
('pub_date', models.DateTimeField(verbose_name='date published')),
],
),
migrations.CreateModel(
name='Choice',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('choice_text', models.CharField(max_length=200)),
('votes', models.IntegerField(default=0)),
('question', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='polls.Question')),
],
),
]
|
py | 1a39f5de32c488c1917936547a0035ebafb93869 |
# step 1. imports
from sqlalchemy import (create_engine, MetaData, Table, Column, Integer,
String, ForeignKey, Float, DateTime)
from sqlalchemy.orm import sessionmaker, mapper, relationship
from sqlalchemy.ext.horizontal_shard import ShardedSession
from sqlalchemy.sql import operators, visitors
import datetime
# step 2. databases
echo = True
db1 = create_engine('sqlite://', echo=echo)
db2 = create_engine('sqlite://', echo=echo)
db3 = create_engine('sqlite://', echo=echo)
db4 = create_engine('sqlite://', echo=echo)
# step 3. create session function. this binds the shard ids
# to databases within a ShardedSession and returns it.
create_session = sessionmaker(class_=ShardedSession)
create_session.configure(shards={
'north_america':db1,
'asia':db2,
'europe':db3,
'south_america':db4
})
# step 4. table setup.
meta = MetaData()
# we need a way to create identifiers which are unique across all
# databases. one easy way would be to just use a composite primary key, where one
# value is the shard id. but here, we'll show something more "generic", an
# id generation function. we'll use a simplistic "id table" stored in database
# #1. Any other method will do just as well; UUID, hilo, application-specific, etc.
ids = Table('ids', meta,
Column('nextid', Integer, nullable=False))
def id_generator(ctx):
# in reality, might want to use a separate transaction for this.
c = db1.connect()
nextid = c.execute(ids.select(for_update=True)).scalar()
c.execute(ids.update(values={ids.c.nextid : ids.c.nextid + 1}))
return nextid
# table setup. we'll store a lead table of continents/cities,
# and a secondary table storing locations.
# a particular row will be placed in the database whose shard id corresponds to the
# 'continent'. in this setup, secondary rows in 'weather_reports' will
# be placed in the same DB as that of the parent, but this can be changed
# if you're willing to write more complex sharding functions.
weather_locations = Table("weather_locations", meta,
Column('id', Integer, primary_key=True, default=id_generator),
Column('continent', String(30), nullable=False),
Column('city', String(50), nullable=False)
)
weather_reports = Table("weather_reports", meta,
Column('id', Integer, primary_key=True),
Column('location_id', Integer, ForeignKey('weather_locations.id')),
Column('temperature', Float),
Column('report_time', DateTime, default=datetime.datetime.now),
)
# create tables
for db in (db1, db2, db3, db4):
meta.drop_all(db)
meta.create_all(db)
# establish initial "id" in db1
db1.execute(ids.insert(), nextid=1)
# step 5. define sharding functions.
# we'll use a straight mapping of a particular set of "country"
# attributes to shard id.
shard_lookup = {
'North America':'north_america',
'Asia':'asia',
'Europe':'europe',
'South America':'south_america'
}
def shard_chooser(mapper, instance, clause=None):
"""shard chooser.
looks at the given instance and returns a shard id
note that we need to define conditions for
the WeatherLocation class, as well as our secondary Report class which will
point back to its WeatherLocation via its 'location' attribute.
"""
if isinstance(instance, WeatherLocation):
return shard_lookup[instance.continent]
else:
return shard_chooser(mapper, instance.location)
def id_chooser(query, ident):
"""id chooser.
given a primary key, returns a list of shards
to search. here, we don't have any particular information from a
pk so we just return all shard ids. often, youd want to do some
kind of round-robin strategy here so that requests are evenly
distributed among DBs.
"""
return ['north_america', 'asia', 'europe', 'south_america']
def query_chooser(query):
"""query chooser.
this also returns a list of shard ids, which can
just be all of them. but here we'll search into the Query in order
to try to narrow down the list of shards to query.
"""
ids = []
# we'll grab continent names as we find them
# and convert to shard ids
for column, operator, value in _get_query_comparisons(query):
# "shares_lineage()" returns True if both columns refer to the same
# statement column, adjusting for any annotations present.
# (an annotation is an internal clone of a Column object
# and occur when using ORM-mapped attributes like
# "WeatherLocation.continent"). A simpler comparison, though less accurate,
# would be "column.key == 'continent'".
if column.shares_lineage(weather_locations.c.continent):
if operator == operators.eq:
ids.append(shard_lookup[value])
elif operator == operators.in_op:
ids.extend(shard_lookup[v] for v in value)
if len(ids) == 0:
return ['north_america', 'asia', 'europe', 'south_america']
else:
return ids
def _get_query_comparisons(query):
"""Search an orm.Query object for binary expressions.
Returns expressions which match a Column against one or more
literal values as a list of tuples of the form
(column, operator, values). "values" is a single value
or tuple of values depending on the operator.
"""
binds = {}
clauses = set()
comparisons = []
def visit_bindparam(bind):
# visit a bind parameter. Below we ensure
# that we get the value whether it was specified
# as part of query.params(), or is directly embedded
# in the bind's "value" attribute.
value = query._params.get(bind.key, bind.value)
# some ORM functions place the bind's value as a
# callable for deferred evaulation. Get that
# actual value here.
if callable(value):
value = value()
binds[bind] = value
def visit_column(column):
clauses.add(column)
def visit_binary(binary):
# special handling for "col IN (params)"
if binary.left in clauses and \
binary.operator == operators.in_op and \
hasattr(binary.right, 'clauses'):
comparisons.append(
(binary.left, binary.operator,
tuple(binds[bind] for bind in binary.right.clauses)
)
)
elif binary.left in clauses and binary.right in binds:
comparisons.append(
(binary.left, binary.operator,binds[binary.right])
)
elif binary.left in binds and binary.right in clauses:
comparisons.append(
(binary.right, binary.operator,binds[binary.left])
)
# here we will traverse through the query's criterion, searching
# for SQL constructs. We will place simple column comparisons
# into a list.
if query._criterion is not None:
visitors.traverse_depthfirst(query._criterion, {},
{'bindparam':visit_bindparam,
'binary':visit_binary,
'column':visit_column
}
)
return comparisons
# further configure create_session to use these functions
create_session.configure(
shard_chooser=shard_chooser,
id_chooser=id_chooser,
query_chooser=query_chooser
)
# step 6. mapped classes.
class WeatherLocation(object):
def __init__(self, continent, city):
self.continent = continent
self.city = city
class Report(object):
def __init__(self, temperature):
self.temperature = temperature
# step 7. mappers
mapper(WeatherLocation, weather_locations, properties={
'reports':relationship(Report, backref='location')
})
mapper(Report, weather_reports)
# save and load objects!
tokyo = WeatherLocation('Asia', 'Tokyo')
newyork = WeatherLocation('North America', 'New York')
toronto = WeatherLocation('North America', 'Toronto')
london = WeatherLocation('Europe', 'London')
dublin = WeatherLocation('Europe', 'Dublin')
brasilia = WeatherLocation('South America', 'Brasila')
quito = WeatherLocation('South America', 'Quito')
tokyo.reports.append(Report(80.0))
newyork.reports.append(Report(75))
quito.reports.append(Report(85))
sess = create_session()
for c in [tokyo, newyork, toronto, london, dublin, brasilia, quito]:
sess.add(c)
sess.flush()
sess.expunge_all()
t = sess.query(WeatherLocation).get(tokyo.id)
assert t.city == tokyo.city
assert t.reports[0].temperature == 80.0
north_american_cities = sess.query(WeatherLocation).filter(WeatherLocation.continent == 'North America')
assert [c.city for c in north_american_cities] == ['New York', 'Toronto']
asia_and_europe = sess.query(WeatherLocation).filter(WeatherLocation.continent.in_(['Europe', 'Asia']))
assert set([c.city for c in asia_and_europe]) == set(['Tokyo', 'London', 'Dublin'])
|
py | 1a39f652c1e7d8b0d52c47514921783be6094100 | from setuptools import setup
import os
VERSION = "2.8.3"
def get_long_description():
with open(
os.path.join(os.path.dirname(os.path.abspath(__file__)), "README.md"),
encoding="utf8",
) as fp:
return fp.read()
setup(
name="github-to-sqlite",
description="Save data from GitHub to a SQLite database",
long_description=get_long_description(),
long_description_content_type="text/markdown",
author="Simon Willison",
url="https://github.com/dogsheep/github-to-sqlite",
license="Apache License, Version 2.0",
version=VERSION,
packages=["github_to_sqlite"],
entry_points="""
[console_scripts]
github-to-sqlite=github_to_sqlite.cli:cli
""",
install_requires=["sqlite-utils>=2.7.2", "requests", "PyYAML"],
extras_require={"test": ["pytest", "requests-mock", "bs4"]},
tests_require=["github-to-sqlite[test]"],
)
|
py | 1a39f684a948ad4e3627d47937c19e8ca3ab0aee | class Team:
def __init__(self, NO):
self.NO = NO
self.fighter_list = None
self.order = None
# previous index of the order
self.fight_cnt = 0
@property
def fighter_list(self):
return self._fighter_list
@fighter_list.setter
def fighter_list(self, fighter_list):
self._fighter_list = fighter_list
def set_order(self, order):
self.order = []
for a_order in order:
self.order.append(int(a_order))
self.fight_cnt = 0
def get_next_fighter(self):
if self.fight_cnt >= len(self.order):
return None
prev_fighter_idx = self.order[self.fight_cnt]
fighter = None
for _fighter in self.fighter_list:
if _fighter.properties["NO"] == prev_fighter_idx:
fighter = _fighter
break
self.fight_cnt += 1
return fighter
|
py | 1a39f6fe966ac65d75ba23506478fa045cf2dbef | import asyncio
import logging
import signal
import sys
from functools import partial
from typing import Union, List, Callable, Tuple
import serial
from bleak import BleakClient
from serial_asyncio import open_serial_connection
from genki_wave.callbacks import WaveCallback
from genki_wave.constants import API_CHAR_UUID, BAUDRATE
from genki_wave.data.writing import get_start_api_package
from genki_wave.protocols import ProtocolAsyncio, ProtocolThread, CommunicateCancel
from genki_wave.utils import get_serial_port, get_or_create_event_loop
logging.basicConfig(format="%(levelname).4s:%(asctime)s [%(filename)s:%(lineno)d] - %(message)s ")
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
def prepare_protocol_as_bleak_callback_asyncio(protocol: ProtocolAsyncio) -> Callable:
async def _inner(sender: str, data: bytearray) -> None:
# NOTE: `bleak` expects a function with this signature
await protocol.data_received(data)
return _inner
def prepare_protocol_as_bleak_callback(protocol: ProtocolThread) -> Callable:
def _inner(sender: str, data: bytearray) -> None:
# NOTE: `bleak` expects a function with this signature
protocol.data_received(data)
return _inner
def bleak_callback(protocol: ProtocolAsyncio) -> Callable:
"""Wraps our protocol as a callback with the correct signature bleak expects
NOTE: 1) Bleak checks if a function is a co-routine so we need to wrap the class method into an `async` function
and 2) we need to take care that `asyncio.Queue` is correctly handled so we have 2 different wrappers, one
for a regular `queue.Queue` and one for `asyncio.Queue`.
"""
if isinstance(protocol, ProtocolAsyncio):
callback = prepare_protocol_as_bleak_callback_asyncio(protocol)
elif isinstance(protocol, ProtocolThread):
callback = prepare_protocol_as_bleak_callback(protocol)
else:
raise ValueError(f"Unknown protocol type {type(protocol)}")
return callback
def make_disconnect_callback(comm: CommunicateCancel):
def cb(client):
if not comm.cancel:
print(f"Client {client.address} disconnected unexpectedly, exiting")
sys.exit(1)
return cb
async def producer_bluetooth(
protocol: Union[ProtocolAsyncio, ProtocolThread],
comm: CommunicateCancel,
ble_address: str,
) -> None:
"""Receives data from a serially connected wave ring and passes it to the `protocol`
Args:
protocol: An object that knows how to process the raw data sent from the Wave ring into a structured format
and passes it along between `producer` and `consumer`.
comm: An object that allows `producer` and `consumer` to communicate when to cancel the process
ble_address: Address of the bluetooth device to connect to. E.g. 'D5:73:DB:85:B4:A1'
Note:
The producer doesn't return a value, but the data gets added to the `protocol` that can be accessed from other
parts of the program i.e. some `consumer`
"""
print(f"Connecting to wave at address {ble_address}")
callback = bleak_callback(protocol)
async with BleakClient(ble_address, disconnected_callback=make_disconnect_callback(comm)) as client:
await client.start_notify(API_CHAR_UUID, callback)
await client.write_gatt_char(API_CHAR_UUID, get_start_api_package(), False)
print("Connected to Wave")
while True:
# This `while` loop and `asyncio.sleep` statement is some magic that is required to continually fetch
# the data from the bluetooth device.
await asyncio.sleep(0.1)
if comm.cancel:
print("Recieved a cancel signal, stopping ble client")
break
await client.stop_notify(API_CHAR_UUID)
async def producer_serial(protocol: ProtocolAsyncio, comm: CommunicateCancel, serial_port: str):
"""Receives data from a serially connected wave ring and passes it to the `protocol`
Args:
protocol: An object that knows how to process the raw data sent from the Wave ring into a structured format
and passes it along between `producer` and `consumer`.
comm: An object that allows `producer` and `consumer` to communicate when to cancel the process
serial_port: The serial port to read from
Note:
The producer doesn't return a value, but the data gets added to the `protocol` that can be accessed from other
parts of the program i.e. some `consumer`
"""
reader, writer = await open_serial_connection(url=serial_port, baudrate=BAUDRATE, parity=serial.PARITY_EVEN)
writer.write(get_start_api_package())
while True:
# The number of bytes read here is an arbitrary power of 2 on the order of a size of a single package
packet = await reader.read(n=128)
await protocol.data_received(packet)
if comm.cancel:
print("Recieved a cancel signal, stopping serial connection")
break
async def consumer(
protocol: ProtocolAsyncio,
comm: CommunicateCancel,
callbacks: Union[List[WaveCallback], Tuple[WaveCallback]],
) -> None:
"""Consumes the data from a producer via a protocol
Args:
protocol: An object that knows how to process the raw data sent from the Wave ring into a structured format
and passes it along between `producer` and `consumer`.
comm: An object that allows `producer` and `consumer` to communicate when to cancel the process
callbacks: A list/tuple of callbacks that handle the data passed from the wave ring when available
"""
while True:
package = await protocol.queue.get()
if comm.is_cancel(package) or comm.cancel:
print("Got a cancel message. Exiting consumer loop...")
comm.cancel = True
break
for callback in callbacks:
callback(package)
def make_sigint_handler(comm: CommunicateCancel):
"""Create a signal handler to cancel an asyncio loop using signals."""
def handler(*args):
comm.cancel = True
return handler
def _run_asyncio(
callbacks: List[WaveCallback], producer: Union[producer_bluetooth, producer_serial], protocol: ProtocolAsyncio
) -> None:
"""Runs a producer and a consumer, hooking into the data using the supplied callbacks
Args:
callbacks: See docs for `consumer`
producer: A callable that takes 2 arguments, a protocol and a communication object
protocol: An object that knows how to process the raw data sent from the Wave ring into a structured format
and passes it along between `producer` and `consumer`.
"""
# A singleton that sends messages about whether the data transfer has been canceled.
comm = CommunicateCancel()
loop = get_or_create_event_loop()
loop.add_signal_handler(signal.SIGINT, make_sigint_handler(comm))
# Note: The consumer and the producer send the data via the instance of `protocol`
tasks = asyncio.gather(producer(protocol, comm), consumer(protocol, comm, callbacks))
loop.run_until_complete(tasks)
def run_asyncio_bluetooth(callbacks: List[WaveCallback], ble_address) -> None:
"""Runs an async `consumer-producer` loop using user supplied callbacks for a bluetooth device
Args:
callbacks: A list/tuple of callbacks that handle the data passed from the wave ring
ble_address: Address of the bluetooth device to connect to. E.g. 'D5:73:DB:85:B4:A1'
"""
_run_asyncio(callbacks, partial(producer_bluetooth, ble_address=ble_address), ProtocolAsyncio())
def run_asyncio_serial(callbacks: List[WaveCallback], serial_port: str = None) -> None:
"""Runs an async `consumer-producer` loop using user supplied callbacks for a serial device
Args:
callbacks: A list/tuple of callbacks that handle the data passed from the wave ring
serial_port: The serial port to read from. If `None` will try to determine it automatically based on the
operating system the script is running on
"""
serial_port = get_serial_port() if serial_port is None else serial_port
_run_asyncio(callbacks, partial(producer_serial, serial_port=serial_port), ProtocolAsyncio())
|
py | 1a39f746e55ce11f555b45f2ad1634750df6bbd9 | # Copyright 2018-2020 Xanadu Quantum Technologies Inc.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This module contains the mixin interface class for creating differentiable quantum tapes with
TensorFlow.
"""
# pylint: disable=protected-access, attribute-defined-outside-init
import numpy as np
import tensorflow as tf
try:
from tensorflow.python.eager.tape import should_record_backprop
except ImportError:
from tensorflow.python.eager.tape import should_record as should_record_backprop
from pennylane.tape.queuing import AnnotatedQueue
class TFInterface(AnnotatedQueue):
"""Mixin class for applying an TensorFlow interface to a :class:`~.JacobianTape`.
TensorFlow-compatible quantum tape classes can be created via subclassing:
.. code-block:: python
class MyTFQuantumTape(TFInterface, JacobianTape):
Alternatively, the TensorFlow interface can be dynamically applied to existing
quantum tapes via the :meth:`~.apply` class method. This modifies the
tape **in place**.
Once created, the TensorFlow interface can be used to perform quantum-classical
differentiable programming.
.. note::
If using a device that supports native TensorFlow computation and backpropagation, such as
:class:`~.DefaultQubitTF`, the TensorFlow interface **does not need to be applied**. It is
only applied to tapes executed on non-TensorFlow compatible devices.
**Example**
Once a TensorFlow quantum tape has been created, it can be differentiated using the gradient tape:
.. code-block:: python
dev = qml.device("default.qubit", wires=1)
p = tf.Variable([0.1, 0.2, 0.3], dtype=tf.float64)
with tf.GradientTape() as tape:
with TFInterface.apply(JacobianTape()) as qtape:
qml.Rot(p[0], p[1] ** 2 + p[0] * p[2], p[1] * tf.sin(p[2]), wires=0)
expval(qml.PauliX(0))
result = qtape.execute(dev)
>>> print(result)
tf.Tensor([0.06982072], shape=(1,), dtype=float64)
>>> grad = tape.gradient(result, p)
>>> print(grad)
tf.Tensor([0.29874274 0.39710271 0.09958091], shape=(3,), dtype=float64)
The TensorFlow interface defaults to ``tf.float64`` output. This can be modified by
providing the ``dtype`` argument when applying the interface:
>>> p = tf.Variable([0.1, 0.2, 0.3], dtype=tf.float32)
>>> with tf.GradientTape() as tape:
... TFInterface.apply(qtape, dtype=tf.float32) # reusing the previous qtape
... result = qtape.execute(dev)
>>> print(result)
tf.Tensor([0.06982072], shape=(1,), dtype=float32)
>>> grad = tape.gradient(result, p)
>>> print(grad)
tf.Tensor([0.2895088 0.38464668 0.09645163], shape=(3,), dtype=float32)
"""
dtype = tf.float64
@property
def interface(self): # pylint: disable=missing-function-docstring
return "tf"
def _update_trainable_params(self):
params = self.get_parameters(trainable_only=False)
trainable_params = set()
for idx, p in enumerate(params):
# Determine which input tensors/Variables are being recorded for backpropagation.
# The function should_record_backprop, documented here:
# https://github.com/tensorflow/tensorflow/tree/master/tensorflow/python/eager/tape.py#L167
# accepts lists of *Tensors* (not Variables), returning True if all are being watched by one or more
# existing gradient tapes, False if not.
if isinstance(p, (tf.Variable, tf.Tensor)) and should_record_backprop(
# we need to convert any Variable objects to Tensors here, otherwise
# should_record_backprop will raise an error
[tf.convert_to_tensor(p)]
):
trainable_params.add(idx)
self.trainable_params = trainable_params
@staticmethod
def convert_to_numpy(tensors):
"""Converts any TensorFlow tensors in a sequence to NumPy arrays.
Args:
tensors (Sequence[Any, tf.Variable, tf.Tensor]): input sequence
Returns:
list[Any, array]: list with all tensors converted to NumPy arrays
"""
return [i.numpy() if isinstance(i, (tf.Variable, tf.Tensor)) else i for i in tensors]
@tf.custom_gradient
def _execute(self, params, **input_kwargs):
# unwrap free parameters
args = self.convert_to_numpy(params)
# unwrap constant parameters
all_params = self.get_parameters(trainable_only=False)
all_params_unwrapped = self.convert_to_numpy(all_params)
self.set_parameters(all_params_unwrapped, trainable_only=False)
res = self.execute_device(args, input_kwargs["device"])
self.set_parameters(all_params, trainable_only=False)
def grad(grad_output, **tfkwargs):
variables = tfkwargs.get("variables", None)
self.set_parameters(all_params_unwrapped, trainable_only=False)
jacobian = self.jacobian(input_kwargs["device"], params=args, **self.jacobian_options)
self.set_parameters(all_params, trainable_only=False)
jacobian = tf.constant(jacobian, dtype=self.dtype)
# Reshape gradient output array as a 2D row-vector.
grad_output_row = tf.reshape(grad_output, [1, -1])
# Calculate the vector-Jacobian matrix product, and unstack the output.
grad_input = tf.matmul(grad_output_row, jacobian)
grad_input = tf.unstack(tf.reshape(grad_input, [-1]))
if variables is not None:
return grad_input, variables
return grad_input
if res.dtype == np.dtype("object"):
res = np.hstack(res)
return tf.convert_to_tensor(res, dtype=self.dtype), grad
@classmethod
def apply(cls, tape, dtype=tf.float64):
"""Apply the TensorFlow interface to an existing tape in-place.
Args:
tape (.JacobianTape): a quantum tape to apply the TF interface to
dtype (tf.dtype): the dtype that the returned quantum tape should
output
**Example**
>>> with JacobianTape() as tape:
... qml.RX(0.5, wires=0)
... expval(qml.PauliZ(0))
>>> TFInterface.apply(tape)
>>> tape
<TFQuantumTape: wires=<Wires = [0]>, params=1>
"""
tape_class = getattr(tape, "__bare__", tape.__class__)
tape.__bare__ = tape_class
tape.__class__ = type("TFQuantumTape", (cls, tape_class), {"dtype": dtype})
tape._update_trainable_params()
return tape
|
py | 1a39f814072364036e6675fc649669af76abf042 | # Generated by Django 3.0.8 on 2020-07-23 02:57
import django.contrib.gis.db.models.fields
import django.core.validators
from django.db import migrations, models
import django.db.models.deletion
import nmmis.utils.generators
class Migration(migrations.Migration):
initial = True
dependencies = [
('municipal', '0001_initial'),
]
operations = [
migrations.CreateModel(
name='Building',
fields=[
('created', models.DateTimeField(auto_now_add=True)),
('updated', models.DateTimeField(auto_now=True)),
('id', models.CharField(default=nmmis.utils.generators.aphnum_random2, editable=False, max_length=12, primary_key=True, serialize=False)),
('name', models.CharField(max_length=80)),
('catg', models.CharField(max_length=100)),
('sub_catg', models.CharField(max_length=100)),
('building_no', models.CharField(max_length=100, unique=True)),
('land_area', models.IntegerField()),
('build_area', models.IntegerField()),
('build_date', models.DateField()),
('floor', models.IntegerField()),
('toilet', models.IntegerField()),
('roof_type', models.CharField(max_length=100)),
('road_access', models.BooleanField(default=False)),
('elect_access', models.BooleanField(default=False)),
('image', models.ImageField(blank=True, null=True, upload_to='places_images/%Y/%m/%d', validators=[django.core.validators.FileExtensionValidator(allowed_extensions=['jpg', 'jpeg'])])),
('geom', django.contrib.gis.db.models.fields.PointField(srid=4326)),
('ward', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='municipal.Ward')),
],
options={
'verbose_name': 'Building',
'verbose_name_plural': 'Buildings',
'db_table': 'building',
'ordering': ['id'],
},
),
]
|
py | 1a39f875e529e0478699cfaec5920033ddfd0011 | # Copyright (c) Microsoft Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import asyncio
import pytest
from playwright.async_api import Error, Page
from tests.server import Server
async def test_evaluate_handle(page, server):
await page.goto(server.EMPTY_PAGE)
main_frame = page.main_frame
assert main_frame.page == page
window_handle = await main_frame.evaluate_handle("window")
assert window_handle
async def test_frame_element(page, server, utils):
await page.goto(server.EMPTY_PAGE)
frame1 = await utils.attach_frame(page, "frame1", server.EMPTY_PAGE)
await utils.attach_frame(page, "frame2", server.EMPTY_PAGE)
frame3 = await utils.attach_frame(page, "frame3", server.EMPTY_PAGE)
frame1handle1 = await page.query_selector("#frame1")
frame1handle2 = await frame1.frame_element()
frame3handle1 = await page.query_selector("#frame3")
frame3handle2 = await frame3.frame_element()
assert await frame1handle1.evaluate("(a, b) => a === b", frame1handle2)
assert await frame3handle1.evaluate("(a, b) => a === b", frame3handle2)
assert await frame1handle1.evaluate("(a, b) => a === b", frame3handle1) is False
async def test_frame_element_with_content_frame(page, server, utils):
await page.goto(server.EMPTY_PAGE)
frame = await utils.attach_frame(page, "frame1", server.EMPTY_PAGE)
handle = await frame.frame_element()
content_frame = await handle.content_frame()
assert content_frame == frame
async def test_frame_element_throw_when_detached(page, server, utils):
await page.goto(server.EMPTY_PAGE)
frame1 = await utils.attach_frame(page, "frame1", server.EMPTY_PAGE)
await page.eval_on_selector("#frame1", "e => e.remove()")
error = None
try:
await frame1.frame_element()
except Error as e:
error = e
assert error.message == "Frame has been detached."
async def test_evaluate_throw_for_detached_frames(page, server, utils):
frame1 = await utils.attach_frame(page, "frame1", server.EMPTY_PAGE)
await utils.detach_frame(page, "frame1")
error = None
try:
await frame1.evaluate("7 * 8")
except Error as e:
error = e
assert "Execution Context is not available in detached frame" in error.message
async def test_evaluate_isolated_between_frames(page, server, utils):
await page.goto(server.EMPTY_PAGE)
await utils.attach_frame(page, "frame1", server.EMPTY_PAGE)
assert len(page.frames) == 2
[frame1, frame2] = page.frames
assert frame1 != frame2
await asyncio.gather(
frame1.evaluate("window.a = 1"), frame2.evaluate("window.a = 2")
)
[a1, a2] = await asyncio.gather(
frame1.evaluate("window.a"), frame2.evaluate("window.a")
)
assert a1 == 1
assert a2 == 2
async def test_should_handle_nested_frames(page, server, utils):
await page.goto(server.PREFIX + "/frames/nested-frames.html")
assert utils.dump_frames(page.main_frame) == [
"http://localhost:<PORT>/frames/nested-frames.html",
" http://localhost:<PORT>/frames/frame.html (aframe)",
" http://localhost:<PORT>/frames/two-frames.html (2frames)",
" http://localhost:<PORT>/frames/frame.html (dos)",
" http://localhost:<PORT>/frames/frame.html (uno)",
]
async def test_should_send_events_when_frames_are_manipulated_dynamically(
page, server, utils
):
await page.goto(server.EMPTY_PAGE)
# validate frameattached events
attached_frames = []
page.on("frameattached", lambda frame: attached_frames.append(frame))
await utils.attach_frame(page, "frame1", "./assets/frame.html")
assert len(attached_frames) == 1
assert "/assets/frame.html" in attached_frames[0].url
# validate framenavigated events
navigated_frames = []
page.on("framenavigated", lambda frame: navigated_frames.append(frame))
await page.evaluate(
"""() => {
frame = document.getElementById('frame1')
frame.src = './empty.html'
return new Promise(x => frame.onload = x)
}"""
)
assert len(navigated_frames) == 1
assert navigated_frames[0].url == server.EMPTY_PAGE
# validate framedetached events
detached_frames = []
page.on("framedetached", lambda frame: detached_frames.append(frame))
await utils.detach_frame(page, "frame1")
assert len(detached_frames) == 1
assert detached_frames[0].is_detached()
async def test_framenavigated_when_navigating_on_anchor_urls(page, server):
await page.goto(server.EMPTY_PAGE)
async with page.expect_event("framenavigated"):
await page.goto(server.EMPTY_PAGE + "#foo")
assert page.url == server.EMPTY_PAGE + "#foo"
async def test_persist_main_frame_on_cross_process_navigation(page, server):
await page.goto(server.EMPTY_PAGE)
main_frame = page.main_frame
await page.goto(server.CROSS_PROCESS_PREFIX + "/empty.html")
assert page.main_frame == main_frame
async def test_should_not_send_attach_detach_events_for_main_frame(page, server):
has_events = []
page.on("frameattached", lambda frame: has_events.append(True))
page.on("framedetached", lambda frame: has_events.append(True))
await page.goto(server.EMPTY_PAGE)
assert has_events == []
async def test_detach_child_frames_on_navigation(page, server):
attached_frames = []
detached_frames = []
navigated_frames = []
page.on("frameattached", lambda frame: attached_frames.append(frame))
page.on("framedetached", lambda frame: detached_frames.append(frame))
page.on("framenavigated", lambda frame: navigated_frames.append(frame))
await page.goto(server.PREFIX + "/frames/nested-frames.html")
assert len(attached_frames) == 4
assert len(detached_frames) == 0
assert len(navigated_frames) == 5
attached_frames = []
detached_frames = []
navigated_frames = []
await page.goto(server.EMPTY_PAGE)
assert len(attached_frames) == 0
assert len(detached_frames) == 4
assert len(navigated_frames) == 1
async def test_framesets(page, server):
attached_frames = []
detached_frames = []
navigated_frames = []
page.on("frameattached", lambda frame: attached_frames.append(frame))
page.on("framedetached", lambda frame: detached_frames.append(frame))
page.on("framenavigated", lambda frame: navigated_frames.append(frame))
await page.goto(server.PREFIX + "/frames/frameset.html")
assert len(attached_frames) == 4
assert len(detached_frames) == 0
assert len(navigated_frames) == 5
attached_frames = []
detached_frames = []
navigated_frames = []
await page.goto(server.EMPTY_PAGE)
assert len(attached_frames) == 0
assert len(detached_frames) == 4
assert len(navigated_frames) == 1
async def test_frame_from_inside_shadow_dom(page, server):
await page.goto(server.PREFIX + "/shadow.html")
await page.evaluate(
"""async url => {
frame = document.createElement('iframe');
frame.src = url;
document.body.shadowRoot.appendChild(frame);
await new Promise(x => frame.onload = x);
}""",
server.EMPTY_PAGE,
)
assert len(page.frames) == 2
assert page.frames[1].url == server.EMPTY_PAGE
async def test_frame_name(page, server, utils):
await utils.attach_frame(page, "theFrameId", server.EMPTY_PAGE)
await page.evaluate(
"""url => {
frame = document.createElement('iframe');
frame.name = 'theFrameName';
frame.src = url;
document.body.appendChild(frame);
return new Promise(x => frame.onload = x);
}""",
server.EMPTY_PAGE,
)
assert page.frames[0].name == ""
assert page.frames[1].name == "theFrameId"
assert page.frames[2].name == "theFrameName"
async def test_frame_parent(page, server, utils):
await utils.attach_frame(page, "frame1", server.EMPTY_PAGE)
await utils.attach_frame(page, "frame2", server.EMPTY_PAGE)
assert page.frames[0].parent_frame is None
assert page.frames[1].parent_frame == page.main_frame
assert page.frames[2].parent_frame == page.main_frame
async def test_should_report_different_frame_instance_when_frame_re_attaches(
page, server, utils
):
frame1 = await utils.attach_frame(page, "frame1", server.EMPTY_PAGE)
await page.evaluate(
"""() => {
window.frame = document.querySelector('#frame1')
window.frame.remove()
}"""
)
assert frame1.is_detached()
async with page.expect_event("frameattached") as frame2_info:
await page.evaluate("() => document.body.appendChild(window.frame)")
frame2 = await frame2_info.value
assert frame2.is_detached() is False
assert frame1 != frame2
async def test_strict_mode(page: Page, server: Server):
await page.goto(server.EMPTY_PAGE)
await page.set_content(
"""
<button>Hello</button>
<button>Hello</button>
"""
)
with pytest.raises(Error):
await page.text_content("button", strict=True)
with pytest.raises(Error):
await page.query_selector("button", strict=True)
|
py | 1a39f9d5227143b35f2e86fa91489fe7b52298da | # -*- coding: utf-8 -*-
"""
werkzeug
~~~~~~~~
Werkzeug is the Swiss Army knife of Python web development.
It provides useful classes and functions for any WSGI application to make
the life of a python web developer much easier. All of the provided
classes are independent from each other so you can mix it with any other
library.
:copyright: 2007 Pallets
:license: BSD-3-Clause
"""
import sys
from types import ModuleType
__version__ = "0.15.4"
# This import magic raises concerns quite often which is why the implementation
# and motivation is explained here in detail now.
#
# The majority of the functions and classes provided by Werkzeug work on the
# HTTP and WSGI layer. There is no useful grouping for those which is why
# they are all importable from "werkzeug" instead of the modules where they are
# implemented. The downside of that is, that now everything would be loaded at
# once, even if unused.
#
# The implementation of a lazy-loading module in this file replaces the
# werkzeug package when imported from within. Attribute access to the werkzeug
# module will then lazily import from the modules that implement the objects.
# import mapping to objects in other modules
all_by_module = {
"werkzeug.debug": ["DebuggedApplication"],
"werkzeug.local": [
"Local",
"LocalManager",
"LocalProxy",
"LocalStack",
"release_local",
],
"werkzeug.serving": ["run_simple"],
"werkzeug.test": ["Client", "EnvironBuilder", "create_environ", "run_wsgi_app"],
"werkzeug.testapp": ["test_app"],
"werkzeug.exceptions": ["abort", "Aborter"],
"werkzeug.urls": [
"url_decode",
"url_encode",
"url_quote",
"url_quote_plus",
"url_unquote",
"url_unquote_plus",
"url_fix",
"Href",
"iri_to_uri",
"uri_to_iri",
],
"werkzeug.formparser": ["parse_form_data"],
"werkzeug.utils": [
"escape",
"environ_property",
"append_slash_redirect",
"redirect",
"cached_property",
"import_string",
"dump_cookie",
"parse_cookie",
"unescape",
"format_string",
"find_modules",
"header_property",
"html",
"xhtml",
"HTMLBuilder",
"validate_arguments",
"ArgumentValidationError",
"bind_arguments",
"secure_filename",
],
"werkzeug.wsgi": [
"get_current_url",
"get_host",
"pop_path_info",
"peek_path_info",
"ClosingIterator",
"FileWrapper",
"make_line_iter",
"LimitedStream",
"responder",
"wrap_file",
"extract_path_info",
],
"werkzeug.datastructures": [
"MultiDict",
"CombinedMultiDict",
"Headers",
"EnvironHeaders",
"ImmutableList",
"ImmutableDict",
"ImmutableMultiDict",
"TypeConversionDict",
"ImmutableTypeConversionDict",
"Accept",
"MIMEAccept",
"CharsetAccept",
"LanguageAccept",
"RequestCacheControl",
"ResponseCacheControl",
"ETags",
"HeaderSet",
"WWWAuthenticate",
"Authorization",
"FileMultiDict",
"CallbackDict",
"FileStorage",
"OrderedMultiDict",
"ImmutableOrderedMultiDict",
],
"werkzeug.useragents": ["UserAgent"],
"werkzeug.http": [
"parse_etags",
"parse_date",
"http_date",
"cookie_date",
"parse_cache_control_header",
"is_resource_modified",
"parse_accept_header",
"parse_set_header",
"quote_etag",
"unquote_etag",
"generate_etag",
"dump_header",
"parse_list_header",
"parse_dict_header",
"parse_authorization_header",
"parse_www_authenticate_header",
"remove_entity_headers",
"is_entity_header",
"remove_hop_by_hop_headers",
"parse_options_header",
"dump_options_header",
"is_hop_by_hop_header",
"unquote_header_value",
"quote_header_value",
"HTTP_STATUS_CODES",
],
"werkzeug.wrappers": [
"BaseResponse",
"BaseRequest",
"Request",
"Response",
"AcceptMixin",
"ETagRequestMixin",
"ETagResponseMixin",
"ResponseStreamMixin",
"CommonResponseDescriptorsMixin",
"UserAgentMixin",
"AuthorizationMixin",
"WWWAuthenticateMixin",
"CommonRequestDescriptorsMixin",
],
"werkzeug.middleware.dispatcher": ["DispatcherMiddleware"],
"werkzeug.middleware.shared_data": ["SharedDataMiddleware"],
"werkzeug.security": ["generate_password_hash", "check_password_hash"],
# the undocumented easteregg ;-)
"werkzeug._internal": ["_easteregg"],
}
# modules that should be imported when accessed as attributes of werkzeug
attribute_modules = frozenset(["exceptions", "routing"])
object_origins = {}
for module, items in all_by_module.items():
for item in items:
object_origins[item] = module
class module(ModuleType):
"""Automatically import objects from the modules."""
def __getattr__(self, name):
if name in object_origins:
module = __import__(object_origins[name], None, None, [name])
for extra_name in all_by_module[module.__name__]:
setattr(self, extra_name, getattr(module, extra_name))
return getattr(module, name)
elif name in attribute_modules:
__import__("werkzeug." + name)
return ModuleType.__getattribute__(self, name)
def __dir__(self):
"""Just show what we want to show."""
result = list(new_module.__all__)
result.extend(
(
"__file__",
"__doc__",
"__all__",
"__docformat__",
"__name__",
"__path__",
"__package__",
"__version__",
)
)
return result
# keep a reference to this module so that it's not garbage collected
old_module = sys.modules["werkzeug"]
# setup the new module and patch it into the dict of loaded modules
new_module = sys.modules["werkzeug"] = module("werkzeug")
new_module.__dict__.update(
{
"__file__": __file__,
"__package__": "werkzeug",
"__path__": __path__,
"__doc__": __doc__,
"__version__": __version__,
"__all__": tuple(object_origins) + tuple(attribute_modules),
"__docformat__": "restructuredtext en",
}
)
# Due to bootstrapping issues we need to import exceptions here.
# Don't ask :-(
__import__("werkzeug.exceptions")
|
py | 1a39fae4d0c26bf3c3172066f6b4f0ae1e255f31 | #
# Autogenerated by Thrift Compiler (0.13.0)
#
# DO NOT EDIT UNLESS YOU ARE SURE THAT YOU KNOW WHAT YOU ARE DOING
#
# options string: py:new_style
#
from thrift.Thrift import TType, TMessageType, TFrozenDict, TException, TApplicationException
from thrift.protocol.TProtocol import TProtocolException
from thrift.TRecursive import fix_spec
import sys
import beeswaxd.BeeswaxService
import logging
from .ttypes import *
from thrift.Thrift import TProcessor
from thrift.transport import TTransport
all_structs = []
class Iface(beeswaxd.BeeswaxService.Iface):
def Cancel(self, query_id):
"""
Parameters:
- query_id
"""
pass
def ResetCatalog(self):
pass
def ResetTable(self, request):
"""
Parameters:
- request
"""
pass
def GetRuntimeProfile(self, query_id):
"""
Parameters:
- query_id
"""
pass
def CloseInsert(self, handle):
"""
Parameters:
- handle
"""
pass
def PingImpalaService(self):
pass
def GetExecSummary(self, handle):
"""
Parameters:
- handle
"""
pass
class Client(beeswaxd.BeeswaxService.Client, Iface):
def __init__(self, iprot, oprot=None):
beeswaxd.BeeswaxService.Client.__init__(self, iprot, oprot)
def Cancel(self, query_id):
"""
Parameters:
- query_id
"""
self.send_Cancel(query_id)
return self.recv_Cancel()
def send_Cancel(self, query_id):
self._oprot.writeMessageBegin('Cancel', TMessageType.CALL, self._seqid)
args = Cancel_args()
args.query_id = query_id
args.write(self._oprot)
self._oprot.writeMessageEnd()
self._oprot.trans.flush()
def recv_Cancel(self):
iprot = self._iprot
(fname, mtype, rseqid) = iprot.readMessageBegin()
if mtype == TMessageType.EXCEPTION:
x = TApplicationException()
x.read(iprot)
iprot.readMessageEnd()
raise x
result = Cancel_result()
result.read(iprot)
iprot.readMessageEnd()
if result.success is not None:
return result.success
if result.error is not None:
raise result.error
raise TApplicationException(TApplicationException.MISSING_RESULT, "Cancel failed: unknown result")
def ResetCatalog(self):
self.send_ResetCatalog()
return self.recv_ResetCatalog()
def send_ResetCatalog(self):
self._oprot.writeMessageBegin('ResetCatalog', TMessageType.CALL, self._seqid)
args = ResetCatalog_args()
args.write(self._oprot)
self._oprot.writeMessageEnd()
self._oprot.trans.flush()
def recv_ResetCatalog(self):
iprot = self._iprot
(fname, mtype, rseqid) = iprot.readMessageBegin()
if mtype == TMessageType.EXCEPTION:
x = TApplicationException()
x.read(iprot)
iprot.readMessageEnd()
raise x
result = ResetCatalog_result()
result.read(iprot)
iprot.readMessageEnd()
if result.success is not None:
return result.success
raise TApplicationException(TApplicationException.MISSING_RESULT, "ResetCatalog failed: unknown result")
def ResetTable(self, request):
"""
Parameters:
- request
"""
self.send_ResetTable(request)
return self.recv_ResetTable()
def send_ResetTable(self, request):
self._oprot.writeMessageBegin('ResetTable', TMessageType.CALL, self._seqid)
args = ResetTable_args()
args.request = request
args.write(self._oprot)
self._oprot.writeMessageEnd()
self._oprot.trans.flush()
def recv_ResetTable(self):
iprot = self._iprot
(fname, mtype, rseqid) = iprot.readMessageBegin()
if mtype == TMessageType.EXCEPTION:
x = TApplicationException()
x.read(iprot)
iprot.readMessageEnd()
raise x
result = ResetTable_result()
result.read(iprot)
iprot.readMessageEnd()
if result.success is not None:
return result.success
raise TApplicationException(TApplicationException.MISSING_RESULT, "ResetTable failed: unknown result")
def GetRuntimeProfile(self, query_id):
"""
Parameters:
- query_id
"""
self.send_GetRuntimeProfile(query_id)
return self.recv_GetRuntimeProfile()
def send_GetRuntimeProfile(self, query_id):
self._oprot.writeMessageBegin('GetRuntimeProfile', TMessageType.CALL, self._seqid)
args = GetRuntimeProfile_args()
args.query_id = query_id
args.write(self._oprot)
self._oprot.writeMessageEnd()
self._oprot.trans.flush()
def recv_GetRuntimeProfile(self):
iprot = self._iprot
(fname, mtype, rseqid) = iprot.readMessageBegin()
if mtype == TMessageType.EXCEPTION:
x = TApplicationException()
x.read(iprot)
iprot.readMessageEnd()
raise x
result = GetRuntimeProfile_result()
result.read(iprot)
iprot.readMessageEnd()
if result.success is not None:
return result.success
if result.error is not None:
raise result.error
raise TApplicationException(TApplicationException.MISSING_RESULT, "GetRuntimeProfile failed: unknown result")
def CloseInsert(self, handle):
"""
Parameters:
- handle
"""
self.send_CloseInsert(handle)
return self.recv_CloseInsert()
def send_CloseInsert(self, handle):
self._oprot.writeMessageBegin('CloseInsert', TMessageType.CALL, self._seqid)
args = CloseInsert_args()
args.handle = handle
args.write(self._oprot)
self._oprot.writeMessageEnd()
self._oprot.trans.flush()
def recv_CloseInsert(self):
iprot = self._iprot
(fname, mtype, rseqid) = iprot.readMessageBegin()
if mtype == TMessageType.EXCEPTION:
x = TApplicationException()
x.read(iprot)
iprot.readMessageEnd()
raise x
result = CloseInsert_result()
result.read(iprot)
iprot.readMessageEnd()
if result.success is not None:
return result.success
if result.error is not None:
raise result.error
if result.error2 is not None:
raise result.error2
raise TApplicationException(TApplicationException.MISSING_RESULT, "CloseInsert failed: unknown result")
def PingImpalaService(self):
self.send_PingImpalaService()
return self.recv_PingImpalaService()
def send_PingImpalaService(self):
self._oprot.writeMessageBegin('PingImpalaService', TMessageType.CALL, self._seqid)
args = PingImpalaService_args()
args.write(self._oprot)
self._oprot.writeMessageEnd()
self._oprot.trans.flush()
def recv_PingImpalaService(self):
iprot = self._iprot
(fname, mtype, rseqid) = iprot.readMessageBegin()
if mtype == TMessageType.EXCEPTION:
x = TApplicationException()
x.read(iprot)
iprot.readMessageEnd()
raise x
result = PingImpalaService_result()
result.read(iprot)
iprot.readMessageEnd()
if result.success is not None:
return result.success
raise TApplicationException(TApplicationException.MISSING_RESULT, "PingImpalaService failed: unknown result")
def GetExecSummary(self, handle):
"""
Parameters:
- handle
"""
self.send_GetExecSummary(handle)
return self.recv_GetExecSummary()
def send_GetExecSummary(self, handle):
self._oprot.writeMessageBegin('GetExecSummary', TMessageType.CALL, self._seqid)
args = GetExecSummary_args()
args.handle = handle
args.write(self._oprot)
self._oprot.writeMessageEnd()
self._oprot.trans.flush()
def recv_GetExecSummary(self):
iprot = self._iprot
(fname, mtype, rseqid) = iprot.readMessageBegin()
if mtype == TMessageType.EXCEPTION:
x = TApplicationException()
x.read(iprot)
iprot.readMessageEnd()
raise x
result = GetExecSummary_result()
result.read(iprot)
iprot.readMessageEnd()
if result.success is not None:
return result.success
if result.error is not None:
raise result.error
if result.error2 is not None:
raise result.error2
raise TApplicationException(TApplicationException.MISSING_RESULT, "GetExecSummary failed: unknown result")
class Processor(beeswaxd.BeeswaxService.Processor, Iface, TProcessor):
def __init__(self, handler):
beeswaxd.BeeswaxService.Processor.__init__(self, handler)
self._processMap["Cancel"] = Processor.process_Cancel
self._processMap["ResetCatalog"] = Processor.process_ResetCatalog
self._processMap["ResetTable"] = Processor.process_ResetTable
self._processMap["GetRuntimeProfile"] = Processor.process_GetRuntimeProfile
self._processMap["CloseInsert"] = Processor.process_CloseInsert
self._processMap["PingImpalaService"] = Processor.process_PingImpalaService
self._processMap["GetExecSummary"] = Processor.process_GetExecSummary
self._on_message_begin = None
def on_message_begin(self, func):
self._on_message_begin = func
def process(self, iprot, oprot):
(name, type, seqid) = iprot.readMessageBegin()
if self._on_message_begin:
self._on_message_begin(name, type, seqid)
if name not in self._processMap:
iprot.skip(TType.STRUCT)
iprot.readMessageEnd()
x = TApplicationException(TApplicationException.UNKNOWN_METHOD, 'Unknown function %s' % (name))
oprot.writeMessageBegin(name, TMessageType.EXCEPTION, seqid)
x.write(oprot)
oprot.writeMessageEnd()
oprot.trans.flush()
return
else:
self._processMap[name](self, seqid, iprot, oprot)
return True
def process_Cancel(self, seqid, iprot, oprot):
args = Cancel_args()
args.read(iprot)
iprot.readMessageEnd()
result = Cancel_result()
try:
result.success = self._handler.Cancel(args.query_id)
msg_type = TMessageType.REPLY
except TTransport.TTransportException:
raise
except beeswaxd.ttypes.BeeswaxException as error:
msg_type = TMessageType.REPLY
result.error = error
except TApplicationException as ex:
logging.exception('TApplication exception in handler')
msg_type = TMessageType.EXCEPTION
result = ex
except Exception:
logging.exception('Unexpected exception in handler')
msg_type = TMessageType.EXCEPTION
result = TApplicationException(TApplicationException.INTERNAL_ERROR, 'Internal error')
oprot.writeMessageBegin("Cancel", msg_type, seqid)
result.write(oprot)
oprot.writeMessageEnd()
oprot.trans.flush()
def process_ResetCatalog(self, seqid, iprot, oprot):
args = ResetCatalog_args()
args.read(iprot)
iprot.readMessageEnd()
result = ResetCatalog_result()
try:
result.success = self._handler.ResetCatalog()
msg_type = TMessageType.REPLY
except TTransport.TTransportException:
raise
except TApplicationException as ex:
logging.exception('TApplication exception in handler')
msg_type = TMessageType.EXCEPTION
result = ex
except Exception:
logging.exception('Unexpected exception in handler')
msg_type = TMessageType.EXCEPTION
result = TApplicationException(TApplicationException.INTERNAL_ERROR, 'Internal error')
oprot.writeMessageBegin("ResetCatalog", msg_type, seqid)
result.write(oprot)
oprot.writeMessageEnd()
oprot.trans.flush()
def process_ResetTable(self, seqid, iprot, oprot):
args = ResetTable_args()
args.read(iprot)
iprot.readMessageEnd()
result = ResetTable_result()
try:
result.success = self._handler.ResetTable(args.request)
msg_type = TMessageType.REPLY
except TTransport.TTransportException:
raise
except TApplicationException as ex:
logging.exception('TApplication exception in handler')
msg_type = TMessageType.EXCEPTION
result = ex
except Exception:
logging.exception('Unexpected exception in handler')
msg_type = TMessageType.EXCEPTION
result = TApplicationException(TApplicationException.INTERNAL_ERROR, 'Internal error')
oprot.writeMessageBegin("ResetTable", msg_type, seqid)
result.write(oprot)
oprot.writeMessageEnd()
oprot.trans.flush()
def process_GetRuntimeProfile(self, seqid, iprot, oprot):
args = GetRuntimeProfile_args()
args.read(iprot)
iprot.readMessageEnd()
result = GetRuntimeProfile_result()
try:
result.success = self._handler.GetRuntimeProfile(args.query_id)
msg_type = TMessageType.REPLY
except TTransport.TTransportException:
raise
except beeswaxd.ttypes.BeeswaxException as error:
msg_type = TMessageType.REPLY
result.error = error
except TApplicationException as ex:
logging.exception('TApplication exception in handler')
msg_type = TMessageType.EXCEPTION
result = ex
except Exception:
logging.exception('Unexpected exception in handler')
msg_type = TMessageType.EXCEPTION
result = TApplicationException(TApplicationException.INTERNAL_ERROR, 'Internal error')
oprot.writeMessageBegin("GetRuntimeProfile", msg_type, seqid)
result.write(oprot)
oprot.writeMessageEnd()
oprot.trans.flush()
def process_CloseInsert(self, seqid, iprot, oprot):
args = CloseInsert_args()
args.read(iprot)
iprot.readMessageEnd()
result = CloseInsert_result()
try:
result.success = self._handler.CloseInsert(args.handle)
msg_type = TMessageType.REPLY
except TTransport.TTransportException:
raise
except beeswaxd.ttypes.QueryNotFoundException as error:
msg_type = TMessageType.REPLY
result.error = error
except beeswaxd.ttypes.BeeswaxException as error2:
msg_type = TMessageType.REPLY
result.error2 = error2
except TApplicationException as ex:
logging.exception('TApplication exception in handler')
msg_type = TMessageType.EXCEPTION
result = ex
except Exception:
logging.exception('Unexpected exception in handler')
msg_type = TMessageType.EXCEPTION
result = TApplicationException(TApplicationException.INTERNAL_ERROR, 'Internal error')
oprot.writeMessageBegin("CloseInsert", msg_type, seqid)
result.write(oprot)
oprot.writeMessageEnd()
oprot.trans.flush()
def process_PingImpalaService(self, seqid, iprot, oprot):
args = PingImpalaService_args()
args.read(iprot)
iprot.readMessageEnd()
result = PingImpalaService_result()
try:
result.success = self._handler.PingImpalaService()
msg_type = TMessageType.REPLY
except TTransport.TTransportException:
raise
except TApplicationException as ex:
logging.exception('TApplication exception in handler')
msg_type = TMessageType.EXCEPTION
result = ex
except Exception:
logging.exception('Unexpected exception in handler')
msg_type = TMessageType.EXCEPTION
result = TApplicationException(TApplicationException.INTERNAL_ERROR, 'Internal error')
oprot.writeMessageBegin("PingImpalaService", msg_type, seqid)
result.write(oprot)
oprot.writeMessageEnd()
oprot.trans.flush()
def process_GetExecSummary(self, seqid, iprot, oprot):
args = GetExecSummary_args()
args.read(iprot)
iprot.readMessageEnd()
result = GetExecSummary_result()
try:
result.success = self._handler.GetExecSummary(args.handle)
msg_type = TMessageType.REPLY
except TTransport.TTransportException:
raise
except beeswaxd.ttypes.QueryNotFoundException as error:
msg_type = TMessageType.REPLY
result.error = error
except beeswaxd.ttypes.BeeswaxException as error2:
msg_type = TMessageType.REPLY
result.error2 = error2
except TApplicationException as ex:
logging.exception('TApplication exception in handler')
msg_type = TMessageType.EXCEPTION
result = ex
except Exception:
logging.exception('Unexpected exception in handler')
msg_type = TMessageType.EXCEPTION
result = TApplicationException(TApplicationException.INTERNAL_ERROR, 'Internal error')
oprot.writeMessageBegin("GetExecSummary", msg_type, seqid)
result.write(oprot)
oprot.writeMessageEnd()
oprot.trans.flush()
# HELPER FUNCTIONS AND STRUCTURES
class Cancel_args(object):
"""
Attributes:
- query_id
"""
def __init__(self, query_id=None,):
self.query_id = query_id
def read(self, iprot):
if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None:
iprot._fast_decode(self, iprot, [self.__class__, self.thrift_spec])
return
iprot.readStructBegin()
while True:
(fname, ftype, fid) = iprot.readFieldBegin()
if ftype == TType.STOP:
break
if fid == 1:
if ftype == TType.STRUCT:
self.query_id = beeswaxd.ttypes.QueryHandle()
self.query_id.read(iprot)
else:
iprot.skip(ftype)
else:
iprot.skip(ftype)
iprot.readFieldEnd()
iprot.readStructEnd()
def write(self, oprot):
if oprot._fast_encode is not None and self.thrift_spec is not None:
oprot.trans.write(oprot._fast_encode(self, [self.__class__, self.thrift_spec]))
return
oprot.writeStructBegin('Cancel_args')
if self.query_id is not None:
oprot.writeFieldBegin('query_id', TType.STRUCT, 1)
self.query_id.write(oprot)
oprot.writeFieldEnd()
oprot.writeFieldStop()
oprot.writeStructEnd()
def validate(self):
return
def __repr__(self):
L = ['%s=%r' % (key, value)
for key, value in self.__dict__.items()]
return '%s(%s)' % (self.__class__.__name__, ', '.join(L))
def __eq__(self, other):
return isinstance(other, self.__class__) and self.__dict__ == other.__dict__
def __ne__(self, other):
return not (self == other)
all_structs.append(Cancel_args)
Cancel_args.thrift_spec = (
None, # 0
(1, TType.STRUCT, 'query_id', [beeswaxd.ttypes.QueryHandle, None], None, ), # 1
)
class Cancel_result(object):
"""
Attributes:
- success
- error
"""
def __init__(self, success=None, error=None,):
self.success = success
self.error = error
def read(self, iprot):
if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None:
iprot._fast_decode(self, iprot, [self.__class__, self.thrift_spec])
return
iprot.readStructBegin()
while True:
(fname, ftype, fid) = iprot.readFieldBegin()
if ftype == TType.STOP:
break
if fid == 0:
if ftype == TType.STRUCT:
self.success = Status.ttypes.TStatus()
self.success.read(iprot)
else:
iprot.skip(ftype)
elif fid == 1:
if ftype == TType.STRUCT:
self.error = beeswaxd.ttypes.BeeswaxException()
self.error.read(iprot)
else:
iprot.skip(ftype)
else:
iprot.skip(ftype)
iprot.readFieldEnd()
iprot.readStructEnd()
def write(self, oprot):
if oprot._fast_encode is not None and self.thrift_spec is not None:
oprot.trans.write(oprot._fast_encode(self, [self.__class__, self.thrift_spec]))
return
oprot.writeStructBegin('Cancel_result')
if self.success is not None:
oprot.writeFieldBegin('success', TType.STRUCT, 0)
self.success.write(oprot)
oprot.writeFieldEnd()
if self.error is not None:
oprot.writeFieldBegin('error', TType.STRUCT, 1)
self.error.write(oprot)
oprot.writeFieldEnd()
oprot.writeFieldStop()
oprot.writeStructEnd()
def validate(self):
return
def __repr__(self):
L = ['%s=%r' % (key, value)
for key, value in self.__dict__.items()]
return '%s(%s)' % (self.__class__.__name__, ', '.join(L))
def __eq__(self, other):
return isinstance(other, self.__class__) and self.__dict__ == other.__dict__
def __ne__(self, other):
return not (self == other)
all_structs.append(Cancel_result)
Cancel_result.thrift_spec = (
(0, TType.STRUCT, 'success', [Status.ttypes.TStatus, None], None, ), # 0
(1, TType.STRUCT, 'error', [beeswaxd.ttypes.BeeswaxException, None], None, ), # 1
)
class ResetCatalog_args(object):
def read(self, iprot):
if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None:
iprot._fast_decode(self, iprot, [self.__class__, self.thrift_spec])
return
iprot.readStructBegin()
while True:
(fname, ftype, fid) = iprot.readFieldBegin()
if ftype == TType.STOP:
break
else:
iprot.skip(ftype)
iprot.readFieldEnd()
iprot.readStructEnd()
def write(self, oprot):
if oprot._fast_encode is not None and self.thrift_spec is not None:
oprot.trans.write(oprot._fast_encode(self, [self.__class__, self.thrift_spec]))
return
oprot.writeStructBegin('ResetCatalog_args')
oprot.writeFieldStop()
oprot.writeStructEnd()
def validate(self):
return
def __repr__(self):
L = ['%s=%r' % (key, value)
for key, value in self.__dict__.items()]
return '%s(%s)' % (self.__class__.__name__, ', '.join(L))
def __eq__(self, other):
return isinstance(other, self.__class__) and self.__dict__ == other.__dict__
def __ne__(self, other):
return not (self == other)
all_structs.append(ResetCatalog_args)
ResetCatalog_args.thrift_spec = (
)
class ResetCatalog_result(object):
"""
Attributes:
- success
"""
def __init__(self, success=None,):
self.success = success
def read(self, iprot):
if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None:
iprot._fast_decode(self, iprot, [self.__class__, self.thrift_spec])
return
iprot.readStructBegin()
while True:
(fname, ftype, fid) = iprot.readFieldBegin()
if ftype == TType.STOP:
break
if fid == 0:
if ftype == TType.STRUCT:
self.success = Status.ttypes.TStatus()
self.success.read(iprot)
else:
iprot.skip(ftype)
else:
iprot.skip(ftype)
iprot.readFieldEnd()
iprot.readStructEnd()
def write(self, oprot):
if oprot._fast_encode is not None and self.thrift_spec is not None:
oprot.trans.write(oprot._fast_encode(self, [self.__class__, self.thrift_spec]))
return
oprot.writeStructBegin('ResetCatalog_result')
if self.success is not None:
oprot.writeFieldBegin('success', TType.STRUCT, 0)
self.success.write(oprot)
oprot.writeFieldEnd()
oprot.writeFieldStop()
oprot.writeStructEnd()
def validate(self):
return
def __repr__(self):
L = ['%s=%r' % (key, value)
for key, value in self.__dict__.items()]
return '%s(%s)' % (self.__class__.__name__, ', '.join(L))
def __eq__(self, other):
return isinstance(other, self.__class__) and self.__dict__ == other.__dict__
def __ne__(self, other):
return not (self == other)
all_structs.append(ResetCatalog_result)
ResetCatalog_result.thrift_spec = (
(0, TType.STRUCT, 'success', [Status.ttypes.TStatus, None], None, ), # 0
)
class ResetTable_args(object):
"""
Attributes:
- request
"""
def __init__(self, request=None,):
self.request = request
def read(self, iprot):
if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None:
iprot._fast_decode(self, iprot, [self.__class__, self.thrift_spec])
return
iprot.readStructBegin()
while True:
(fname, ftype, fid) = iprot.readFieldBegin()
if ftype == TType.STOP:
break
if fid == 1:
if ftype == TType.STRUCT:
self.request = TResetTableReq()
self.request.read(iprot)
else:
iprot.skip(ftype)
else:
iprot.skip(ftype)
iprot.readFieldEnd()
iprot.readStructEnd()
def write(self, oprot):
if oprot._fast_encode is not None and self.thrift_spec is not None:
oprot.trans.write(oprot._fast_encode(self, [self.__class__, self.thrift_spec]))
return
oprot.writeStructBegin('ResetTable_args')
if self.request is not None:
oprot.writeFieldBegin('request', TType.STRUCT, 1)
self.request.write(oprot)
oprot.writeFieldEnd()
oprot.writeFieldStop()
oprot.writeStructEnd()
def validate(self):
return
def __repr__(self):
L = ['%s=%r' % (key, value)
for key, value in self.__dict__.items()]
return '%s(%s)' % (self.__class__.__name__, ', '.join(L))
def __eq__(self, other):
return isinstance(other, self.__class__) and self.__dict__ == other.__dict__
def __ne__(self, other):
return not (self == other)
all_structs.append(ResetTable_args)
ResetTable_args.thrift_spec = (
None, # 0
(1, TType.STRUCT, 'request', [TResetTableReq, None], None, ), # 1
)
class ResetTable_result(object):
"""
Attributes:
- success
"""
def __init__(self, success=None,):
self.success = success
def read(self, iprot):
if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None:
iprot._fast_decode(self, iprot, [self.__class__, self.thrift_spec])
return
iprot.readStructBegin()
while True:
(fname, ftype, fid) = iprot.readFieldBegin()
if ftype == TType.STOP:
break
if fid == 0:
if ftype == TType.STRUCT:
self.success = Status.ttypes.TStatus()
self.success.read(iprot)
else:
iprot.skip(ftype)
else:
iprot.skip(ftype)
iprot.readFieldEnd()
iprot.readStructEnd()
def write(self, oprot):
if oprot._fast_encode is not None and self.thrift_spec is not None:
oprot.trans.write(oprot._fast_encode(self, [self.__class__, self.thrift_spec]))
return
oprot.writeStructBegin('ResetTable_result')
if self.success is not None:
oprot.writeFieldBegin('success', TType.STRUCT, 0)
self.success.write(oprot)
oprot.writeFieldEnd()
oprot.writeFieldStop()
oprot.writeStructEnd()
def validate(self):
return
def __repr__(self):
L = ['%s=%r' % (key, value)
for key, value in self.__dict__.items()]
return '%s(%s)' % (self.__class__.__name__, ', '.join(L))
def __eq__(self, other):
return isinstance(other, self.__class__) and self.__dict__ == other.__dict__
def __ne__(self, other):
return not (self == other)
all_structs.append(ResetTable_result)
ResetTable_result.thrift_spec = (
(0, TType.STRUCT, 'success', [Status.ttypes.TStatus, None], None, ), # 0
)
class GetRuntimeProfile_args(object):
"""
Attributes:
- query_id
"""
def __init__(self, query_id=None,):
self.query_id = query_id
def read(self, iprot):
if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None:
iprot._fast_decode(self, iprot, [self.__class__, self.thrift_spec])
return
iprot.readStructBegin()
while True:
(fname, ftype, fid) = iprot.readFieldBegin()
if ftype == TType.STOP:
break
if fid == 1:
if ftype == TType.STRUCT:
self.query_id = beeswaxd.ttypes.QueryHandle()
self.query_id.read(iprot)
else:
iprot.skip(ftype)
else:
iprot.skip(ftype)
iprot.readFieldEnd()
iprot.readStructEnd()
def write(self, oprot):
if oprot._fast_encode is not None and self.thrift_spec is not None:
oprot.trans.write(oprot._fast_encode(self, [self.__class__, self.thrift_spec]))
return
oprot.writeStructBegin('GetRuntimeProfile_args')
if self.query_id is not None:
oprot.writeFieldBegin('query_id', TType.STRUCT, 1)
self.query_id.write(oprot)
oprot.writeFieldEnd()
oprot.writeFieldStop()
oprot.writeStructEnd()
def validate(self):
return
def __repr__(self):
L = ['%s=%r' % (key, value)
for key, value in self.__dict__.items()]
return '%s(%s)' % (self.__class__.__name__, ', '.join(L))
def __eq__(self, other):
return isinstance(other, self.__class__) and self.__dict__ == other.__dict__
def __ne__(self, other):
return not (self == other)
all_structs.append(GetRuntimeProfile_args)
GetRuntimeProfile_args.thrift_spec = (
None, # 0
(1, TType.STRUCT, 'query_id', [beeswaxd.ttypes.QueryHandle, None], None, ), # 1
)
class GetRuntimeProfile_result(object):
"""
Attributes:
- success
- error
"""
def __init__(self, success=None, error=None,):
self.success = success
self.error = error
def read(self, iprot):
if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None:
iprot._fast_decode(self, iprot, [self.__class__, self.thrift_spec])
return
iprot.readStructBegin()
while True:
(fname, ftype, fid) = iprot.readFieldBegin()
if ftype == TType.STOP:
break
if fid == 0:
if ftype == TType.STRING:
self.success = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString()
else:
iprot.skip(ftype)
elif fid == 1:
if ftype == TType.STRUCT:
self.error = beeswaxd.ttypes.BeeswaxException()
self.error.read(iprot)
else:
iprot.skip(ftype)
else:
iprot.skip(ftype)
iprot.readFieldEnd()
iprot.readStructEnd()
def write(self, oprot):
if oprot._fast_encode is not None and self.thrift_spec is not None:
oprot.trans.write(oprot._fast_encode(self, [self.__class__, self.thrift_spec]))
return
oprot.writeStructBegin('GetRuntimeProfile_result')
if self.success is not None:
oprot.writeFieldBegin('success', TType.STRING, 0)
oprot.writeString(self.success.encode('utf-8') if sys.version_info[0] == 2 else self.success)
oprot.writeFieldEnd()
if self.error is not None:
oprot.writeFieldBegin('error', TType.STRUCT, 1)
self.error.write(oprot)
oprot.writeFieldEnd()
oprot.writeFieldStop()
oprot.writeStructEnd()
def validate(self):
return
def __repr__(self):
L = ['%s=%r' % (key, value)
for key, value in self.__dict__.items()]
return '%s(%s)' % (self.__class__.__name__, ', '.join(L))
def __eq__(self, other):
return isinstance(other, self.__class__) and self.__dict__ == other.__dict__
def __ne__(self, other):
return not (self == other)
all_structs.append(GetRuntimeProfile_result)
GetRuntimeProfile_result.thrift_spec = (
(0, TType.STRING, 'success', 'UTF8', None, ), # 0
(1, TType.STRUCT, 'error', [beeswaxd.ttypes.BeeswaxException, None], None, ), # 1
)
class CloseInsert_args(object):
"""
Attributes:
- handle
"""
def __init__(self, handle=None,):
self.handle = handle
def read(self, iprot):
if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None:
iprot._fast_decode(self, iprot, [self.__class__, self.thrift_spec])
return
iprot.readStructBegin()
while True:
(fname, ftype, fid) = iprot.readFieldBegin()
if ftype == TType.STOP:
break
if fid == 1:
if ftype == TType.STRUCT:
self.handle = beeswaxd.ttypes.QueryHandle()
self.handle.read(iprot)
else:
iprot.skip(ftype)
else:
iprot.skip(ftype)
iprot.readFieldEnd()
iprot.readStructEnd()
def write(self, oprot):
if oprot._fast_encode is not None and self.thrift_spec is not None:
oprot.trans.write(oprot._fast_encode(self, [self.__class__, self.thrift_spec]))
return
oprot.writeStructBegin('CloseInsert_args')
if self.handle is not None:
oprot.writeFieldBegin('handle', TType.STRUCT, 1)
self.handle.write(oprot)
oprot.writeFieldEnd()
oprot.writeFieldStop()
oprot.writeStructEnd()
def validate(self):
return
def __repr__(self):
L = ['%s=%r' % (key, value)
for key, value in self.__dict__.items()]
return '%s(%s)' % (self.__class__.__name__, ', '.join(L))
def __eq__(self, other):
return isinstance(other, self.__class__) and self.__dict__ == other.__dict__
def __ne__(self, other):
return not (self == other)
all_structs.append(CloseInsert_args)
CloseInsert_args.thrift_spec = (
None, # 0
(1, TType.STRUCT, 'handle', [beeswaxd.ttypes.QueryHandle, None], None, ), # 1
)
class CloseInsert_result(object):
"""
Attributes:
- success
- error
- error2
"""
def __init__(self, success=None, error=None, error2=None,):
self.success = success
self.error = error
self.error2 = error2
def read(self, iprot):
if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None:
iprot._fast_decode(self, iprot, [self.__class__, self.thrift_spec])
return
iprot.readStructBegin()
while True:
(fname, ftype, fid) = iprot.readFieldBegin()
if ftype == TType.STOP:
break
if fid == 0:
if ftype == TType.STRUCT:
self.success = TInsertResult()
self.success.read(iprot)
else:
iprot.skip(ftype)
elif fid == 1:
if ftype == TType.STRUCT:
self.error = beeswaxd.ttypes.QueryNotFoundException()
self.error.read(iprot)
else:
iprot.skip(ftype)
elif fid == 2:
if ftype == TType.STRUCT:
self.error2 = beeswaxd.ttypes.BeeswaxException()
self.error2.read(iprot)
else:
iprot.skip(ftype)
else:
iprot.skip(ftype)
iprot.readFieldEnd()
iprot.readStructEnd()
def write(self, oprot):
if oprot._fast_encode is not None and self.thrift_spec is not None:
oprot.trans.write(oprot._fast_encode(self, [self.__class__, self.thrift_spec]))
return
oprot.writeStructBegin('CloseInsert_result')
if self.success is not None:
oprot.writeFieldBegin('success', TType.STRUCT, 0)
self.success.write(oprot)
oprot.writeFieldEnd()
if self.error is not None:
oprot.writeFieldBegin('error', TType.STRUCT, 1)
self.error.write(oprot)
oprot.writeFieldEnd()
if self.error2 is not None:
oprot.writeFieldBegin('error2', TType.STRUCT, 2)
self.error2.write(oprot)
oprot.writeFieldEnd()
oprot.writeFieldStop()
oprot.writeStructEnd()
def validate(self):
return
def __repr__(self):
L = ['%s=%r' % (key, value)
for key, value in self.__dict__.items()]
return '%s(%s)' % (self.__class__.__name__, ', '.join(L))
def __eq__(self, other):
return isinstance(other, self.__class__) and self.__dict__ == other.__dict__
def __ne__(self, other):
return not (self == other)
all_structs.append(CloseInsert_result)
CloseInsert_result.thrift_spec = (
(0, TType.STRUCT, 'success', [TInsertResult, None], None, ), # 0
(1, TType.STRUCT, 'error', [beeswaxd.ttypes.QueryNotFoundException, None], None, ), # 1
(2, TType.STRUCT, 'error2', [beeswaxd.ttypes.BeeswaxException, None], None, ), # 2
)
class PingImpalaService_args(object):
def read(self, iprot):
if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None:
iprot._fast_decode(self, iprot, [self.__class__, self.thrift_spec])
return
iprot.readStructBegin()
while True:
(fname, ftype, fid) = iprot.readFieldBegin()
if ftype == TType.STOP:
break
else:
iprot.skip(ftype)
iprot.readFieldEnd()
iprot.readStructEnd()
def write(self, oprot):
if oprot._fast_encode is not None and self.thrift_spec is not None:
oprot.trans.write(oprot._fast_encode(self, [self.__class__, self.thrift_spec]))
return
oprot.writeStructBegin('PingImpalaService_args')
oprot.writeFieldStop()
oprot.writeStructEnd()
def validate(self):
return
def __repr__(self):
L = ['%s=%r' % (key, value)
for key, value in self.__dict__.items()]
return '%s(%s)' % (self.__class__.__name__, ', '.join(L))
def __eq__(self, other):
return isinstance(other, self.__class__) and self.__dict__ == other.__dict__
def __ne__(self, other):
return not (self == other)
all_structs.append(PingImpalaService_args)
PingImpalaService_args.thrift_spec = (
)
class PingImpalaService_result(object):
"""
Attributes:
- success
"""
def __init__(self, success=None,):
self.success = success
def read(self, iprot):
if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None:
iprot._fast_decode(self, iprot, [self.__class__, self.thrift_spec])
return
iprot.readStructBegin()
while True:
(fname, ftype, fid) = iprot.readFieldBegin()
if ftype == TType.STOP:
break
if fid == 0:
if ftype == TType.STRUCT:
self.success = TPingImpalaServiceResp()
self.success.read(iprot)
else:
iprot.skip(ftype)
else:
iprot.skip(ftype)
iprot.readFieldEnd()
iprot.readStructEnd()
def write(self, oprot):
if oprot._fast_encode is not None and self.thrift_spec is not None:
oprot.trans.write(oprot._fast_encode(self, [self.__class__, self.thrift_spec]))
return
oprot.writeStructBegin('PingImpalaService_result')
if self.success is not None:
oprot.writeFieldBegin('success', TType.STRUCT, 0)
self.success.write(oprot)
oprot.writeFieldEnd()
oprot.writeFieldStop()
oprot.writeStructEnd()
def validate(self):
return
def __repr__(self):
L = ['%s=%r' % (key, value)
for key, value in self.__dict__.items()]
return '%s(%s)' % (self.__class__.__name__, ', '.join(L))
def __eq__(self, other):
return isinstance(other, self.__class__) and self.__dict__ == other.__dict__
def __ne__(self, other):
return not (self == other)
all_structs.append(PingImpalaService_result)
PingImpalaService_result.thrift_spec = (
(0, TType.STRUCT, 'success', [TPingImpalaServiceResp, None], None, ), # 0
)
class GetExecSummary_args(object):
"""
Attributes:
- handle
"""
def __init__(self, handle=None,):
self.handle = handle
def read(self, iprot):
if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None:
iprot._fast_decode(self, iprot, [self.__class__, self.thrift_spec])
return
iprot.readStructBegin()
while True:
(fname, ftype, fid) = iprot.readFieldBegin()
if ftype == TType.STOP:
break
if fid == 1:
if ftype == TType.STRUCT:
self.handle = beeswaxd.ttypes.QueryHandle()
self.handle.read(iprot)
else:
iprot.skip(ftype)
else:
iprot.skip(ftype)
iprot.readFieldEnd()
iprot.readStructEnd()
def write(self, oprot):
if oprot._fast_encode is not None and self.thrift_spec is not None:
oprot.trans.write(oprot._fast_encode(self, [self.__class__, self.thrift_spec]))
return
oprot.writeStructBegin('GetExecSummary_args')
if self.handle is not None:
oprot.writeFieldBegin('handle', TType.STRUCT, 1)
self.handle.write(oprot)
oprot.writeFieldEnd()
oprot.writeFieldStop()
oprot.writeStructEnd()
def validate(self):
return
def __repr__(self):
L = ['%s=%r' % (key, value)
for key, value in self.__dict__.items()]
return '%s(%s)' % (self.__class__.__name__, ', '.join(L))
def __eq__(self, other):
return isinstance(other, self.__class__) and self.__dict__ == other.__dict__
def __ne__(self, other):
return not (self == other)
all_structs.append(GetExecSummary_args)
GetExecSummary_args.thrift_spec = (
None, # 0
(1, TType.STRUCT, 'handle', [beeswaxd.ttypes.QueryHandle, None], None, ), # 1
)
class GetExecSummary_result(object):
"""
Attributes:
- success
- error
- error2
"""
def __init__(self, success=None, error=None, error2=None,):
self.success = success
self.error = error
self.error2 = error2
def read(self, iprot):
if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None:
iprot._fast_decode(self, iprot, [self.__class__, self.thrift_spec])
return
iprot.readStructBegin()
while True:
(fname, ftype, fid) = iprot.readFieldBegin()
if ftype == TType.STOP:
break
if fid == 0:
if ftype == TType.STRUCT:
self.success = ExecStats.ttypes.TExecSummary()
self.success.read(iprot)
else:
iprot.skip(ftype)
elif fid == 1:
if ftype == TType.STRUCT:
self.error = beeswaxd.ttypes.QueryNotFoundException()
self.error.read(iprot)
else:
iprot.skip(ftype)
elif fid == 2:
if ftype == TType.STRUCT:
self.error2 = beeswaxd.ttypes.BeeswaxException()
self.error2.read(iprot)
else:
iprot.skip(ftype)
else:
iprot.skip(ftype)
iprot.readFieldEnd()
iprot.readStructEnd()
def write(self, oprot):
if oprot._fast_encode is not None and self.thrift_spec is not None:
oprot.trans.write(oprot._fast_encode(self, [self.__class__, self.thrift_spec]))
return
oprot.writeStructBegin('GetExecSummary_result')
if self.success is not None:
oprot.writeFieldBegin('success', TType.STRUCT, 0)
self.success.write(oprot)
oprot.writeFieldEnd()
if self.error is not None:
oprot.writeFieldBegin('error', TType.STRUCT, 1)
self.error.write(oprot)
oprot.writeFieldEnd()
if self.error2 is not None:
oprot.writeFieldBegin('error2', TType.STRUCT, 2)
self.error2.write(oprot)
oprot.writeFieldEnd()
oprot.writeFieldStop()
oprot.writeStructEnd()
def validate(self):
return
def __repr__(self):
L = ['%s=%r' % (key, value)
for key, value in self.__dict__.items()]
return '%s(%s)' % (self.__class__.__name__, ', '.join(L))
def __eq__(self, other):
return isinstance(other, self.__class__) and self.__dict__ == other.__dict__
def __ne__(self, other):
return not (self == other)
all_structs.append(GetExecSummary_result)
GetExecSummary_result.thrift_spec = (
(0, TType.STRUCT, 'success', [ExecStats.ttypes.TExecSummary, None], None, ), # 0
(1, TType.STRUCT, 'error', [beeswaxd.ttypes.QueryNotFoundException, None], None, ), # 1
(2, TType.STRUCT, 'error2', [beeswaxd.ttypes.BeeswaxException, None], None, ), # 2
)
fix_spec(all_structs)
del all_structs
|
py | 1a39fae54697b0ea622631a47c55625441b90e2e | # global variables
NORMAL = 0
FAST = 1
# global imports
from dataclasses import dataclass, field
from random import shuffle
# local imports
from .point import Point
from .rooms import getRooms, getRandomRoom
from .floor import Floor
@dataclass(frozen = True, order = False)
class Plotter:
width: int = field()
height: int = field()
mode: int = field(default = NORMAL)
def makePlan(self, mode, floors, maxFloors = 1):
'''Uses the mode to construct floors, storing them in the floors input,
then returns a tuple of how many basement floors were created and how
many non-basement floors were created.'''
# Get the number of floors to make
# TODO: Allow multiple floors to be made
floors.append(Floor(self.width, self.height, level = 0, mode = self.mode))
# Setup the room list and insertion points for the floor
insertion_points = [Point(0, 0)]
rooms = getRooms(mode)
# Put rooms into the floor randomly
# TODO: Allow multiple floors to be made
cur_floor = floors[0]
while len(insertion_points) > 0:
#print(insertion_points)
# Get room if we have inserted all the required ones
if len(rooms) == 0: rooms.append(getRandomRoom())
# Insert room and check if it was inserted
if cur_floor.insert(insertion_points[0], rooms[0]):
insertion_points.append(insertion_points[0] + Point(rooms[0].width, 0))
insertion_points.append(insertion_points[0] + Point(0, rooms[0].height))
del rooms[0]
del insertion_points[0]
shuffle(insertion_points)
# return the number of floors on the basement and upper levels
# TODO: Allow multiple floors to be made
return (0, 1) |
py | 1a39fda421ccfd02b1ced1c4f21af1e399acad80 | from .gui import main
main()
|
py | 1a39feba06dde173619443f29774e916786e479e | import itertools
import sys
import requests
from commands import *
def loadconfig(filename):
with open(filename) as file:
content = file.read()
config = json.loads(content)
return config
option_has_value = {
'u': True,
'p': True,
'c': True,
'i': False
}
def getoptionvalue(opt, param):
if len(param) != 0 and option_has_value.get(opt):
return param.pop(0)
def getoptions(param):
if len(param) == 0:
return {}
opt = param.pop(0)
if opt[0] != '-':
return getoptions(param)
rs = {}
idx = 0
for idx in range(1, len(opt) - 1):
if idx == 1 and opt[idx] == '-':
break
rs.setdefault(opt[idx])
idx = idx + 1
opt = opt[idx:]
rs.setdefault(opt, getoptionvalue(opt, param))
rrs = getoptions(param)
return {**rs, **rrs}
def authenticate(url, sess, opts):
username = opts.get('u') or opts.get('username')
password = opts.get('p') or opts.get('password')
if username is not None and password is not None:
params = {'username': username, 'password': password}
valid = check_credentials_validity(url, sess, params)
if valid:
sess.auth = username, password
return
else:
print('You\'re not authenticated')
sess.auth = None, None
def sessionconfig(sess, config, opts):
cert = config['cert']
sess.verify = cert
authenticate(opts['url'], sess, opts)
def commandshelp():
print('Commands available:')
print(' ', 'register username=<username> password=<password> name=<user\'s name>')
print(' ', 'Register the user <user\'s name> with username <username> and password <password>')
print(' ', 'login username=<username> password=<password>')
print(' ', 'Login with username <username> and password <password>')
print(' ', 'ls')
print(' ', 'List files')
print(' ', 'create name=<server_file_name>')
print(' ', 'Create a remote file with name <server_file_name>')
print(' ', 'change id=<file_id> [content=<new_file_content>] [name=<new_file_name>]')
print(' ', 'Change content and/or name of the remote file <file_id>')
print(' ', 'download id=<file_id> [file=<file_name>] [location=<dir_path>]')
print(' ', 'Download remote file <file_id> and save as <file_name> in the directory <dir_path>')
print(' ', 'Default <dir_path> is application folder downloads')
print(' ', 'Default <file_name> is the remote file name')
print(' ', 'delete id=<file_id>')
print(' ', 'Delete remote file <file_id>')
print(' ', 'upload name=<server_file_name> file=<file_name>')
print(' ', 'Upload local file <file_name> as <server_file_name>')
print(' ', 'check id=<file_id>')
print(' ', 'Check user permissions over the file <file_id>')
print(' ', 'manage fileId=<file_id> userId=<user_id> read=[True|False] write=[True|False]')
print(' ', 'Change the user <user_id> permissions over the file <file_id>')
print(' ', 'The parameters "read" and "write" are the permissions to be set')
print(' ', 'users')
print(' ', 'List all the users')
print(' ', 'read id=<file_id> [numbered=[TRUE|FALSE]]')
print(' ', 'Show file <file_id> content')
print(' ', 'Parameter "numbered" sets on/off the number lines')
print(' ', 'write id=<file_id> content=<content_to_insert> after=<line_number>')
print(' ', 'Writes <content> in the file <file_id> after line <line_number>')
print(' ', 'append id=<file_id> content=<content_to_append>')
print(' ', 'Appends <content> in end of the file <file_id>')
print(' ', 'replace id=<file_id> line=<line_number> content=<new_line_content>')
print(' ', 'Replaces the line <line_number>\'s content by <content> in the file <file_id>')
print(' ', 'erase id=<file_id> line=<line_number>')
print(' ', 'Erases the line <line_number> in the file <file_id>')
def help(*params):
print('Usage:')
print(' ', 'python main.py [-c <command>] [-i] [-u <username>] [-p <password>]')
print('Options:')
print(' ', '-c <command>')
print(' ', 'Executes the command <command>')
print(' ', '-i')
print(' ', 'Enters in interactive mode to execute commands')
print(' ', '-u, --username <username>')
print(' ', 'Configs the username <username> to be used to login')
print(' ', 'Should be used together with --password option')
print(' ', '-p, --password <password>')
print(' ', 'Configs the password <password> to be used to login')
print(' ', 'Should be used together with --username option')
commandshelp()
cmdprocessors = {
'help': help,
'ls': ls,
'upload': upload,
'download': download,
'register': register_user,
'create': create,
'change': change,
'delete': delete,
'login': authenticate,
'check': check_permissions,
'manage': manage_permissions,
'users': list_users,
'read': read,
'write': write,
'append': append,
'replace': replace,
'erase': erase
}
def process(url, sess, cmd, flags):
processor = cmdprocessors.get(cmd)
if processor is None:
print('Invalid Command')
return
try:
processor(url, sess, flags)
except requests.exceptions.ConnectionError as ce:
print(ce, file=sys.stderr)
def splitter(string):
sep = ' '
initIdx = idx = 0
insideQuote = False
parts = []
for idx in range(len(string)):
if string[idx] == '"':
insideQuote = not insideQuote
continue
if not insideQuote and string[idx] == sep:
if initIdx != idx:
parts.append(string[initIdx: idx])
initIdx = idx + 1
idx = idx + 1
if initIdx != idx:
parts.append(string[initIdx: idx])
return [*map(lambda e: e.replace('"', ''), parts)]
def parsecmd(strcmd):
cmd, *listparams = splitter(strcmd)
listparams = list(itertools.filterfalse(lambda p: '=' not in p, listparams))
params = {k: v for k, v in (p.split('=', 1) for p in listparams)}
return cmd, params
def process_cmd(val, url, session):
if val:
cmd, params = parsecmd(val)
process(url, session, cmd, params)
else:
print('Argument expected for the -c option ')
def interactive(url, session):
while True:
i = input('>>')
cmd, flags = parsecmd(i)
if cmd == 'exit':
break
if not cmd:
continue
process(url, session, cmd, flags)
def main(args):
config = loadconfig('config.json')
url = "%s:%d" % (config['address'], config['port'])
with requests.Session() as session:
options = getoptions(args[1:])
options['url'] = url
sessionconfig(session, config, options)
execcmd = 'c' in options
execinter = 'i' in options
if execcmd:
process_cmd(options['c'], url, session)
if execinter or not execcmd:
interactive(url, session)
if __name__ == '__main__':
main(sys.argv)
|
py | 1a39feddf739a5a164666f807e1e29488987af4b | import re
import json
from ..base_request import BaseRequest
from .device import Device
from ..settings import Settings
from .. import exceptions
from .service import Service
from .service_install import ServiceInstall
def _is_valid_env_var_name(env_var_name):
return re.match('^[a-zA-Z_]+[a-zA-Z0-9_]*$', env_var_name)
class EnvironmentVariable(object):
"""
This class is a wrapper for environment variable models.
"""
def __init__(self):
self.application = ApplicationEnvVariable()
self.service_environment_variable = ServiceEnvVariable()
self.device = DeviceEnvVariable()
self.device_service_environment_variable = DeviceServiceEnvVariable()
class DeviceEnvVariable(object):
"""
This class implements device environment variable model for balena python SDK.
"""
def __init__(self):
self.base_request = BaseRequest()
self.device = Device()
self.settings = Settings()
def _fix_device_env_var_name_key(self, env_var):
"""
Internal method to workaround the fact that applications environment variables contain a `name` property
while device environment variables contain an `env_var_name` property instead.
"""
if 'env_var_name' in env_var:
env_var['name'] = env_var['env_var_name']
env_var.pop('env_var_name', None)
return env_var
def get_all(self, uuid):
"""
Get all device environment variables.
Args:
uuid (str): device uuid.
Returns:
list: device environment variables.
Examples:
>>> balena.models.environment_variables.device.get_all('8deb12a58e3b6d3920db1c2b6303d1ff32f23d5ab99781ce1dde6876e8d143')
[{u'device': {u'__deferred': {u'uri': u'/ewa/device(122950)'}, u'__id': 122950}, u'__metadata': {u'type': u'', u'uri': u'/ewa/device_environment_variable(2173)'}, u'id': 2173, u'value': u'1322944771964103', u'env_var_name': u'BALENA_DEVICE_RESTART'}]
"""
device = self.device.get(uuid)
params = {
'filter': 'device',
'eq': device['id']
}
return self.base_request.request(
'device_environment_variable', 'GET', params=params,
endpoint=self.settings.get('pine_endpoint')
)['d']
def create(self, uuid, env_var_name, value):
"""
Create a device environment variable.
Args:
uuid (str): device uuid.
env_var_name (str): environment variable name.
value (str): environment variable value.
Returns:
dict: new device environment variable info.
Examples:
>>> balena.models.environment_variables.device.create('8deb12a58e3b6d3920db1c2b6303d1ff32f23d5ab99781ce1dde6876e8d143','test_env4', 'testing1')
{'name': u'test_env4', u'__metadata': {u'type': u'', u'uri': u'/balena/device_environment_variable(42166)'}, u'value': u'testing1', u'device': {u'__deferred': {u'uri': u'/balena/device(115792)'}, u'__id': 115792}, u'id': 42166}
"""
if not _is_valid_env_var_name(env_var_name):
raise exceptions.InvalidParameter('env_var_name', env_var_name)
device = self.device.get(uuid)
data = {
'device': device['id'],
'env_var_name': env_var_name,
'value': value
}
new_env_var = json.loads(self.base_request.request(
'device_environment_variable', 'POST', data=data,
endpoint=self.settings.get('pine_endpoint')
).decode('utf-8'))
return self._fix_device_env_var_name_key(new_env_var)
def update(self, var_id, value):
"""
Update a device environment variable.
Args:
var_id (str): environment variable id.
value (str): new environment variable value.
Examples:
>>> balena.models.environment_variables.device.update(2184, 'new value')
'OK'
"""
params = {
'filter': 'id',
'eq': var_id
}
data = {
'value': value
}
return self.base_request.request(
'device_environment_variable', 'PATCH', params=params, data=data,
endpoint=self.settings.get('pine_endpoint')
)
def remove(self, var_id):
"""
Remove a device environment variable.
Args:
var_id (str): environment variable id.
Examples:
>>> balena.models.environment_variables.device.remove(2184)
'OK'
"""
params = {
'filter': 'id',
'eq': var_id
}
return self.base_request.request(
'device_environment_variable', 'DELETE', params=params,
endpoint=self.settings.get('pine_endpoint')
)
def get_all_by_application(self, app_id):
"""
Get all device environment variables for an application.
Args:
app_id (str): application id.
Returns:
list: list of device environment variables.
Examples:
>>> balena.models.environment_variables.device.get_all_by_application('5780')
[{'name': u'device1', u'__metadata': {u'type': u'', u'uri': u'/balena/device_environment_variable(40794)'}, u'value': u'test', u'device': {u'__deferred': {u'uri': u'/balena/device(115792)'}, u'__id': 115792}, u'id': 40794}, {'name': u'BALENA_DEVICE_RESTART', u'__metadata': {u'type': u'', u'uri': u'/balena/device_environment_variable(1524)'}, u'value': u'961506585823372', u'device': {u'__deferred': {u'uri': u'/balena/device(121794)'}, u'__id': 121794}, u'id': 1524}]
"""
params = {
'filter': 'device/belongs_to__application',
'eq': app_id
}
env_list = self.base_request.request(
'device_environment_variable', 'GET', params=params,
endpoint=self.settings.get('pine_endpoint'))
return list(map(self._fix_device_env_var_name_key, env_list['d']))
class DeviceServiceEnvVariable(object):
"""
This class implements device service variable model for balena python SDK.
"""
def __init__(self):
self.base_request = BaseRequest()
self.device = Device()
self.settings = Settings()
self.service = Service()
self.service_install = ServiceInstall()
def get_all(self, uuid):
"""
Get all device service environment variables belong to a device.
Args:
uuid (str): device uuid.
Returns:
list: device service environment variables.
Examples:
>>> balena.models.environment_variables.device_service_environment_variable.get_all('f5213eac0d63ac47721b037a7406d306')
[{u'name': u'dev_proxy', u'created_at': u'2018-03-16T19:23:21.727Z', u'__metadata': {u'type': u'', u'uri': u'/balena/device_service_environment_variable(28888)'}, u'value': u'value', u'service_install': [{u'__metadata': {u'type': u'', u'uri': u'/balena/service_install(30788)'}, u'id': 30788, u'service': [{u'service_name': u'proxy', u'__metadata': {u'type': u'', u'uri': u'/balena/service(NaN)'}}]}], u'id': 28888}, {u'name': u'dev_data', u'created_at': u'2018-03-16T19:23:11.614Z', u'__metadata': {u'type': u'', u'uri': u'/balena/device_service_environment_variable(28887)'}, u'value': u'dev_data_value', u'service_install': [{u'__metadata': {u'type': u'', u'uri': u'/balena/service_install(30789)'}, u'id': 30789, u'service': [{u'service_name': u'data', u'__metadata': {u'type': u'', u'uri': u'/balena/service(NaN)'}}]}], u'id': 28887}, {u'name': u'dev_data1', u'created_at': u'2018-03-17T05:53:19.257Z', u'__metadata': {u'type': u'', u'uri': u'/balena/device_service_environment_variable(28964)'}, u'value': u'aaaa', u'service_install': [{u'__metadata': {u'type': u'', u'uri': u'/balena/service_install(30789)'}, u'id': 30789, u'service': [{u'service_name': u'data', u'__metadata': {u'type': u'', u'uri': u'/balena/service(NaN)'}}]}], u'id': 28964}]
"""
# TODO: pine client for python
device = self.device.get(uuid)
query = '$expand=service_install($select=id&$expand=service($select=service_name))&$filter=service_install/any(d:d/device%20eq%20{device_id})'.format(device_id=device['id'])
return self.base_request.request(
'device_service_environment_variable', 'GET', raw_query=query,
endpoint=self.settings.get('pine_endpoint')
)['d']
def create(self, uuid, service_name, env_var_name, value):
"""
Create a device service environment variable.
Args:
uuid (str): device uuid.
service_name (str): service name.
env_var_name (str): device service environment variable name.
value (str): device service environment variable value.
Returns:
dict: new device service environment variable info.
Examples:
>>> balena.models.environment_variables.device_service_environment_variable.create('f5213eac0d63ac47721b037a7406d306', 'data', 'dev_data_sdk', 'test1')
{"id":28970,"created_at":"2018-03-17T10:13:14.184Z","service_install":{"__deferred":{"uri":"/balena/service_install(30789)"},"__id":30789},"value":"test1","name":"dev_data_sdk","__metadata":{"uri":"/balena/device_service_environment_variable(28970)","type":""}}
"""
if not _is_valid_env_var_name(env_var_name):
raise exceptions.InvalidParameter('env_var_name', env_var_name)
device = self.device.get(uuid)
services = self.service.get_all_by_application(device['belongs_to__application']['__id'])
service_id = [i['id'] for i in services if i['service_name'] == service_name]
if service_id:
service_installs = self.service_install.get_all_by_device(device['id'])
service_install_id = [i['id'] for i in service_installs if i['installs__service']['__id'] == service_id[0]]
data = {
'service_install': service_install_id[0],
'name': env_var_name,
'value': value
}
return json.loads(self.base_request.request(
'device_service_environment_variable', 'POST', data=data,
endpoint=self.settings.get('pine_endpoint')
).decode('utf-8'))
else:
raise exceptions.ServiceNotFound(service_name)
def update(self, var_id, value):
"""
Update a device service environment variable.
Args:
var_id (str): device environment variable id.
value (str): new device environment variable value.
Examples:
>>> balena.models.environment_variables.device_service_environment_variable.update('28970', 'test1 new value')
'OK'
"""
params = {
'filter': 'id',
'eq': var_id
}
data = {
'value': value
}
return self.base_request.request(
'device_service_environment_variable', 'PATCH', params=params, data=data,
endpoint=self.settings.get('pine_endpoint')
)
def remove(self, var_id):
"""
Remove a device service environment variable.
Args:
var_id (str): device service environment variable id.
Examples:
>>> balena.models.environment_variables.device_service_environment_variable.remove('28970')
'OK'
"""
params = {
'filter': 'id',
'eq': var_id
}
return self.base_request.request(
'device_service_environment_variable', 'DELETE', params=params,
endpoint=self.settings.get('pine_endpoint')
)
def get_all_by_application(self, app_id):
"""
Get all device service environment variables belong to an application.
Args:
app_id (int): application id.
Returns:
list: list of device service environment variables.
Examples:
>>> balena.models.environment_variables.device_service_environment_variable.get_all_by_application(1043050)
[{'name': u'device1', u'__metadata': {u'type': u'', u'uri': u'/balena/device_environment_variable(40794)'}, u'value': u'test', u'device': {u'__deferred': {u'uri': u'/balena/device(115792)'}, u'__id': 115792}, u'id': 40794}, {'name': u'BALENA_DEVICE_RESTART', u'__metadata': {u'type': u'', u'uri': u'/balena/device_environment_variable(1524)'}, u'value': u'961506585823372', u'device': {u'__deferred': {u'uri': u'/balena/device(121794)'}, u'__id': 121794}, u'id': 1524}]
"""
raw_query = '$filter=service_install/any(si:si/device/any(d:d/belongs_to__application%20eq%20{0}))'.format(app_id)
return self.base_request.request(
'device_service_environment_variable', 'GET', raw_query=raw_query,
endpoint=self.settings.get('pine_endpoint')
)['d']
class ApplicationEnvVariable(object):
"""
This class implements application environment variable model for balena python SDK.
Attributes:
SYSTEM_VARIABLE_RESERVED_NAMES (list): list of reserved system variable names.
OTHER_RESERVED_NAMES_START (list): list of prefix for system variable.
"""
SYSTEM_VARIABLE_RESERVED_NAMES = ['BALENA', 'RESIN', 'USER']
OTHER_RESERVED_NAMES_START = ['BALENA_', 'RESIN_']
def __init__(self):
self.base_request = BaseRequest()
self.settings = Settings()
def get_all(self, app_id):
"""
Get all environment variables by application.
Args:
app_id (str): application id.
Returns:
list: application environment variables.
Examples:
>>> balena.models.environment_variables.application.get_all(9020)
[{u'application': {u'__deferred': {u'uri': u'/ewa/application(9020)'}, u'__id': 9020}, u'__metadata': {u'type': u'', u'uri': u'/ewa/environment_variable(5650)'}, u'id': 5650, u'value': u'7330634368117899', u'name': u'BALENA_RESTART'}]
"""
params = {
'filter': 'application',
'eq': app_id
}
return self.base_request.request(
'application_environment_variable', 'GET', params=params,
endpoint=self.settings.get('pine_endpoint')
)['d']
def create(self, app_id, env_var_name, value):
"""
Create an environment variable for application.
Args:
app_id (str): application id.
env_var_name (str): environment variable name.
value (str): environment variable value.
Returns:
dict: new application environment info.
Examples:
>>> balena.models.environment_variables.application.create('978062', 'test2', '123')
{'id': 91138, 'application': {'__deferred': {'uri': '/balena/application(978062)'}, '__id': 978062}, 'name': 'test2', 'value': '123', '__metadata': {'uri': '/balena/environment_variable(91138)', 'type': ''}}
"""
if not _is_valid_env_var_name(env_var_name):
raise exceptions.InvalidParameter('env_var_name', env_var_name)
data = {
'name': env_var_name,
'value': value,
'application': app_id
}
return json.loads(self.base_request.request(
'application_environment_variable', 'POST', data=data,
endpoint=self.settings.get('pine_endpoint')
).decode('utf-8'))
def update(self, var_id, value):
"""
Update an environment variable value for application.
Args:
var_id (str): environment variable id.
value (str): new environment variable value.
Examples:
>>> balena.models.environment_variables.application.update(5652, 'new value')
'OK'
"""
params = {
'filter': 'id',
'eq': var_id
}
data = {
'value': value
}
return self.base_request.request(
'application_environment_variable', 'PATCH', params=params, data=data,
endpoint=self.settings.get('pine_endpoint')
)
def remove(self, var_id):
"""
Remove application environment variable.
Args:
var_id (str): environment variable id.
Examples:
>>> balena.models.environment_variables.application.remove(5652)
'OK'
"""
params = {
'filter': 'id',
'eq': var_id
}
return self.base_request.request(
'application_environment_variable', 'DELETE', params=params,
endpoint=self.settings.get('pine_endpoint')
)
def is_system_variable(self, variable):
"""
Check if a variable is system specific.
Args:
variable (str): environment variable name.
Returns:
bool: True if system variable, False otherwise.
Examples:
>>> balena.models.environment_variables.application.is_system_variable('BALENA_API_KEY')
True
>>> balena.models.environment_variables.application.is_system_variable('APPLICATION_API_KEY')
False
"""
if variable in self.SYSTEM_VARIABLE_RESERVED_NAMES:
return True
return any(
true for prefix in self.OTHER_RESERVED_NAMES_START
if variable.startswith(prefix)
)
class ServiceEnvVariable(object):
"""
This class implements service environment variable model for balena python SDK.
"""
def __init__(self):
self.base_request = BaseRequest()
self.settings = Settings()
self.service = Service()
def get_all_by_application(self, app_id):
"""
Get all service environment variables by application.
Args:
app_id (str): application id.
Returns:
list: service application environment variables.
Examples:
>>> balena.models.environment_variables.service_environment_variable.get_all_by_application('1005160')
[{u'name': u'app_data', u'service': {u'__deferred': {u'uri': u'/balena/service(21667)'}, u'__id': 21667}, u'created_at': u'2018-03-16T19:21:21.087Z', u'__metadata': {u'type': u'', u'uri': u'/balena/service_environment_variable(12365)'}, u'value': u'app_data_value', u'id': 12365}, {u'name': u'app_data1', u'service': {u'__deferred': {u'uri': u'/balena/service(21667)'}, u'__id': 21667}, u'created_at': u'2018-03-16T19:21:49.662Z', u'__metadata': {u'type': u'', u'uri': u'/balena/service_environment_variable(12366)'}, u'value': u'app_data_value', u'id': 12366}, {u'name': u'app_front', u'service': {u'__deferred': {u'uri': u'/balena/service(21669)'}, u'__id': 21669}, u'created_at': u'2018-03-16T19:22:06.955Z', u'__metadata': {u'type': u'', u'uri': u'/balena/service_environment_variable(12367)'}, u'value': u'front_value', u'id': 12367}]
"""
# TODO: pine client for python
raw_query = '$filter=service/any(s:s/application%20eq%20{app_id})'.format(app_id=app_id)
return self.base_request.request(
'service_environment_variable', 'GET', raw_query=raw_query,
endpoint=self.settings.get('pine_endpoint')
)['d']
def create(self, app_id, service_name, env_var_name, value):
"""
Create a service environment variable for application.
Args:
app_id (str): application id.
service_name(str): service name.
env_var_name (str): environment variable name.
value (str): environment variable value.
Returns:
str: new service environment variable info.
Examples:
>>> balena.models.environment_variables.service_environment_variable.create('1005160', 'proxy', 'app_proxy', 'test value')
{"id":12444,"created_at":"2018-03-18T09:34:09.144Z","service":{"__deferred":{"uri":"/balena/service(21668)"},"__id":21668},"name":"app_proxy","value":"test value","__metadata":{"uri":"/balena/service_environment_variable(12444)","type":""}}
"""
if not _is_valid_env_var_name(env_var_name):
raise exceptions.InvalidParameter('env_var_name', env_var_name)
services = self.service.get_all_by_application(app_id)
service_id = [i['id'] for i in services if i['service_name'] == service_name]
data = {
'name': env_var_name,
'value': value,
'service': service_id
}
return json.loads(self.base_request.request(
'service_environment_variable', 'POST', data=data,
endpoint=self.settings.get('pine_endpoint')
).decode('utf-8'))
def update(self, var_id, value):
"""
Update a service environment variable value for application.
Args:
var_id (str): service environment variable id.
value (str): new service environment variable value.
Examples:
>>> balena.models.environment_variables.service_environment_variable.update('12444', 'new test value')
'OK'
"""
params = {
'filter': 'id',
'eq': var_id
}
data = {
'value': value
}
return self.base_request.request(
'service_environment_variable', 'PATCH', params=params, data=data,
endpoint=self.settings.get('pine_endpoint')
)
def remove(self, var_id):
"""
Remove service environment variable.
Args:
var_id (str): service environment variable id.
Examples:
>>> balena.models.environment_variables.service_environment_variable.remove('12444')
'OK'
"""
params = {
'filter': 'id',
'eq': var_id
}
return self.base_request.request(
'service_environment_variable', 'DELETE', params=params,
endpoint=self.settings.get('pine_endpoint')
)
|
py | 1a3a00fbec16de609a5235e9e675dda55c60175a | from django.contrib.auth.models import AnonymousUser
from core.models.group import get_user_group
from core.models.project import Project
from rest_framework import serializers
class ProjectsField(serializers.Field):
def to_representation(self, project_mgr):
request_user = self.parent.request_user
if isinstance(request_user, AnonymousUser):
return None
try:
group = get_user_group(request_user.username)
projects = project_mgr.filter(owner=group)
# Modifications to how 'project' should be displayed here:
return [p.uuid for p in projects]
except Project.DoesNotExist:
return None
def to_internal_value(self, data, files, field_name, into):
value = data.get(field_name)
if value is None:
return
related_obj = self.parent.instance
user = self.parent.request_user
group = get_user_group(user.username)
# Retrieve the New Project(s)
if isinstance(value, list):
project_id = value[0]
else:
project_id = value
new_project = Project.objects.get(id=project_id, owner=group)
related_obj.project = new_project
related_obj.save()
# Modifications to how 'project' should be displayed here:
into[field_name] = project_id
|
py | 1a3a0144d498abd8f68e30cd59021031caf80a40 | """Config flow for Came Eti Domo integration."""
import logging
import voluptuous as vol
from homeassistant import config_entries, core, exceptions
from .const import DOMAIN, CONF_HOST, CONF_USERNAME, CONF_PASSWORD # pylint:disable=unused-import
from eti_domo import Domo, ServerNotFound
_LOGGER = logging.getLogger(__name__)
# TODO adjust the data schema to the data that you need
DATA_SCHEMA = vol.Schema({CONF_HOST: str, CONF_USERNAME: str, CONF_PASSWORD: str})
async def validate_input(hass: core.HomeAssistant, data):
"""Validate the user input allows us to connect.
Data has the keys from DATA_SCHEMA with values provided by the user.
"""
# TODO validate the data can be used to set up a connection.
# If your PyPI package is not built with async, pass your methods
# to the executor:
# await hass.async_add_executor_job(
# your_validate_func, data["username"], data["password"]
# )
# Create an object representing the eti/domo with the host ip
hub = None
try:
hub = Domo(data["host"])
except ServerNotFound:
raise CannotConnect
# login to the server
if not hub.login(data["username"], data['password']):
raise InvalidAuth
# save the Domo object containing the client id session
hass.data[DOMAIN] = {}
hass.data[DOMAIN]["hub"] = hub
# search for the unique id of the server
server_info = hub.list_request(Domo.available_commands['features'])
serial = server_info['serial']
#_LOGGER.error("Server host %s", hub.host, exc_info=1)
# Return info that you want to store in the config entry.
return {"title": serial}
class ConfigFlow(config_entries.ConfigFlow, domain=DOMAIN):
"""Handle a config flow for Came Eti Domo."""
VERSION = 1
# TODO pick one of the available connection classes in homeassistant/config_entries.py
#CONN_CLASS_UNKNOWN oppure CONN_CLASS_LOCAL_PUSH oppure CONN_CLASS_LOCAL_POLL
CONNECTION_CLASS = config_entries.CONN_CLASS_UNKNOWN
def __init__(self):
"""Initialize the Config flow."""
self.config = None
async def async_step_user(self, user_input=None):
"""Handle the initial step."""
errors = {}
if user_input is not None:
try:
# save user_input into the config parameter
self.config = {
CONF_HOST: user_input[CONF_HOST],
CONF_USERNAME: user_input[CONF_USERNAME],
CONF_PASSWORD: user_input[CONF_PASSWORD]
}
# validate user input and login
info = await validate_input(self.hass, user_input)
# set unique id
await self.async_set_unique_id(info['title'])
self._abort_if_unique_id_configured()
return self.async_create_entry(title=info['title'], data=user_input)
except CannotConnect:
errors["base"] = "cannot_connect"
except InvalidAuth:
errors["base"] = "invalid_auth"
except Exception: # pylint: disable=broad-except
_LOGGER.exception("Unexpected exception")
errors["base"] = "unknown"
return self.async_show_form(
step_id="user", data_schema=DATA_SCHEMA, errors=errors
)
class CannotConnect(exceptions.HomeAssistantError):
"""Error to indicate we cannot connect."""
class InvalidAuth(exceptions.HomeAssistantError):
"""Error to indicate there is invalid auth."""
|
py | 1a3a01d3322185997c48ce9f3da766c079b01fd8 | from pytest_factoryboy import register
from chemreg.compound.tests.factories import DefinedCompoundFactory
from chemreg.substance.tests.factories import (
QCLevelsTypeFactory,
RelationshipTypeFactory,
SourceFactory,
SubstanceFactory,
SubstanceRelationshipFactory,
SubstanceTypeFactory,
SynonymFactory,
SynonymQualityFactory,
SynonymTypeFactory,
)
register(DefinedCompoundFactory)
register(QCLevelsTypeFactory)
register(RelationshipTypeFactory)
register(SourceFactory)
register(SubstanceFactory)
register(SubstanceRelationshipFactory)
register(SubstanceTypeFactory)
register(SynonymFactory)
register(SynonymQualityFactory)
register(SynonymTypeFactory)
|
py | 1a3a04cdc12748151286dc5d6b3600c82e734c52 | from __future__ import absolute_import
import urlparse
import boto3
class S3DirectoryGenerator(object):
def __init__(self, s3_url):
parsed_s3_url = urlparse.urlparse(s3_url)
if parsed_s3_url.scheme != 's3':
raise SyntaxError('Invalid S3 scheme')
self.bucket_name = parsed_s3_url.netloc
self.bucket_path = parsed_s3_url.path[1:] if parsed_s3_url.path.startswith('/') else parsed_s3_url.path
bucket_path_split = self.bucket_path.split('/')
try:
client = boto3.client('s3')
region = client.get_bucket_location(Bucket=self.bucket_name)['LocationConstraint']
except:
region=None
s3_connection = boto3.resource('s3', region_name=region)
self.bucket = s3_connection.Bucket(self.bucket_name)
if bucket_path_split[-1] == '':
# directory listing
self.strip_length = len(self.bucket_path)
else:
# prefix listing
self.strip_length = len('/'.join(bucket_path_split[:-1]))
def __iter__(self):
return self.generator()
def generator(self):
for o in self.bucket.objects.filter(Prefix=self.bucket_path):
key = o.key[self.strip_length:]
# S3 doesn't really have a concept of dirs. The convention is '/' is path separator, we do the same
path = key.split('/')
if path[0] == '' and not self.bucket_path.endswith('/'):
# we assume the S3 prefix is a directory that wasn't terminated with a '/'
path.pop(0)
yield (path, o.size)
|
py | 1a3a04ce26fe17505174aab30b24e6085f3624cc | # qubit number=4
# total number=40
import cirq
import qiskit
from qiskit import IBMQ
from qiskit.providers.ibmq import least_busy
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
from qiskit import BasicAer, execute, transpile
from pprint import pprint
from qiskit.test.mock import FakeVigo
from math import log2
import numpy as np
import networkx as nx
def bitwise_xor(s: str, t: str) -> str:
length = len(s)
res = []
for i in range(length):
res.append(str(int(s[i]) ^ int(t[i])))
return ''.join(res[::-1])
def bitwise_dot(s: str, t: str) -> str:
length = len(s)
res = 0
for i in range(length):
res += int(s[i]) * int(t[i])
return str(res % 2)
def build_oracle(n: int, f) -> QuantumCircuit:
# implement the oracle O_f
# NOTE: use multi_control_toffoli_gate ('noancilla' mode)
# https://qiskit.org/documentation/_modules/qiskit/aqua/circuits/gates/multi_control_toffoli_gate.html
# https://quantumcomputing.stackexchange.com/questions/3943/how-do-you-implement-the-toffoli-gate-using-only-single-qubit-and-cnot-gates
# https://quantumcomputing.stackexchange.com/questions/2177/how-can-i-implement-an-n-bit-toffoli-gate
controls = QuantumRegister(n, "ofc")
target = QuantumRegister(1, "oft")
oracle = QuantumCircuit(controls, target, name="Of")
for i in range(2 ** n):
rep = np.binary_repr(i, n)
if f(rep) == "1":
for j in range(n):
if rep[j] == "0":
oracle.x(controls[j])
oracle.mct(controls, target[0], None, mode='noancilla')
for j in range(n):
if rep[j] == "0":
oracle.x(controls[j])
# oracle.barrier()
return oracle
def make_circuit(n:int,f) -> QuantumCircuit:
# circuit begin
input_qubit = QuantumRegister(n,"qc")
classical = ClassicalRegister(n, "qm")
prog = QuantumCircuit(input_qubit, classical)
prog.h(input_qubit[3]) # number=19
prog.cz(input_qubit[0],input_qubit[3]) # number=20
prog.h(input_qubit[3]) # number=21
prog.cx(input_qubit[0],input_qubit[3]) # number=23
prog.x(input_qubit[3]) # number=24
prog.cx(input_qubit[0],input_qubit[3]) # number=25
prog.cx(input_qubit[0],input_qubit[3]) # number=17
prog.rx(-0.48380526865282825,input_qubit[3]) # number=26
prog.h(input_qubit[1]) # number=2
prog.y(input_qubit[3]) # number=18
prog.h(input_qubit[2]) # number=3
prog.h(input_qubit[3]) # number=4
prog.y(input_qubit[3]) # number=12
prog.h(input_qubit[0]) # number=5
oracle = build_oracle(n-1, f)
prog.append(oracle.to_gate(),[input_qubit[i] for i in range(n-1)]+[input_qubit[n-1]])
prog.h(input_qubit[1]) # number=6
prog.h(input_qubit[2]) # number=7
prog.h(input_qubit[1]) # number=34
prog.cz(input_qubit[0],input_qubit[1]) # number=35
prog.h(input_qubit[1]) # number=36
prog.cx(input_qubit[0],input_qubit[1]) # number=31
prog.cx(input_qubit[0],input_qubit[1]) # number=37
prog.x(input_qubit[1]) # number=38
prog.cx(input_qubit[0],input_qubit[1]) # number=39
prog.cx(input_qubit[0],input_qubit[1]) # number=33
prog.cx(input_qubit[0],input_qubit[1]) # number=30
prog.h(input_qubit[3]) # number=8
prog.h(input_qubit[0]) # number=9
prog.y(input_qubit[2]) # number=10
prog.x(input_qubit[2]) # number=22
prog.y(input_qubit[2]) # number=11
prog.x(input_qubit[0]) # number=13
prog.x(input_qubit[0]) # number=14
# circuit end
for i in range(n):
prog.measure(input_qubit[i], classical[i])
return prog
if __name__ == '__main__':
a = "111"
b = "0"
f = lambda rep: bitwise_xor(bitwise_dot(a, rep), b)
prog = make_circuit(4,f)
IBMQ.load_account()
provider = IBMQ.get_provider(hub='ibm-q')
provider.backends()
backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 2 and not x.configuration().simulator and x.status().operational == True))
sample_shot =8000
info = execute(prog, backend=backend, shots=sample_shot).result().get_counts()
backend = FakeVigo()
circuit1 = transpile(prog,backend,optimization_level=2)
writefile = open("../data/startQiskit_QC2762.csv","w")
print(info,file=writefile)
print("results end", file=writefile)
print(circuit1.__len__(),file=writefile)
print(circuit1,file=writefile)
writefile.close()
|
py | 1a3a05673bf823d9f7e33dc08e1c4e62e2e43568 | import json
import random
import sys
from allennlp_reasoning_explainqa.common.constants import CORRECT_OPTION_TAG
from allennlp_reasoning_explainqa.training.metrics.confusion_matrix import (
F1MeasureCustomRetrievalEval,
)
from allennlp_reasoning_explainqa.training.metrics.explanation_eval import (
ExplanationEval,
)
# Sets random seed to a nothing-up-my-sleeve number so that we have
# deterministic evaluation scores.
random.seed(12345)
# Sets random seed to a nothing-up-my-sleeve number so that we have
# deterministic evaluation scores.
random.seed(12345)
def evaluate(prediction_filename, label_filename):
chainid_to_label = json.load(open(label_filename, "r"))
chain_count = len(chainid_to_label)
predictions_lines = open(prediction_filename, "r").readlines()
predictions = [json.loads(row) for row in predictions_lines]
prediction_count = len(predictions)
if chain_count != prediction_count:
print(
f"Label file {label_filename} has {chain_count} chains, but prediction file {prediction_filename} has {prediction_count} predictions. These must be equal."
)
sys.exit(1)
f1eval = F1MeasureCustomRetrievalEval(pos_label=1)
explanation_eval = ExplanationEval()
chain_ids_covered = []
cnt = 0
for row in predictions:
assert "score" in row, "Prediction should contain field score"
assert "chain_id" in row, "Prediction should contain field chain_id"
score = row["score"]
chain_id = row["chain_id"]
qid = chain_id.strip().split("_")[0]
print("qid,chain_id,score = ", qid, chain_id, score)
gtlabel = chainid_to_label[chain_id]
f1eval(int(gtlabel), score)
explanation_eval(qid, CORRECT_OPTION_TAG, int(gtlabel), score)
chain_ids_covered.append(chain_id)
cnt += 1
assert len(chain_ids_covered) == len(
chainid_to_label
), "Found {} chains but expected {} chains".format(
len(chain_ids_covered), len(chainid_to_label)
)
binclf_performance = f1eval.get_metric(reset=True)
print("f1.get_metric() = ", binclf_performance)
explanation_performance = explanation_eval.get_metric(reset=True)
print("explanation_eval.get_metric() = ", explanation_performance)
final_metrics = {
"auc_roc": binclf_performance["auc_roc"],
"explainP1": explanation_performance["explainP1"],
"explainNDCG": explanation_performance["explainNDCG"],
}
print("=" * 32)
print(": auc_roc = ", binclf_performance["auc_roc"])
print(": P1 = ", explanation_performance["explainP1"])
print(": explainNDCG = ", explanation_performance["explainNDCG"])
print("=" * 32)
return final_metrics
if __name__ == "__main__":
prediction_filename = sys.argv[1]
label_filename = sys.argv[2]
metrics_filename = sys.argv[3]
print(
f"Evaluating prediction file {prediction_filename} with label file {label_filename}"
)
metrics = evaluate(prediction_filename, label_filename)
print(f"Writing final metrics to file: {metrics_filename}")
json.dump(metrics, open(metrics_filename, "w"))
|
py | 1a3a0567e4d47dc591998a824a7b54e8551c06f1 | import matplotlib.pyplot as plt
import pandas as pd
from rich import pretty, print
from rich.progress import BarColumn, Progress
from sklearn.metrics import (
accuracy_score,
auc,
classification_report,
f1_score,
plot_confusion_matrix,
roc_auc_score,
roc_curve,
)
from sklearn.neural_network import MLPClassifier
from sklearn.preprocessing import LabelBinarizer, LabelEncoder
import utils
def draw_roc(y_test, y_pred):
lb = LabelBinarizer()
lb.fit(y_test)
lb.classes_.tolist()
fpr = dict()
tpr = dict()
roc_auc = dict()
by_test = lb.transform(y_test)
by_pred = lb.transform(y_pred)
for i in range(4):
fpr[i], tpr[i], _ = roc_curve(by_test[:, i], by_pred[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])
roc_auc = roc_auc_score(by_test, by_pred, average=None)
plt.figure(figsize=(8, 5))
for i in range(4):
plt.plot(
fpr[i],
tpr[i],
label="%s ROC curve (area = %0.2f)" % (lb.classes_.tolist()[i], roc_auc[i]),
)
plt.plot([0, 1], [0, 1], "k--")
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.title("Single Hidden Layer Neural Network Roc-Curve")
plt.xlabel("False Positive Rate", fontsize=10)
plt.ylabel("True Positive Rate", fontsize=10)
plt.tick_params(axis="both", which="major", labelsize=12)
plt.legend(loc="lower right", fontsize=7, frameon=False)
plt.show()
def draw_confusion_matrix(Clf, X, y):
titles_options = [
("Confusion matrix, without normalization", None),
("Neural network confusion matrix", "true"),
]
# colors: Wistia too yellow
for title, normalize in titles_options:
disp = plot_confusion_matrix(Clf, X, y, cmap="PuBuGn", normalize=normalize)
disp.ax_.set_title(title)
plt.show()
def execute_and_report(learn_rate, acti, current_params):
clf = MLPClassifier(
activation=acti,
learning_rate_init=learn_rate,
random_state=5213890,
hidden_layer_sizes=current_params,
)
clf.fit(train_x, train_y)
# Apply on the training set
print("Training set:")
y_pred = clf.predict(train_x)
print(classification_report(train_y, y_pred))
# Apply on the test set and evaluate the performance
y_pred = clf.predict(test_x)
print("Test set:")
print(classification_report(test_y, y_pred))
acc = accuracy_score(test_y, y_pred) * 100
f1 = f1_score(test_y, y_pred, average="weighted") * 100
# draw draw
draw_confusion_matrix(clf, test_x, test_y)
draw_roc(test_y, y_pred)
# plt.plot(clf.loss_curve_)
# plt.show()
# report
return {
"Params": f"{acti}, {learn_rate}, {current_params}",
"accuracy %": round(acc, 2),
"F1 weighted %": round(f1, 2),
}
pretty.install()
pd.set_option("display.max_rows", None)
# DATASET
train_x, train_y, test_x, test_y = utils.load_tracks_xyz(
buckets="discrete", extractclass=("album", "type"), splits=2
).values()
# feature to reshape
label_encoders = dict()
column2encode = [
("track", "language_code"),
("album", "listens"),
("track", "license"),
("album", "comments"),
("album", "date_created"),
("album", "favorites"),
("artist", "comments"),
("artist", "date_created"),
("artist", "favorites"),
("track", "comments"),
("track", "date_created"),
("track", "duration"),
("track", "favorites"),
("track", "interest"),
("track", "listens"),
]
for col in column2encode:
le = LabelEncoder()
le.fit(test_x[col])
train_x[col] = le.fit_transform(train_x[col])
test_x[col] = le.fit_transform(test_x[col])
label_encoders[col] = le
le = LabelEncoder()
le.fit(train_y)
test_y = le.fit_transform(test_y)
train_y = le.fit_transform(train_y)
class_name = ("album", "type")
# Preparation
count = 0
reports = pd.DataFrame(columns=["Params", "accuracy %", "F1 weighted %"])
params = [
{
"activations": "identity",
"learning_rate_inits": 0.001,
"hidden_layer_sizes": (40, 40),
},
{
"activations": "identity",
"learning_rate_inits": 0.001,
"hidden_layer_sizes": (40, 20, 8),
# old single layer "learning_rate_inits": 0.02,
# old single layer "hidden_layer_sizes": (40,),
},
]
testing_params = [params[-1]]
activations = ["identity", "logistic", "tanh", "relu"]
learning_rate_inits = [0.01, 0.001, 0.02]
# progress reporting init
progress = Progress(
"[progress.description]{task.description}",
BarColumn(),
"[progress.percentage]{task.percentage:>3.0f}%",
"{task.completed} of {task.total}",
)
with progress:
# adjust len if needed
task_layers = progress.add_task("[red]Building…", total=len(params) * 2)
for best_params in params:
learn_rate = best_params["learning_rate_inits"]
acti = best_params["activations"]
hidd = best_params["hidden_layer_sizes"]
row = execute_and_report(learn_rate, acti, hidd)
reports = reports.append(row, ignore_index=True)
count += 1
progress.advance(task_layers)
# ------- switch up datasets: put in the 10-feature dataframe
train_x, train_y, test_x, test_y = utils.load_tracks_xyz(
buckets="discrete", extractclass=("album", "type"), splits=2, small=True
).values()
# feature to reshape
label_encoders = dict()
column2encode = [
("track", "duration"),
("track", "interest"),
("track", "listens"),
]
for col in column2encode:
le = LabelEncoder()
le.fit(test_x[col])
train_x[col] = le.fit_transform(train_x[col])
test_x[col] = le.fit_transform(test_x[col])
label_encoders[col] = le
le = LabelEncoder()
le.fit(train_y)
test_y = le.fit_transform(test_y)
train_y = le.fit_transform(train_y)
class_name = ("album", "type")
# rerun neural networks
for best_params in params:
learn_rate = best_params["learning_rate_inits"]
acti = best_params["activations"]
hidd = best_params["hidden_layer_sizes"]
row = execute_and_report(learn_rate, acti, hidd)
reports = reports.append(row, ignore_index=True)
count += 1
progress.advance(task_layers)
# end switching up datasets -------
# results
print(reports.sort_values(by=["accuracy %", "F1 weighted %"], ascending=False))
print(f"I have built {count} neural networks")
|
py | 1a3a06e77f806129d4103ad520258ddb7da0dc3f | import secrets;
from app import app;
from .rvp import pvr;
from .algo import final;
from flask import render_template, request, redirect, flash
@app.route("/", methods=["GET","POST"])
def index():
secret_key=secrets.token_hex(16)
app.config["SECRET_KEY"]=secret_key
if(request.method=="POST"):
req=request.form
percentile=req["percentile"]
rank=req["rank"]
state=req["state"]
pwd=req["pwd"]
gender=req["gender"]
category=req["category"]
sortby=str(req["sortby"])
if(percentile=="" and rank==""):
flash("Please enter either your Rank or your Percentile",'error')
return redirect(request.url)
if(rank==""):
ranks=pvr(float(percentile),pwd,category);
ranks=int(ranks);
if(ranks<=0):
ranks=2;
result=final(ranks,float(percentile),category,state,gender,pwd,sortby);
if(rank):
result=final(int(rank),percentile,category,state,gender,pwd,sortby);
ranks=rank;
return render_template("public/result.html",ranks=ranks,category=category,tables=[result.to_html(classes='data')], titles=result.columns.values)
return render_template("public/index.html")
|
py | 1a3a0858c77be5b83504b7273113941a5b485606 | from __future__ import print_function
from builtins import object
from pyethapp.eth_protocol import ETHProtocol, TransientBlockBody
from devp2p.service import WiredService
from devp2p.protocol import BaseProtocol
from devp2p.app import BaseApp
from ethereum.tools import tester
import rlp
class PeerMock(object):
packets = []
config = dict()
def send_packet(self, packet):
self.packets.append(packet)
def setup():
peer = PeerMock()
proto = ETHProtocol(peer, WiredService(BaseApp()))
proto.service.app.config['eth'] = dict(network_id=1337)
chain = tester.Chain()
cb_data = []
def cb(proto, **data):
cb_data.append((proto, data))
return peer, proto, chain, cb_data, cb
def test_basics():
peer, proto, chain, cb_data, cb = setup()
assert isinstance(proto, BaseProtocol)
d = dict()
d[proto] = 1
assert proto in d
assert d[proto] == 1
assert not proto
proto.start()
assert proto
def test_status():
peer, proto, chain, cb_data, cb = setup()
genesis = head = chain.chain.get_descendants(chain.chain.get_block_by_number(0))[-1]
# test status
proto.send_status(
chain_difficulty=chain.chain.get_score(head),
chain_head_hash=head.hash,
genesis_hash=genesis.hash
)
packet = peer.packets.pop()
proto.receive_status_callbacks.append(cb)
proto._receive_status(packet)
_p, _d = cb_data.pop()
assert _p == proto
assert isinstance(_d, dict)
assert _d['chain_difficulty'] == chain.chain.get_score(head)
print(_d)
assert _d['chain_head_hash'] == head.hash
assert _d['genesis_hash'] == genesis.hash
assert 'eth_version' in _d
assert 'network_id' in _d
def test_blocks():
peer, proto, chain, cb_data, cb = setup()
# test blocks
chain.mine(number_of_blocks=2)
assert chain.block.number == 3
# monkey patch to make "blocks" attribute available
chain.blocks = chain.chain.get_descendants(chain.chain.get_block_by_number(0))
proto.send_blockbodies(*chain.blocks)
packet = peer.packets.pop()
assert len(rlp.decode(packet.payload)) == 3
def list_cb(proto, blocks): # different cb, as we expect a list of blocks
cb_data.append((proto, blocks))
proto.receive_blockbodies_callbacks.append(list_cb)
proto._receive_blockbodies(packet)
_p, blocks = cb_data.pop()
assert isinstance(blocks, tuple)
for block in blocks:
assert isinstance(block, TransientBlockBody)
assert isinstance(block.transactions, tuple)
assert isinstance(block.uncles, tuple)
# assert that transactions and uncles have not been decoded
assert len(block.transactions) == 0
assert len(block.uncles) == 0
# newblock
approximate_difficulty = chain.blocks[-1].difficulty * 3
proto.send_newblock(block=chain.blocks[-1], chain_difficulty=approximate_difficulty)
packet = peer.packets.pop()
proto.receive_newblock_callbacks.append(cb)
proto._receive_newblock(packet)
_p, _d = cb_data.pop()
assert 'block' in _d
assert 'chain_difficulty' in _d
assert _d['chain_difficulty'] == approximate_difficulty
assert _d['block'].header == chain.blocks[-1].header
assert isinstance(_d['block'].transactions, tuple)
assert isinstance(_d['block'].uncles, tuple)
# assert that transactions and uncles have not been decoded
assert len(_d['block'].transactions) == 0
assert len(_d['block'].uncles) == 0
|
py | 1a3a08fd0e1ac78775f68f08333c8b70ed10c7bb | """Provide the Message class."""
from typing import TYPE_CHECKING, Any, Dict
from ...const import API_PATH
from .base import RedditBase
from .mixins import FullnameMixin, InboxableMixin, ReplyableMixin
from .redditor import Redditor
from .subreddit import Subreddit
if TYPE_CHECKING: # pragma: no cover
from ... import Reddit
class Message(InboxableMixin, ReplyableMixin, FullnameMixin, RedditBase):
"""A class for private messages.
**Typical Attributes**
This table describes attributes that typically belong to objects of this class.
Since attributes are dynamically provided (see
:ref:`determine-available-attributes-of-an-object`), there is not a guarantee that
these attributes will always be present, nor is this list necessarily complete.
======================= ============================================================
Attribute Description
======================= ============================================================
``author`` Provides an instance of :class:`.Redditor`.
``body`` The body of the message, as Markdown.
``body_html`` The body of the message, as HTML.
``created_utc`` Time the message was created, represented in
`Unix Time`_.
``dest`` Provides an instance of :class:`.Redditor`. The
recipient of the message.
``id`` The ID of the message.
``name`` The full ID of the message, prefixed with ``t4_``.
``subject`` The subject of the message.
``was_comment`` Whether or not the message was a comment reply.
======================= ============================================================
.. _Unix Time: https://en.wikipedia.org/wiki/Unix_time
"""
STR_FIELD = "id"
@classmethod
def parse(cls, data: Dict[str, Any], reddit: "Reddit"):
"""Return an instance of Message or SubredditMessage from ``data``.
:param data: The structured data.
:param reddit: An instance of :class:`.Reddit`.
"""
if data["author"]:
data["author"] = Redditor(reddit, data["author"])
if data["dest"].startswith("#"):
data["dest"] = Subreddit(reddit, data["dest"][1:])
else:
data["dest"] = Redditor(reddit, data["dest"])
if data["replies"]:
replies = data["replies"]
data["replies"] = reddit._objector.objectify(replies["data"]["children"])
else:
data["replies"] = []
if data["subreddit"]:
data["subreddit"] = Subreddit(reddit, data["subreddit"])
return SubredditMessage(reddit, _data=data)
return cls(reddit, _data=data)
@property
def _kind(self) -> str:
"""Return the class's kind."""
return self._reddit.config.kinds["message"]
def __init__(self, reddit: "Reddit", _data: Dict[str, Any]):
"""Construct an instance of the Message object."""
super().__init__(reddit, _data=_data)
self._fetched = True
def delete(self):
"""Delete the message.
.. note::
Reddit does not return an indication of whether or not the message was
successfully deleted.
For example, to delete the most recent message in your inbox:
.. code-block:: python
next(reddit.inbox.all()).delete()
"""
self._reddit.post(API_PATH["delete_message"], data={"id": self.fullname})
class SubredditMessage(Message):
"""A class for messages to a subreddit.
**Typical Attributes**
This table describes attributes that typically belong to objects of this class.
Since attributes are dynamically provided (see
:ref:`determine-available-attributes-of-an-object`), there is not a guarantee that
these attributes will always be present, nor is this list necessarily complete.
======================= ============================================================
Attribute Description
======================= ============================================================
``author`` Provides an instance of :class:`.Redditor`.
``body`` The body of the message, as Markdown.
``body_html`` The body of the message, as HTML.
``created_utc`` Time the message was created, represented in `Unix Time`_.
``dest`` Provides an instance of :class:`.Redditor`. The recipient of
the message.
``id`` The ID of the message.
``name`` The full ID of the message, prefixed with ``t4_``.
``subject`` The subject of the message.
``subreddit`` If the message was sent from a subreddit, provides an
instance of :class:`.Subreddit`.
``was_comment`` Whether or not the message was a comment reply.
======================= ============================================================
.. _Unix Time: https://en.wikipedia.org/wiki/Unix_time
"""
def mute(self):
"""Mute the sender of this SubredditMessage.
For example, to mute the sender of the first SubredditMessage in the
authenticated users' inbox:
.. code-block:: python
from praw.models import SubredditMessage
msg = next(
message for message in reddit.inbox.all() if isinstance(message, SubredditMessage)
)
msg.mute()
"""
self._reddit.post(API_PATH["mute_sender"], data={"id": self.fullname})
def unmute(self):
"""Unmute the sender of this SubredditMessage.
For example, to unmute the sender of the first SubredditMessage in the
authenticated users' inbox:
.. code-block:: python
from praw.models import SubredditMessage
msg = next(
message for message in reddit.inbox.all() if isinstance(message, SubredditMessage)
)
msg.unmute()
"""
self._reddit.post(API_PATH["unmute_sender"], data={"id": self.fullname})
|
py | 1a3a0910ec1fde5878856e9d3e272b88e786da8f | # Copyright 2013-2019 Lawrence Livermore National Security, LLC and other
# Spack Project Developers. See the top-level COPYRIGHT file for details.
#
# SPDX-License-Identifier: (Apache-2.0 OR MIT)
from spack import *
class Cmor(AutotoolsPackage):
"""Climate Model Output Rewriter is used to produce CF-compliant netCDF
files. The structure of the files created by the library and the metadata
they contain fulfill the requirements of many of the climate community's
standard model experiments."""
homepage = "http://cmor.llnl.gov"
url = "https://github.com/PCMDI/cmor/archive/3.1.2.tar.gz"
version('3.3.0', 'cfdeeddab1aedb823e26ec38723bd67e')
version('3.2.0', 'b48105105d4261012c19cd65e89ff7a6')
version('3.1.2', '72f7227159c901e4bcf80d2c73a8ce77')
variant('fortran', default=True, description='Enable Fortran API')
variant('python', default=False, description='Enable PYTHON support')
depends_on('uuid')
depends_on('netcdf')
depends_on('udunits2')
depends_on('hdf5@:1.8.19')
extends('python', when='+python')
depends_on('python@:2.8', when='+python')
depends_on('py-numpy', type=('build', 'run'), when='+python')
@run_before('configure')
def validate(self):
if '+fortran' in self.spec and not self.compiler.fc:
msg = 'cannot build a fortran variant without a fortran compiler'
raise RuntimeError(msg)
def configure_args(self):
extra_args = ['--disable-debug']
if '+fortran' in self.spec:
extra_args.append('--enable-fortran')
else:
extra_args.append('--disable-fortran')
return extra_args
def install(self, spec, prefix):
make('install')
if '+python' in spec:
setup_py('install', '--prefix=' + prefix)
|
py | 1a3a09e87ab9d7312dbdf73408d35f225ae82c21 | '''
https://blog.csdn.net/xuzhexing/article/details/90729390
https://blog.csdn.net/weixin_44580210/article/details/90314878
粒子滤波定位可以比单纯地利用观测值更精确
步骤: 1.初始:用大量粒子模拟运动状态,这些粒子在整个运动空间内均匀分布
2.预测:根据状态转移方程(运动方程),将每一个粒子带入,得到预测粒子,这里应该包括粒子的速度角速度,以及xy值,进行高维的预测
3.校正:对预测粒子进行评价,这里用下一时刻的观测值(有噪声)与预测粒子的距离作评价
距离越短,则对应粒子的权重越大,可以用高斯方程计算距离与对应权重的关系
4.重采样:对所有粒子的权重归一化,并进行筛选,既要保留权重大的粒子,又要小部分权重
小的粒子,具体的方法:
1.多项式重采样
2.残差重采样
3.分层重采样
4.系统重采样
重采样带来的新问题是,权值越大的粒子子代越多,相反则子代越少甚至无子代。
这样重采样后的粒子群多样性减弱,从而不足以用来近似表征后验密度。克服这一
问题的方法有多种,最简单的就是直接增加足够多的粒子,但这常会导致运算量的
急剧膨胀。其它方法可以去查看有关文献,这里暂不做介绍。
5.更新:用重采样后生成的粒子更新原有的粒子,用这些粒子的位置均值代表粒子滤波的结果,重复步骤2
'''
import numpy as np
import math
import matplotlib.pyplot as plgt
'''
假设 速度的测量方差为0.5
角速度的测量方差为5度,0.087
传感器测量rf标志物的误差为0.5m,
'''
def guassian_noise(sigma):#这里用标准差
y=np.random.randn()*sigma
return y
v_error=guassian_noise(0.5)
w_error=guassian_noise(0.087)
dist_error=guassian_noise(0.5)
RANGE_DITECT=10#最大探测距离
NP=200
NTh = NP / 2.0 # Number of particle for re-sampling
T_max=100.0
dt=0.1
L=2.5#车长
#用的是最简单的运动方程,根据此时的状态[x y yaw]',以及速度角速度[u,w],求出下一时刻的状态
def motion_model(x, u):
# F = np.array([[1.0, 0, 0],
# [0, 1.0, 0],
# [0, 0, 1.0]])#第四行为0,表示输入的x的最后一个数字没有用,只是为了利于矩阵方程的求解,所以加入了第四列
# print(x.shape)
B = np.array([[dt * math.cos(x[2, 0]), 0],
[dt * math.sin(x[2, 0]), 0],
[0.0, dt]])
x = x+ B@u
return x
def dead_reckoning(x_true,u):
u[0]+=v_error#给速度和角速度加上高斯噪声
u[1]+=w_error
return motion_model(x_true,u)
def gauss_likelihood(x, sigma):
p = 1.0 / math.sqrt(2.0 * math.pi * sigma ** 2) * \
math.exp(-x ** 2 / (2 * sigma ** 2))
return p
#根据上一时刻的真实值,和这一时刻测量得到的速度角速度,得到下一时刻的真实值,以及rf目标的观测值,速度角速度的测量值(加了噪声)
def observation(x_true, u, rf_id):
x_true_real=motion_model(x_true,u)#根据匀速圆周运动模型获得这一时刻的真实值
z=np.zeros((0,3))# 0*3的数列,为了后面方便进行堆叠
for i in range(len(rf_id[:,0])):
dx=x_true[0,0]-rf_id[i,0]
dy=x_true[1,0]-rf_id[i,1]
dist=math.hypot(dx,dy)
if dist<RANGE_DITECT:
dist+=dist_error#距离加上噪声,表示传感器测量的有误差
zi=np.array([[dist,rf_id[i,0],rf_id[i,1]]])
z=np.vstack(z,zi)
ud=np.array([[0,0]]).T
ud[0,0]=u[0,0]+v_error
ud[1,0]=u[1,0]+w_error
return x_true_real, z,ud
def re_sampling(px,pw):
N_eff = 1.0 / (pw.dot(pw.T))[0, 0] # Effective particle number,计算有效粒子数 1/(权值的平方和)
if N_eff < NTh:#如果有效粒子数太少,则进行重采样
w_cum = np.cumsum(pw) #每个位置的权值是前面权值和[1,3,5]->[1,4,9],即为轮盘采样的方法
base = np.arange(0.0, 1.0, 1 / NP)#返回0.0-1.0步长为1/NP的数列
re_sample_id = base + np.random.uniform(0, 1 / NP)#加上噪声,形成均匀分布的随机采样值
indexes = []
ind = 0
for ip in range(NP):
while re_sample_id[ip] > w_cum[ind]:
ind += 1
indexes.append(ind) #存储重采样后的id
px = px[:, indexes]
pw = np.zeros((1, NP)) + 1.0 / NP # init weight
return px,pw
#输入 粒子群,权重,rf目标观测值,以及测量的速度角速度(有噪声)
def pf_localization(px, pw, z, ud):
# 预测:根据状态转移方程(运动方程),将每一个粒子带入,得到预测粒子,这里应该包括粒子的速度角速度,以及xy值,进行高维的预测
for i in range(NP):
x_pf_tmp=px[:,i] #每一个粒子的状态 x y yaw
w_tmp=pw[0,i]#每一个粒子的权重
x_pf_tmp=motion_model(x_pf_tmp,ud)#根据粒子的状态以及测量得到的速度角速度预测粒子的下一个位置
#根据粒子滤波预测得到的rf距离值和传感器测量的rf距离进行粒子权重的更新????这里的rf的距离真实值无法获取?????????
for j in range(len(z[0,:])):
dx=x_pf_tmp[0]-z[j,1]
dy=x_pf_tmp[1]-z[j,2]
pre_dist=math.hypot(dx,dy)
dz=pre_dist-z[j,0]
w_tmp*=gauss_likelihood(dz, math.sqrt(0.2*0.2))#用预测得到的距离与测量得到的距离的高斯值作为权重
px[:,i]=x_pf_tmp#更新粒子的状态
pw[0,i]=w_tmp#更新粒子权重
#权重归一化
pw=pw/pw.sum()
px,pw=re_sampling(px,pw) # 重采样
[email protected] # 计算得到的粒子滤波的结果。这里感觉应该先进行重采样,与原文作者不一样
return px,pw,x_pf
def main():
print(__file__ + " start!!")
time = 0.0
# RF_ID positions [x, y],用来代替一些已知位置的点
rf_id = np.array([[10.0, 0.0],
[10.0, 10.0],
[0.0, 15.0],
[-5.0, 20.0]])
# State Vector [x y yaw]' 第四列只是为了便于进行矩阵计算
x_pf = np.zeros((3, 1))
x_true = np.zeros((3, 1))#3*1
#粒子及其权重的初始化
px = np.zeros((3, NP)) # Particle store 粒子群,x y yaw各对应一群粒子
pw = np.zeros((1, NP)) + 1.0 / NP # Particle weight 粒子权重均匀分布
# x_dr = x_true # Dead reckoning
# history
h_true=np.array([[x_true[0,0],x_true[1,0]]]) # 保存真实值 x y
# h_dead_reckoning=np.array([[x_true[0],x_true[1]]])#保存航迹推算的值
h_pf=np.array([[x_pf[0],x_pf[1]]])#保存粒子滤波的结果
v=1.0 # m/s
yaw_rate=0.1 # rad/s
while time<T_max:
time+=dt
u=np.array([[v, yaw_rate]]).T#获得转置矩阵 (2,1)矩阵
x_true_real, z,ud=observation(x_true, u, rf_id)
# x_dr=dead_reckoning(x_true) #根据上一时刻的真实值和
px,pw,x_pf=pf_localization(px, pw, z, ud)
h_true=np.vstack(h_true,np.array([[x_true[0],x_true[1]]])) #保存真实值
h_pf=np.vstack(h_pf,np.array([[x_pf[0],x_pf[1]]]))
plt.cla()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect('key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
plt.plot(h_true[:,0],h_true[:,1],'-g')
plt.plot(h_pf[:,0],h_pf[:,1],'-b')
plt.plot(rf_id[:,0],rf_id[:,1],'*r')
for i in range(len(z[:,0])):
plt.plot([x_true[0, 0], z[i, 1]], [x_true[1, 0], z[i, 2]], "-k")
plt.axis("equal")
plt.grid(True)
plt.pause(0.001)
if __name__ == '__main__':
main() |
py | 1a3a0a215b1d4e51524d517b1f165dac0e11024a | # coding: utf-8
"""
Cisco Intersight OpenAPI specification.
The Cisco Intersight OpenAPI specification.
OpenAPI spec version: 1.0.9-1461
Generated by: https://github.com/swagger-api/swagger-codegen.git
"""
from __future__ import absolute_import
import sys
import os
import re
# python 2 and python 3 compatibility library
from six import iteritems
from ..configuration import Configuration
from ..api_client import ApiClient
class HyperflexProxySettingPolicyApi(object):
"""
NOTE: This class is auto generated by the swagger code generator program.
Do not edit the class manually.
Ref: https://github.com/swagger-api/swagger-codegen
"""
def __init__(self, api_client=None):
config = Configuration()
if api_client:
self.api_client = api_client
else:
if not config.api_client:
config.api_client = ApiClient()
self.api_client = config.api_client
def hyperflex_proxy_setting_policies_get(self, **kwargs):
"""
Read a 'hyperflex.ProxySettingPolicy' resource.
This method makes a synchronous HTTP request by default. To make an
asynchronous HTTP request, please define a `callback` function
to be invoked when receiving the response.
>>> def callback_function(response):
>>> pprint(response)
>>>
>>> thread = api.hyperflex_proxy_setting_policies_get(callback=callback_function)
:param callback function: The callback function
for asynchronous request. (optional)
:param bool count: The $count query option allows clients to request a count of the matching resources.
:param str inlinecount: The $inlinecount query option allows clients to request an inline count of the matching resources included with the resources in the response
:param int top: The max number of documents to return.
:param int skip: The number of documents to skip.
:param str filter: Filter criteria for documents to return. A URI with a $filter System Query Option identifies a subset of the Entries from the Collection of Entries identified by the Resource Path section of the URI. The subset is determined by selecting only the Entries that satisfy the predicate expression specified by the query option. The expression language that is used in $filter operators supports references to properties and literals. The literal values can be strings enclosed in single quotes, numbers and boolean values (true or false) or any of the additional literal representations shown in the Abstract Type System section. Query examples: $filter=Name eq 'Bob' $filter=Tags/any(t: t/Key eq 'Site') $filter=Tags/any(t: t/Key eq 'Site' and t/Value eq 'London')
:param str select: Specifies a subset of properties to return.
:param str orderby: Determines what values are used to order a collection of documents.
:param str expand: Specify additional attributes or related documents to return. Supports only 'DisplayNames' attribute now. Query examples: $expand=DisplayNames
:param str apply: Specify one or more transformation operations to perform aggregation on documents. The transformations are processed in order with the output from a transformation being used as input for the subsequent transformation. Query examples: $apply=groupby((Model), aggregate($count as Total)) $apply=groupby((Model), aggregate(AvailableMemory with average as AverageAvailableMemory))
:param str at: Similar to \"$filter\", but \"at\" is specifically used to filter versioning information properties for documents to return. A URI with an \"at\" Query Option identifies a subset of the Entries from the Collection of Entries identified by the Resource Path section of the URI. The subset is determined by selecting only the Entries that satisfy the predicate expression specified by the query option. The expression language that is used in at operators supports references to properties and literals. The literal values can be strings enclosed in single quotes, numbers and boolean values (true or false) or any of the additional literal representations shown in the Abstract Type System section. Query examples: at=VersionType eq 'Configured' at=InterestedMos.Moid eq '5b5877e56c6730367acf46cd'
:return: HyperflexProxySettingPolicyList
If the method is called asynchronously,
returns the request thread.
"""
kwargs['_return_http_data_only'] = True
if kwargs.get('callback'):
return self.hyperflex_proxy_setting_policies_get_with_http_info(**kwargs)
else:
(data) = self.hyperflex_proxy_setting_policies_get_with_http_info(**kwargs)
return data
def hyperflex_proxy_setting_policies_get_with_http_info(self, **kwargs):
"""
Read a 'hyperflex.ProxySettingPolicy' resource.
This method makes a synchronous HTTP request by default. To make an
asynchronous HTTP request, please define a `callback` function
to be invoked when receiving the response.
>>> def callback_function(response):
>>> pprint(response)
>>>
>>> thread = api.hyperflex_proxy_setting_policies_get_with_http_info(callback=callback_function)
:param callback function: The callback function
for asynchronous request. (optional)
:param bool count: The $count query option allows clients to request a count of the matching resources.
:param str inlinecount: The $inlinecount query option allows clients to request an inline count of the matching resources included with the resources in the response
:param int top: The max number of documents to return.
:param int skip: The number of documents to skip.
:param str filter: Filter criteria for documents to return. A URI with a $filter System Query Option identifies a subset of the Entries from the Collection of Entries identified by the Resource Path section of the URI. The subset is determined by selecting only the Entries that satisfy the predicate expression specified by the query option. The expression language that is used in $filter operators supports references to properties and literals. The literal values can be strings enclosed in single quotes, numbers and boolean values (true or false) or any of the additional literal representations shown in the Abstract Type System section. Query examples: $filter=Name eq 'Bob' $filter=Tags/any(t: t/Key eq 'Site') $filter=Tags/any(t: t/Key eq 'Site' and t/Value eq 'London')
:param str select: Specifies a subset of properties to return.
:param str orderby: Determines what values are used to order a collection of documents.
:param str expand: Specify additional attributes or related documents to return. Supports only 'DisplayNames' attribute now. Query examples: $expand=DisplayNames
:param str apply: Specify one or more transformation operations to perform aggregation on documents. The transformations are processed in order with the output from a transformation being used as input for the subsequent transformation. Query examples: $apply=groupby((Model), aggregate($count as Total)) $apply=groupby((Model), aggregate(AvailableMemory with average as AverageAvailableMemory))
:param str at: Similar to \"$filter\", but \"at\" is specifically used to filter versioning information properties for documents to return. A URI with an \"at\" Query Option identifies a subset of the Entries from the Collection of Entries identified by the Resource Path section of the URI. The subset is determined by selecting only the Entries that satisfy the predicate expression specified by the query option. The expression language that is used in at operators supports references to properties and literals. The literal values can be strings enclosed in single quotes, numbers and boolean values (true or false) or any of the additional literal representations shown in the Abstract Type System section. Query examples: at=VersionType eq 'Configured' at=InterestedMos.Moid eq '5b5877e56c6730367acf46cd'
:return: HyperflexProxySettingPolicyList
If the method is called asynchronously,
returns the request thread.
"""
all_params = ['count', 'inlinecount', 'top', 'skip', 'filter', 'select', 'orderby', 'expand', 'apply', 'at']
all_params.append('callback')
all_params.append('_return_http_data_only')
all_params.append('_preload_content')
all_params.append('_request_timeout')
params = locals()
for key, val in iteritems(params['kwargs']):
if key not in all_params:
raise TypeError(
"Got an unexpected keyword argument '%s'"
" to method hyperflex_proxy_setting_policies_get" % key
)
params[key] = val
del params['kwargs']
collection_formats = {}
path_params = {}
query_params = []
if 'count' in params:
query_params.append(('$count', params['count']))
if 'inlinecount' in params:
query_params.append(('$inlinecount', params['inlinecount']))
if 'top' in params:
query_params.append(('$top', params['top']))
if 'skip' in params:
query_params.append(('$skip', params['skip']))
if 'filter' in params:
query_params.append(('$filter', params['filter']))
if 'select' in params:
query_params.append(('$select', params['select']))
if 'orderby' in params:
query_params.append(('$orderby', params['orderby']))
if 'expand' in params:
query_params.append(('$expand', params['expand']))
if 'apply' in params:
query_params.append(('$apply', params['apply']))
if 'at' in params:
query_params.append(('at', params['at']))
header_params = {}
form_params = []
local_var_files = {}
body_params = None
# HTTP header `Accept`
header_params['Accept'] = self.api_client.\
select_header_accept(['application/json'])
# HTTP header `Content-Type`
header_params['Content-Type'] = self.api_client.\
select_header_content_type(['application/json'])
# Authentication setting
auth_settings = []
return self.api_client.call_api('/hyperflex/ProxySettingPolicies', 'GET',
path_params,
query_params,
header_params,
body=body_params,
post_params=form_params,
files=local_var_files,
response_type='HyperflexProxySettingPolicyList',
auth_settings=auth_settings,
callback=params.get('callback'),
_return_http_data_only=params.get('_return_http_data_only'),
_preload_content=params.get('_preload_content', True),
_request_timeout=params.get('_request_timeout'),
collection_formats=collection_formats)
def hyperflex_proxy_setting_policies_moid_delete(self, moid, **kwargs):
"""
Delete a 'hyperflex.ProxySettingPolicy' resource.
This method makes a synchronous HTTP request by default. To make an
asynchronous HTTP request, please define a `callback` function
to be invoked when receiving the response.
>>> def callback_function(response):
>>> pprint(response)
>>>
>>> thread = api.hyperflex_proxy_setting_policies_moid_delete(moid, callback=callback_function)
:param callback function: The callback function
for asynchronous request. (optional)
:param str moid: The Moid of the hyperflexProxySettingPolicy instance. (required)
:return: None
If the method is called asynchronously,
returns the request thread.
"""
kwargs['_return_http_data_only'] = True
if kwargs.get('callback'):
return self.hyperflex_proxy_setting_policies_moid_delete_with_http_info(moid, **kwargs)
else:
(data) = self.hyperflex_proxy_setting_policies_moid_delete_with_http_info(moid, **kwargs)
return data
def hyperflex_proxy_setting_policies_moid_delete_with_http_info(self, moid, **kwargs):
"""
Delete a 'hyperflex.ProxySettingPolicy' resource.
This method makes a synchronous HTTP request by default. To make an
asynchronous HTTP request, please define a `callback` function
to be invoked when receiving the response.
>>> def callback_function(response):
>>> pprint(response)
>>>
>>> thread = api.hyperflex_proxy_setting_policies_moid_delete_with_http_info(moid, callback=callback_function)
:param callback function: The callback function
for asynchronous request. (optional)
:param str moid: The Moid of the hyperflexProxySettingPolicy instance. (required)
:return: None
If the method is called asynchronously,
returns the request thread.
"""
all_params = ['moid']
all_params.append('callback')
all_params.append('_return_http_data_only')
all_params.append('_preload_content')
all_params.append('_request_timeout')
params = locals()
for key, val in iteritems(params['kwargs']):
if key not in all_params:
raise TypeError(
"Got an unexpected keyword argument '%s'"
" to method hyperflex_proxy_setting_policies_moid_delete" % key
)
params[key] = val
del params['kwargs']
# verify the required parameter 'moid' is set
if ('moid' not in params) or (params['moid'] is None):
raise ValueError("Missing the required parameter `moid` when calling `hyperflex_proxy_setting_policies_moid_delete`")
collection_formats = {}
path_params = {}
if 'moid' in params:
path_params['Moid'] = params['moid']
query_params = []
header_params = {}
form_params = []
local_var_files = {}
body_params = None
# HTTP header `Accept`
header_params['Accept'] = self.api_client.\
select_header_accept(['application/json'])
# HTTP header `Content-Type`
header_params['Content-Type'] = self.api_client.\
select_header_content_type(['application/json'])
# Authentication setting
auth_settings = []
return self.api_client.call_api('/hyperflex/ProxySettingPolicies/{Moid}', 'DELETE',
path_params,
query_params,
header_params,
body=body_params,
post_params=form_params,
files=local_var_files,
response_type=None,
auth_settings=auth_settings,
callback=params.get('callback'),
_return_http_data_only=params.get('_return_http_data_only'),
_preload_content=params.get('_preload_content', True),
_request_timeout=params.get('_request_timeout'),
collection_formats=collection_formats)
def hyperflex_proxy_setting_policies_moid_get(self, moid, **kwargs):
"""
Read a 'hyperflex.ProxySettingPolicy' resource.
This method makes a synchronous HTTP request by default. To make an
asynchronous HTTP request, please define a `callback` function
to be invoked when receiving the response.
>>> def callback_function(response):
>>> pprint(response)
>>>
>>> thread = api.hyperflex_proxy_setting_policies_moid_get(moid, callback=callback_function)
:param callback function: The callback function
for asynchronous request. (optional)
:param str moid: The Moid of the hyperflexProxySettingPolicy instance. (required)
:return: HyperflexProxySettingPolicy
If the method is called asynchronously,
returns the request thread.
"""
kwargs['_return_http_data_only'] = True
if kwargs.get('callback'):
return self.hyperflex_proxy_setting_policies_moid_get_with_http_info(moid, **kwargs)
else:
(data) = self.hyperflex_proxy_setting_policies_moid_get_with_http_info(moid, **kwargs)
return data
def hyperflex_proxy_setting_policies_moid_get_with_http_info(self, moid, **kwargs):
"""
Read a 'hyperflex.ProxySettingPolicy' resource.
This method makes a synchronous HTTP request by default. To make an
asynchronous HTTP request, please define a `callback` function
to be invoked when receiving the response.
>>> def callback_function(response):
>>> pprint(response)
>>>
>>> thread = api.hyperflex_proxy_setting_policies_moid_get_with_http_info(moid, callback=callback_function)
:param callback function: The callback function
for asynchronous request. (optional)
:param str moid: The Moid of the hyperflexProxySettingPolicy instance. (required)
:return: HyperflexProxySettingPolicy
If the method is called asynchronously,
returns the request thread.
"""
all_params = ['moid']
all_params.append('callback')
all_params.append('_return_http_data_only')
all_params.append('_preload_content')
all_params.append('_request_timeout')
params = locals()
for key, val in iteritems(params['kwargs']):
if key not in all_params:
raise TypeError(
"Got an unexpected keyword argument '%s'"
" to method hyperflex_proxy_setting_policies_moid_get" % key
)
params[key] = val
del params['kwargs']
# verify the required parameter 'moid' is set
if ('moid' not in params) or (params['moid'] is None):
raise ValueError("Missing the required parameter `moid` when calling `hyperflex_proxy_setting_policies_moid_get`")
collection_formats = {}
path_params = {}
if 'moid' in params:
path_params['Moid'] = params['moid']
query_params = []
header_params = {}
form_params = []
local_var_files = {}
body_params = None
# HTTP header `Accept`
header_params['Accept'] = self.api_client.\
select_header_accept(['application/json'])
# HTTP header `Content-Type`
header_params['Content-Type'] = self.api_client.\
select_header_content_type(['application/json'])
# Authentication setting
auth_settings = []
return self.api_client.call_api('/hyperflex/ProxySettingPolicies/{Moid}', 'GET',
path_params,
query_params,
header_params,
body=body_params,
post_params=form_params,
files=local_var_files,
response_type='HyperflexProxySettingPolicy',
auth_settings=auth_settings,
callback=params.get('callback'),
_return_http_data_only=params.get('_return_http_data_only'),
_preload_content=params.get('_preload_content', True),
_request_timeout=params.get('_request_timeout'),
collection_formats=collection_formats)
def hyperflex_proxy_setting_policies_moid_patch(self, moid, body, **kwargs):
"""
Update a 'hyperflex.ProxySettingPolicy' resource.
This method makes a synchronous HTTP request by default. To make an
asynchronous HTTP request, please define a `callback` function
to be invoked when receiving the response.
>>> def callback_function(response):
>>> pprint(response)
>>>
>>> thread = api.hyperflex_proxy_setting_policies_moid_patch(moid, body, callback=callback_function)
:param callback function: The callback function
for asynchronous request. (optional)
:param str moid: The Moid of the hyperflexProxySettingPolicy instance. (required)
:param HyperflexProxySettingPolicy body: hyperflexProxySettingPolicy to update (required)
:return: None
If the method is called asynchronously,
returns the request thread.
"""
kwargs['_return_http_data_only'] = True
if kwargs.get('callback'):
return self.hyperflex_proxy_setting_policies_moid_patch_with_http_info(moid, body, **kwargs)
else:
(data) = self.hyperflex_proxy_setting_policies_moid_patch_with_http_info(moid, body, **kwargs)
return data
def hyperflex_proxy_setting_policies_moid_patch_with_http_info(self, moid, body, **kwargs):
"""
Update a 'hyperflex.ProxySettingPolicy' resource.
This method makes a synchronous HTTP request by default. To make an
asynchronous HTTP request, please define a `callback` function
to be invoked when receiving the response.
>>> def callback_function(response):
>>> pprint(response)
>>>
>>> thread = api.hyperflex_proxy_setting_policies_moid_patch_with_http_info(moid, body, callback=callback_function)
:param callback function: The callback function
for asynchronous request. (optional)
:param str moid: The Moid of the hyperflexProxySettingPolicy instance. (required)
:param HyperflexProxySettingPolicy body: hyperflexProxySettingPolicy to update (required)
:return: None
If the method is called asynchronously,
returns the request thread.
"""
all_params = ['moid', 'body']
all_params.append('callback')
all_params.append('_return_http_data_only')
all_params.append('_preload_content')
all_params.append('_request_timeout')
params = locals()
for key, val in iteritems(params['kwargs']):
if key not in all_params:
raise TypeError(
"Got an unexpected keyword argument '%s'"
" to method hyperflex_proxy_setting_policies_moid_patch" % key
)
params[key] = val
del params['kwargs']
# verify the required parameter 'moid' is set
if ('moid' not in params) or (params['moid'] is None):
raise ValueError("Missing the required parameter `moid` when calling `hyperflex_proxy_setting_policies_moid_patch`")
# verify the required parameter 'body' is set
if ('body' not in params) or (params['body'] is None):
raise ValueError("Missing the required parameter `body` when calling `hyperflex_proxy_setting_policies_moid_patch`")
collection_formats = {}
path_params = {}
if 'moid' in params:
path_params['Moid'] = params['moid']
query_params = []
header_params = {}
form_params = []
local_var_files = {}
body_params = None
if 'body' in params:
body_params = params['body']
# HTTP header `Accept`
header_params['Accept'] = self.api_client.\
select_header_accept(['application/json'])
# HTTP header `Content-Type`
header_params['Content-Type'] = self.api_client.\
select_header_content_type(['application/json'])
# Authentication setting
auth_settings = []
return self.api_client.call_api('/hyperflex/ProxySettingPolicies/{Moid}', 'PATCH',
path_params,
query_params,
header_params,
body=body_params,
post_params=form_params,
files=local_var_files,
response_type=None,
auth_settings=auth_settings,
callback=params.get('callback'),
_return_http_data_only=params.get('_return_http_data_only'),
_preload_content=params.get('_preload_content', True),
_request_timeout=params.get('_request_timeout'),
collection_formats=collection_formats)
def hyperflex_proxy_setting_policies_moid_post(self, moid, body, **kwargs):
"""
Update a 'hyperflex.ProxySettingPolicy' resource.
This method makes a synchronous HTTP request by default. To make an
asynchronous HTTP request, please define a `callback` function
to be invoked when receiving the response.
>>> def callback_function(response):
>>> pprint(response)
>>>
>>> thread = api.hyperflex_proxy_setting_policies_moid_post(moid, body, callback=callback_function)
:param callback function: The callback function
for asynchronous request. (optional)
:param str moid: The Moid of the hyperflexProxySettingPolicy instance. (required)
:param HyperflexProxySettingPolicy body: hyperflexProxySettingPolicy to update (required)
:return: None
If the method is called asynchronously,
returns the request thread.
"""
kwargs['_return_http_data_only'] = True
if kwargs.get('callback'):
return self.hyperflex_proxy_setting_policies_moid_post_with_http_info(moid, body, **kwargs)
else:
(data) = self.hyperflex_proxy_setting_policies_moid_post_with_http_info(moid, body, **kwargs)
return data
def hyperflex_proxy_setting_policies_moid_post_with_http_info(self, moid, body, **kwargs):
"""
Update a 'hyperflex.ProxySettingPolicy' resource.
This method makes a synchronous HTTP request by default. To make an
asynchronous HTTP request, please define a `callback` function
to be invoked when receiving the response.
>>> def callback_function(response):
>>> pprint(response)
>>>
>>> thread = api.hyperflex_proxy_setting_policies_moid_post_with_http_info(moid, body, callback=callback_function)
:param callback function: The callback function
for asynchronous request. (optional)
:param str moid: The Moid of the hyperflexProxySettingPolicy instance. (required)
:param HyperflexProxySettingPolicy body: hyperflexProxySettingPolicy to update (required)
:return: None
If the method is called asynchronously,
returns the request thread.
"""
all_params = ['moid', 'body']
all_params.append('callback')
all_params.append('_return_http_data_only')
all_params.append('_preload_content')
all_params.append('_request_timeout')
params = locals()
for key, val in iteritems(params['kwargs']):
if key not in all_params:
raise TypeError(
"Got an unexpected keyword argument '%s'"
" to method hyperflex_proxy_setting_policies_moid_post" % key
)
params[key] = val
del params['kwargs']
# verify the required parameter 'moid' is set
if ('moid' not in params) or (params['moid'] is None):
raise ValueError("Missing the required parameter `moid` when calling `hyperflex_proxy_setting_policies_moid_post`")
# verify the required parameter 'body' is set
if ('body' not in params) or (params['body'] is None):
raise ValueError("Missing the required parameter `body` when calling `hyperflex_proxy_setting_policies_moid_post`")
collection_formats = {}
path_params = {}
if 'moid' in params:
path_params['Moid'] = params['moid']
query_params = []
header_params = {}
form_params = []
local_var_files = {}
body_params = None
if 'body' in params:
body_params = params['body']
# HTTP header `Accept`
header_params['Accept'] = self.api_client.\
select_header_accept(['application/json'])
# HTTP header `Content-Type`
header_params['Content-Type'] = self.api_client.\
select_header_content_type(['application/json'])
# Authentication setting
auth_settings = []
return self.api_client.call_api('/hyperflex/ProxySettingPolicies/{Moid}', 'POST',
path_params,
query_params,
header_params,
body=body_params,
post_params=form_params,
files=local_var_files,
response_type=None,
auth_settings=auth_settings,
callback=params.get('callback'),
_return_http_data_only=params.get('_return_http_data_only'),
_preload_content=params.get('_preload_content', True),
_request_timeout=params.get('_request_timeout'),
collection_formats=collection_formats)
def hyperflex_proxy_setting_policies_post(self, body, **kwargs):
"""
Create a 'hyperflex.ProxySettingPolicy' resource.
This method makes a synchronous HTTP request by default. To make an
asynchronous HTTP request, please define a `callback` function
to be invoked when receiving the response.
>>> def callback_function(response):
>>> pprint(response)
>>>
>>> thread = api.hyperflex_proxy_setting_policies_post(body, callback=callback_function)
:param callback function: The callback function
for asynchronous request. (optional)
:param HyperflexProxySettingPolicy body: hyperflexProxySettingPolicy to add (required)
:return: None
If the method is called asynchronously,
returns the request thread.
"""
kwargs['_return_http_data_only'] = True
if kwargs.get('callback'):
return self.hyperflex_proxy_setting_policies_post_with_http_info(body, **kwargs)
else:
(data) = self.hyperflex_proxy_setting_policies_post_with_http_info(body, **kwargs)
return data
def hyperflex_proxy_setting_policies_post_with_http_info(self, body, **kwargs):
"""
Create a 'hyperflex.ProxySettingPolicy' resource.
This method makes a synchronous HTTP request by default. To make an
asynchronous HTTP request, please define a `callback` function
to be invoked when receiving the response.
>>> def callback_function(response):
>>> pprint(response)
>>>
>>> thread = api.hyperflex_proxy_setting_policies_post_with_http_info(body, callback=callback_function)
:param callback function: The callback function
for asynchronous request. (optional)
:param HyperflexProxySettingPolicy body: hyperflexProxySettingPolicy to add (required)
:return: None
If the method is called asynchronously,
returns the request thread.
"""
all_params = ['body']
all_params.append('callback')
all_params.append('_return_http_data_only')
all_params.append('_preload_content')
all_params.append('_request_timeout')
params = locals()
for key, val in iteritems(params['kwargs']):
if key not in all_params:
raise TypeError(
"Got an unexpected keyword argument '%s'"
" to method hyperflex_proxy_setting_policies_post" % key
)
params[key] = val
del params['kwargs']
# verify the required parameter 'body' is set
if ('body' not in params) or (params['body'] is None):
raise ValueError("Missing the required parameter `body` when calling `hyperflex_proxy_setting_policies_post`")
collection_formats = {}
path_params = {}
query_params = []
header_params = {}
form_params = []
local_var_files = {}
body_params = None
if 'body' in params:
body_params = params['body']
# HTTP header `Accept`
header_params['Accept'] = self.api_client.\
select_header_accept(['application/json'])
# HTTP header `Content-Type`
header_params['Content-Type'] = self.api_client.\
select_header_content_type(['application/json'])
# Authentication setting
auth_settings = []
return self.api_client.call_api('/hyperflex/ProxySettingPolicies', 'POST',
path_params,
query_params,
header_params,
body=body_params,
post_params=form_params,
files=local_var_files,
response_type=None,
auth_settings=auth_settings,
callback=params.get('callback'),
_return_http_data_only=params.get('_return_http_data_only'),
_preload_content=params.get('_preload_content', True),
_request_timeout=params.get('_request_timeout'),
collection_formats=collection_formats)
|
py | 1a3a0a7e6bacaae60572ed55b6077aaf41b60180 | # -*- coding: utf-8 -*-
# Generated by Django 1.11.4 on 2017-11-20 16:18
from __future__ import unicode_literals
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('configurations', '0002_auto_20171120_1016'),
]
operations = [
migrations.AddField(
model_name='appconfiguration',
name='app_domain',
field=models.CharField(choices=[('D3M_DOMAIN', 'D3M_DOMAIN'), ('DATAVERSE_DOMAIN', 'DATAVERSE_DOMAIN'), ('EVENTDATA_DOMAIN', 'EVENTDATA_DOMAIN')], default='D3M_DOMAIN', max_length=70, verbose_name='App domain'),
preserve_default=False,
),
]
|
py | 1a3a0ab77a6d24e39dd9fc3626410141969f1318 | # Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Ops for evaluation metrics and summary statistics.
@@KernelLinearClassifier
@@RandomFourierFeatureMapper
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.contrib.kernel_methods.python.kernel_estimators import KernelLinearClassifier
from tensorflow.contrib.kernel_methods.python.mappers import dense_kernel_mapper
from tensorflow.contrib.kernel_methods.python.mappers.random_fourier_features import RandomFourierFeatureMapper
from tensorflow.python.util.all_util import remove_undocumented
remove_undocumented(__name__)
|
py | 1a3a0acfecc32da6feeac242cd589a6b705c5126 | #!/usr/bin/env python
"""Package: mininet
Test creation and pings for topologies with link and/or CPU options."""
import unittest
import sys
from functools import partial
from mininet.net import Mininet
from mininet.node import OVSSwitch, UserSwitch, IVSSwitch
from mininet.node import CPULimitedHost
from mininet.link import TCLink
from mininet.topo import Topo
from mininet.log import setLogLevel
from mininet.util import quietRun
from mininet.clean import cleanup
# Number of hosts for each test
N = 2
class SingleSwitchOptionsTopo(Topo):
"Single switch connected to n hosts."
def __init__(self, n=2, hopts=None, lopts=None):
if not hopts:
hopts = {}
if not lopts:
lopts = {}
Topo.__init__(self, hopts=hopts, lopts=lopts)
switch = self.addSwitch('s1')
for h in range(n):
host = self.addHost('h%s' % (h + 1))
self.addLink(host, switch)
# Tell pylint not to complain about calls to other class
# pylint: disable=E1101
class testOptionsTopoCommon( object ):
"""Verify ability to create networks with host and link options
(common code)."""
switchClass = None # overridden in subclasses
@staticmethod
def tearDown():
"Clean up if necessary"
if sys.exc_info != ( None, None, None ):
cleanup()
def runOptionsTopoTest( self, n, msg, hopts=None, lopts=None ):
"Generic topology-with-options test runner."
mn = Mininet( topo=SingleSwitchOptionsTopo( n=n, hopts=hopts,
lopts=lopts ),
host=CPULimitedHost, link=TCLink,
switch=self.switchClass, waitConnected=True )
dropped = mn.run( mn.ping )
hoptsStr = ', '.join( '%s: %s' % ( opt, value )
for opt, value in hopts.items() )
loptsStr = ', '.join( '%s: %s' % ( opt, value )
for opt, value in lopts.items() )
msg += ( '%s%% of pings were dropped during mininet.ping().\n'
'Topo = SingleSwitchTopo, %s hosts\n'
'hopts = %s\n'
'lopts = %s\n'
'host = CPULimitedHost\n'
'link = TCLink\n'
'Switch = %s\n'
% ( dropped, n, hoptsStr, loptsStr, self.switchClass ) )
self.assertEqual( dropped, 0, msg=msg )
def assertWithinTolerance( self, measured, expected, tolerance_frac, msg ):
"""Check that a given value is within a tolerance of expected
tolerance_frac: less-than-1.0 value; 0.8 would yield 20% tolerance.
"""
upperBound = ( float( expected ) + ( 1 - tolerance_frac ) *
float( expected ) )
lowerBound = float( expected ) * tolerance_frac
info = ( 'measured value is out of bounds\n'
'expected value: %s\n'
'measured value: %s\n'
'failure tolerance: %s\n'
'upper bound: %s\n'
'lower bound: %s\n'
% ( expected, measured, tolerance_frac,
upperBound, lowerBound ) )
msg += info
self.assertGreaterEqual( float( measured ), lowerBound, msg=msg )
self.assertLessEqual( float( measured ), upperBound, msg=msg )
def testCPULimits( self ):
"Verify topology creation with CPU limits set for both schedulers."
CPU_FRACTION = 0.1
CPU_TOLERANCE = 0.8 # CPU fraction below which test should fail
hopts = { 'cpu': CPU_FRACTION }
#self.runOptionsTopoTest( N, hopts=hopts )
mn = Mininet( SingleSwitchOptionsTopo( n=N, hopts=hopts ),
host=CPULimitedHost, switch=self.switchClass,
waitConnected=True )
mn.start()
results = mn.runCpuLimitTest( cpu=CPU_FRACTION )
mn.stop()
hostUsage = '\n'.join( 'h%s: %s' %
( n + 1,
results[ (n - 1) * 5 : (n * 5) - 1 ] )
for n in range( N ) )
hoptsStr = ', '.join( '%s: %s' % ( opt, value )
for opt, value in hopts.items() )
msg = ( '\nTesting cpu limited to %d%% of cpu per host\n'
'cpu usage percent per host:\n%s\n'
'Topo = SingleSwitchTopo, %s hosts\n'
'hopts = %s\n'
'host = CPULimitedHost\n'
'Switch = %s\n'
% ( CPU_FRACTION * 100, hostUsage, N, hoptsStr,
self.switchClass ) )
for pct in results:
#divide cpu by 100 to convert from percentage to fraction
self.assertWithinTolerance( pct/100, CPU_FRACTION,
CPU_TOLERANCE, msg )
def testLinkBandwidth( self ):
"Verify that link bandwidths are accurate within a bound."
if self.switchClass is UserSwitch:
self.skipTest( 'UserSwitch has very poor performance -'
' skipping for now' )
BW = 5 # Mbps
BW_TOLERANCE = 0.8 # BW fraction below which test should fail
# Verify ability to create limited-link topo first;
lopts = { 'bw': BW, 'use_htb': True }
# Also verify correctness of limit limitng within a bound.
mn = Mininet( SingleSwitchOptionsTopo( n=N, lopts=lopts ),
link=TCLink, switch=self.switchClass,
waitConnected=True )
bw_strs = mn.run( mn.iperf, fmt='m' )
loptsStr = ', '.join( '%s: %s' % ( opt, value )
for opt, value in lopts.items() )
msg = ( '\nTesting link bandwidth limited to %d Mbps per link\n'
'iperf results[ client, server ]: %s\n'
'Topo = SingleSwitchTopo, %s hosts\n'
'Link = TCLink\n'
'lopts = %s\n'
'host = default\n'
'switch = %s\n'
% ( BW, bw_strs, N, loptsStr, self.switchClass ) )
# On the client side, iperf doesn't wait for ACKs - it simply
# reports how long it took to fill up the TCP send buffer.
# As long as the kernel doesn't wait a long time before
# delivering bytes to the iperf server, its reported data rate
# should be close to the actual receive rate.
serverRate, _clientRate = bw_strs
bw = float( serverRate.split(' ')[0] )
self.assertWithinTolerance( bw, BW, BW_TOLERANCE, msg )
def testLinkDelay( self ):
"Verify that link delays are accurate within a bound."
DELAY_MS = 15
DELAY_TOLERANCE = 0.8 # Delay fraction below which test should fail
REPS = 3
lopts = { 'delay': '%sms' % DELAY_MS, 'use_htb': True }
mn = Mininet( SingleSwitchOptionsTopo( n=N, lopts=lopts ),
link=TCLink, switch=self.switchClass, autoStaticArp=True,
waitConnected=True )
mn.start()
for _ in range( REPS ):
ping_delays = mn.pingFull()
mn.stop()
test_outputs = ping_delays[0]
# Ignore unused variables below
# pylint: disable=W0612
node, dest, ping_outputs = test_outputs
sent, received, rttmin, rttavg, rttmax, rttdev = ping_outputs
pingFailMsg = 'sent %s pings, only received %s' % ( sent, received )
self.assertEqual( sent, received, msg=pingFailMsg )
# pylint: enable=W0612
loptsStr = ', '.join( '%s: %s' % ( opt, value )
for opt, value in lopts.items() )
msg = ( '\nTesting Link Delay of %s ms\n'
'ping results across 4 links:\n'
'(Sent, Received, rttmin, rttavg, rttmax, rttdev)\n'
'%s\n'
'Topo = SingleSwitchTopo, %s hosts\n'
'Link = TCLink\n'
'lopts = %s\n'
'host = default'
'switch = %s\n'
% ( DELAY_MS, ping_outputs, N, loptsStr, self.switchClass ) )
for rttval in [rttmin, rttavg, rttmax]:
# Multiply delay by 4 to cover there & back on two links
self.assertWithinTolerance( rttval, DELAY_MS * 4.0,
DELAY_TOLERANCE, msg )
def testLinkLoss( self ):
"Verify that we see packet drops with a high configured loss rate."
LOSS_PERCENT = 99
REPS = 1
lopts = { 'loss': LOSS_PERCENT, 'use_htb': True }
mn = Mininet( topo=SingleSwitchOptionsTopo( n=N, lopts=lopts ),
host=CPULimitedHost, link=TCLink,
switch=self.switchClass,
waitConnected=True )
# Drops are probabilistic, but the chance of no dropped packets is
# 1 in 100 million with 4 hops for a link w/99% loss.
dropped_total = 0
mn.start()
for _ in range(REPS):
dropped_total += mn.ping(timeout='1')
mn.stop()
loptsStr = ', '.join( '%s: %s' % ( opt, value )
for opt, value in lopts.items() )
msg = ( '\nTesting packet loss with %d%% loss rate\n'
'number of dropped pings during mininet.ping(): %s\n'
'expected number of dropped packets: 1\n'
'Topo = SingleSwitchTopo, %s hosts\n'
'Link = TCLink\n'
'lopts = %s\n'
'host = default\n'
'switch = %s\n'
% ( LOSS_PERCENT, dropped_total, N, loptsStr,
self.switchClass ) )
self.assertGreater( dropped_total, 0, msg )
def testMostOptions( self ):
"Verify topology creation with most link options and CPU limits."
lopts = { 'bw': 10, 'delay': '5ms', 'use_htb': True }
hopts = { 'cpu': 0.5 / N }
msg = '\nTesting many cpu and link options\n'
self.runOptionsTopoTest( N, msg, hopts=hopts, lopts=lopts )
# pylint: enable=E1101
class testOptionsTopoOVSKernel( testOptionsTopoCommon, unittest.TestCase ):
"""Verify ability to create networks with host and link options
(OVS kernel switch)."""
longMessage = True
switchClass = OVSSwitch
@unittest.skip( 'Skipping OVS user switch test for now' )
class testOptionsTopoOVSUser( testOptionsTopoCommon, unittest.TestCase ):
"""Verify ability to create networks with host and link options
(OVS user switch)."""
longMessage = True
switchClass = partial( OVSSwitch, datapath='user' )
@unittest.skipUnless( quietRun( 'which ivs-ctl' ), 'IVS is not installed' )
class testOptionsTopoIVS( testOptionsTopoCommon, unittest.TestCase ):
"Verify ability to create networks with host and link options (IVS)."
longMessage = True
switchClass = IVSSwitch
@unittest.skipUnless( quietRun( 'which ofprotocol' ),
'Reference user switch is not installed' )
class testOptionsTopoUserspace( testOptionsTopoCommon, unittest.TestCase ):
"""Verify ability to create networks with host and link options
(UserSwitch)."""
longMessage = True
switchClass = UserSwitch
if __name__ == '__main__':
setLogLevel( 'warning' )
unittest.main()
|
py | 1a3a0ce5fc4c19519487f593a211e01a562f9d90 | import datetime
import posixpath
from django import forms
from django.core import checks
from django.core.files.base import File
from django.core.files.images import ImageFile
from django.core.files.storage import Storage, default_storage
from django.core.files.utils import validate_file_name
from django.db.models import signals
from django.db.models.fields import Field
from django.db.models.query_utils import DeferredAttribute
from django.utils.translation import gettext_lazy as _
class FieldFile(File):
def __init__(self, instance, field, name):
super().__init__(None, name)
self.instance = instance
self.field = field
self.storage = field.storage
self._committed = True
def __eq__(self, other):
# Older code may be expecting FileField values to be simple strings.
# By overriding the == operator, it can remain backwards compatibility.
if hasattr(other, "name"):
return self.name == other.name
return self.name == other
def __hash__(self):
return hash(self.name)
# The standard File contains most of the necessary properties, but
# FieldFiles can be instantiated without a name, so that needs to
# be checked for here.
def _require_file(self):
if not self:
raise ValueError(
"The '%s' attribute has no file associated with it." % self.field.name
)
def _get_file(self):
self._require_file()
if getattr(self, "_file", None) is None:
self._file = self.storage.open(self.name, "rb")
return self._file
def _set_file(self, file):
self._file = file
def _del_file(self):
del self._file
file = property(_get_file, _set_file, _del_file)
@property
def path(self):
self._require_file()
return self.storage.path(self.name)
@property
def url(self):
self._require_file()
return self.storage.url(self.name)
@property
def size(self):
self._require_file()
if not self._committed:
return self.file.size
return self.storage.size(self.name)
def open(self, mode="rb"):
self._require_file()
if getattr(self, "_file", None) is None:
self.file = self.storage.open(self.name, mode)
else:
self.file.open(mode)
return self
# open() doesn't alter the file's contents, but it does reset the pointer
open.alters_data = True
# In addition to the standard File API, FieldFiles have extra methods
# to further manipulate the underlying file, as well as update the
# associated model instance.
def save(self, name, content, save=True):
name = self.field.generate_filename(self.instance, name)
self.name = self.storage.save(name, content, max_length=self.field.max_length)
setattr(self.instance, self.field.attname, self.name)
self._committed = True
# Save the object because it has changed, unless save is False
if save:
self.instance.save()
save.alters_data = True
def delete(self, save=True):
if not self:
return
# Only close the file if it's already open, which we know by the
# presence of self._file
if hasattr(self, "_file"):
self.close()
del self.file
self.storage.delete(self.name)
self.name = None
setattr(self.instance, self.field.attname, self.name)
self._committed = False
if save:
self.instance.save()
delete.alters_data = True
@property
def closed(self):
file = getattr(self, "_file", None)
return file is None or file.closed
def close(self):
file = getattr(self, "_file", None)
if file is not None:
file.close()
def __getstate__(self):
# FieldFile needs access to its associated model field, an instance and
# the file's name. Everything else will be restored later, by
# FileDescriptor below.
return {
"name": self.name,
"closed": False,
"_committed": True,
"_file": None,
"instance": self.instance,
"field": self.field,
}
def __setstate__(self, state):
self.__dict__.update(state)
self.storage = self.field.storage
class FileDescriptor(DeferredAttribute):
"""
The descriptor for the file attribute on the model instance. Return a
FieldFile when accessed so you can write code like::
>>> from myapp.models import MyModel
>>> instance = MyModel.objects.get(pk=1)
>>> instance.file.size
Assign a file object on assignment so you can do::
>>> with open('/path/to/hello.world') as f:
... instance.file = File(f)
"""
def __get__(self, instance, cls=None):
if instance is None:
return self
# This is slightly complicated, so worth an explanation.
# instance.file`needs to ultimately return some instance of `File`,
# probably a subclass. Additionally, this returned object needs to have
# the FieldFile API so that users can easily do things like
# instance.file.path and have that delegated to the file storage engine.
# Easy enough if we're strict about assignment in __set__, but if you
# peek below you can see that we're not. So depending on the current
# value of the field we have to dynamically construct some sort of
# "thing" to return.
# The instance dict contains whatever was originally assigned
# in __set__.
file = super().__get__(instance, cls)
# If this value is a string (instance.file = "path/to/file") or None
# then we simply wrap it with the appropriate attribute class according
# to the file field. [This is FieldFile for FileFields and
# ImageFieldFile for ImageFields; it's also conceivable that user
# subclasses might also want to subclass the attribute class]. This
# object understands how to convert a path to a file, and also how to
# handle None.
if isinstance(file, str) or file is None:
attr = self.field.attr_class(instance, self.field, file)
instance.__dict__[self.field.attname] = attr
# Other types of files may be assigned as well, but they need to have
# the FieldFile interface added to them. Thus, we wrap any other type of
# File inside a FieldFile (well, the field's attr_class, which is
# usually FieldFile).
elif isinstance(file, File) and not isinstance(file, FieldFile):
file_copy = self.field.attr_class(instance, self.field, file.name)
file_copy.file = file
file_copy._committed = False
instance.__dict__[self.field.attname] = file_copy
# Finally, because of the (some would say boneheaded) way pickle works,
# the underlying FieldFile might not actually itself have an associated
# file. So we need to reset the details of the FieldFile in those cases.
elif isinstance(file, FieldFile) and not hasattr(file, "field"):
file.instance = instance
file.field = self.field
file.storage = self.field.storage
# Make sure that the instance is correct.
elif isinstance(file, FieldFile) and instance is not file.instance:
file.instance = instance
# That was fun, wasn't it?
return instance.__dict__[self.field.attname]
def __set__(self, instance, value):
instance.__dict__[self.field.attname] = value
class FileField(Field):
# The class to wrap instance attributes in. Accessing the file object off
# the instance will always return an instance of attr_class.
attr_class = FieldFile
# The descriptor to use for accessing the attribute off of the class.
descriptor_class = FileDescriptor
description = _("File")
def __init__(
self, verbose_name=None, name=None, upload_to="", storage=None, **kwargs
):
self._primary_key_set_explicitly = "primary_key" in kwargs
self.storage = storage or default_storage
if callable(self.storage):
# Hold a reference to the callable for deconstruct().
self._storage_callable = self.storage
self.storage = self.storage()
if not isinstance(self.storage, Storage):
raise TypeError(
"%s.storage must be a subclass/instance of %s.%s"
% (
self.__class__.__qualname__,
Storage.__module__,
Storage.__qualname__,
)
)
self.upload_to = upload_to
kwargs.setdefault("max_length", 100)
super().__init__(verbose_name, name, **kwargs)
def check(self, **kwargs):
return [
*super().check(**kwargs),
*self._check_primary_key(),
*self._check_upload_to(),
]
def _check_primary_key(self):
if self._primary_key_set_explicitly:
return [
checks.Error(
"'primary_key' is not a valid argument for a %s."
% self.__class__.__name__,
obj=self,
id="fields.E201",
)
]
else:
return []
def _check_upload_to(self):
if isinstance(self.upload_to, str) and self.upload_to.startswith("/"):
return [
checks.Error(
"%s's 'upload_to' argument must be a relative path, not an "
"absolute path." % self.__class__.__name__,
obj=self,
id="fields.E202",
hint="Remove the leading slash.",
)
]
else:
return []
def deconstruct(self):
name, path, args, kwargs = super().deconstruct()
if kwargs.get("max_length") == 100:
del kwargs["max_length"]
kwargs["upload_to"] = self.upload_to
if self.storage is not default_storage:
kwargs["storage"] = getattr(self, "_storage_callable", self.storage)
return name, path, args, kwargs
def get_internal_type(self):
return "FileField"
def get_prep_value(self, value):
value = super().get_prep_value(value)
# Need to convert File objects provided via a form to string for
# database insertion.
if value is None:
return None
return str(value)
def pre_save(self, model_instance, add):
file = super().pre_save(model_instance, add)
if file and not file._committed:
# Commit the file to storage prior to saving the model
file.save(file.name, file.file, save=False)
return file
def contribute_to_class(self, cls, name, **kwargs):
super().contribute_to_class(cls, name, **kwargs)
setattr(cls, self.attname, self.descriptor_class(self))
def generate_filename(self, instance, filename):
"""
Apply (if callable) or prepend (if a string) upload_to to the filename,
then delegate further processing of the name to the storage backend.
Until the storage layer, all file paths are expected to be Unix style
(with forward slashes).
"""
if callable(self.upload_to):
filename = self.upload_to(instance, filename)
else:
dirname = datetime.datetime.now().strftime(str(self.upload_to))
filename = posixpath.join(dirname, filename)
filename = validate_file_name(filename, allow_relative_path=True)
return self.storage.generate_filename(filename)
def save_form_data(self, instance, data):
# Important: None means "no change", other false value means "clear"
# This subtle distinction (rather than a more explicit marker) is
# needed because we need to consume values that are also sane for a
# regular (non Model-) Form to find in its cleaned_data dictionary.
if data is not None:
# This value will be converted to str and stored in the
# database, so leaving False as-is is not acceptable.
setattr(instance, self.name, data or "")
def formfield(self, **kwargs):
return super().formfield(
**{
"form_class": forms.FileField,
"max_length": self.max_length,
**kwargs,
}
)
class ImageFileDescriptor(FileDescriptor):
"""
Just like the FileDescriptor, but for ImageFields. The only difference is
assigning the width/height to the width_field/height_field, if appropriate.
"""
def __set__(self, instance, value):
previous_file = instance.__dict__.get(self.field.attname)
super().__set__(instance, value)
# To prevent recalculating image dimensions when we are instantiating
# an object from the database (bug #11084), only update dimensions if
# the field had a value before this assignment. Since the default
# value for FileField subclasses is an instance of field.attr_class,
# previous_file will only be None when we are called from
# Model.__init__(). The ImageField.update_dimension_fields method
# hooked up to the post_init signal handles the Model.__init__() cases.
# Assignment happening outside of Model.__init__() will trigger the
# update right here.
if previous_file is not None:
self.field.update_dimension_fields(instance, force=True)
class ImageFieldFile(ImageFile, FieldFile):
def delete(self, save=True):
# Clear the image dimensions cache
if hasattr(self, "_dimensions_cache"):
del self._dimensions_cache
super().delete(save)
class ImageField(FileField):
attr_class = ImageFieldFile
descriptor_class = ImageFileDescriptor
description = _("Image")
def __init__(
self,
verbose_name=None,
name=None,
width_field=None,
height_field=None,
**kwargs,
):
self.width_field, self.height_field = width_field, height_field
super().__init__(verbose_name, name, **kwargs)
def check(self, **kwargs):
return [
*super().check(**kwargs),
*self._check_image_library_installed(),
]
def _check_image_library_installed(self):
try:
from PIL import Image # NOQA
except ImportError:
return [
checks.Error(
"Cannot use ImageField because Pillow is not installed.",
hint=(
"Get Pillow at https://pypi.org/project/Pillow/ "
'or run command "python -m pip install Pillow".'
),
obj=self,
id="fields.E210",
)
]
else:
return []
def deconstruct(self):
name, path, args, kwargs = super().deconstruct()
if self.width_field:
kwargs["width_field"] = self.width_field
if self.height_field:
kwargs["height_field"] = self.height_field
return name, path, args, kwargs
def contribute_to_class(self, cls, name, **kwargs):
super().contribute_to_class(cls, name, **kwargs)
# Attach update_dimension_fields so that dimension fields declared
# after their corresponding image field don't stay cleared by
# Model.__init__, see bug #11196.
# Only run post-initialization dimension update on non-abstract models
if not cls._meta.abstract:
signals.post_init.connect(self.update_dimension_fields, sender=cls)
def update_dimension_fields(self, instance, force=False, *args, **kwargs):
"""
Update field's width and height fields, if defined.
This method is hooked up to model's post_init signal to update
dimensions after instantiating a model instance. However, dimensions
won't be updated if the dimensions fields are already populated. This
avoids unnecessary recalculation when loading an object from the
database.
Dimensions can be forced to update with force=True, which is how
ImageFileDescriptor.__set__ calls this method.
"""
# Nothing to update if the field doesn't have dimension fields or if
# the field is deferred.
has_dimension_fields = self.width_field or self.height_field
if not has_dimension_fields or self.attname not in instance.__dict__:
return
# getattr will call the ImageFileDescriptor's __get__ method, which
# coerces the assigned value into an instance of self.attr_class
# (ImageFieldFile in this case).
file = getattr(instance, self.attname)
# Nothing to update if we have no file and not being forced to update.
if not file and not force:
return
dimension_fields_filled = not (
(self.width_field and not getattr(instance, self.width_field))
or (self.height_field and not getattr(instance, self.height_field))
)
# When both dimension fields have values, we are most likely loading
# data from the database or updating an image field that already had
# an image stored. In the first case, we don't want to update the
# dimension fields because we are already getting their values from the
# database. In the second case, we do want to update the dimensions
# fields and will skip this return because force will be True since we
# were called from ImageFileDescriptor.__set__.
if dimension_fields_filled and not force:
return
# file should be an instance of ImageFieldFile or should be None.
if file:
width = file.width
height = file.height
else:
# No file, so clear dimensions fields.
width = None
height = None
# Update the width and height fields.
if self.width_field:
setattr(instance, self.width_field, width)
if self.height_field:
setattr(instance, self.height_field, height)
def formfield(self, **kwargs):
return super().formfield(
**{
"form_class": forms.ImageField,
**kwargs,
}
)
|
py | 1a3a0cf69ce6c43c4c2544d995e5627dddcc4605 | import mock
import unittest
from mock import patch
from pyramid.testing import setUp, tearDown
from swiftclient.exceptions import ClientException
from .. api.swift import *
class SwiftTests(unittest.TestCase):
def setUp(self):
self.config = setUp()
def tearDown(self):
tearDown()
@mock.patch('swiftclient.client.Connection')
@mock.patch('localapi.api.swift.settings')
def test_connection(self, settings_mock, mock_connection):
auth_token = "HPAUTH_9787665544434434"
fake_connection = mock.Mock()
mock_connection.return_value = fake_connection
result = connection(auth_token)
self.assertEqual(result, fake_connection)
@mock.patch('swiftclient.client.Connection')
@mock.patch('localapi.api.swift.settings')
def test_connection_client_exception(self, settings_mock, mock_connection):
auth_token = "HPAUTH_9787665544434434"
error_message = 'SWIFT CLIENT ERROR'
mock_connection.side_effect = ClientException(error_message)
result = connection(auth_token)
self.assertRaises(ClientException, mock_connection, error_message)
@mock.patch('swiftclient.client.Connection')
@mock.patch('localapi.api.swift.settings')
def test_connection_exception(self, settings_mock, mock_connection):
auth_token = "HPAUTH_9787665544434434"
error_message = 'CONNECTION ERROR'
mock_connection.side_effect = Exception(error_message)
result = connection(auth_token)
self.assertRaises(Exception, error_message)
def test_verify_container_missing_when_false(self):
account = ([{}], [{'name': 'name1'}])
connection = mock.Mock()
connection.get_account.return_value = account
test_container_name = 'name1'
result = verify_container_missing(connection, test_container_name)
self.assertFalse(result)
def test_verify_container_missing_when_true(self):
account = ([{}], [{'name': 'name1'}])
connection = mock.Mock()
connection.get_account.return_value = account
test_container_name = 'dummy'
result = verify_container_missing(connection, test_container_name)
self.assertTrue(result)
def test_verify_container_missing_client_exception(self):
name = 'foo'
connection = mock.Mock()
error_message = 'SWIFT CLIENT ERROR'
connection.get_account.side_effect = ClientException(error_message)
result = verify_container_missing(connection, name)
self.assertRaises(
ClientException,
connection.get_account,
error_message)
self.assertFalse(result)
def test_verify_container_missing_exception(self):
name = 'foo'
connection = mock.Mock()
error_message = 'PUT CONTAINER ERROR'
connection.get_account.side_effect = Exception(error_message)
result = verify_container_missing(connection, name)
self.assertRaises(Exception, error_message)
self.assertFalse(result)
@mock.patch('swiftclient.client.Connection')
@mock.patch('localapi.api.swift.verify_container_missing')
def test_ensure_addins_container_exists(
self, mock_check_container, mock_swift_connection):
success = {'status': 200}
def mock_put_success(container_name, response_dict):
response_dict['status'] = success['status']
container_name = "dummy_container_name"
with mock.patch.object(
mock_swift_connection, 'put_container',
side_effect=mock_put_success) as mocked_put:
ensure_addins_container_exists(
mock_swift_connection,
container_name)
mocked_put.assert_called_with(container_name, response_dict=success)
@mock.patch('swiftclient.client.Connection')
@mock.patch('localapi.api.swift.verify_container_missing')
def test_ensure_addins_container_exists_client_exception(
self, mock_check_container, mock_swift_connection):
container_name = "dummy_container_name"
error_message = 'SWIFT CLIENT ERROR'
with mock.patch.object(
mock_swift_connection, 'put_container',
side_effect=ClientException(error_message)) as mocked_put:
ensure_addins_container_exists(
mock_swift_connection,
container_name)
self.assertRaises(ClientException, mocked_put, error_message)
@mock.patch('swiftclient.client.Connection')
@mock.patch('localapi.api.swift.verify_container_missing')
def test_ensure_addins_container_exists_exception(
self, mock_check_container, mock_swift_connection):
container_name = "dummy_container_name"
error_message = 'PUT CONTAINER ERROR'
with mock.patch.object(
mock_swift_connection, 'put_container',
side_effect=Exception(error_message)) as mocked_put:
ensure_addins_container_exists(
mock_swift_connection,
container_name)
self.assertRaises(Exception, error_message)
@patch('mimetypes.guess_type')
@patch('swiftclient.client.Connection')
@patch('sys.getsizeof')
def test_put_object(
self, mock_getsizeof, mock_swift_connection, mock_guess_type):
success = {'status': 200}
def mock_put_success(
container_name, file_name, contents, content_length,
content_type, response_dict):
response_dict['status'] = success['status']
file_name = 'filename'
container_name = "dummy_container_name"
contents = mock.MagicMock()
mock_getsizeof.return_value = 999
mock_guess_type.return_value = ['filetype']
with mock.patch.object(
mock_swift_connection, 'put_object',
side_effect=mock_put_success) as mocked_put:
put_object(
mock_swift_connection, container_name, file_name, contents)
mocked_put.assert_called_with(
container_name, file_name, contents, content_length=999,
content_type='filetype', response_dict=success)
@patch('mimetypes.guess_type')
@patch('swiftclient.client.Connection')
@patch('sys.getsizeof')
def test_put_object_returns_client_exception(
self, mock_getsizeof, mock_swift_connection, mock_guess_type):
file_name = 'filename'
container_name = "dummy_container_name"
contents = mock.MagicMock()
mock_getsizeof.return_value = 999
mock_guess_type.return_value = ['application/json']
error_message = "ERROR"
mock_swift_connection.put_object.side_effect = ClientException(
error_message)
put_object(
mock_swift_connection, container_name, file_name, contents)
self.assertRaises(
ClientException,
mock_swift_connection.put_object,
error_message)
@patch('mimetypes.guess_type')
@patch('swiftclient.client.Connection')
@patch('sys.getsizeof')
def test_put_object_returns_exception(
self, mock_getsizeof, mock_swift_connection, mock_guess_type):
file_name = 'filename'
container_name = "dummy_container_name"
contents = mock.MagicMock()
# mock_getsizeof.return_value = 999
# mock_guess_type.return_value = ['filetype']
error_message = "ERROR"
mock_swift_connection.put_object.side_effect = Exception(error_message)
put_object(
mock_swift_connection, container_name, file_name, contents)
self.assertRaises(Exception, error_message)
@mock.patch('localapi.api.keystone.get_auth_token')
@mock.patch('localapi.api.swift.connection')
@mock.patch('localapi.api.swift.extract_manifest_from_package')
@mock.patch('localapi.api.swift.ensure_addins_container_exists')
@mock.patch('localapi.api.swift.put_object')
@mock.patch('localapi.api.swift.settings')
def test_write_package(
self,
mock_settings,
mock_put_object,
mock_ensure_container,
mock_extract_manifest,
mock_connection,
mock_get_auth_token):
name = "thepackage/manifest.json"
filedata = mock.Mock()
mock_put_object.return_value = {'status': 200}
result = write_package(name, filedata)
self.assertEqual(result, 200)
@mock.patch('localapi.api.keystone.get_auth_token')
@mock.patch('localapi.api.swift.connection')
@mock.patch('localapi.api.swift.extract_manifest_from_package')
@mock.patch('localapi.api.swift.put_object')
@mock.patch('localapi.api.swift.settings')
def test_write_package_client_exception(
self,
mock_settings,
mock_put_object,
mock_extract_manifest,
mock_connection,
mock_get_auth_token):
name = "thepackage/manifest.json"
filedata = mock.Mock()
error_message = 'SAVE TO SWIFT ERROR'
mock_connection.side_effect = ClientException(error_message)
result = write_package(name, filedata)
self.assertRaises(ClientException, mock_connection, error_message)
@mock.patch('localapi.api.swift.settings')
def test_write_package_exception(self, mock_settings):
name = "thepackage/manifest.json"
filedata = mock.Mock()
error_message = 'SAVE TO SWIFT ERROR'
# doesn't matter what throw the exceptyion, just pick the first
# thing in
mock_settings.side_effect = Exception(error_message)
result = write_package(name, filedata)
self.assertRaises(Exception, error_message)
|
py | 1a3a0eb1d97d22e75238b9dc1a01a6192a6a38f4 | #!/usr/bin/env python3
import argparse
import ctypes
import os
import readline
import socket
import subprocess
import sys
import threading
readline.get_history_length()
# throw this away because we import readline for prompt stuff
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-l', '--listen', type=str, dest='listen', default='0.0.0.0',
help='address to bind and sniff packets')
parser.description = """\
This is a Python program to scan a network for live hosts by spraying UDP traffic and inspecting responses.
"""
args = parser.parse_args()
def main():
# make this work on windows too
if os.name == 'nt':
socket_protocol = socket.IPPROTO_IP
else:
socket_protocol = socket.IPPROTO_ICMP
# set up raw socket and bind
sniffer = socket.socket(socket.AF_INET, socket.SOCK_RAW, socket_protocol)
sniffer.bind((args.listen,0))
# we want to include headers
sniffer.setsockopt(socket.IPPROTO_IP, socket.IP_HDRINCL, 1)
# if windows explicitly set promiscuous mode
if os.name == 'nt':
sniffer.ioctl(socket.SIO_RCVALL, socket.RCVALL_ON)
# read a single packet
data = sniffer.recv(65536)
print(data)
hexdump(data)
# if windows explicitly set promiscuous mode
if os.name == 'nt':
sniffer.ioctl(socket.SIO_RCVALL, socket.RCVALL_OFF)
def hexdump(src, length=16, sep='.'):
"""
https://gist.github.com/1mm0rt41PC/c340564823f283fe530b
"""
result = []
for i in range(0, len(src), length):
subSrc = src[i:i + length]
hexa = ''
for h in range(0, len(subSrc)):
if h == length / 2:
hexa += ' '
h = subSrc[h]
if not isinstance(h, int):
h = ord(h)
h = hex(h).replace('0x', '')
if len(h) == 1:
h = '0' + h
hexa += h + ' '
hexa = hexa.strip(' ')
text = ''
for c in subSrc:
if not isinstance(c, int):
c = ord(c)
if 0x20 <= c < 0x7F:
text += chr(c)
else:
text += sep
result.append(('%08X: %-' + str(length * (2 + 1) + 1) + 's |%s|') % (i, hexa, text))
print('\n'.join(result))
if __name__ == '__main__':
main()
|
py | 1a3a11a0c94761b0d38b9a7aaef4222c9545d4e6 | """
Single-subject data (two sessions) in native space
==================================================
The example shows the analysis of an SPM dataset studying face perception. The
analysis is performed in native space. Realignment parameters are provided with
the input images, but those have not been resampled to a common space.
The experimental paradigm is simple, with two conditions; viewing a face image
or a scrambled face image, supposedly with the same low-level statistical
properties, to find face-specific responses.
For details on the data, please see:
Henson, R.N., Goshen-Gottstein, Y., Ganel, T., Otten, L.J., Quayle, A.,
Rugg, M.D. Electrophysiological and haemodynamic correlates of face
perception, recognition and priming. Cereb Cortex. 2003 Jul;13(7):793-805.
http://www.dx.doi.org/10.1093/cercor/13.7.793
This example takes a lot of time because the input are lists of 3D images
sampled in different positions (encoded by different affine functions).
"""
print(__doc__)
#########################################################################
# Fetch the SPM multimodal_faces data.
from nilearn.datasets import fetch_spm_multimodal_fmri
subject_data = fetch_spm_multimodal_fmri()
#########################################################################
# Specfiy timing and design matrix parameters.
tr = 2. # repetition time, in seconds
slice_time_ref = 0. # Sample at the beginning of each acquisition.
drift_model = 'Cosine' # We use a discrete cosine transform to model signal drifts.
high_pass = .01 # The cutoff for the drift model is 0.01 Hz.
hrf_model = 'spm + derivative' # The hemodynamic response function is the SPM canonical one.
#########################################################################
# Resample the images.
#
# This is achieved by the concat_imgs function of Nilearn.
from nilearn.image import concat_imgs, resample_img, mean_img
fmri_img = [concat_imgs(subject_data.func1, auto_resample=True),
concat_imgs(subject_data.func2, auto_resample=True)]
affine, shape = fmri_img[0].affine, fmri_img[0].shape
print('Resampling the second image (this takes time)...')
fmri_img[1] = resample_img(fmri_img[1], affine, shape[:3])
#########################################################################
# Let's create mean image for display purposes.
mean_image = mean_img(fmri_img)
#########################################################################
# Make the design matrices.
import numpy as np
import pandas as pd
from nilearn.glm.first_level import make_first_level_design_matrix
design_matrices = []
#########################################################################
# Loop over the two sessions.
for idx, img in enumerate(fmri_img, start=1):
# Build experimental paradigm
n_scans = img.shape[-1]
events = pd.read_table(subject_data['events{}'.format(idx)])
# Define the sampling times for the design matrix
frame_times = np.arange(n_scans) * tr
# Build design matrix with the reviously defined parameters
design_matrix = make_first_level_design_matrix(
frame_times,
events,
hrf_model=hrf_model,
drift_model=drift_model,
high_pass=high_pass,
)
# put the design matrices in a list
design_matrices.append(design_matrix)
#########################################################################
# We can specify basic contrasts (to get beta maps).
# We start by specifying canonical contrast that isolate design matrix columns.
contrast_matrix = np.eye(design_matrix.shape[1])
basic_contrasts = dict([(column, contrast_matrix[i])
for i, column in enumerate(design_matrix.columns)])
#########################################################################
# We actually want more interesting contrasts. The simplest contrast
# just makes the difference between the two main conditions. We
# define the two opposite versions to run one-tailed t-tests. We also
# define the effects of interest contrast, a 2-dimensional contrasts
# spanning the two conditions.
contrasts = {
'faces-scrambled': basic_contrasts['faces'] - basic_contrasts['scrambled'],
'scrambled-faces': -basic_contrasts['faces'] + basic_contrasts['scrambled'],
'effects_of_interest': np.vstack((basic_contrasts['faces'],
basic_contrasts['scrambled']))
}
#########################################################################
# Fit the GLM for the 2 sessions by specifying a FirstLevelModel and then
# fitting it.
from nilearn.glm.first_level import FirstLevelModel
print('Fitting a GLM')
fmri_glm = FirstLevelModel()
fmri_glm = fmri_glm.fit(fmri_img, design_matrices=design_matrices)
#########################################################################
# Now we can compute contrast-related statistical maps (in z-scale), and plot
# them.
print('Computing contrasts')
from nilearn import plotting
# Iterate on contrasts
for contrast_id, contrast_val in contrasts.items():
print("\tcontrast id: %s" % contrast_id)
# compute the contrasts
z_map = fmri_glm.compute_contrast(
contrast_val, output_type='z_score')
# plot the contrasts as soon as they're generated
# the display is overlaid on the mean fMRI image
# a threshold of 3.0 is used, more sophisticated choices are possible
plotting.plot_stat_map(
z_map, bg_img=mean_image, threshold=3.0, display_mode='z',
cut_coords=3, black_bg=True, title=contrast_id)
plotting.show()
#########################################################################
# Based on the resulting maps we observe that the analysis results in
# wide activity for the 'effects of interest' contrast, showing the
# implications of large portions of the visual cortex in the
# conditions. By contrast, the differential effect between "faces" and
# "scrambled" involves sparser, more anterior and lateral regions. It
# also displays some responses in the frontal lobe.
|
py | 1a3a11da7273ac252e1354db4aa2a318145a1f93 | from thingsboard_gateway.things.meter import MeterDataDefine
from thingsboard_gateway.things.meter.nan_suo import NsDataDefineName
from thingsboard_gateway.things.meter.gb_meter_protocol import CJT188Protocol
class NasReadDataRequest(CJT188Protocol):
"""
读表数据
"""
def __init__(self, address, device_type, seq):
super().__init__()
self.address = bytes.fromhex(address)
self.device_type = device_type
self.control_code = 0x01
self.data_defines.append(MeterDataDefine(NsDataDefineName.Default, 2, data=bytes([0x1F, 0x90])))
self.data_defines.append(MeterDataDefine(NsDataDefineName.Seq, 1, data=bytes([seq])))
class NsoReadAddressRequest(CJT188Protocol):
"""
读表地址
"""
def __init__(self, device_type, seq):
super().__init__()
self.address = bytes([0xAA] * 7)
self.device_type = device_type
self.control_code = 0x03
self.data_defines.append(MeterDataDefine(NsDataDefineName.Default, 2, data=bytes([0x0A, 0x81])))
self.data_defines.append(MeterDataDefine(NsDataDefineName.Seq, 1, data=bytes([seq])))
class NsReadUser1Request(CJT188Protocol):
"""
读用户参数1- 读终端用户号、表号
"""
def __init__(self,address, device_type, seq):
super().__init__()
self.address = bytes.fromhex(address)
self.device_type = device_type
self.control_code = 0x03
self.data_defines.append(MeterDataDefine(NsDataDefineName.Default, 2, data=bytes([0xAA, 0x81])))
self.data_defines.append(MeterDataDefine(NsDataDefineName.Seq, 1, data=bytes([seq])))
class NsReadUser2Request(CJT188Protocol):
"""
读用户参数2- 读终端超容值、透支量、报警量
"""
def __init__(self,address, device_type, seq):
super().__init__()
self.address = bytes.fromhex(address)
self.device_type = device_type
self.control_code = 0x03
self.data_defines.append(MeterDataDefine(NsDataDefineName.Default, 2, data=bytes([0xB0, 0x81])))
self.data_defines.append(MeterDataDefine(NsDataDefineName.Seq, 1, data=bytes([seq]))) |
py | 1a3a11fee002212f4d53dc08b3d8f4dc16113f56 | """
Exercício Python 113: Reescreva a função leiaInt() que fizemos no desafio 104, incluindo agora a possibilidade da digitação de um número de tipo inválido. Aproveite e crie também uma função leiaFloat() com a mesma funcionalidade.
"""
def leiaInt(mensagem):
value = 0
while True:
try:
value = int(input(mensagem))
except KeyboardInterrupt:
print('O usuario decidiu nao informar o numero')
break
except:
print('Ocorreu um erro, certifique-se de que digitou um numero inteiro...')
else:
break
return value
def leiaFloat(mensagem):
value = 0
while True:
try:
value = float(input(mensagem))
except KeyboardInterrupt:
print('\n\nO usuario decidiu nao informar o numero')
break
except:
print('Ocorreu um erro, certifique-se de que digitou um numero inteiro...')
else:
break
return value
# MainProgram
try:
number1 = leiaInt('insira um numero inteiro: ')
number2 = leiaFloat('insira um numero real:')
except:
print('Erros localizados, da proxima insira os dados corretamente')
finally:
print(f'o numero int {number1} e o real {number2}')
|
py | 1a3a135dc6e70838b0669daeed96145c387d8898 | #!/usr/bin/env python2.5
#
# Copyright 2010 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Helper classes which help converting a url to a list of SB expressions."""
import array
import logging
import re
import string
import urllib
import urlparse
import util
class UrlParseError(Exception):
pass
def GenerateSafeChars():
"""
Return a string containing all 'safe' characters that shouldn't be escaped
for url encoding. This includes all printable characters except '#%' and
whitespace characters.
"""
unfiltered_chars = string.digits + string.ascii_letters + string.punctuation
filtered_list = [c for c in unfiltered_chars if c not in '%#']
return array.array('c', filtered_list).tostring()
class ExpressionGenerator(object):
"""Class does the conversion url -> list of SafeBrowsing expressions.
This class converts a given url into the list of all SafeBrowsing host-suffix,
path-prefix expressions for that url. These are expressions that are on the
SafeBrowsing lists.
"""
HEX = re.compile(r'^0x([a-fA-F0-9]+)$')
OCT = re.compile(r'^0([0-7]+)$')
DEC = re.compile(r'^(\d+)$')
IP_WITH_TRAILING_SPACE = re.compile(r'^(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}) ')
POSSIBLE_IP = re.compile(r'^(?i)((?:0x[0-9a-f]+|[0-9\\.])+)$')
FIND_BAD_OCTAL_REGEXP = re.compile(r'(^|\.)0\d*[89]')
# This regular expression parses the host and port from a hostname. Note: any
# user and password are removed from the hostname.
HOST_PORT_REGEXP = re.compile(r'^(?:.*@)?(?P<host>[^:]*)(:(?P<port>\d+))?$')
SAFE_CHARS = GenerateSafeChars()
# Dict that maps supported schemes to their default port number.
DEFAULT_PORTS = {'http': '80', 'https': '443', 'ftp': '21'}
def __init__(self, url):
parse_exception = UrlParseError('failed to parse URL "%s"' % (url,))
canonical_url = ExpressionGenerator.CanonicalizeUrl(url)
if not canonical_url:
raise parse_exception
# Each element is a list of host components used to build expressions.
self._host_lists = []
# A list of paths used to build expressions.
self._path_exprs = []
url_split = urlparse.urlsplit(canonical_url)
canonical_host, canonical_path = url_split[1], url_split[2]
self._MakeHostLists(canonical_host, parse_exception)
if url_split[3]:
# Include canonicalized path with query arguments
self._path_exprs.append(canonical_path + '?' + url_split[3])
self._path_exprs.append(canonical_path)
# Get the first three directory path components and create the 4 path
# expressions starting at the root (/) and successively appending directory
# path components, including the trailing slash. E.g.:
# /a/b/c/d.html -> [/, /a/, /a/b/, /a/b/c/]
path_parts = canonical_path.rstrip('/').lstrip('/').split('/')[:3]
if canonical_path.count('/') < 4:
# If the last component in not a directory we remove it.
path_parts.pop()
while path_parts:
self._path_exprs.append('/' + '/'.join(path_parts) + '/')
path_parts.pop()
if canonical_path != '/':
self._path_exprs.append('/')
@staticmethod
def CanonicalizeUrl(url):
"""Canonicalize the given URL for the SafeBrowsing protocol.
Args:
url: URL to canonicalize.
Returns:
A canonical URL or None if the URL could not be canonicalized.
"""
# Start by stripping off the fragment identifier.
tmp_pos = url.find('#')
if tmp_pos >= 0:
url = url[0:tmp_pos]
# Stripping off leading and trailing white spaces.
url = url.lstrip().rstrip()
# Remove any embedded tabs and CR/LF characters which aren't escaped.
url = url.replace('\t', '').replace('\r', '').replace('\n', '')
# Un-escape and re-escpae the URL just in case there are some encoded
# characters in the url scheme for example.
url = ExpressionGenerator._Escape(url)
url_split = urlparse.urlsplit(url)
if not url_split[0]:
# URL had no scheme. In this case we assume it is http://.
url = 'http://' + url
url_split = urlparse.urlsplit(url)
url_scheme = url_split[0].lower()
if url_scheme not in ExpressionGenerator.DEFAULT_PORTS:
return None # Unsupported scheme.
# Note: applying HOST_PORT_REGEXP also removes any user and password.
m = ExpressionGenerator.HOST_PORT_REGEXP.match(url_split[1])
if not m:
return None
host, port = m.group('host'), m.group('port')
canonical_host = ExpressionGenerator.CanonicalizeHost(host)
if not canonical_host:
return None
# Now that the host is canonicalized we add the port back if it's not the
# default port for that url scheme.
if port and port != ExpressionGenerator.DEFAULT_PORTS[url_scheme]:
canonical_host += ':' + port
canonical_path = ExpressionGenerator.CanonicalizePath(url_split[2])
# If the URL ends with ? we want to keep the ?.
canonical_url = url_split[0] + '://' + canonical_host + canonical_path
if url_split[3] != '' or url.endswith('?'):
canonical_url += '?' + url_split[3]
return canonical_url
@staticmethod
def CanonicalizePath(path):
"""Canonicalize the given path."""
if not path:
return '/'
# There are some cases where the path will not start with '/'. Example:
# "ftp://host.com?q" -- the hostname is 'host.com' and the path '%3Fq'.
# Browsers typically do prepend a leading slash to the path in this case,
# we'll do the same.
if path[0] != '/':
path = '/' + path
path = ExpressionGenerator._Escape(path)
path_components = []
for path_component in path.split('/'):
# If the path component is '..' we skip it and remove the preceding path
# component if there are any.
if path_component == '..':
if len(path_components) > 0:
path_components.pop()
# We skip empty path components to remove successive slashes (i.e.,
# // -> /). Note: this means that the leading and trailing slash will
# also be removed and need to be re-added afterwards.
#
# If the path component is '.' we also skip it (i.e., /./ -> /).
elif path_component != '.' and path_component != '':
path_components.append(path_component)
# Put the path components back together and re-add the leading slash which
# got stipped by removing empty path components.
canonical_path = '/' + '/'.join(path_components)
# If necessary we also re-add the trailing slash.
if path.endswith('/') and not canonical_path.endswith('/'):
canonical_path += '/'
return canonical_path
@staticmethod
def CanonicalizeHost(host):
"""Canonicalize the given host. Returns None in case of an error."""
if not host:
return None
host = ExpressionGenerator._Escape(host.lower())
ip = ExpressionGenerator.CanonicalizeIp(host)
if ip:
# Host is an IP address.
host = ip
else:
# Host is a normal hostname.
# Skip trailing, leading and consecutive dots.
host_split = [part for part in host.split('.') if part]
if len(host_split) < 2:
return None
host = '.'.join(host_split)
return host
@staticmethod
def CanonicalizeIp(host):
"""
Return a canonicalized IP if host can represent an IP and None otherwise.
"""
if len(host) <= 15:
# The Windows resolver allows a 4-part dotted decimal IP address to have a
# space followed by any old rubbish, so long as the total length of the
# string doesn't get above 15 characters. So, "10.192.95.89 xy" is
# resolved to 10.192.95.89.
# If the string length is greater than 15 characters,
# e.g. "10.192.95.89 xy.wildcard.example.com", it will be resolved through
# DNS.
m = ExpressionGenerator.IP_WITH_TRAILING_SPACE.match(host)
if m:
host = m.group(1)
if not ExpressionGenerator.POSSIBLE_IP.match(host):
return None
# Basically we should parse octal if we can, but if there are illegal octal
# numbers, i.e. 08 or 09, then we should just look at decimal and hex.
allow_octal = not ExpressionGenerator.FIND_BAD_OCTAL_REGEXP.search(host)
# Skip trailing, leading and consecutive dots.
host_split = [part for part in host.split('.') if part]
if len(host_split) > 4:
return None
ip = []
for i in xrange(len(host_split)):
m = ExpressionGenerator.HEX.match(host_split[i])
if m:
base = 16
else:
m = ExpressionGenerator.OCT.match(host_split[i])
if m and allow_octal:
base = 8
else:
m = ExpressionGenerator.DEC.match(host_split[i])
if m:
base = 10
else:
return None
n = long(m.group(1), base)
if n > 255:
if i < len(host_split) - 1:
n &= 0xff
ip.append(n)
else:
bytes = []
shift = 0
while n > 0 and len(bytes) < 4:
bytes.append(n & 0xff)
n >>= 8
if len(ip) + len(bytes) > 4:
return None
bytes.reverse()
ip.extend(bytes)
else:
ip.append(n)
while len(ip) < 4:
ip.append(0)
return '%u.%u.%u.%u' % tuple(ip)
def Expressions(self):
"""
A generator of the possible expressions.
"""
for host_parts in self._host_lists:
host = '.'.join(host_parts)
for p in self._path_exprs:
yield Expression(host, p)
@staticmethod
def _Escape(unescaped_str):
"""Fully unescape the given string, then re-escape once.
Args:
unescaped_str: string that should be escaped.
Returns:
Escaped string according to the SafeBrowsing protocol.
"""
unquoted = urllib.unquote(unescaped_str)
while unquoted != unescaped_str:
unescaped_str = unquoted
unquoted = urllib.unquote(unquoted)
return urllib.quote(unquoted, ExpressionGenerator.SAFE_CHARS)
def _MakeHostLists(self, host, parse_exception):
"""
Canonicalize host and build self._host_lists.
"""
ip = ExpressionGenerator.CanonicalizeIp(host)
if ip is not None:
# Is an IP.
self._host_lists.append([ip])
return
# Is a hostname.
# Skip trailing, leading and consecutive dots.
host_split = [part for part in host.split('.') if part]
if len(host_split) < 2:
raise parse_exception
start = len(host_split) - 5
stop = len(host_split) - 1
if start <= 0:
start = 1
self._host_lists.append(host_split)
for i in xrange(start, stop):
self._host_lists.append(host_split[i:])
class Expression(object):
"""Class which represents a host-suffix, path-prefix expression."""
def __init__(self, host, path):
self._host = host
self._path = path
self._value = host + path
self._hash_value = util.GetHash256(self._value)
def __str__(self):
return self.Value()
def __repr__(self):
"""
Not really a good repr. This is for debugging.
"""
return self.Value()
def Value(self):
return self._value
def HashValue(self):
return self._hash_value
|
py | 1a3a13cebd97c6893624281bf55d73954aff4bc9 | #from redthread import ReductionT
from reduction import Reduction
from polynomial import Polynomial
#import xlsxwriter
import os
from collections import defaultdict
import sys, getopt
def recoverfile(saved, readed):
if not os.path.exists(saved):
return True, []
f = open(saved,'r')
if(not os.stat(saved).st_size==0):
pols = []
pols_done = []
for line in readed:
pol = Polynomial(line)
pols.append(pol)
for line in f:
line = line.replace("[","")
line = line.replace("]","")
spl = line.split(',')
p = ""
for i in xrange(0,len(spl)-1):
p = p + " + x^" + str(spl[i].replace(" ",""))
p = p + " + 1"
p = p.replace("+","",1)
#print p
pol_ = Polynomial(p)
pols_done.append(pol_)
pols_set = set(pols)
pols_set_done = set(pols_done)
result = pols_set - pols_set_done
return False, list(result)
else:
return True, []
def main(argv):
inputfile = ''
outputfile = ''
debug = False
try:
opts, args = getopt.getopt(argv,"hi:o:d",["ifile=","ofile="])
except getopt.GetoptError:
print 'single.py -i <inputfile> -o <outputfile>'
sys.exit(2)
for opt, arg in opts:
if opt == '-h':
print 'single.py -i <inputfile> -o <outputfile> -d for debug'
sys.exit()
elif opt in ("-d", "--debug"):
debug = True
elif opt in ("-i", "--ifile"):
inputfile = arg
elif opt in ("-o", "--ofile"):
outputfile = arg
try:
fi = open(inputfile,"r")
fl = open(outputfile,"a")
except IOError:
print 'main.py -i <inputfile> -o <outputfile>'
sys.exit(2)
l = []
pols = []
files = [inputfile]
for fileName in files:
save = outputfile
f = open(fileName,'r')
#read, pols = recoverfile(save, f)
if True:
for line in f:
try:
pol = Polynomial(line)
pols.append(pol)
except Exception as e:
print line
sys.exit(2)
result = defaultdict(list)
print len(pols)
for pol in pols:
if len(pol.coefs()) > 1:
red = Reduction(debug)
count = red.reduction(pol.coefs())
result = str(pol.coefs()) + ":" + str(count)
print result
fl.write(result + "\n")
if __name__ == '__main__':
main(sys.argv[1:])
|
py | 1a3a13e796d25738a6d04b9f1877eb4dee412798 | from .model import Model
from radar.models.geofence import Geofence
from radar.models.region import Region
from radar.models.place import Place
class RadarContext(Model):
"""Location context
Parameters:
live (bool)
geofences (`list` of :class:`~radar.models.geofence.Geofence`)
place (`list` of :class:`~radar.models.place.Place`, optional)
country (:class:`~radar.models.region.Region`, optional)
state (:class:`~radar.models.region.Region`, optional)
dma (:class:`~radar.models.region.Region`, optional)
postalCode (:class:`~radar.models.region.Region`, optional)
fraud (FraudObject, optional)
"""
OBJECT_NAME = "Context"
_DISPLAY_ATTRIBUTES = (
"live",
"geofences",
"place",
"country",
"state",
"dma",
"postalCode",
)
def __init__(self, radar, data={}):
"""Initialize a Radar Model instance
Args:
radar (:class:`~radar.RadarClient`): RadarClient for instance CRUD actions
raw_json (dict): raw data to initialize the model with
"""
self._radar = radar
self.raw_json = data
for attribute, value in data.items():
if attribute == "geofences":
geofences = [Geofence(radar, geofence) for geofence in data[attribute]]
setattr(self, attribute, geofences)
elif attribute == "place":
place = Place(radar, data[attribute])
setattr(self, attribute, place)
elif attribute in ["country", "state", "dma", "postalCode"]:
region = Region(radar, data[attribute])
setattr(self, attribute, region)
else:
setattr(self, attribute, value)
|
py | 1a3a13ee862309618505a271f6a9beecc20cd63d | """Random variable generators.
integers
--------
uniform within range
sequences
---------
pick random element
pick random sample
generate random permutation
distributions on the real line:
------------------------------
uniform
triangular
normal (Gaussian)
lognormal
negative exponential
gamma
beta
pareto
Weibull
distributions on the circle (angles 0 to 2pi)
---------------------------------------------
circular uniform
von Mises
General notes on the underlying Mersenne Twister core generator:
* The period is 2**19937-1.
* It is one of the most extensively tested generators in existence.
* Without a direct way to compute N steps forward, the semantics of
jumpahead(n) are weakened to simply jump to another distant state and rely
on the large period to avoid overlapping sequences.
* The random() method is implemented in C, executes in a single Python step,
and is, therefore, threadsafe.
"""
from __future__ import division
from warnings import warn as _warn
from types import MethodType as _MethodType, BuiltinMethodType as _BuiltinMethodType
from math import log as _log, exp as _exp, pi as _pi, e as _e, ceil as _ceil
from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
from os import urandom as _urandom
from binascii import hexlify as _hexlify
import hashlib as _hashlib
__all__ = ["Random","seed","random","uniform","randint","choice","sample",
"randrange","shuffle","normalvariate","lognormvariate",
"expovariate","vonmisesvariate","gammavariate","triangular",
"gauss","betavariate","paretovariate","weibullvariate",
"getstate","setstate","jumpahead", "WichmannHill", "getrandbits",
"SystemRandom"]
NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0)
TWOPI = 2.0*_pi
LOG4 = _log(4.0)
SG_MAGICCONST = 1.0 + _log(4.5)
BPF = 53 # Number of bits in a float
RECIP_BPF = 2**-BPF
# Translated by Guido van Rossum from C source provided by
# Adrian Baddeley. Adapted by Raymond Hettinger for use with
# the Mersenne Twister and os.urandom() core generators.
import _random
class Random(_random.Random):
"""Random number generator base class used by bound module functions.
Used to instantiate instances of Random to get generators that don't
share state. Especially useful for multi-threaded programs, creating
a different instance of Random for each thread, and using the jumpahead()
method to ensure that the generated sequences seen by each thread don't
overlap.
Class Random can also be subclassed if you want to use a different basic
generator of your own devising: in that case, override the following
methods: random(), seed(), getstate(), setstate() and jumpahead().
Optionally, implement a getrandbits() method so that randrange() can cover
arbitrarily large ranges.
"""
VERSION = 3 # used by getstate/setstate
def __init__(self, x=None):
"""Initialize an instance.
Optional argument x controls seeding, as for Random.seed().
"""
self.seed(x)
self.gauss_next = None
def seed(self, a=None):
"""Initialize internal state from hashable object.
None or no argument seeds from current time or from an operating
system specific randomness source if available.
If a is not None or an int or long, hash(a) is used instead.
"""
if a is None:
try:
a = long(_hexlify(_urandom(16)), 16)
except NotImplementedError:
import time
a = long(time.time() * 256) # use fractional seconds
super(Random, self).seed(a)
self.gauss_next = None
def getstate(self):
"""Return internal state; can be passed to setstate() later."""
return self.VERSION, super(Random, self).getstate(), self.gauss_next
def setstate(self, state):
"""Restore internal state from object returned by getstate()."""
version = state[0]
if version == 3:
version, internalstate, self.gauss_next = state
super(Random, self).setstate(internalstate)
elif version == 2:
version, internalstate, self.gauss_next = state
# In version 2, the state was saved as signed ints, which causes
# inconsistencies between 32/64-bit systems. The state is
# really unsigned 32-bit ints, so we convert negative ints from
# version 2 to positive longs for version 3.
try:
internalstate = tuple( long(x) % (2**32) for x in internalstate )
except ValueError, e:
raise TypeError, e
super(Random, self).setstate(internalstate)
else:
raise ValueError("state with version %s passed to "
"Random.setstate() of version %s" %
(version, self.VERSION))
def jumpahead(self, n):
"""Change the internal state to one that is likely far away
from the current state. This method will not be in Py3.x,
so it is better to simply reseed.
"""
# The super.jumpahead() method uses shuffling to change state,
# so it needs a large and "interesting" n to work with. Here,
# we use hashing to create a large n for the shuffle.
s = repr(n) + repr(self.getstate())
n = int(_hashlib.new('sha512', s).hexdigest(), 16)
super(Random, self).jumpahead(n)
## ---- Methods below this point do not need to be overridden when
## ---- subclassing for the purpose of using a different core generator.
## -------------------- pickle support -------------------
def __getstate__(self): # for pickle
return self.getstate()
def __setstate__(self, state): # for pickle
self.setstate(state)
def __reduce__(self):
return self.__class__, (), self.getstate()
## -------------------- integer methods -------------------
def randrange(self, start, stop=None, step=1, _int=int, _maxwidth=1L<<BPF):
"""Choose a random item from range(start, stop[, step]).
This fixes the problem with randint() which includes the
endpoint; in Python this is usually not what you want.
"""
# This code is a bit messy to make it fast for the
# common case while still doing adequate error checking.
istart = _int(start)
if istart != start:
raise ValueError, "non-integer arg 1 for randrange()"
if stop is None:
if istart > 0:
if istart >= _maxwidth:
return self._randbelow(istart)
return _int(self.random() * istart)
raise ValueError, "empty range for randrange()"
# stop argument supplied.
istop = _int(stop)
if istop != stop:
raise ValueError, "non-integer stop for randrange()"
width = istop - istart
if step == 1 and width > 0:
# Note that
# int(istart + self.random()*width)
# instead would be incorrect. For example, consider istart
# = -2 and istop = 0. Then the guts would be in
# -2.0 to 0.0 exclusive on both ends (ignoring that random()
# might return 0.0), and because int() truncates toward 0, the
# final result would be -1 or 0 (instead of -2 or -1).
# istart + int(self.random()*width)
# would also be incorrect, for a subtler reason: the RHS
# can return a long, and then randrange() would also return
# a long, but we're supposed to return an int (for backward
# compatibility).
if width >= _maxwidth:
return _int(istart + self._randbelow(width))
return _int(istart + _int(self.random()*width))
if step == 1:
raise ValueError, "empty range for randrange() (%d,%d, %d)" % (istart, istop, width)
# Non-unit step argument supplied.
istep = _int(step)
if istep != step:
raise ValueError, "non-integer step for randrange()"
if istep > 0:
n = (width + istep - 1) // istep
elif istep < 0:
n = (width + istep + 1) // istep
else:
raise ValueError, "zero step for randrange()"
if n <= 0:
raise ValueError, "empty range for randrange()"
if n >= _maxwidth:
return istart + istep*self._randbelow(n)
return istart + istep*_int(self.random() * n)
def randint(self, a, b):
"""Return random integer in range [a, b], including both end points.
"""
return self.randrange(a, b+1)
def _randbelow(self, n, _log=_log, _int=int, _maxwidth=1L<<BPF,
_Method=_MethodType, _BuiltinMethod=_BuiltinMethodType):
"""Return a random int in the range [0,n)
Handles the case where n has more bits than returned
by a single call to the underlying generator.
"""
try:
getrandbits = self.getrandbits
except AttributeError:
pass
else:
# Only call self.getrandbits if the original random() builtin method
# has not been overridden or if a new getrandbits() was supplied.
# This assures that the two methods correspond.
if type(self.random) is _BuiltinMethod or type(getrandbits) is _Method:
k = _int(1.00001 + _log(n-1, 2.0)) # 2**k > n-1 > 2**(k-2)
r = getrandbits(k)
while r >= n:
r = getrandbits(k)
return r
if n >= _maxwidth:
_warn("Underlying random() generator does not supply \n"
"enough bits to choose from a population range this large")
return _int(self.random() * n)
## -------------------- sequence methods -------------------
def choice(self, seq):
"""Choose a random element from a non-empty sequence."""
return seq[int(self.random() * len(seq))] # raises IndexError if seq is empty
def shuffle(self, x, random=None):
"""x, random=random.random -> shuffle list x in place; return None.
Optional arg random is a 0-argument function returning a random
float in [0.0, 1.0); by default, the standard random.random.
"""
if random is None:
random = self.random
_int = int
for i in reversed(xrange(1, len(x))):
# pick an element in x[:i+1] with which to exchange x[i]
j = _int(random() * (i+1))
x[i], x[j] = x[j], x[i]
def sample(self, population, k):
"""Chooses k unique random elements from a population sequence.
Returns a new list containing elements from the population while
leaving the original population unchanged. The resulting list is
in selection order so that all sub-slices will also be valid random
samples. This allows raffle winners (the sample) to be partitioned
into grand prize and second place winners (the subslices).
Members of the population need not be hashable or unique. If the
population contains repeats, then each occurrence is a possible
selection in the sample.
To choose a sample in a range of integers, use xrange as an argument.
This is especially fast and space efficient for sampling from a
large population: sample(xrange(10000000), 60)
"""
# Sampling without replacement entails tracking either potential
# selections (the pool) in a list or previous selections in a set.
# When the number of selections is small compared to the
# population, then tracking selections is efficient, requiring
# only a small set and an occasional reselection. For
# a larger number of selections, the pool tracking method is
# preferred since the list takes less space than the
# set and it doesn't suffer from frequent reselections.
n = len(population)
if not 0 <= k <= n:
raise ValueError("sample larger than population")
random = self.random
_int = int
result = [None] * k
setsize = 21 # size of a small set minus size of an empty list
if k > 5:
setsize += 4 ** _ceil(_log(k * 3, 4)) # table size for big sets
if n <= setsize or hasattr(population, "keys"):
# An n-length list is smaller than a k-length set, or this is a
# mapping type so the other algorithm wouldn't work.
pool = list(population)
for i in xrange(k): # invariant: non-selected at [0,n-i)
j = _int(random() * (n-i))
result[i] = pool[j]
pool[j] = pool[n-i-1] # move non-selected item into vacancy
else:
try:
selected = set()
selected_add = selected.add
for i in xrange(k):
j = _int(random() * n)
while j in selected:
j = _int(random() * n)
selected_add(j)
result[i] = population[j]
except (TypeError, KeyError): # handle (at least) sets
if isinstance(population, list):
raise
return self.sample(tuple(population), k)
return result
## -------------------- real-valued distributions -------------------
## -------------------- uniform distribution -------------------
def uniform(self, a, b):
"Get a random number in the range [a, b) or [a, b] depending on rounding."
return a + (b-a) * self.random()
## -------------------- triangular --------------------
def triangular(self, low=0.0, high=1.0, mode=None):
"""Triangular distribution.
Continuous distribution bounded by given lower and upper limits,
and having a given mode value in-between.
http://en.wikipedia.org/wiki/Triangular_distribution
"""
u = self.random()
c = 0.5 if mode is None else (mode - low) / (high - low)
if u > c:
u = 1.0 - u
c = 1.0 - c
low, high = high, low
return low + (high - low) * (u * c) ** 0.5
## -------------------- normal distribution --------------------
def normalvariate(self, mu, sigma):
"""Normal distribution.
mu is the mean, and sigma is the standard deviation.
"""
# mu = mean, sigma = standard deviation
# Uses Kinderman and Monahan method. Reference: Kinderman,
# A.J. and Monahan, J.F., "Computer generation of random
# variables using the ratio of uniform deviates", ACM Trans
# Math Software, 3, (1977), pp257-260.
random = self.random
while 1:
u1 = random()
u2 = 1.0 - random()
z = NV_MAGICCONST*(u1-0.5)/u2
zz = z*z/4.0
if zz <= -_log(u2):
break
return mu + z*sigma
## -------------------- lognormal distribution --------------------
def lognormvariate(self, mu, sigma):
"""Log normal distribution.
If you take the natural logarithm of this distribution, you'll get a
normal distribution with mean mu and standard deviation sigma.
mu can have any value, and sigma must be greater than zero.
"""
return _exp(self.normalvariate(mu, sigma))
## -------------------- exponential distribution --------------------
def expovariate(self, lambd):
"""Exponential distribution.
lambd is 1.0 divided by the desired mean. It should be
nonzero. (The parameter would be called "lambda", but that is
a reserved word in Python.) Returned values range from 0 to
positive infinity if lambd is positive, and from negative
infinity to 0 if lambd is negative.
"""
# lambd: rate lambd = 1/mean
# ('lambda' is a Python reserved word)
# we use 1-random() instead of random() to preclude the
# possibility of taking the log of zero.
return -_log(1.0 - self.random())/lambd
## -------------------- von Mises distribution --------------------
def vonmisesvariate(self, mu, kappa):
"""Circular data distribution.
mu is the mean angle, expressed in radians between 0 and 2*pi, and
kappa is the concentration parameter, which must be greater than or
equal to zero. If kappa is equal to zero, this distribution reduces
to a uniform random angle over the range 0 to 2*pi.
"""
# mu: mean angle (in radians between 0 and 2*pi)
# kappa: concentration parameter kappa (>= 0)
# if kappa = 0 generate uniform random angle
# Based upon an algorithm published in: Fisher, N.I.,
# "Statistical Analysis of Circular Data", Cambridge
# University Press, 1993.
# Thanks to Magnus Kessler for a correction to the
# implementation of step 4.
random = self.random
if kappa <= 1e-6:
return TWOPI * random()
s = 0.5 / kappa
r = s + _sqrt(1.0 + s * s)
while 1:
u1 = random()
z = _cos(_pi * u1)
d = z / (r + z)
u2 = random()
if u2 < 1.0 - d * d or u2 <= (1.0 - d) * _exp(d):
break
q = 1.0 / r
f = (q + z) / (1.0 + q * z)
u3 = random()
if u3 > 0.5:
theta = (mu + _acos(f)) % TWOPI
else:
theta = (mu - _acos(f)) % TWOPI
return theta
## -------------------- gamma distribution --------------------
def gammavariate(self, alpha, beta):
"""Gamma distribution. Not the gamma function!
Conditions on the parameters are alpha > 0 and beta > 0.
The probability distribution function is:
x ** (alpha - 1) * math.exp(-x / beta)
pdf(x) = --------------------------------------
math.gamma(alpha) * beta ** alpha
"""
# alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2
# Warning: a few older sources define the gamma distribution in terms
# of alpha > -1.0
if alpha <= 0.0 or beta <= 0.0:
raise ValueError, 'gammavariate: alpha and beta must be > 0.0'
random = self.random
if alpha > 1.0:
# Uses R.C.H. Cheng, "The generation of Gamma
# variables with non-integral shape parameters",
# Applied Statistics, (1977), 26, No. 1, p71-74
ainv = _sqrt(2.0 * alpha - 1.0)
bbb = alpha - LOG4
ccc = alpha + ainv
while 1:
u1 = random()
if not 1e-7 < u1 < .9999999:
continue
u2 = 1.0 - random()
v = _log(u1/(1.0-u1))/ainv
x = alpha*_exp(v)
z = u1*u1*u2
r = bbb+ccc*v-x
if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z):
return x * beta
elif alpha == 1.0:
# expovariate(1)
u = random()
while u <= 1e-7:
u = random()
return -_log(u) * beta
else: # alpha is between 0 and 1 (exclusive)
# Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
while 1:
u = random()
b = (_e + alpha)/_e
p = b*u
if p <= 1.0:
x = p ** (1.0/alpha)
else:
x = -_log((b-p)/alpha)
u1 = random()
if p > 1.0:
if u1 <= x ** (alpha - 1.0):
break
elif u1 <= _exp(-x):
break
return x * beta
## -------------------- Gauss (faster alternative) --------------------
def gauss(self, mu, sigma):
"""Gaussian distribution.
mu is the mean, and sigma is the standard deviation. This is
slightly faster than the normalvariate() function.
Not thread-safe without a lock around calls.
"""
# When x and y are two variables from [0, 1), uniformly
# distributed, then
#
# cos(2*pi*x)*sqrt(-2*log(1-y))
# sin(2*pi*x)*sqrt(-2*log(1-y))
#
# are two *independent* variables with normal distribution
# (mu = 0, sigma = 1).
# (Lambert Meertens)
# (corrected version; bug discovered by Mike Miller, fixed by LM)
# Multithreading note: When two threads call this function
# simultaneously, it is possible that they will receive the
# same return value. The window is very small though. To
# avoid this, you have to use a lock around all calls. (I
# didn't want to slow this down in the serial case by using a
# lock here.)
random = self.random
z = self.gauss_next
self.gauss_next = None
if z is None:
x2pi = random() * TWOPI
g2rad = _sqrt(-2.0 * _log(1.0 - random()))
z = _cos(x2pi) * g2rad
self.gauss_next = _sin(x2pi) * g2rad
return mu + z*sigma
## -------------------- beta --------------------
## See
## http://mail.python.org/pipermail/python-bugs-list/2001-January/003752.html
## for Ivan Frohne's insightful analysis of why the original implementation:
##
## def betavariate(self, alpha, beta):
## # Discrete Event Simulation in C, pp 87-88.
##
## y = self.expovariate(alpha)
## z = self.expovariate(1.0/beta)
## return z/(y+z)
##
## was dead wrong, and how it probably got that way.
def betavariate(self, alpha, beta):
"""Beta distribution.
Conditions on the parameters are alpha > 0 and beta > 0.
Returned values range between 0 and 1.
"""
# This version due to Janne Sinkkonen, and matches all the std
# texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution").
y = self.gammavariate(alpha, 1.)
if y == 0:
return 0.0
else:
return y / (y + self.gammavariate(beta, 1.))
## -------------------- Pareto --------------------
def paretovariate(self, alpha):
"""Pareto distribution. alpha is the shape parameter."""
# Jain, pg. 495
u = 1.0 - self.random()
return 1.0 / pow(u, 1.0/alpha)
## -------------------- Weibull --------------------
def weibullvariate(self, alpha, beta):
"""Weibull distribution.
alpha is the scale parameter and beta is the shape parameter.
"""
# Jain, pg. 499; bug fix courtesy Bill Arms
u = 1.0 - self.random()
return alpha * pow(-_log(u), 1.0/beta)
## -------------------- Wichmann-Hill -------------------
class WichmannHill(Random):
VERSION = 1 # used by getstate/setstate
def seed(self, a=None):
"""Initialize internal state from hashable object.
None or no argument seeds from current time or from an operating
system specific randomness source if available.
If a is not None or an int or long, hash(a) is used instead.
If a is an int or long, a is used directly. Distinct values between
0 and 27814431486575L inclusive are guaranteed to yield distinct
internal states (this guarantee is specific to the default
Wichmann-Hill generator).
"""
if a is None:
try:
a = long(_hexlify(_urandom(16)), 16)
except NotImplementedError:
import time
a = long(time.time() * 256) # use fractional seconds
if not isinstance(a, (int, long)):
a = hash(a)
a, x = divmod(a, 30268)
a, y = divmod(a, 30306)
a, z = divmod(a, 30322)
self._seed = int(x)+1, int(y)+1, int(z)+1
self.gauss_next = None
def random(self):
"""Get the next random number in the range [0.0, 1.0)."""
# Wichman-Hill random number generator.
#
# Wichmann, B. A. & Hill, I. D. (1982)
# Algorithm AS 183:
# An efficient and portable pseudo-random number generator
# Applied Statistics 31 (1982) 188-190
#
# see also:
# Correction to Algorithm AS 183
# Applied Statistics 33 (1984) 123
#
# McLeod, A. I. (1985)
# A remark on Algorithm AS 183
# Applied Statistics 34 (1985),198-200
# This part is thread-unsafe:
# BEGIN CRITICAL SECTION
x, y, z = self._seed
x = (171 * x) % 30269
y = (172 * y) % 30307
z = (170 * z) % 30323
self._seed = x, y, z
# END CRITICAL SECTION
# Note: on a platform using IEEE-754 double arithmetic, this can
# never return 0.0 (asserted by Tim; proof too long for a comment).
return (x/30269.0 + y/30307.0 + z/30323.0) % 1.0
def getstate(self):
"""Return internal state; can be passed to setstate() later."""
return self.VERSION, self._seed, self.gauss_next
def setstate(self, state):
"""Restore internal state from object returned by getstate()."""
version = state[0]
if version == 1:
version, self._seed, self.gauss_next = state
else:
raise ValueError("state with version %s passed to "
"Random.setstate() of version %s" %
(version, self.VERSION))
def jumpahead(self, n):
"""Act as if n calls to random() were made, but quickly.
n is an int, greater than or equal to 0.
Example use: If you have 2 threads and know that each will
consume no more than a million random numbers, create two Random
objects r1 and r2, then do
r2.setstate(r1.getstate())
r2.jumpahead(1000000)
Then r1 and r2 will use guaranteed-disjoint segments of the full
period.
"""
if not n >= 0:
raise ValueError("n must be >= 0")
x, y, z = self._seed
x = int(x * pow(171, n, 30269)) % 30269
y = int(y * pow(172, n, 30307)) % 30307
z = int(z * pow(170, n, 30323)) % 30323
self._seed = x, y, z
def __whseed(self, x=0, y=0, z=0):
"""Set the Wichmann-Hill seed from (x, y, z).
These must be integers in the range [0, 256).
"""
if not type(x) == type(y) == type(z) == int:
raise TypeError('seeds must be integers')
if not (0 <= x < 256 and 0 <= y < 256 and 0 <= z < 256):
raise ValueError('seeds must be in range(0, 256)')
if 0 == x == y == z:
# Initialize from current time
import time
t = long(time.time() * 256)
t = int((t&0xffffff) ^ (t>>24))
t, x = divmod(t, 256)
t, y = divmod(t, 256)
t, z = divmod(t, 256)
# Zero is a poor seed, so substitute 1
self._seed = (x or 1, y or 1, z or 1)
self.gauss_next = None
def whseed(self, a=None):
"""Seed from hashable object's hash code.
None or no argument seeds from current time. It is not guaranteed
that objects with distinct hash codes lead to distinct internal
states.
This is obsolete, provided for compatibility with the seed routine
used prior to Python 2.1. Use the .seed() method instead.
"""
if a is None:
self.__whseed()
return
a = hash(a)
a, x = divmod(a, 256)
a, y = divmod(a, 256)
a, z = divmod(a, 256)
x = (x + a) % 256 or 1
y = (y + a) % 256 or 1
z = (z + a) % 256 or 1
self.__whseed(x, y, z)
## --------------- Operating System Random Source ------------------
class SystemRandom(Random):
"""Alternate random number generator using sources provided
by the operating system (such as /dev/urandom on Unix or
CryptGenRandom on Windows).
Not available on all systems (see os.urandom() for details).
"""
def random(self):
"""Get the next random number in the range [0.0, 1.0)."""
return (long(_hexlify(_urandom(7)), 16) >> 3) * RECIP_BPF
def getrandbits(self, k):
"""getrandbits(k) -> x. Generates a long int with k random bits."""
if k <= 0:
raise ValueError('number of bits must be greater than zero')
if k != int(k):
raise TypeError('number of bits should be an integer')
bytes = (k + 7) // 8 # bits / 8 and rounded up
x = long(_hexlify(_urandom(bytes)), 16)
return x >> (bytes * 8 - k) # trim excess bits
def _stub(self, *args, **kwds):
"Stub method. Not used for a system random number generator."
return None
seed = jumpahead = _stub
def _notimplemented(self, *args, **kwds):
"Method should not be called for a system random number generator."
raise NotImplementedError('System entropy source does not have state.')
getstate = setstate = _notimplemented
## -------------------- test program --------------------
def _test_generator(n, func, args):
import time
print n, 'times', func.__name__
total = 0.0
sqsum = 0.0
smallest = 1e10
largest = -1e10
t0 = time.time()
for i in range(n):
x = func(*args)
total += x
sqsum = sqsum + x*x
smallest = min(x, smallest)
largest = max(x, largest)
t1 = time.time()
print round(t1-t0, 3), 'sec,',
avg = total/n
stddev = _sqrt(sqsum/n - avg*avg)
print 'avg %g, stddev %g, min %g, max %g' % \
(avg, stddev, smallest, largest)
def _test(N=2000):
_test_generator(N, random, ())
_test_generator(N, normalvariate, (0.0, 1.0))
_test_generator(N, lognormvariate, (0.0, 1.0))
_test_generator(N, vonmisesvariate, (0.0, 1.0))
_test_generator(N, gammavariate, (0.01, 1.0))
_test_generator(N, gammavariate, (0.1, 1.0))
_test_generator(N, gammavariate, (0.1, 2.0))
_test_generator(N, gammavariate, (0.5, 1.0))
_test_generator(N, gammavariate, (0.9, 1.0))
_test_generator(N, gammavariate, (1.0, 1.0))
_test_generator(N, gammavariate, (2.0, 1.0))
_test_generator(N, gammavariate, (20.0, 1.0))
_test_generator(N, gammavariate, (200.0, 1.0))
_test_generator(N, gauss, (0.0, 1.0))
_test_generator(N, betavariate, (3.0, 3.0))
_test_generator(N, triangular, (0.0, 1.0, 1.0/3.0))
# Create one instance, seeded from current time, and export its methods
# as module-level functions. The functions share state across all uses
#(both in the user's code and in the Python libraries), but that's fine
# for most programs and is easier for the casual user than making them
# instantiate their own Random() instance.
_inst = Random()
seed = _inst.seed
random = _inst.random
uniform = _inst.uniform
triangular = _inst.triangular
randint = _inst.randint
choice = _inst.choice
randrange = _inst.randrange
sample = _inst.sample
shuffle = _inst.shuffle
normalvariate = _inst.normalvariate
lognormvariate = _inst.lognormvariate
expovariate = _inst.expovariate
vonmisesvariate = _inst.vonmisesvariate
gammavariate = _inst.gammavariate
gauss = _inst.gauss
betavariate = _inst.betavariate
paretovariate = _inst.paretovariate
weibullvariate = _inst.weibullvariate
getstate = _inst.getstate
setstate = _inst.setstate
jumpahead = _inst.jumpahead
getrandbits = _inst.getrandbits
if __name__ == '__main__':
_test()
|
py | 1a3a1458a00589935c723a267dbcd67389a5d65c | from pprint import pprint
import yaml
from tabulate import tabulate
from funcy import project
from wws.commands import utils
class Rm:
def __init__(self):
super().__init__()
def process(self, args):
""" edits the warp database """
if args['debug']:
pprint(args)
with open(args['workspace_warp_database'],'r+') as f:
data = yaml.load(f, Loader=yaml.FullLoader)
if not data:
data = []
remove_entries = dict()
keep_entries = dict()
remove_entries = [ d for d in data if any( [ a for a in args['alias'] if a.upper() in d['alias'].upper() ] ) ]
keep_entries = [ d for d in data if not any( [ a for a in args['alias'] if a.upper() in d['alias'].upper() ] ) ]
if not args['verbose']:
data = [ project(d,['alias', 'local', 'remote' ]) for d in remove_entries]
else:
data = remove_entries
if not data:
print("Nothing to remove.")
exit()
print("Entries to remove:")
print(tabulate(data, headers="keys", tablefmt = "psql"))
rm = utils._confirm("Are you sure to remove these entries?")
if rm:
f.seek(0)
f.truncate()
yaml.dump(keep_entries, f, default_flow_style=False)
print("Aliases were removed but data remain untouched. Please remove the listed source directories.")
|
py | 1a3a1480ee129890b005cabf8d314e7f7cf5ac3d | # Generated by Django 2.0.7 on 2018-07-29 22:16
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('ibantools', '0001_initial'),
]
operations = [
migrations.AlterField(
model_name='bankcodede',
name='indicator_changed',
field=models.CharField(choices=[('A', 'New'), ('D', 'Deleted'), ('M', 'Changed'), ('U', 'Unchanged')], default='A', help_text='Änderungskennzeichen „A“ (Addition) für neue, „D“ (Deletion) für gelöschte, „U“(Unchanged) für unveränderte und „M“ (Modified) für veränderte Datensätze', max_length=1, verbose_name='Indicator changed'),
),
migrations.AlterField(
model_name='bankcodede',
name='indicator_deleted',
field=models.CharField(choices=[('0', 'No declaration'), ('1', 'Declarted for deletion')], default='0', help_text='Hinweis auf eine beabsichtigte Bankleitzahllöschung', max_length=1, verbose_name='Indicator deleted'),
),
migrations.AlterField(
model_name='bankcodede',
name='payment_service_provider',
field=models.CharField(choices=[('1', 'Yes'), ('2', 'No')], default='2', help_text='Merkmal, ob bankleitzahlführender Zahlungsdienstleister („1“) oder nicht („2“)', max_length=1, verbose_name='Payment service provider'),
),
migrations.AlterField(
model_name='bankcodede',
name='short_description',
field=models.CharField(help_text='Kurzbezeichnung des Zahlungsdienstleisters mit Ort (ohne Rechtsform)', max_length=27, verbose_name='Short description'),
),
]
|
py | 1a3a152a6d6e2658ec8d8a922a2d6a92fbea7f3b | #!/usr/bin/env python3
import asyncio
import time
from psnawp_api import psnawp
from pypresence import Presence
from asset_updater import add_game_icon
from playstationpresence.lib.files import load_config, load_game_data, load_game_icons
from playstationpresence.lib.notifiable import Notifiable
from playstationpresence.lib.rpc_retry import rpc_retry
from requests.exceptions import *
from threading import Event
class PlaystationPresence:
def __init__(self):
self.notifier = None
self.rpc = None
self.exit_event = Event()
self.old_info: dict = {'onlineStatus': None, 'titleId': None}
self.config: dict = load_config()
self.supported_games: set[str] = load_game_data()
self.game_icons: set[str] = load_game_icons()
self.psapi = psnawp.PSNAWP(self.config['npsso'])
self.psnid = self.config['PSNID']
self.initRpc()
def initRpc(self):
self.rpc = Presence(self.config['discordClientId'], pipe=0, loop=asyncio.new_event_loop())
self.rpc.connect()
def quit(self):
self.exit_event.set()
if self.notifier is not None:
self.notifier.visible = False
self.notifier.stop()
def notify(self, message):
print(message)
if self.notifier is not None:
self.notifier.title = message
self.notifier.notify(message, "playstationpresence")
@rpc_retry
def clearStatus(self):
self.rpc.clear()
self.notify(f"Status changed to Offline")
@rpc_retry
def updateStatus(self, show_time: bool, state: str, large_image: str, details: str):
if show_time:
start_time = int(time.time())
self.rpc.update(state=state, start=start_time, small_image="ps5_main", small_text=self.psnid, large_image=large_image, large_text=state, details=details)
else:
self.rpc.update(state=state, small_image="ps5_main", small_text=self.psnid, large_image=large_image, large_text=state, details=details)
self.notify(f"Status changed to {state}")
def processPresenceInfo(self, mainpresence: dict):
if mainpresence is None:
return
# Read PSN API data
onlineStatus: str = mainpresence['primaryPlatformInfo']['onlineStatus']
onlinePlatform: str = mainpresence['primaryPlatformInfo']['platform']
game_info: list[dict] = mainpresence.get('gameTitleInfoList', None)
# Check online status
if onlineStatus == "offline":
if self.old_info['onlineStatus'] != onlineStatus:
self.clearStatus()
self.old_info = {'onlineStatus': onlineStatus, 'titleId': None}
elif game_info == None:
# Set home menu state
if self.old_info['onlineStatus'] != "online" or self.old_info['titleId'] != None:
self.updateStatus(False, "Home Menu", "ps5_main", f"Online on {onlinePlatform}")
self.old_info = {'onlineStatus': onlineStatus, 'titleId': None}
elif self.old_info['titleId'] != game_info[0]['npTitleId']:
# New title id is different -> update
# Read game data
game: dict[str, str] = game_info[0]
# large_icon logic
if game['npTitleId'] in self.supported_games:
large_icon = game['npTitleId'].lower()
else:
# Game not known
self.notify("Game not in library, checking for icon")
# Check if icon exists
if game['npTitleId'] in self.game_icons:
self.notify("Game icon found\CONSIDER PUSHING NEW DISCORD ASSETS")
else:
# Get icon
add_game_icon(game['npTitleId'], game['npTitleIconUrl'])
self.notify("Reloading icons")
self.game_icons = load_game_icons()
large_icon = "ps5_main"
# Update status
self.updateStatus(True, game['titleName'], large_icon, f"Playing on {game['launchPlatform']}")
self.old_info = {'onlineStatus': onlineStatus, 'titleId': game['npTitleId']}
def mainloop(self, notifier: Notifiable):
if notifier is not None:
self.notifier = notifier
self.notifier.visible = True
while not self.exit_event.is_set():
mainpresence: dict = None
user_online_id = None
try:
user_online_id = self.psapi.user(online_id=self.psnid)
mainpresence = user_online_id.get_presence()
# Uncomment for debug info about currently running game
#print(mainpresence)
except (ConnectionError, HTTPError) as e:
print("Error when trying to read presence")
print(e)
self.processPresenceInfo(mainpresence)
# Adjust this to be higher if you get ratelimited
self.exit_event.wait(30)
self.clearStatus()
self.rpc.close()
|
py | 1a3a163a3d0a1007672a351e040af508e4ee19f6 | #! /usr/bin/env python
"""
based on this quickstart:
from https://developers.google.com/google-apps/calendar/quickstart/python
Don't forget to put CLIENT_SECRET_FILE in ~/.credentials
Note: the above URL redirects to
https://developers.google.com/calendar/quickstart/python
which has a different sequence for get_credentials(). The one in this file still
seems to work... TODO: test that it really does work and perhaps update to the newer version.
Usage:
The google calendar is the database. Calendar events are added as they are made known to the
calendar owner (me). Members are encouraged to add this calendar to their calendar viewing
apps so they can see who else will be in the cabin on any given night. The first word in the
event 'summary' (the thing that shows up in your calendar view) shold be the member name.
Append something in Camel-case to avoid name collisions e.g. 'BobB' and 'BobS'. Guests are
indicated by a +N (separated by whitespace. N is the guest count).
Around Thursday of each week, I assign rooms by inserting the room name into the 'description'
in the calendar event. Then I run this script and, if the output looks OK, paste it into the
communication to the members (Slack, email, whatever). Often, members have a room preference
which I keep in an event in my personal calendar. I try to honor their preferences and follow
other social norms such as not booking un-related men and women in the same bed/room but
on popular nights, that might be unavoidable.
As members pay their guest fees, I add a '$' (w/ whitespace) to the 'summary'. The '$'
moves them from the 'deadbeat' list to the 'sponsor' list in the weekly communications.
Customization:
Obviously, you need to use your own google calendar.
Replace ROOMS with the appropriate selection for your situation.
DAYS_PEAK, GUEST_FEES_MID, and GUEST_FEES_PEAK may also need your attention.
Member names are extracted from the calendar, so no need to do anything in this file, but
you should probably examine fix_spelling() and add_guest_fees() since they implement rules
that are specific to my cabin.
I don't use f-strings because the raspberry pi that I sometimes run this on only has python 3.4
and I'm too lazy to install 3.7
"""
import datetime
import os
import json
USE_STR = """
--Show room usage in Lone Clone Ski Cabin--
Note: Enter guests as 'member +N' and, when paid, 'member $ +N'
Usage:
rooms [--counts] [--debug] [--nights] [--offline] [--peak] [--raw] [--shift=<S>] [--whosup] [--year=<Y>]
rooms -h | --help
rooms -v | --version
Options:
-h --help Show this screen.
-c --counts show how many times each member has used each room
-d --debug show stuff
-n --nights show who slept where, each night
-o --offline don't get the live calendar. Use a test data set
-p --peak Show peak nights for this season, exlcuding Fri and Sat
-r --raw show the raw calendar events
-s --shift <S> move 'today' by integer number of days
-v --version show the version
-w --whosup show who's up in the next week
-y --year <Y> year season starts [default: 2019]
"""
try:
import httplib2
from googleapiclient import discovery
from oauth2client import client
from oauth2client import tools
from oauth2client.file import Storage
import docopt
except ImportError:
IMP_ERR_STR = '** Failed import! Type "workon rooms" and try again, Bob **'
print('\n%s\n'%('*'*len(IMP_ERR_STR)), IMP_ERR_STR, '\n%s\n'%('*'*len(IMP_ERR_STR)))
# If modifying these scopes, delete your previously saved credentials
# at ~/.credentials/calendar-python-quickstart.json
SCOPES = 'https://www.googleapis.com/auth/calendar.readonly'
APPLICATION_NAME = 'Google Calendar API Python Quickstart'
# why do I have 2 different client secret files? TODO
CLIENT_SECRET_FILE = 'calendar-python-quickstart.json'
CLIENT_SECRET_FILE_ANOTHER = 'client_secret.json'
ROOMS = ('in-law', 'master', 'middle', 'bunk', 'loft',) # assignable rooms in the cabin
""" DAYS_PEAK is a list of days-of-the-week or dates that guest fee is higher than not.
The dates are specific to the Julian calendar of each season.
The year index is the season *start* year.
Note: Fri and Sat should always be the first 2 entries
"""
NIGHTS_PEAK = {
'2016': ['Fri', 'Sat']+['12/%2d'%x for x in range(18, 32)]+['01/01', '01/02', '02/19',], #pylint: disable=C0326
'2017': ['Fri', 'Sat']+['12/%2d'%x for x in range(17, 32)]+['01/01', '02/18',], #pylint: disable=C0326
'2018': ['Fri', 'Sat']+['12/%2d'%x for x in range(16, 32)]+['01/01', '02/17',], #pylint: disable=C0326
'2019': ['Fri', 'Sat']+['12/%2d'%x for x in range(15, 32)]+['01/01', '02/16',], #pylint: disable=C0326
'2020': ['Fri', 'Sat']+['12/%2d'%x for x in range(20, 32)]+['01/01', '02/14',], #pylint: disable=C0326
}
# "mid week" and "weekend/holiday" guest fee in dollars
GUEST_FEE_MID = 30
GUEST_FEE_PEAK = 35
def get_credentials(opts):
"""Gets valid user credentials from storage.
If nothing has been stored, or if the stored credentials are invalid,
the OAuth2 flow is completed to obtain the new credentials.
Returns:
Credentials, the obtained credential.
"""
home_dir = os.path.expanduser('~')
credential_dir = os.path.join(home_dir, '.credentials')
if not os.path.exists(credential_dir):
os.makedirs(credential_dir)
credential_path = os.path.join(credential_dir, CLIENT_SECRET_FILE)
if opts['--debug']:
print('** using credentials at '+credential_path)
with open(credential_path) as cred_file:
cred_text = cred_file.read()
print('\n'.join(cred_text.split(',')))
store = Storage(credential_path)
credentials = store.get()
if not credentials or credentials.invalid:
flow = client.flow_from_clientsecrets(CLIENT_SECRET_FILE_ANOTHER, SCOPES)
flow.user_agent = APPLICATION_NAME
# if flags:
credentials = tools.run_flow(flow, store) #, flags)
# else: # Needed only for compatibility with Python 2.6
# credentials = tools.run(flow, store)
print('Storing credentials to ' + credential_path) # except, I'm not storing them?
return credentials
def get_events(cred, **kwargs):
""" Wraps the service.events() call
"""
http = cred.authorize(httplib2.Http())
service = discovery.build('calendar', 'v3', http=http) # throws Warning and ImportError
# print(f'service.events={dir(service.events)}')
""" #pylint: disable=E1101 pylint thinks there is no events()... but there is
""" #pylint: disable=W0105
cal_events = service.events().list(**kwargs).execute() #pylint: disable=E1101
return cal_events.get('items', [])
def get_events_raw(credentials, opts):
""" Grab the entire calendar for the season from Nov 29 to May 1
ctor the dicts with night, leave, summary, description keys.
nightShort is added later by more_dates()
"""
day0 = datetime.datetime(*opts['season_start']).isoformat()+'Z'
day1 = datetime.datetime(*opts['season_end']).isoformat()+'Z'
events = get_events(
credentials,
timeMin=day0,
timeMax=day1,
singleEvents=True,
orderBy='startTime',
calendarId="primary")
return events
def events_to_raw_dates(events, opts): #pylint: disable=W0613
""" make a new list: dates_raw
that has only the fields I care about: night, leave, member, and room
"""
dates_raw = []
for event in events:
day_dict = {}
day_dict['night'] = event['start'].get('dateTime', event['start'].get('date'))[:10]
day_dict['leave'] = event['end'].get('dateTime', event['end'].get('date'))[:10]
# summary is the member name, description has room assignment
for k in (('summary', 'member',), ('description', 'where', ),):
try:
day_dict[k[1]] = event[k[0]].strip()
except KeyError:
day_dict[k[1]] = ''
dates_raw += [day_dict]
# dates_raw[] is a list of
# {'night':'2016-12-15', 'summary':'Logan', 'where':'master', 'leave':'2016-12-16',}
return dates_raw
def expand_multi_nights(dates_raw):
""" expand multi-night stays into individual nights
"""
dates_multi_night = []
for one_date in dates_raw: # add day of week
one_date['date'] = datetime.datetime.strptime(one_date['night'], '%Y-%m-%d')
nights = (datetime.datetime.strptime(one_date['leave'], '%Y-%m-%d').date()
- one_date['date'].date()).days - 1
for i in range(nights):
new_date = one_date.copy()
new_date['date'] = datetime.datetime.strptime(one_date['night'], '%Y-%m-%d') \
+ datetime.timedelta(days=i+1)
dates_multi_night += [new_date]
dates_raw += dates_multi_night
def add_day_of_week(dates_raw):
""" Use 'date of "2016-12-23" to make night_abrev of "Fri 12/23" """
for one_date in dates_raw:
one_date['night_abrev'] = one_date['date'].strftime('%a %m/%d')
dates_raw = dates_raw.sort(key=lambda x: x['date'])
def fix_spelling(dates_raw):
""" Common data entry errors: fix the dict and flag it for me to fix the google calendar
"""
for date in dates_raw:
for field, wrong, right in [
('where', 'inlaw', 'in-law',), ('member', 'Sarah', 'Sara',),
]:
if wrong in date[field]:
print('** spellcheck:', date)
date[field] = date[field].replace(wrong, right) # in-law, not inlaw, e.g.
if 'Glen ' in date['member']: # special treatment for missing n in Glenn
print('** spellcheck:', date)
date['member'] = date['summary'].replace('Glen', 'Glenn') # two n in Glenn
return dates_raw
def select_dates(dates_raw, opts, day0=None, day1=None):
""" return a subset of the events from today+day0 to today+day1
None in day0 means begining of current ski season
None in day1 means end of current ski season
"""
dt_today = datetime.datetime.utcnow()
if opts['--shift']:
dt_today += datetime.timedelta(days=int(opts['--shift']))
season_start = datetime.datetime(*opts['season_start'])
season_end = datetime.datetime(*opts['season_end'])
date0 = season_start if day0 is None else dt_today + datetime.timedelta(days=day0)
date1 = season_end if day1 is None else dt_today + datetime.timedelta(days=day1)
if opts['--debug']:
print('select', date0.strftime('%a %m/%d'), date1.strftime('%a %m/%d'))
return [e for e in dates_raw if bool(date0 <= e['date'] <= date1)]
def debug_print_raw(dates_raw):
""" Debugging aid
formatted to copy into code
"""
print('** dates_raw')
print('{'+ '},\n{'.join([', '.join(
["'%s':'%s'"%(n, e[n]) for n in ('night', 'leave', 'member', 'where')]
) for e in dates_raw]) +'}')
def show_raw(dates_raw):
""" Debugging aid
formatted for humans
"""
print('')
print('%10s %20s %-20s'%('', '', 'Raw Calendar',)+' '.join(['%10s'%r for r in ROOMS]))
for date in dates_raw:
print('%10s %-20s %-20s'%(date['night'],
date['member'],
date['where'].strip()) +
' '.join(['%10s'%date[room] for room in ROOMS]))
def put_members_in_rooms(dates_raw):
""" add ['middle']='Logan', ['bunk']='' etc
so that all dates have all rooms as keys, w/ or w/o a member
"""
for date in dates_raw:
for room in ROOMS:
if room in date['where'].lower():
date[room] = gevent_to_member_name(date) # just the first name
else:
date[room] = ''
def add_guest_fee(event, opts):
""" add 'guest_fee' key to a dates_raw event
0 means no guest, negative means fee is OWED, positive means paid
a '+ indicatees guests but not Z+1 (Sam is not charged).
Enter "Z +1" to indicate not Sam (chargable)
"""
if '+' in event['member'] and 'Z+1' not in event['member']:
event['guest_fee'] = GUEST_FEE_PEAK if any([x in event['night_abrev'] \
for x in NIGHTS_PEAK[opts['--year']]]) else GUEST_FEE_MID
# remove the 'paid' indicator ('$')
str_guest_count = event['member'].replace('$','')
# look for the guest count after the '+'
# we don't get here if 'Z+1' in the event so OK to split on '+'
str_guest_count = str_guest_count.split('+')[-1].strip()
try:
guest_count = int(str_guest_count)
except ValueError:
print('** FAILED to convert guest count', event['member'], 'on', event['night_abrev'])
guest_count = 1
event['guest_fee'] = guest_count * event['guest_fee']
# look for 'paid' indicator to see who's been naughty and who's been nice
if '$' not in event['member']:
event['guest_fee'] = -event['guest_fee'] # OWED
else:
event['guest_fee'] = 0
return event
def get_deadbeat_sponsors(dates_past):
""" return dicts of members and their guest fee accounts.
deadbeats owe guest fees
sponsors have paid their guest fees. A member may appear in both.
"""
# init the member dicts with {name: []}
deadbeats = {gevent_to_member_name(event): [] for event in dates_past}
sponsors = {gevent_to_member_name(event): [] for event in dates_past}
for event in dates_past:
if event['guest_fee'] < 0:
deadbeats[gevent_to_member_name(event)] += [(event['night_abrev'], -event['guest_fee'])]
if event['guest_fee'] > 0:
sponsors[gevent_to_member_name(event)] += [(event['night_abrev'], event['guest_fee'])]
return deadbeats, sponsors
def show_guest_fees(members):
""" members is a dict created by get_deadbeat_sponsors():
member: [(night, fee), (night, fee), (night, fee), ...]
for each member, prints $sum, member, dates
or ' none' if there are no guest fees.
"""
out_lst = []
total = 0
for member in members:
mem_total = sum([x[1] for x in members[member]])
dates = [x[0].split()[1] for x in members[member]]
if mem_total:
out_lst += ['$%4d %10s: %s'%(mem_total, member, ", ".join(dates))]
total += mem_total
if out_lst:
print('\n'.join(out_lst))
print('$%4d %10s'%(total, 'total'))
else:
print(' none')
def get_whos_up(dates_selected):
""" return members_dict['Bob'] = [0, 'Bob', ('middle','Mon 12/24'), ('middle','Tue 12/25'), ]
for use by show_whos_up()
"""
members_dict = {}
p_ord = 0
for event in dates_selected:
member = event['member']
try:
members_dict[member] += [(event['where'], event['night_abrev']),]
except KeyError:
members_dict[member] = [p_ord, member, (event['where'], event['night_abrev']),]
p_ord += 1
return members_dict
def show_whos_up(whos_up_dict):
""" This output gets pasted into my periodic emails
who room: day date, date, date [, room: date, date]
I generate a dict, keyed on the member, with values of a list:
[order#, member, (rooms,day),(rooms,day),...)]
I repeat the rooms for each day because it can change during a stay.
"""
# whos_up_dict['Bob'] = [0, 'Bob', ('middle','Mon 12/24'), ('middle','Tue 12/25'), ]
# sort by the begining night of stay (the p_ord value, above)
# for member_ass in sorted(list(whos_up_dict.items()), key=lambda k_v: k_v[1][0]):
for member_ass in list(whos_up_dict.items()):
# member_ass = ('Bob', [0, 'Bob', ('middle','Mon 12/24'), ('middle','Tue 12/25'), ])
day_tup = member_ass[1][2:] # [('middle','Mon 12/24'), ('middle','Tue 12/25'),]
room = day_tup[0][0] # save the room so we only print it when it changes
print('%20s %7s: %s,'%(member_ass[0], day_tup[0][0], day_tup[0][1]), end=' ')
for a_day in day_tup[1:]:
if a_day[0] == room:
print(a_day[1].split()[1]+',', end=' ')
else:
print('%7s: %s,'%(a_day[0], a_day[1].split()[1]), end=' ')
room = a_day[0] # save the room again
print('')
def show_missing_rooms(dates_raw, opts):
""" Flag the data entry error condition: all members in the cabin on a given night
must be in a room.
Otherwise, the count will be wrong and the priority system breaks down.
"""
dates_raw = select_dates(dates_raw, opts, None, 0)
missing_rooms_str = []
for date in dates_raw:
if not date['where']: # catch members in cabin but not assigned to any room
missing_rooms_str += \
['** On %s, where did "%s" sleep?'%(date['night_abrev'], date['member'])]
if missing_rooms_str:
print('** Missing rooms ! **')
print('\n'.join(missing_rooms_str))
def show_nights(dates_past, opts): #pylint: disable=W0613
""" colapse the raw calendar to show each night on one line
date, inlaw, master, middle, bunk, loft
who, who, who, who, who
"""
if dates_past:
dates_combo = [dates_past[0].copy()]
for date in dates_past[1:]:
if dates_combo[-1]['night_abrev'] not in date['night_abrev']: # new date
dates_combo += [date.copy()]
else:
for room in ROOMS:
sep = ',' if date[room] and dates_combo[-1][room] else ''
dates_combo[-1][room] = dates_combo[-1][room]+sep+date[room]
# dates_combo[] is {'night':'2016-12-15', 'member':'Logan', 'where':'master',
# 'master':'Logan', 'in-law':'Bob', 'middle':'Mark', ...}
print('\n%10s '%('Nights')+' '.join(['%16s'%room for room in ROOMS]))
for date in dates_combo:
print('%10s '%(date['night_abrev'])+' '.join(['%16s'%date[room] for room in ROOMS]))
else:
print('\n** no events found by show_dates()')
def count_members_in_rooms(dates_raw, opts): #pylint: disable=W0613
""" Construct the memberCount dict { 'Bob': {'inlaw': count, 'master' count, ...}...}
for season up to today.
"""
# init the member_counts with the first {name: {rooms}}
member_counts = {gevent_to_member_name(event): \
{room:0 for room in ROOMS+('total',)} for event in dates_raw}
# add ['middle']='Logan' or blank for all rooms
for event in dates_raw:
# print '*****',gevent_to_member_name(event),
# '+++', event['member'], '====', event['where'], '*****'
member_counts[gevent_to_member_name(event)]['total'] = \
member_counts[gevent_to_member_name(event)]['total']+1
for room in ROOMS:
if room in event['where'].lower():
try:
member_counts[event[room]][room] = member_counts[event[room]][room]+1
except KeyError as why:
msg = getattr(why, 'message', repr(why))
print("FAILED room=%s\nevent=%r\n%s\n"%(room, event, msg))
print("member_counts=%r\n"%member_counts)
return member_counts
def show_room_counts(member_counts):
""" Room priority is based on which member has used the room the least.
display:
date, who, where inlaw, master, middle, bunk, loft
total who, count, count, count, count, count
"""
# show how many times each member has slept in each room
print('\n%4s%10s'%('', 'Counts')+' '.join(['%8s'%room for room in ROOMS]))
for member in member_counts:
print('%4d%10s'%(member_counts[member]['total'], member)+
' '.join(['%8s'%('%d'%member_counts[member][room]
if member_counts[member][room]
else '') for room in ROOMS]))
def gevent_to_member_name(event):
""" Each calendar event has only one member name as the first word in the summary.
extract the member name ignoring whatever else is in the summary.
Should be run *after* fix_spelling()
"""
member = event['member'].split()[0].replace(',', '')
return member
def opts_add_season(opts):
""" The Lone CLone cabin runs for the first weekend in Dec to the last in April.
Sometimes, that includes the end of November ;-)
"""
opts['season_start'] = (int(opts['--year']), 11, 29,)
opts['season_end'] = (int(opts['--year'])+1, 5, 1,)
def read_test_dates_raw(file_name):
"""Read test data from a json encoded file.
"""
with open(file_name,'r') as fp:
dates_raw_test = json.load(fp)
return dates_raw_test
def write_test_dates_raw(file_name, test_data):
"""Write test data to a json encoded file.
"""
with open(file_name,'w') as fp:
json.dump(test_data, fp)
def create_test_dates_raw():
"""Todo: make a list of dicts as expected from google calendar
"""
return []
# yes, lots of branches and statements
#pylint: disable=R0912
def main(opts): #pylint: disable=R0915
""" the program
"""
# ignore line-to-long
#pylint: disable=C0301
if opts['--offline']:
dates_raw = read_test_dates_raw('test.json')
# start in the middle of the test data
test_shift = datetime.datetime.strptime(dates_raw[len(dates_raw)//2]['night'], '%Y-%m-%d')
opts['--year'] = str(datetime.datetime.strptime(dates_raw[0]['night'], '%Y-%m-%d').year)
opts_add_season(opts)
test_shift -= datetime.datetime.utcnow()
test_shift = test_shift.days
if opts['--shift']:
opts['--shift'] = str(int(opts['--shift']) + test_shift)
else:
opts['--shift'] = str(test_shift)
else:
opts_add_season(opts)
credentials = get_credentials(opts)
events_raw = get_events_raw(credentials, opts)
# print('events', ',\n'.join([repr(x) for x in events_raw]))
# translate 'start' and 'end' to 'night' and 'leave'
# translate 'summary' and 'description' to 'member' and 'where'
dates_raw = events_to_raw_dates(events_raw, opts)
# print ',\n'.join([repr(x) for x in dates_raw])
#pylint: enable=C0301
if opts['--debug']:
print('opts:\n', '\n'.join(['%s: %r'%(k, opts[k]) for k in opts if '--' in k]))
debug_print_raw(dates_raw)
# dates_raw is a list of dicts. The dates_raw dicts need a few more fields...
expand_multi_nights(dates_raw) # add more date dicts to fill in between night and leaving
add_day_of_week(dates_raw) # add 'night_abrev' field to the date dicts
dates_raw = fix_spelling(dates_raw) # catch data entry errors
put_members_in_rooms(dates_raw) # to each date, add entries for each room
if opts['--shift']:
dt_today = datetime.datetime.now() + datetime.timedelta(days=int(opts['--shift']))
print('Shifted to ', ('%s'%dt_today)[:16])
# dates_raw[] is now a list of {'night':'2016-12-15', 'member':'Peter',
# 'where':'master', 'master':'Peter', 'in-law':'', 'middle':'', ...}
# always flag any members I failed to assign to a room
show_missing_rooms(select_dates(dates_raw, opts, None, 0), opts)
if opts['--whosup']:
print("Here's who I've heard from:")
dates_coming_up = select_dates(dates_raw, opts, -2, 7)
whos_up_dict = get_whos_up(dates_coming_up)
if whos_up_dict:
show_whos_up(whos_up_dict)
else:
print(' no one!\n')
if opts['--raw']:
show_raw(dates_raw)
# always show the guest fee accounts
# give members 2 days before mentioning guest fees
dates_guests = [add_guest_fee(event, opts) for event in select_dates(dates_raw, opts, None, -2)]
# dates_guests[] includes a 'guest_fee' key (+ paid, - owed)
deadbeats, sponsors = get_deadbeat_sponsors(dates_guests)
print('\nMembers who owe guest fees:')
show_guest_fees(deadbeats)
print('\nMembers who have paid their guest fees: (Yay!)')
show_guest_fees(sponsors)
dates_past = select_dates(dates_raw, opts, None, 0)
if opts['--nights']:
show_nights(dates_past, opts)
if opts['--counts']:
member_counts = count_members_in_rooms(dates_past, opts)
# member_counts{} = {'Bob':{'in-law':1, 'master':0, 'middle':0,
# 'bunk':1, 'loft':0}, 'Mark:{'master':1,...},...}
show_room_counts(member_counts)
if opts['--peak']:
nights_extra = NIGHTS_PEAK[opts['--year']][2:] # ignore Fri, Sat entries
print('\nPeak nights starting %s, excluding Fri & Sat nights:'%opts['--year'], end='')
str_peak = ', '.join(['%s%s'%('' if i%8 != 0 else '\n ',
x) for i, x in enumerate(nights_extra)])
print(str_peak)
if __name__ == '__main__':
OPTS = docopt.docopt(USE_STR, version='0.9.0')
main(OPTS)
|
py | 1a3a171c9818a34fdc2078add62e4fa45eb19afb | # coding: utf8
""" Implementation of finite DPP MCMC samplers:
- `add_exchange_delete_sampler`
- `add_delete_sampler`
- `basis_exchange_sampler`
- `zonotope_sampler`
.. seealso:
`Documentation on ReadTheDocs <https://dppy.readthedocs.io/en/latest/finite_dpps/mcmc_sampling.html>`_
"""
import time
import numpy as np
import scipy.linalg as la
# For zonotope sampler
from cvxopt import matrix, spmatrix, solvers
solvers.options['show_progress'] = False
solvers.options['glpk'] = {'msg_lev': 'GLP_MSG_OFF'}
from dppy.utils import det_ST, check_random_state
############################################
# Approximate samplers for projection DPPs #
############################################
def dpp_sampler_mcmc(kernel, mode='AED', **params):
""" Interface function with initializations and samplers for MCMC schemes.
.. seealso::
- :ref:`finite_dpps_mcmc_sampling_add_exchange_delete`
- :func:`add_exchange_delete_sampler <add_exchange_delete_sampler>`
- :func:`initialize_AED_sampler <initialize_AED_sampler>`
- :func:`add_delete_sampler <add_delete_sampler>`
- :func:`basis_exchange_sampler <basis_exchange_sampler>`
- :func:`initialize_AD_and_E_sampler <initialize_AD_and_E_sampler>`
"""
rng = check_random_state(params.get('random_state', None))
s_init = params.get('s_init', None)
nb_iter = params.get('nb_iter', 10)
T_max = params.get('T_max', None)
size = params.get('size', None) # = Tr(K) for projection correlation K
if mode == 'AED': # Add-Exchange-Delete S'=S+t, S-t+u, S-t
if s_init is None:
s_init = initialize_AED_sampler(kernel, random_state=rng)
sampl = add_exchange_delete_sampler(kernel, s_init, nb_iter, T_max,
random_state=rng)
elif mode == 'AD': # Add-Delete S'=S+t, S-t
if s_init is None:
s_init = initialize_AD_and_E_sampler(kernel, random_state=rng)
sampl = add_delete_sampler(kernel, s_init, nb_iter, T_max,
random_state=rng)
elif mode == 'E': # Exchange S'=S-t+u
if s_init is None:
s_init = initialize_AD_and_E_sampler(kernel, size,
random_state=rng)
sampl = basis_exchange_sampler(kernel, s_init, nb_iter, T_max,
random_state=rng)
return sampl
def initialize_AED_sampler(kernel, random_state=None):
"""
.. seealso::
- :func:`add_delete_sampler <add_delete_sampler>`
- :func:`basis_exchange_sampler <basis_exchange_sampler>`
- :func:`initialize_AED_sampler <initialize_AED_sampler>`
- :func:`add_exchange_delete_sampler <add_exchange_delete_sampler>`
"""
rng = check_random_state(random_state)
N = kernel.shape[0]
ground_set = np.arange(N)
S0, det_S0 = [], 0.0
nb_iter = 100
tol = 1e-9
for _ in range(nb_iter):
if det_S0 > tol:
break
else:
T = rng.choice(2 * N, size=N, replace=False)
S0 = np.intersect1d(T, ground_set, assume_unique=True)
det_S0 = det_ST(kernel, S0)
else:
raise ValueError('Initialization problem, you may be using a size `k` > rank of the kernel')
return S0.tolist()
def initialize_AD_and_E_sampler(kernel, size=None, random_state=None):
"""
.. seealso::
- :func:`add_delete_sampler <add_delete_sampler>`
- :func:`basis_exchange_sampler <basis_exchange_sampler>`
- :func:`initialize_AED_sampler <initialize_AED_sampler>`
- :func:`add_exchange_delete_sampler <add_exchange_delete_sampler>`
"""
rng = check_random_state(random_state)
N = kernel.shape[0]
S0, det_S0 = [], 0.0
it_max = 100
tol = 1e-9
for _ in range(it_max):
if det_S0 > tol:
break
else:
S0 = rng.choice(N,
size=size if size else rng.randint(1, N + 1),
replace=False)
det_S0 = det_ST(kernel, S0)
else:
raise ValueError('Initialization problem, you may be using a size `k` > rank of the kernel')
return S0.tolist()
def add_exchange_delete_sampler(kernel, s_init=None, nb_iter=10, T_max=None,
random_state=None):
""" MCMC sampler for generic DPPs, it is a mix of add/delete and basis exchange MCMC samplers.
:param kernel:
Kernel martrix
:type kernel:
array_like
:param s_init:
Initial sample.
:type s_init:
list
:param nb_iter:
Maximum number of iterations performed by the the algorithm.
Default is 10.
:type nb_iter:
int
:param T_max:
Maximum running time of the algorithm (in seconds).
:type T_max:
float
:param random_state:
:type random_state:
None, np.random, int, np.random.RandomState
:return:
list of `nb_iter` approximate sample of DPP(kernel)
:rtype:
array_like
.. seealso::
Algorithm 3 in :cite:`LiJeSr16c`
"""
rng = check_random_state(random_state)
# Initialization
N = kernel.shape[0]
ground_set = np.arange(N)
S0, det_S0 = s_init, det_ST(kernel, s_init)
size_S0 = len(S0) # Size of the current sample
chain = [S0] # Initialize the collection (list) of sample
# Evaluate running time...
t_start = time.time() if T_max else 0
for _ in range(1, nb_iter):
S1 = S0.copy() # S1 = S0
# Pick one element s in S_0 by index uniformly at random
s_ind = rng.choice(size_S0 if size_S0 else N) # , size=1)[0]
# Unif t in [N]-S0
t = rng.choice(np.delete(ground_set, S0))
U = rng.rand()
ratio = size_S0 / N # Proportion of items in current sample
# Add: S1 = S0 + t
if U < 0.5 * (1 - ratio)**2:
S1.append(t) # S1 = S0 + t
# Accept_reject the move
det_S1 = det_ST(kernel, S1) # det K_S1
if rng.rand() < det_S1 / det_S0 * (size_S0 + 1) / (N - size_S0):
S0, det_S0 = S1, det_S1
chain.append(S1)
size_S0 += 1
else:
chain.append(S0)
# Exchange: S1 = S0 - s + t
elif (0.5 * (1 - ratio)**2 <= U) & (U < 0.5 * (1 - ratio)):
del S1[s_ind] # S1 = S0 - s
S1.append(t) # S1 = S1 + t = S0 - s + t
# Accept_reject the move
det_S1 = det_ST(kernel, S1) # det K_S1
if rng.rand() < (det_S1 / det_S0):
S0, det_S0 = S1, det_S1
chain.append(S1)
# size_S0 stays the same
else:
chain.append(S0)
# Delete: S1 = S0 - s
elif (0.5 * (1 - ratio) <= U) & (U < 0.5 * (ratio**2 + (1 - ratio))):
del S1[s_ind] # S0 - s
# Accept_reject the move
det_S1 = det_ST(kernel, S1) # det K_S1
if rng.rand() < det_S1 / det_S0 * size_S0 / (N - (size_S0 - 1)):
S0, det_S0 = S1, det_S1
chain.append(S1)
size_S0 -= 1
else:
chain.append(S0)
else:
chain.append(S0)
if T_max:
if time.time() - t_start < T_max:
break
return chain
def add_delete_sampler(kernel, s_init, nb_iter=10, T_max=None,
random_state=None):
""" MCMC sampler for generic DPP(kernel), it performs local moves by removing/adding one element at a time.
:param kernel:
Kernel martrix
:type kernel:
array_like
:param s_init:
Initial sample.
:type s_init:
list
:param nb_iter:
Maximum number of iterations performed by the the algorithm.
Default is 10.
:type nb_iter:
int
:param T_max:
Maximum running time of the algorithm (in seconds).
Default is None.
:type T_max:
float
:param random_state:
:type random_state:
None, np.random, int, np.random.RandomState
:return:
list of `nb_iter` approximate sample of DPP(kernel)
:rtype:
array_like
.. seealso::
Algorithm 1 in :cite:`LiJeSr16c`
"""
rng = check_random_state(random_state)
# Initialization
N = kernel.shape[0] # Number of elements
# Initialization
S0, det_S0 = s_init, det_ST(kernel, s_init)
chain = [S0] # Initialize the collection (list) of sample
# Evaluate running time...
t_start = time.time() if T_max else 0
for _ in range(1, nb_iter):
# With proba 1/2 try to add/delete an element
if rng.rand() < 0.5:
# Perform the potential add/delete move S1 = S0 +/- s
S1 = S0.copy() # S1 = S0
s = rng.choice(N) # Uniform item in [N]
if s in S1:
S1.remove(s) # S1 = S0 - s
else:
S1.append(s) # S1 = SO + s
# Accept_reject the move
det_S1 = det_ST(kernel, S1) # det K_S1
if rng.rand() < det_S1 / det_S0:
S0, det_S0 = S1, det_S1
chain.append(S1)
else:
chain.append(S0)
else:
chain.append(S0)
if T_max:
if time.time() - t_start < T_max:
break
return chain
def basis_exchange_sampler(kernel, s_init, nb_iter=10, T_max=None,
random_state=None):
""" MCMC sampler for projection DPPs, based on the basis exchange property.
:param kernel:
Feature vector matrix, feature vectors are stacked columnwise.
It is assumed to be full row rank.
:type kernel:
array_like
:param s_init:
Initial sample.
:type s_init:
list
:param nb_iter:
Maximum number of iterations performed by the the algorithm.
Default is 10.
:type nb_iter:
int
:param T_max:
Maximum running time of the algorithm (in seconds).
Default is None.
:type T_max:
float
:param random_state:
:type random_state:
None, np.random, int, np.random.RandomState
:return:
MCMC chain of approximate sample (stacked row_wise i.e. nb_iter rows).
:rtype:
array_like
.. seealso::
Algorithm 2 in :cite:`LiJeSr16c`
"""
rng = check_random_state(random_state)
# Initialization
N = kernel.shape[0] # Number of elements
ground_set = np.arange(N) # Ground set
size = len(s_init) # Size of the sample (cardinality is fixed)
# Initialization
S0, det_S0 = s_init, det_ST(kernel, s_init)
chain = np.zeros((nb_iter, size), dtype=int)
chain[0] = S0
# Evaluate running time...
t_start = time.time() if T_max else 0
for it in range(1, nb_iter):
# With proba 1/2 try to swap 2 elements
if rng.rand() < 0.5:
# Perform the potential exchange move S1 = S0 - s + t
S1 = S0.copy() # S1 = S0
# Pick one element s in S0 by index uniformly at random
s_ind = rng.choice(size)
# Pick one element t in [N]\S0 uniformly at random
t = rng.choice(np.delete(ground_set, S0))
S1[s_ind] = t # S_1 = S0 - S0[s_ind] + t
det_S1 = det_ST(kernel, S1) # det K_S1
# Accept_reject the move w. proba
if rng.rand() < det_S1 / det_S0:
S0, det_S0 = S1, det_S1
chain[it] = S1
else: # if reject, stay in the same state
chain[it] = S0
else:
chain[it] = S0
if T_max:
if time.time() - t_start < T_max:
break
return chain.tolist()
############
# ZONOTOPE #
############
def extract_basis(y_sol, eps=1e-5):
""" Subroutine of zono_sampling to extract the tile of the zonotope
in which a point lies. It extracts the indices of entries of the solution
of LP :eq:`eq:Px` that are in (0,1).
:param y_sol:
Optimal solution of LP :eq:`eq:Px`
:type y_sol:
list
:param eps:
Tolerance :math:`y_i^* \\in (\\epsilon, 1-\\epsilon), \\quad \\epsilon \\geq 0`
:eps type:
float
:return:
Indices of the feature vectors spanning the tile in which the point is lies.
:math:`B_{x} = \\left\\{ i \\, ; \\, y_i^* \\in (0,1) \\right\\}`
:rtype:
list
.. seealso::
Algorithm 3 in :cite:`GaBaVa17`
- :func:`zono_sampling <zono_sampling>`
"""
basis = np.where((eps < y_sol) & (y_sol < 1 - eps))[0]
return basis
def zonotope_sampler(A_zono, **params):
""" MCMC based sampler for projection DPPs.
The similarity matrix is the orthogonal projection matrix onto
the row span of the feature vector matrix.
Samples are of size equal to the ransampl_size of the projection matrix
also equal to the rank of the feature matrix (assumed to be full row rank).
:param A_zono:
Feature vector matrix, feature vectors are stacked columnwise.
It is assumed to be full row rank.
:type A_zono:
array_like
:param params: Dictionary containing the parameters
- ``'lin_obj'`` (list): Linear objective (:math:`c`) of the linear program used to identify the tile in which a point lies. Default is a random Gaussian vector.
- ``'x_0'` (list): Initial point.
- ``'nb_iter'`` (int): Number of iterations of the MCMC chain. Default is 10.
- ``'T_max'`` (float): Maximum running time of the algorithm (in seconds).
Default is None.
- ``'random_state`` (default None)
:type params: dict
:return:
MCMC chain of approximate samples (stacked row_wise i.e. nb_iter rows).
:rtype:
array_like
.. seealso::
Algorithm 5 in :cite:`GaBaVa17`
- :func:`extract_basis <extract_basis>`
- :func:`basis_exchange_sampler <basis_exchange_sampler>`
"""
rng = check_random_state(params.get('random_state', None))
r, N = A_zono.shape # Sizes of r=samples=rank(A_zono), N=ground set
# Linear objective
c = matrix(params.get('lin_obj', rng.randn(N)))
# Initial point x0 = A*u, u~U[0,1]^n
x0 = matrix(params.get('x_0', A_zono.dot(rng.rand(N))))
nb_iter = params.get('nb_iter', 10)
T_max = params.get('T_max', None)
###################
# Linear problems #
###################
# Canonical form
# min c.T*x min c.T*x
# s.t. G*x <= h <=> s.t. G*x + s = h
# A*x = b A*x = b
# s >= 0
# CVXOPT
# =====> solvers.lp(c, G, h, A, b, solver='glpk')
#################################################
# To access the tile Z(B_x)
# Solve P_x(A,c)
######################################################
# y^* =
# argmin c.T*y argmin c.T*y
# s.t. A*y = x <=> s.t. A *y = x
# 0 <= y <= 1 [ I_n] *y <= [1^n]
# [-I_n] [0^n]
######################################################
# Then B_x = \{ i ; y_i^* \in ]0,1[ \}
A = spmatrix(0.0, [], [], (r, N))
A[:, :] = A_zono
G = spmatrix(0.0, [], [], (2 * N, N))
G[:N, :] = spmatrix(1.0, range(N), range(N))
G[N:, :] = spmatrix(-1.0, range(N), range(N))
# Endpoints of segment
# D_x \cap Z(A) = [x+alpha_m*d, x-alpha_M*d]
###########################################################################
# alpha_m/_M = argmin +/-alpha argmin [+/-1 0^N].T * [alpha,lambda]
# s.t. x + alpha d = A lambda <=> s.t. [-d A] *[alpha, lambda] = x
# 0 <= lambda <= 1 [0^N I_N] *[alpha, lambda] <= [1^N]
# [0^N -I_N] [0^N]
##########################################################################
c_mM = matrix(0.0, (N + 1, 1))
c_mM[0] = 1.0
A_mM = spmatrix(0.0, [], [], (r, N + 1))
A_mM[:, 1:] = A
G_mM = spmatrix(0.0, [], [], (2 * N, N + 1))
G_mM[:, 1:] = G
# Common h to both kind of LP
# cf. 0 <= y <= 1 and 0 <= lambda <= 1
h = matrix(0.0, (2 * N, 1))
h[:N, :] = 1.0
##################
# Initialization #
##################
B_x0 = []
while len(B_x0) != r:
# Initial tile B_x0
# Solve P_x0(A,c)
y_star = solvers.lp(c, G, h, A, x0, solver='glpk')['x']
# Get the tile
B_x0 = extract_basis(np.asarray(y_star))
# Initialize sequence of sample
chain = np.zeros((nb_iter, r), dtype=int)
chain[0] = B_x0
# Compute the det of the tile (Vol(B)=abs(det(B)))
det_B_x0 = la.det(A_zono[:, B_x0])
t_start = time.time() if T_max else 0
for it in range(1, nb_iter):
# Take uniform direction d defining D_x0
d = matrix(rng.randn(r, 1))
# Define D_x0 \cap Z(A) = [x0 + alpha_m*d, x0 - alpha_M*d]
# Update the constraint [-d A] * [alpha,lambda] = x
A_mM[:, 0] = -d
# Find alpha_m/M
alpha_m = solvers.lp(c_mM, G_mM, h, A_mM, x0, solver='glpk')['x'][0]
alpha_M = solvers.lp(-c_mM, G_mM, h, A_mM, x0, solver='glpk')['x'][0]
# Propose x1 ~ U_{[x0+alpha_m*d, x0-alpha_M*d]}
x1 = x0 + (alpha_m + (alpha_M - alpha_m) * rng.rand()) * d
# Proposed tile B_x1
# Solve P_x1(A,c)
y_star = solvers.lp(c, G, h, A, x1, solver='glpk')['x']
# Get the tile
B_x1 = extract_basis(np.asarray(y_star))
# Accept/Reject the move with proba Vol(B1)/Vol(B0)
if len(B_x1) != r: # if extract_basis returned smtg ill conditioned
chain[it] = B_x0
else:
det_B_x1 = la.det(A_zono[:, B_x1])
if rng.rand() < abs(det_B_x1 / det_B_x0):
x0, B_x0, det_B_x0 = x1, B_x1, det_B_x1
chain[it] = B_x1
else:
chain[it] = B_x0
if T_max:
if time.time() - t_start < T_max:
break
return chain
|
py | 1a3a173c95838109275d55b8bd291b0ed5875405 | def checkPangram(s):
List = []
# create list of 26 charecters and set false each entry
for i in range(26):
List.append(False)
# converting the sentence to lowercase and iterating
# over the sentence
for c in s.lower():
if not c == " ":
# make the corresponding entry True
List[ord(c) -ord('a')]= True
# check if any charecter is missing then return False
for ch in List:
if ch == False:
return False
return True
# Driver Program to test above functions
sentence = input()
if (checkPangram(sentence)):
print("Yes")
else:
print("No") |
py | 1a3a1851544efbf203e7f56c6176d8c4cee1cdf8 | #!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
test_readitbetter
----------------------------------
Tests for `readitbetter` module.
"""
import unittest
from readitbetter import readitbetter
class TestReaditbetter(unittest.TestCase):
def setUp(self):
pass
def test_something(self):
pass
def tearDown(self):
pass
if __name__ == '__main__':
unittest.main()
|
py | 1a3a18dbf23bb878bbb56ae70be0fd0ce3f226e8 | import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import numpy as np
import cv2
import os
from lanedetect_helpers import process_image
from moviepy.editor import VideoFileClip
from IPython.display import HTML
def lane_detect_images():
test_data_dir = "test_images/"
# Read Test images
test_images = os.listdir(test_data_dir)
for test_image in test_images:
image = mpimg.imread(os.path.join(test_data_dir, test_image))
final_image = process_image(image)
def lane_detect_videos():
test_data_dir = "test_videos/"
video_out_dir = "test_videos_output/"
test_videos = os.listdir(test_data_dir)
for test_video in test_videos:
test_video_input = os.path.join(test_data_dir, test_video)
test_video_output = os.path.join(video_out_dir, test_video)
video_clip = VideoFileClip(test_video_input)
video_frame = video_clip.fl_image(process_image)
video_frame.write_videofile(test_video_output, audio=False)
if __name__ =="__main__":
lane_detect_images()
#lane_detect_videos()
|
py | 1a3a1919bd6cedfe308f8886bb8dd7f0d2276f17 | import logging
import json
import os
import shutil
import subprocess
from .base import BaseExporter
logger = logging.getLogger(__name__)
__all__ = ["JSONExporter"]
class JSONExporter(BaseExporter):
short_name = "json_file"
TESTS_DIR_NAME = "tests"
SOLUTION_DIR_NAME = "solutions"
VALIDATOR_DIR_NAME = "validators"
SUBTASKS_DIR_NAME = "subtasks"
CHECKER_DIR_NAME = "checker"
GRADER_DIR_NAME = "graders"
OTHER_FILES_DIR_NAME = "others"
def __init__(self, revision):
super().__init__(revision)
def _do_export(self):
def export_resources_to_path(prefix):
for resource in self.revision.resource_set.all():
self.extract_from_storage_to_path(
resource.file,
os.path.join(
prefix,
resource.name
)
)
def generate_clean_name(name):
return name.replace(' ', '_').lower()
# Exporting problem global data
problem_data = self.revision.problem_data
problem_data_dict = {
"code": problem_data.code_name,
"name": problem_data.title,
"time_limit": problem_data.time_limit,
"memory_limit": problem_data.memory_limit,
"score_precision": problem_data.score_precision,
}
if problem_data.task_type:
problem_data_dict.update({
"task_type": problem_data.task_type,
"task_type_params": problem_data.task_type_parameters,
})
self.write_to_file(
"problem.json".format(problem_code=problem_data.code_name),
json.dumps(problem_data_dict)
)
self.write_to_file(
"statement.md",
self.revision.statement_set.get().content
)
# Exporting problem files
self.create_directory(self.OTHER_FILES_DIR_NAME)
for file in self.revision.problem.files.all():
self.extract_from_storage_to_path(
file,
os.path.join(
self.OTHER_FILES_DIR_NAME,
file.name
)
)
# Exporting testcases
self.create_directory(self.TESTS_DIR_NAME)
ignored_testcases = []
for testcase in self.revision.testcase_set.all():
if not testcase.input_file_generated() or not testcase.output_file_generated():
ignored_testcases.append(testcase)
logger.warning("Testcase {} couldn't be generated. Skipping".format(testcase.name))
continue
self.extract_from_storage_to_path(
testcase.input_file,
os.path.join(
self.TESTS_DIR_NAME,
"{testcase_name}.in".format(testcase_name=generate_clean_name(testcase.name))
),
)
self.extract_from_storage_to_path(
testcase.output_file,
os.path.join(
"tests",
"{testcase_name}.out".format(testcase_name=generate_clean_name(testcase.name))
)
)
# Exporting graders
self.create_directory(self.GRADER_DIR_NAME)
for grader in self.revision.grader_set.all():
self.extract_from_storage_to_path(
grader.code,
os.path.join(
self.GRADER_DIR_NAME,
grader.name,
)
)
# Exporting subtasks
self.create_directory(self.SUBTASKS_DIR_NAME)
for subtask in self.revision.subtasks.all():
self.write_to_file(
os.path.join(
self.SUBTASKS_DIR_NAME,
"{subtask_index:02}-{subtask_name}.json".format(
subtask_index=subtask.index,
subtask_name=subtask.name,
)),
json.dumps(
{
"score": subtask.score,
"testcases":
[
generate_clean_name(t.name)
for t in subtask.testcases.all()
]
}
)
)
# Exporting solutions
self.create_directory(self.SOLUTION_DIR_NAME)
for solution in self.revision.solution_set.all():
if solution.verdict:
solution_dir = os.path.join(self.SOLUTION_DIR_NAME, generate_clean_name(solution.verdict.name))
else:
solution_dir = os.path.join(self.SOLUTION_DIR_NAME, "unknown_verdict")
self.create_directory(solution_dir)
self.extract_from_storage_to_path(solution.code, os.path.join(solution_dir, solution.name))
# We don't export generators. Tests are already generated so there is no use for them
# Exporting checker( We only extract main checker)
self.create_directory(self.CHECKER_DIR_NAME)
for resource in self.revision.checker_set.all():
self.extract_from_storage_to_path(
resource.file,
os.path.join(self.CHECKER_DIR_NAME, resource.name)
)
checker = problem_data.checker
if checker is not None:
self.extract_from_storage_to_path(
checker.file,
os.path.join(self.CHECKER_DIR_NAME, "checker{ext}".format(
ext=os.path.splitext(checker.name)[1]
))
)
export_resources_to_path("checker")
# Exporting validators
self.create_directory(self.VALIDATOR_DIR_NAME)
for validator in self.revision.validator_set.all():
dirs = []
for subtask in validator.subtasks:
dirs.append(subtask.name)
for dir in dirs:
full_dir = os.path.join(self.VALIDATOR_DIR_NAME, dir)
self.create_directory(full_dir)
self.extract_from_storage_to_path(
validator.file,
os.path.join(
full_dir,
validator.name
)
)
export_resources_to_path("validators")
# Exporting public
self.create_directory("repo")
os.system('git --git-dir="{repo_dir}" worktree add {work_dir} {commit_id}'.format(
repo_dir=self.revision.repository_path,
work_dir=self.get_absolute_path("repo"),
commit_id=self.revision.commit_id
))
tests_dir_in_repo = os.path.join('repo', 'tests')
self.create_directory(tests_dir_in_repo)
for testcase in self.revision.testcase_set.all():
if not testcase.input_file_generated() or not testcase.output_file_generated():
ignored_testcases.append(testcase)
logger.warning("Testcase {} couldn't be generated. Skipping".format(testcase.name))
continue
self.extract_from_storage_to_path(
testcase.input_file,
os.path.join(
tests_dir_in_repo,
"{testcase_name}.in".format(testcase_name=testcase.name)
),
)
self.extract_from_storage_to_path(
testcase.output_file,
os.path.join(
tests_dir_in_repo,
"{testcase_name}.out".format(testcase_name=testcase.name)
)
)
try:
print(subprocess.check_output(['tps', 'make-public'], cwd=self.get_absolute_path("repo"), stderr=subprocess.STDOUT))
except subprocess.CalledProcessError as e:
print(e.output)
raise e
self.create_directory("attachments")
try:
shutil.move(os.path.join(self.get_absolute_path("repo"),
"{}.zip".format(problem_data.code_name)),
self.get_absolute_path("attachments"))
except OSError:
try:
shutil.move(os.path.join(self.get_absolute_path("repo"),
"{}.zip".format(problem_data.code_name)),
self.get_absolute_path("attachments"))
except OSError as e:
logger.error("Public archive not found")
raise e
shutil.rmtree(self.get_absolute_path("repo"))
|
py | 1a3a1abc9f641dbe7103719c1d6b936be031c0d2 | # -*- coding: utf-8 -*-
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import warnings
from typing import Callable, Dict, Optional, Sequence, Tuple
from google.api_core import grpc_helpers # type: ignore
from google.api_core import gapic_v1 # type: ignore
import google.auth # type: ignore
from google.auth import credentials as ga_credentials # type: ignore
from google.auth.transport.grpc import SslCredentials # type: ignore
import grpc # type: ignore
from google.ads.googleads.v7.resources.types import ad_group_criterion_label
from google.ads.googleads.v7.services.types import ad_group_criterion_label_service
from .base import AdGroupCriterionLabelServiceTransport, DEFAULT_CLIENT_INFO
class AdGroupCriterionLabelServiceGrpcTransport(AdGroupCriterionLabelServiceTransport):
"""gRPC backend transport for AdGroupCriterionLabelService.
Service to manage labels on ad group criteria.
This class defines the same methods as the primary client, so the
primary client can load the underlying transport implementation
and call it.
It sends protocol buffers over the wire using gRPC (which is built on
top of HTTP/2); the ``grpcio`` package must be installed.
"""
def __init__(self, *,
host: str = 'googleads.googleapis.com',
credentials: ga_credentials.Credentials = None,
credentials_file: str = None,
scopes: Sequence[str] = None,
channel: grpc.Channel = None,
api_mtls_endpoint: str = None,
client_cert_source: Callable[[], Tuple[bytes, bytes]] = None,
ssl_channel_credentials: grpc.ChannelCredentials = None,
quota_project_id: Optional[str] = None,
client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO,
) -> None:
"""Instantiate the transport.
Args:
host (Optional[str]):
The hostname to connect to.
credentials (Optional[google.auth.credentials.Credentials]): The
authorization credentials to attach to requests. These
credentials identify the application to the service; if none
are specified, the client will attempt to ascertain the
credentials from the environment.
This argument is ignored if ``channel`` is provided.
credentials_file (Optional[str]): A file with credentials that can
be loaded with :func:`google.auth.load_credentials_from_file`.
This argument is ignored if ``channel`` is provided.
scopes (Optional(Sequence[str])): A list of scopes. This argument is
ignored if ``channel`` is provided.
channel (Optional[grpc.Channel]): A ``Channel`` instance through
which to make calls.
api_mtls_endpoint (Optional[str]): Deprecated. The mutual TLS endpoint.
If provided, it overrides the ``host`` argument and tries to create
a mutual TLS channel with client SSL credentials from
``client_cert_source`` or application default SSL credentials.
client_cert_source (Optional[Callable[[], Tuple[bytes, bytes]]]):
Deprecated. A callback to provide client SSL certificate bytes and
private key bytes, both in PEM format. It is ignored if
``api_mtls_endpoint`` is None.
ssl_channel_credentials (grpc.ChannelCredentials): SSL credentials
for grpc channel. It is ignored if ``channel`` is provided.
quota_project_id (Optional[str]): An optional project to use for billing
and quota.
client_info (google.api_core.gapic_v1.client_info.ClientInfo):
The client info used to send a user-agent string along with
API requests. If ``None``, then default info will be used.
Generally, you only need to set this if you're developing
your own client library.
Raises:
google.auth.exceptions.MutualTLSChannelError: If mutual TLS transport
creation failed for any reason.
"""
self._ssl_channel_credentials = ssl_channel_credentials
if channel:
# Sanity check: Ensure that channel and credentials are not both
# provided.
credentials = False
# If a channel was explicitly provided, set it.
self._grpc_channel = channel
self._ssl_channel_credentials = None
elif api_mtls_endpoint:
warnings.warn("api_mtls_endpoint and client_cert_source are deprecated", DeprecationWarning)
host = api_mtls_endpoint if ":" in api_mtls_endpoint else api_mtls_endpoint + ":443"
if credentials is None:
credentials, _ = google.auth.default(scopes=self.AUTH_SCOPES, quota_project_id=quota_project_id)
# Create SSL credentials with client_cert_source or application
# default SSL credentials.
if client_cert_source:
cert, key = client_cert_source()
ssl_credentials = grpc.ssl_channel_credentials(
certificate_chain=cert, private_key=key
)
else:
ssl_credentials = SslCredentials().ssl_credentials
# create a new channel. The provided one is ignored.
self._grpc_channel = type(self).create_channel(
host,
credentials=credentials,
credentials_file=credentials_file,
ssl_credentials=ssl_credentials,
scopes=scopes or self.AUTH_SCOPES,
quota_project_id=quota_project_id,
options=[
("grpc.max_send_message_length", -1),
("grpc.max_receive_message_length", -1),
],
)
self._ssl_channel_credentials = ssl_credentials
else:
host = host if ":" in host else host + ":443"
if credentials is None:
credentials, _ = google.auth.default(scopes=self.AUTH_SCOPES)
# create a new channel. The provided one is ignored.
self._grpc_channel = type(self).create_channel(
host,
credentials=credentials,
ssl_credentials=ssl_channel_credentials,
scopes=self.AUTH_SCOPES,
options=[
("grpc.max_send_message_length", -1),
("grpc.max_receive_message_length", -1),
],
)
self._stubs = {} # type: Dict[str, Callable]
# Run the base constructor.
super().__init__(
host=host,
credentials=credentials,
client_info=client_info,
)
@classmethod
def create_channel(cls,
host: str = 'googleads.googleapis.com',
credentials: ga_credentials.Credentials = None,
scopes: Optional[Sequence[str]] = None,
**kwargs) -> grpc.Channel:
"""Create and return a gRPC channel object.
Args:
address (Optionsl[str]): The host for the channel to use.
credentials (Optional[~.Credentials]): The
authorization credentials to attach to requests. These
credentials identify this application to the service. If
none are specified, the client will attempt to ascertain
the credentials from the environment.
scopes (Optional[Sequence[str]]): A optional list of scopes needed for this
service. These are only used when credentials are not specified and
are passed to :func:`google.auth.default`.
kwargs (Optional[dict]): Keyword arguments, which are passed to the
channel creation.
Returns:
grpc.Channel: A gRPC channel object.
"""
return grpc_helpers.create_channel(
host,
credentials=credentials,
scopes=scopes or cls.AUTH_SCOPES,
**kwargs
)
def close(self):
self.grpc_channel.close()
@property
def grpc_channel(self) -> grpc.Channel:
"""Return the channel designed to connect to this service.
"""
return self._grpc_channel
@property
def get_ad_group_criterion_label(self) -> Callable[
[ad_group_criterion_label_service.GetAdGroupCriterionLabelRequest],
ad_group_criterion_label.AdGroupCriterionLabel]:
r"""Return a callable for the get ad group criterion label method over gRPC.
Returns the requested ad group criterion label in full detail.
List of thrown errors: `AuthenticationError <>`__
`AuthorizationError <>`__ `HeaderError <>`__
`InternalError <>`__ `QuotaError <>`__ `RequestError <>`__
Returns:
Callable[[~.GetAdGroupCriterionLabelRequest],
~.AdGroupCriterionLabel]:
A function that, when called, will call the underlying RPC
on the server.
"""
# Generate a "stub function" on-the-fly which will actually make
# the request.
# gRPC handles serialization and deserialization, so we just need
# to pass in the functions for each.
if 'get_ad_group_criterion_label' not in self._stubs:
self._stubs['get_ad_group_criterion_label'] = self.grpc_channel.unary_unary(
'/google.ads.googleads.v7.services.AdGroupCriterionLabelService/GetAdGroupCriterionLabel',
request_serializer=ad_group_criterion_label_service.GetAdGroupCriterionLabelRequest.serialize,
response_deserializer=ad_group_criterion_label.AdGroupCriterionLabel.deserialize,
)
return self._stubs['get_ad_group_criterion_label']
@property
def mutate_ad_group_criterion_labels(self) -> Callable[
[ad_group_criterion_label_service.MutateAdGroupCriterionLabelsRequest],
ad_group_criterion_label_service.MutateAdGroupCriterionLabelsResponse]:
r"""Return a callable for the mutate ad group criterion
labels method over gRPC.
Creates and removes ad group criterion labels. Operation
statuses are returned.
List of thrown errors: `AuthenticationError <>`__
`AuthorizationError <>`__ `DatabaseError <>`__ `FieldError <>`__
`HeaderError <>`__ `InternalError <>`__ `QuotaError <>`__
`RequestError <>`__
Returns:
Callable[[~.MutateAdGroupCriterionLabelsRequest],
~.MutateAdGroupCriterionLabelsResponse]:
A function that, when called, will call the underlying RPC
on the server.
"""
# Generate a "stub function" on-the-fly which will actually make
# the request.
# gRPC handles serialization and deserialization, so we just need
# to pass in the functions for each.
if 'mutate_ad_group_criterion_labels' not in self._stubs:
self._stubs['mutate_ad_group_criterion_labels'] = self.grpc_channel.unary_unary(
'/google.ads.googleads.v7.services.AdGroupCriterionLabelService/MutateAdGroupCriterionLabels',
request_serializer=ad_group_criterion_label_service.MutateAdGroupCriterionLabelsRequest.serialize,
response_deserializer=ad_group_criterion_label_service.MutateAdGroupCriterionLabelsResponse.deserialize,
)
return self._stubs['mutate_ad_group_criterion_labels']
__all__ = (
'AdGroupCriterionLabelServiceGrpcTransport',
)
|
py | 1a3a1aeac13c10c46875439514c97457879e46e7 | from .yolov3 import YOLOV3
|
py | 1a3a1bb03cbf62581cdb694ae0b14ed5661c94a4 | # -*- coding: utf-8 -*-
import copy
import json
from freezegun import freeze_time
from mantarray_desktop_app import MICRO_TO_BASE_CONVERSION
from mantarray_desktop_app import SERIAL_COMM_DEFAULT_DATA_CHANNEL
from mantarray_desktop_app import START_MANAGED_ACQUISITION_COMMUNICATION
from mantarray_desktop_app import STOP_MANAGED_ACQUISITION_COMMUNICATION
import numpy as np
from stdlib_utils import drain_queue
from stdlib_utils import invoke_process_run_and_check_errors
from stdlib_utils import put_object_into_queue_and_raise_error_if_eventually_still_empty
from ..fixtures import QUEUE_CHECK_TIMEOUT_SECONDS
from ..fixtures_data_analyzer import fixture_four_board_analyzer_process_beta_2_mode
from ..fixtures_data_analyzer import set_magnetometer_config
from ..fixtures_file_writer import GENERIC_BOARD_MAGNETOMETER_CONFIGURATION
from ..helpers import confirm_queue_is_eventually_empty
from ..helpers import confirm_queue_is_eventually_of_size
from ..parsed_channel_data_packets import SIMPLE_BETA_2_CONSTRUCT_DATA_FROM_ALL_WELLS
__fixtures__ = [
fixture_four_board_analyzer_process_beta_2_mode,
]
@freeze_time("2021-06-15 16:39:10.120589")
def test_DataAnalyzerProcess__sends_outgoing_data_dict_to_main_as_soon_as_it_retrieves_a_data_packet_from_file_writer__and_sends_data_available_message_to_main(
four_board_analyzer_process_beta_2_mode, mocker
):
da_process = four_board_analyzer_process_beta_2_mode["da_process"]
from_main_queue = four_board_analyzer_process_beta_2_mode["from_main_queue"]
to_main_queue = four_board_analyzer_process_beta_2_mode["to_main_queue"]
incoming_data_queue = four_board_analyzer_process_beta_2_mode["board_queues"][0][0]
outgoing_data_queue = four_board_analyzer_process_beta_2_mode["board_queues"][0][1]
# mock so that well metrics don't populate outgoing data queue
mocker.patch.object(da_process, "_dump_outgoing_well_metrics", autospec=True)
# mock so performance log messages don't populate queue to main
mocker.patch.object(da_process, "_handle_performance_logging", autospec=True)
da_process.init_streams()
# set config arbitrary sampling period
test_sampling_period = 1000
set_magnetometer_config(
four_board_analyzer_process_beta_2_mode,
{
"magnetometer_config": GENERIC_BOARD_MAGNETOMETER_CONFIGURATION,
"sampling_period": test_sampling_period,
},
)
# start managed_acquisition
put_object_into_queue_and_raise_error_if_eventually_still_empty(
dict(START_MANAGED_ACQUISITION_COMMUNICATION), from_main_queue
)
invoke_process_run_and_check_errors(da_process)
confirm_queue_is_eventually_of_size(to_main_queue, 1)
# remove message to main
to_main_queue.get(timeout=QUEUE_CHECK_TIMEOUT_SECONDS)
invoke_process_run_and_check_errors(da_process)
confirm_queue_is_eventually_empty(outgoing_data_queue)
confirm_queue_is_eventually_empty(to_main_queue)
test_data_packet = copy.deepcopy(SIMPLE_BETA_2_CONSTRUCT_DATA_FROM_ALL_WELLS)
put_object_into_queue_and_raise_error_if_eventually_still_empty(test_data_packet, incoming_data_queue)
invoke_process_run_and_check_errors(da_process)
confirm_queue_is_eventually_of_size(outgoing_data_queue, 1)
confirm_queue_is_eventually_of_size(to_main_queue, 1)
# test data dump
waveform_data_points = dict()
for well_idx in range(24):
default_channel_data = test_data_packet[well_idx][SERIAL_COMM_DEFAULT_DATA_CHANNEL]
pipeline = da_process.get_pipeline_template().create_pipeline()
pipeline.load_raw_gmr_data(
np.array([test_data_packet["time_indices"], default_channel_data], np.int64),
np.zeros((2, len(default_channel_data))),
)
compressed_data = pipeline.get_force()
waveform_data_points[well_idx] = {
"x_data_points": compressed_data[0].tolist(),
"y_data_points": (compressed_data[1] * MICRO_TO_BASE_CONVERSION).tolist(),
}
expected_outgoing_dict = {
"waveform_data": {"basic_data": {"waveform_data_points": waveform_data_points}},
"earliest_timepoint": test_data_packet["time_indices"][0].item(),
"latest_timepoint": test_data_packet["time_indices"][-1].item(),
"num_data_points": len(test_data_packet["time_indices"]),
}
outgoing_msg = outgoing_data_queue.get(timeout=QUEUE_CHECK_TIMEOUT_SECONDS)
assert outgoing_msg["data_type"] == "waveform_data"
assert outgoing_msg["data_json"] == json.dumps(expected_outgoing_dict)
# test message sent to main
outgoing_msg = to_main_queue.get(timeout=QUEUE_CHECK_TIMEOUT_SECONDS)
expected_msg = {
"communication_type": "data_available",
"timestamp": "2021-06-15 16:39:10.120589",
"num_data_points": len(test_data_packet["time_indices"]),
"earliest_timepoint": test_data_packet["time_indices"][0],
"latest_timepoint": test_data_packet["time_indices"][-1],
}
assert outgoing_msg == expected_msg
def test_DataAnalyzerProcess__does_not_process_data_packets_after_receiving_stop_managed_acquisition_command_until_receiving_first_packet_of_new_stream(
four_board_analyzer_process_beta_2_mode, mocker
):
da_process = four_board_analyzer_process_beta_2_mode["da_process"]
from_main_queue = four_board_analyzer_process_beta_2_mode["from_main_queue"]
to_main_queue = four_board_analyzer_process_beta_2_mode["to_main_queue"]
incoming_data_queue = four_board_analyzer_process_beta_2_mode["board_queues"][0][0]
# mock so these since not using real data
mocked_process_data = mocker.patch.object(
da_process, "_process_beta_2_data", autospec=True, return_value={}
)
invoke_process_run_and_check_errors(da_process, perform_setup_before_loop=True)
# set config arbitrary sampling period
test_sampling_period = 10000
set_magnetometer_config(
four_board_analyzer_process_beta_2_mode,
{
"magnetometer_config": GENERIC_BOARD_MAGNETOMETER_CONFIGURATION,
"sampling_period": test_sampling_period,
},
)
# start managed_acquisition
put_object_into_queue_and_raise_error_if_eventually_still_empty(
dict(START_MANAGED_ACQUISITION_COMMUNICATION), from_main_queue
)
invoke_process_run_and_check_errors(da_process)
# send first packet of first stream and make sure it is processed
test_data_packet = copy.deepcopy(SIMPLE_BETA_2_CONSTRUCT_DATA_FROM_ALL_WELLS)
test_data_packet["is_first_packet_of_stream"] = True
put_object_into_queue_and_raise_error_if_eventually_still_empty(test_data_packet, incoming_data_queue)
invoke_process_run_and_check_errors(da_process)
assert mocked_process_data.call_count == 1
# send another packet of first stream and make sure it is processed
test_data_packet = copy.deepcopy(SIMPLE_BETA_2_CONSTRUCT_DATA_FROM_ALL_WELLS)
test_data_packet["is_first_packet_of_stream"] = False
put_object_into_queue_and_raise_error_if_eventually_still_empty(test_data_packet, incoming_data_queue)
invoke_process_run_and_check_errors(da_process)
assert mocked_process_data.call_count == 2
# stop managed acquisition and make sure next data packet in the first stream is not processed
put_object_into_queue_and_raise_error_if_eventually_still_empty(
dict(STOP_MANAGED_ACQUISITION_COMMUNICATION), from_main_queue
)
invoke_process_run_and_check_errors(da_process)
test_data_packet = copy.deepcopy(SIMPLE_BETA_2_CONSTRUCT_DATA_FROM_ALL_WELLS)
test_data_packet["is_first_packet_of_stream"] = False
put_object_into_queue_and_raise_error_if_eventually_still_empty(test_data_packet, incoming_data_queue)
invoke_process_run_and_check_errors(da_process)
assert mocked_process_data.call_count == 2
# start managed acquisition again and make sure next data packet in the first stream is not processed
put_object_into_queue_and_raise_error_if_eventually_still_empty(
dict(START_MANAGED_ACQUISITION_COMMUNICATION), from_main_queue
)
invoke_process_run_and_check_errors(da_process)
test_data_packet = copy.deepcopy(SIMPLE_BETA_2_CONSTRUCT_DATA_FROM_ALL_WELLS)
test_data_packet["is_first_packet_of_stream"] = False
put_object_into_queue_and_raise_error_if_eventually_still_empty(test_data_packet, incoming_data_queue)
invoke_process_run_and_check_errors(da_process)
assert mocked_process_data.call_count == 2
# send first data packet from second stream and make sure it is processed
test_data_packet = copy.deepcopy(SIMPLE_BETA_2_CONSTRUCT_DATA_FROM_ALL_WELLS)
test_data_packet["is_first_packet_of_stream"] = True
put_object_into_queue_and_raise_error_if_eventually_still_empty(test_data_packet, incoming_data_queue)
invoke_process_run_and_check_errors(da_process)
assert mocked_process_data.call_count == 3
# prevent BrokenPipeErrors
drain_queue(to_main_queue)
def test_DataAnalyzerProcess__processes_incoming_stim_packet(four_board_analyzer_process_beta_2_mode, mocker):
# TODO Tanner (10/20/21): add to this test when ready to add stim handling
da_process = four_board_analyzer_process_beta_2_mode["da_process"]
incoming_data_queue = four_board_analyzer_process_beta_2_mode["board_queues"][0][0]
# can probably remove this spy and assertion once actual handling is implemented
spied_process_stim_packet = mocker.spy(da_process, "_process_stim_packet")
test_stim_packet = {"data_type": "stimulation"}
put_object_into_queue_and_raise_error_if_eventually_still_empty(test_stim_packet, incoming_data_queue)
invoke_process_run_and_check_errors(da_process)
spied_process_stim_packet.assert_called_once_with(test_stim_packet)
|
py | 1a3a1bd87909f2cf4867ca6fb47cd67d932771a5 | import setuptools
with open("README.md", "r") as fh:
long_description = fh.read()
setuptools.setup(
name="findmylibs",
version="0.0.1",
author="The Nomadic Coder",
author_email="[email protected]",
description="A package to probe installed libraries",
long_description=long_description,
long_description_content_type="text/markdown",
url="https://github.com/atemysemicolon/findMyLibs",
install_requires=['cmake'],
packages=["findmylibs"],
entry_points={
'console_scripts': [
'findmylibs = findmylibs.__main__:main',
]},
classifiers=[
"Programming Language :: Python :: 3",
"License :: OSI Approved :: MIT License",
"Operating System :: POSIX :: Linux",
],
) |
py | 1a3a1c717b1aa88212c72e2dcd1d49ef5617c939 | class Solution:
def majorityElement(self, nums: List[int]) -> List[int]:
a=list(set(nums))
b=[]
for x in a:
if nums.count(x)>len(nums)//3: b.append(x)
return b
|
py | 1a3a1c7aba94f687ee19c3fd90167a161563ca3f | import numpy as np
trials=10_00_000
dice=int(input("Enter the no of dices :"))
for i in np.arange(1*dice,dice*6 + 1):
found=0
for _ in np.arange(trials):
total=0
for _ in np.arange(dice):
total+=np.random.randint(1,7)
if(total==i):
found+=1
print("Sum Value :",i,"probability",np.round((found/trials)*100,4),"%")
|
py | 1a3a1cae058c5dcd405dcb0dec51ebcd8786bc80 | #!/usr/bin/env python3
############################################################################################
# #
# Program purpose: Find all the common characters in lexicographical order from #
# two given lower case strings. If there are no common letters #
# print “No common characters". #
# Program Author : Happi Yvan <[email protected]> #
# Creation Date : October 30, 2019 #
# #
############################################################################################
from collections import Counter
def find_common_chars(str1: str, str2: str) -> dict:
data = {'found': False, 'info': ''}
d1 = Counter(str1)
d2 = Counter(str2)
common_dict = d1 & d2
if len(common_dict) == 0:
data['info'] = 'No common characters'
return data
data['found'] = True
# list of common elements
common_chars = list(common_dict.elements())
common_chars = sorted(common_chars)
data['data'] = ''.join(common_chars)
return data
if __name__ == "__main__":
str1 = 'Python'
str2 = 'PHP'
data_info = find_common_chars(str1=str1, str2=str2)
if data_info['found']:
print(f"Two strings: '{str1}' and '{str2}': {data_info['data']}")
else:
print(f"Two strings: '{str1}' and '{str2}': {data_info['info']}")
str1 = 'Java'
str2 = 'PHP'
data_info = find_common_chars(str1=str1, str2=str2)
if data_info['found']:
print(f"Two strings: '{str1}' and '{str2}': {data_info['data']}")
else:
print(f"Two strings: '{str1}' and '{str2}': {data_info['info']}")
|
py | 1a3a1d90dfefc8a23568af35ac4106ab01586417 | """
Copyright 2021 Inmanta
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Contact: [email protected]
"""
from setuptools import setup, find_packages
from os import path
requires = [
'inmanta-core',
'intervaltree'
]
# read the contents of your README file
this_directory = path.abspath(path.dirname(__file__))
with open(path.join(this_directory, 'README.md'), encoding='utf-8') as f:
long_description = f.read()
setup(
name="inmantals",
package_dir={"": "src"},
packages=find_packages("src"),
install_requires=requires,
version="1.2.0",
description="Inmanta Language Server",
long_description=long_description,
long_description_content_type='text/markdown',
author="Inmanta",
author_email="[email protected]",
license="Apache Software License",
url="https://github.com/inmanta/vscode-inmanta",
keywords=["ide", "language-server", "vscode", "inmanta"],
classifiers=["Development Status :: 5 - Production/Stable",
"Intended Audience :: Developers",
"Intended Audience :: Telecommunications Industry",
"License :: OSI Approved :: Apache Software License",
"Operating System :: OS Independent",
"Topic :: System :: Systems Administration",
"Topic :: Utilities"],
entry_points={
'console_scripts': [
'inmanta-language-server-tcp = inmantals.tcpserver:main',
],
},
)
|
py | 1a3a1dd5096381691d086849cb9f68f6641518ba | # Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import os
# import all class inside framework into fluid module
from . import framework
from .framework import *
# import all class inside executor into fluid module
from . import executor
from .executor import *
from . import data_feed_desc
from .data_feed_desc import *
from . import dataset
from .dataset import *
from . import trainer_desc
from . import inferencer
from . import io
from . import evaluator
from . import initializer
from . import layers
from . import dygraph
from . import contrib
from . import nets
from . import optimizer
from . import backward
from .backward import gradients
from . import regularizer
from . import average
from . import metrics
from . import transpiler
from . import incubate
from . import distribute_lookup_table
from .param_attr import ParamAttr, WeightNormParamAttr
from .data_feeder import DataFeeder
from .core import LoDTensor, LoDTensorArray, CPUPlace, CUDAPlace, CUDAPinnedPlace, Scope, _Scope
from .incubate import fleet
from .incubate import data_generator
from .transpiler import DistributeTranspiler, \
memory_optimize, release_memory, DistributeTranspilerConfig
from .lod_tensor import create_lod_tensor, create_random_int_lodtensor
from . import clip
from . import dygraph_grad_clip
from . import profiler
from . import unique_name
from . import recordio_writer
from . import parallel_executor
from .parallel_executor import *
from . import compiler
from .compiler import *
from paddle.fluid.layers.math_op_patch import monkey_patch_variable
from . import install_check
from .dygraph.nn import *
from .dygraph.layers import *
Tensor = LoDTensor
__all__ = framework.__all__ + executor.__all__ + \
trainer_desc.__all__ + inferencer.__all__ + transpiler.__all__ + \
parallel_executor.__all__ + lod_tensor.__all__ + \
data_feed_desc.__all__ + compiler.__all__ + backward.__all__ + [
'io',
'initializer',
'layers',
'contrib',
'dygraph',
'transpiler',
'nets',
'optimizer',
'learning_rate_decay',
'backward',
'regularizer',
'LoDTensor',
'LoDTensorArray',
'CPUPlace',
'CUDAPlace',
'CUDAPinnedPlace',
'Tensor',
'ParamAttr',
'WeightNormParamAttr',
'DataFeeder',
'clip',
'dygraph_grad_clip',
'profiler',
'unique_name',
'recordio_writer',
'Scope',
'install_check',
]
def __bootstrap__():
"""
Enable reading gflags from environment variables.
Returns:
None
"""
import sys
import os
import platform
from . import core
in_test = 'unittest' in sys.modules
try:
num_threads = int(os.getenv('OMP_NUM_THREADS', '1'))
except ValueError:
num_threads = 1
if num_threads > 1:
print(
'WARNING: OMP_NUM_THREADS set to {0}, not 1. The computation '
'speed will not be optimized if you use data parallel. It will '
'fail if this PaddlePaddle binary is compiled with OpenBlas since'
' OpenBlas does not support multi-threads.'.format(num_threads),
file=sys.stderr)
print('PLEASE USE OMP_NUM_THREADS WISELY.', file=sys.stderr)
os.environ['OMP_NUM_THREADS'] = str(num_threads)
sysstr = platform.system()
read_env_flags = [
'check_nan_inf', 'benchmark', 'eager_delete_scope',
'initial_cpu_memory_in_mb', 'init_allocated_mem', 'free_idle_memory',
'paddle_num_threads', "dist_threadpool_size", 'eager_delete_tensor_gb',
'fast_eager_deletion_mode', 'memory_fraction_of_eager_deletion',
'allocator_strategy', 'reader_queue_speed_test_mode',
'print_sub_graph_dir', 'pe_profile_fname', 'inner_op_parallelism',
'enable_parallel_graph', 'fuse_parameter_groups_size',
'multiple_of_cupti_buffer_size', 'fuse_parameter_memory_size',
'tracer_profile_fname', 'dygraph_debug'
]
if 'Darwin' not in sysstr:
read_env_flags.append('use_pinned_memory')
if os.name != 'nt':
read_env_flags.append('cpu_deterministic')
if core.is_compiled_with_mkldnn():
read_env_flags.append('use_mkldnn')
if core.is_compiled_with_ngraph():
read_env_flags.append('use_ngraph')
if core.is_compiled_with_dist():
#env for rpc
read_env_flags.append('rpc_deadline')
read_env_flags.append('rpc_server_profile_path')
read_env_flags.append('enable_rpc_profiler')
read_env_flags.append('rpc_send_thread_num')
read_env_flags.append('rpc_get_thread_num')
read_env_flags.append('rpc_prefetch_thread_num')
read_env_flags.append('rpc_disable_reuse_port')
# env for communicator
read_env_flags.append('communicator_independent_recv_thread')
read_env_flags.append('communicator_send_queue_size')
read_env_flags.append('communicator_min_send_grad_num_before_recv')
read_env_flags.append('communicator_thread_pool_size')
read_env_flags.append('communicator_max_merge_var_num')
read_env_flags.append('communicator_fake_rpc')
read_env_flags.append('communicator_send_wait_times')
if core.is_compiled_with_brpc():
read_env_flags.append('max_body_size')
#set brpc max body size
os.environ['FLAGS_max_body_size'] = "2147483647"
if core.is_compiled_with_cuda():
read_env_flags += [
'fraction_of_gpu_memory_to_use', 'initial_gpu_memory_in_mb',
'reallocate_gpu_memory_in_mb', 'cudnn_deterministic',
'enable_cublas_tensor_op_math', 'conv_workspace_size_limit',
'cudnn_exhaustive_search', 'selected_gpus', 'sync_nccl_allreduce',
'limit_of_tmp_allocation',
'times_excess_than_required_tmp_allocation',
'enable_inplace_whitelist', 'cudnn_batchnorm_spatial_persistent'
]
core.init_gflags([sys.argv[0]] +
["--tryfromenv=" + ",".join(read_env_flags)])
core.init_glog(sys.argv[0])
# don't init_p2p when in unittest to save time.
core.init_devices(not in_test)
# TODO(panyx0718): Avoid doing complex initialization logic in __init__.py.
# Consider paddle.init(args) or paddle.main(args)
monkey_patch_variable()
__bootstrap__()
|
py | 1a3a1ebea23549497923ceaca45b0beed11946f4 | #!/usr/bin/python3
# -*- coding: utf-8 -*-
import logging
import sys
import time
import _ssl
from sleekxmpp import ClientXMPP
import config
import events
from common import VERSION
class IdleBot(ClientXMPP):
def __init__(self, jid, password, rooms, nick):
ClientXMPP.__init__(self, jid, password)
self.ssl_version = _ssl.PROTOCOL_TLSv1_2
self.rooms = rooms
self.nick = nick
self.add_event_handler('session_start', self.session_start)
self.add_event_handler('groupchat_message', self.muc_message)
self.add_event_handler('disconnected', self.disconnected)
self.add_event_handler('presence_error', self.disconnected)
self.add_event_handler('session_end', self.disconnected)
self.priority = 0
self.status = None
self.show = None
self.logger = logging.getLogger(__name__)
for room in self.rooms:
self.add_event_handler('muc::%s::got_offline' % room, self.muc_offline)
def talked_to_me(self, text):
return text[:len(self.nick)].lower() == self.nick.lower()
def disconnected(self, _):
self.logger.warn("Disconnected! dbg: {}".format(str(_)))
self.disconnect(wait=True)
def session_start(self, _):
self.get_roster()
self.send_presence(ppriority=self.priority, pstatus=self.status, pshow=self.show)
for room in self.rooms:
self.logger.info('%s: joining' % room)
ret = self.plugin['xep_0045'].joinMUC(
room,
self.nick,
wait=True
)
self.logger.info('%s: joined with code %s' % (room, ret))
def muc_message(self, msg_obj):
"""
Handle muc messages, return if irrelevant content or die by hangup.
:param msg_obj:
:return:
"""
# don't talk to yourself
if msg_obj['mucnick'] == self.nick or 'groupchat' != msg_obj['type']:
return False
elif self.talked_to_me(msg_obj['body']) and 'hangup' in msg_obj['body']:
self.logger.warn("got 'hangup' from '%s': '%s'" % (
msg_obj['mucnick'], msg_obj['body']
))
self.hangup()
return False
# elif msg_obj['mucnick'] in config.runtimeconf_get("other_bots", ()):
# self.logger.debug("not talking to the other bot named {}".format( msg_obj['mucnick']))
# return False
else:
return True
def muc_offline(self, msg_obj):
if 'muc' in msg_obj.values:
room = msg_obj.values['muc']['room']
user = msg_obj.values['muc']['nick']
if user == config.conf_get('bot_nickname'):
self.logger.warn("Left my room, rejoin")
self.plugin['xep_0045'].joinMUC(
room,
self.nick,
wait=True
)
def hangup(self):
"""
disconnect and exit
"""
self.disconnect(wait=True)
def start(botclass, active=False):
logging.basicConfig(
level=config.conf_get('loglevel'),
format=sys.argv[0] + ' %(asctime)s %(levelname).1s %(funcName)-15s %(message)s'
)
logger = logging.getLogger(__name__)
logger.info(VERSION)
jid = config.conf_get('jid')
if '/' not in jid:
jid = '%s/%s' % (jid, botclass.__name__)
bot = botclass(
jid=jid,
password=config.conf_get('password'),
rooms=config.conf_get('rooms'),
nick=config.conf_get('bot_nickname')
)
bot.connect()
bot.register_plugin('xep_0045')
bot.register_plugin('xep_0199', {'keepalive': True})
bot.register_plugin('xep_0308')
bot.process()
config.runtimeconf_set('start_time', -time.time())
if active:
pass
events.event_loop.start()
if '__main__' == __name__:
start(IdleBot)
|
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.