update
Browse files- README.md +1 -1
- data/UTS_Text_v1.txt +0 -0
- eval.py +18 -0
- generate_dataset.py +12 -6
README.md
CHANGED
@@ -39,7 +39,7 @@ task_categories:
|
|
39 |
|
40 |
The UTS_Text_v1 dataset is a collection of 10,000 sentences sourced from various news articles.
|
41 |
|
42 |
-
Out of the 10,000 sentences in the dataset, 5,000 sentences have a length
|
43 |
|
44 |
### Dataset Summary
|
45 |
|
|
|
39 |
|
40 |
The UTS_Text_v1 dataset is a collection of 10,000 sentences sourced from various news articles.
|
41 |
|
42 |
+
Out of the 10,000 sentences in the dataset, 5,000 sentences have a length ranging from 50 to 150, while the other 5,000 sentences have a length ranging from 20 to 50. This distribution of sentence lengths provides a diverse range of text samples that can be used to train and test natural language processing models.
|
43 |
|
44 |
### Dataset Summary
|
45 |
|
data/UTS_Text_v1.txt
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
eval.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_dataset
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
|
4 |
+
dataset = load_dataset("undertheseanlp/UTS_Text_v1")
|
5 |
+
sentences = dataset["train"]["text"]
|
6 |
+
|
7 |
+
# compute histogram of sentence lengths with bin size = 10
|
8 |
+
lengths = [len(s) for s in sentences]
|
9 |
+
plt.hist(lengths, bins=range(0, max(lengths), 10))
|
10 |
+
plt.show()
|
11 |
+
|
12 |
+
# n_sample = 0
|
13 |
+
# for s in sentences:
|
14 |
+
# if len(s) > 150:
|
15 |
+
# print(s)
|
16 |
+
# n_sample += 1
|
17 |
+
# if n_sample == 10:
|
18 |
+
# break
|
generate_dataset.py
CHANGED
@@ -3,17 +3,23 @@ from underthesea.file_utils import DATASETS_FOLDER
|
|
3 |
import random
|
4 |
|
5 |
random.seed(10)
|
6 |
-
# sampling data
|
7 |
text_file = join(DATASETS_FOLDER, "VNESES", "VNESEScorpus.txt")
|
8 |
with open(text_file) as f:
|
9 |
lines = f.read().splitlines()
|
10 |
NUM_LONG_TOKENS = 50
|
11 |
NUM_SHORT_TOKENS = 20
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
# get random 1000 lines
|
18 |
random_long_lines = random.sample(long_lines, 5000)
|
19 |
for line in random_long_lines[:20]:
|
|
|
3 |
import random
|
4 |
|
5 |
random.seed(10)
|
|
|
6 |
text_file = join(DATASETS_FOLDER, "VNESES", "VNESEScorpus.txt")
|
7 |
with open(text_file) as f:
|
8 |
lines = f.read().splitlines()
|
9 |
NUM_LONG_TOKENS = 50
|
10 |
NUM_SHORT_TOKENS = 20
|
11 |
+
NUM_MAX_TOKENS = 150
|
12 |
+
|
13 |
+
|
14 |
+
def longline_conditions(line):
|
15 |
+
if len(line) < NUM_LONG_TOKENS or len(line) > NUM_MAX_TOKENS:
|
16 |
+
return False
|
17 |
+
if not (line[0].isupper() and line[-1] == "."):
|
18 |
+
return False
|
19 |
+
return True
|
20 |
+
|
21 |
+
|
22 |
+
long_lines = [line for line in lines if longline_conditions(line)]
|
23 |
# get random 1000 lines
|
24 |
random_long_lines = random.sample(long_lines, 5000)
|
25 |
for line in random_long_lines[:20]:
|