Datasets:

ArXiv:
File size: 11,036 Bytes
20adcf1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
from abc import abstractmethod
from typing import (
    Any,
    Dict,
    List,
    Union,
)

from .artifact import Artifact
from .dataclass import (
    AbstractField,
)
from .deprecation_utils import deprecation
from .error_utils import Documentation, UnitxtWarning
from .stream import Stream
from .type_utils import Type, isoftype, parse_type_string, to_type_string


@deprecation(
    version="2.0.0",
    msg="use regular type instead of strings (e.g Dict[str] instead of 'Dict[str]')",
)
def parse_string_types_instead_of_actual_objects(obj):
    return parse_type_string(obj)

class Metric(Artifact):
    main_score: str = AbstractField()
    # Override 'prediction_type' with the expected type of predictions
    # and references.  Example: "List[str]", "List[Dict]"", "string".
    # If left with default None, a warning will be displayed.
    # In future versions of unitxt, this will be an error.
    prediction_type: Union[Type, str] = Any

    # Standard metrics can receive multiple references per predictions (in a list)
    # Some metrics support only a single reference per prediction (one element in the list)
    single_reference_per_prediction: bool = False

    #
    # Used to add a prefix to all score, except the "score_name" and "score" fields.
    # This is used to distinguish two scores of the same metrics, operating on different fields of the task
    #
    score_prefix: str = ""

    def prepare_args(self):
        super().prepare_args()
        if isinstance(self.prediction_type, str):
            self.prediction_type = parse_string_types_instead_of_actual_objects(
                self.prediction_type
            )

    @classmethod
    def process_data_after_load(cls, data):
        if "prediction_type" in data:
            data["prediction_type"] = parse_type_string(data["prediction_type"])
        return data

    def process_data_before_dump(self, data):
        if "prediction_type" in data:
            if not isinstance(data["prediction_type"], str):
                data["prediction_type"] = to_type_string(data["prediction_type"])
        return data

    def _add_score_prefix(self, score_name):
        return (
            self.score_prefix + score_name
            if score_name not in ["score", "score_name", "num_of_instances"]
            else score_name
        )

    def _add_score_prefixes_to_score_dict_and_check_against_existing_scores(
        self, scores: Dict[str, Any], existing_scores: Dict[str, Any]
    ) -> Dict[str, Any]:
        new_scores = {}
        for score_name, score in scores.items():
            score_with_prefix = self._add_score_prefix(score_name)
            new_scores[score_with_prefix] = (
                score if score_name not in ["score_name"] else self.score_prefix + score
            )
        for new_score_name in new_scores:
            if new_score_name in ["score", "score_name", "num_of_instances"]:
                continue
            if new_score_name in existing_scores:
                UnitxtWarning(
                    message=f"Metric '{new_score_name}' that has just been evaluated to {new_scores[new_score_name]}, is already recorded "
                    f"to have value {existing_scores[new_score_name]} by a previous metric evaluation on this instance or stream. "
                    f"To avoid overwriting the existing value, add a score_prefix to the metric name (e.g. score_prefix='my_second_' , "
                    f"which will yield, in this case, a score named: 'my_second_{new_score_name}')",
                    additional_info_id=Documentation.MULTIPLE_METRICS_OUTPUTS,
                )
        return new_scores

    def _validate_references_and_prediction(self, references, predictions):
        if not isoftype(predictions, List[Any]):
            raise ValueError(
                f"Metric {self.get_metric_name()} should receive a list of predictions {self.get_metric_name()}.  Received predictions of type {type(predictions)}: {predictions}"
            )

        if not isoftype(references, List[Any]):
            raise ValueError(
                f"Metric {self.get_metric_name()} should receive a list of predictions. Received references of type {type(references)}: {references}"
            )

        if len(references) != len(predictions):
            raise ValueError(
                f"references size ({len(references)})"
                f" doesn't mach predictions size ({len(references)})."
            )

        for reference in references:
            self._validate_reference(reference)

        for prediction in predictions:
            self._validate_prediction(prediction)

    def _validate_prediction(self, prediction):
        if not isoftype(prediction, self.prediction_type):
            raise ValueError(
                f"Each prediction is expected to be of type '{to_type_string(self.prediction_type)}' in {self.get_metric_name()} metric. Received prediction of type {type(prediction)}: {prediction}"
            )

    def _validate_reference(self, reference):
        if not isoftype(reference, List[Any]):
            raise ValueError(
                f"Expecting a list of references for each prediction in {self.get_metric_name()} metric. Received reference of type {type(reference)}: {reference}"
            )
        if self.single_reference_per_prediction and not len(reference) == 1:
            raise ValueError(
                f"Expecting a list with a single reference per prediction in {self.get_metric_name()} metric. Received a list with multiple references: {reference}"
            )
        for ref in reference:
            if not isoftype(ref, self.prediction_type):
                raise ValueError(
                    f"Each reference is expected to be of type '{to_type_string(self.prediction_type)}' in {self.get_metric_name()} metric. Received reference of type {type(ref)}: {ref}"
                )

    def get_metric_name(self):
        if self.__id__ is not None:
            return self.__id__
        return self.__class__.__name__

    def consume_stream(self, stream: Stream):
        references = []
        predictions = []
        additional_inputs = []
        instances = []
        for instance in stream:
            instance = self.verify_instance(instance)
            references.append(instance["references"])
            predictions.append(instance["prediction"])
            additional_inputs.append(
                instance["additional_inputs"] if "additional_inputs" in instance else {}
            )
            instances.append(instance)
        return predictions, references, additional_inputs, instances

    @staticmethod
    def update_instance_scores(instances, instances_scores: List[Dict[str, Any]]):
        for instance, new_scores in zip(instances, instances_scores):
            if "score" not in instance:
                instance["score"] = {}
            scores = instance["score"]
            if "instance" not in scores:
                scores["instance"] = {}
            scores["instance"].update(new_scores)

    @staticmethod
    def set_global_score(instances, global_score: Dict[str, Any]):
        for instance in instances:
            if "score" not in instance:
                instance["score"] = {}
            scores = instance["score"]
            if "global" not in scores:
                scores["global"] = {}
            scores["global"] = global_score

    @abstractmethod
    def disable_confidence_interval_calculation(self):
        pass

    # update instance["score"]["global"] with the global_score just computed for the
    # current metric.  global_score contains "score" and "score_name" fields that reflect
    # (the main_score of) the current metric. If CI was computed for global_score, then global_score
    # also contains "score_ci_low" and "score_ci_high" that reflect (the main_score of) the current metric.
    # A simple python-dictionary-update adds new fields to instance["score"]["global"], and also replaces the values
    # of its fields "score" and "score_name" (and "score_ci_low", "score_ci_high" if applicable),
    # to reflect the current metric, overwriting previous metrics' settings of these fields
    # (if any previous metric exists).
    # When global_score does NOT contain ci score (because CI was not computed for the current metric), but
    # one of the previous metrics computed did have, the last of such previous metrics set the values in
    # fields "score_ci_low" and "score_ci_high" in instance["score"]["global"] to reflect its
    # (the previous metric's) CI scores.
    # Because CI is not computed for the current metric, global_score does not contain fields "score_ci_low" and
    # "score_ci_high" to overwrite the ones existing in instance["score"]["global"], and these might remain in
    # instance["score"]["global"], but their values, that are not associated with the current metric, are,
    # therefore, not consistent with "score_name".
    # In such a case, following the python-dictionary-update, we pop out fields "score_ci_low" and
    # "score_ci_high" from instance["score"]["global"], so that now all the fields "score.." in
    # instance["score"]["global"] are consistent with the current metric: The metric that is named
    # instance["score"]["global"]["score_name"], its score shows in
    # field instance["score"]["global"]["score"], and it does not have ci_scores,
    # which is also reflected in the absence of fields "score_ci_low" and "score_ci_high" from instance["score"]["global"].
    # If ci IS computed for the current metric, global_score contains "score_ci_low" and "score_ci_high", and these overwrite
    # the ones existing in instance["score"]["global"] by the simple python-dictionary-update, and no need for any further fixeup.
    def update_and_adjust_global_score(
        self, instance: Dict[str, Any], global_score: dict
    ):
        for score_name in global_score:
            if score_name in [
                "score",
                "score_name",
                "score_ci_low",
                "score_ci_high",
                "num_of_instances",
            ]:
                continue
            if score_name in instance["score"]["global"]:
                UnitxtWarning(
                    message=f"Global metric '{score_name}' that has just been evaluated to {global_score[score_name]}, is already recorded "
                    f"to have value {instance['score']['global'][score_name]} by a previous metric evaluation on this stream. "
                    f"To avoid overwriting the value, add a score_prefix to the metric (e.g. score_prefix='my_{score_name}'.",
                    additional_info_id=Documentation.MULTIPLE_METRICS_OUTPUTS,
                )
        instance["score"]["global"].update(global_score)
        for score_ci in ["score_ci_low", "score_ci_high"]:
            if score_ci in global_score:
                continue
            if score_ci in instance["score"]["global"]:
                instance["score"]["global"].pop(score_ci)