File size: 34,561 Bytes
ea1fb53 cc87a47 ea1fb53 fdbdc43 cc87a47 ea1fb53 fdbdc43 ea1fb53 fdbdc43 cc87a47 1a85f63 4e61338 ea1fb53 cc87a47 f1c3297 cc87a47 ea1fb53 8e99545 cc87a47 f1c3297 009cdd3 ba7196e df63358 85300cd 33bd61d c096080 cc87a47 ba7196e cc87a47 ba7196e c096080 ba7196e cc87a47 e9c817b cc87a47 fdbdc43 cc87a47 ea1fb53 fdbdc43 ea1fb53 c096080 ea1fb53 df63358 ea1fb53 fdbdc43 ea1fb53 c096080 fdbdc43 c096080 8e99545 df63358 cc87a47 009cdd3 cc87a47 aac4b68 cc87a47 aac4b68 cc87a47 fdbdc43 cc87a47 e9c817b 009cdd3 cc87a47 aac4b68 cc87a47 009cdd3 cc87a47 aac4b68 cc87a47 009cdd3 cc87a47 aac4b68 cc87a47 ea1fb53 fdbdc43 ea1fb53 c096080 ea1fb53 8e99545 ea1fb53 fdbdc43 ea1fb53 fdbdc43 ea1fb53 8e99545 ea1fb53 c096080 8e99545 ea1fb53 8e99545 ea1fb53 fdbdc43 ea1fb53 fdbdc43 ea1fb53 8e99545 ea1fb53 c096080 8e99545 af22a0d e04f5f0 af22a0d 4e61338 33bd61d 22947dc 33bd61d 4e61338 33bd61d 22947dc 33bd61d 22947dc 4e61338 af22a0d f88c6c5 fdbdc43 f88c6c5 8e99545 f88c6c5 8e99545 f88c6c5 6f701a4 fdbdc43 6f701a4 c7691bd c096080 8e99545 c096080 fdbdc43 c096080 8e99545 c096080 8e99545 c096080 fdbdc43 c096080 8e99545 c096080 8e99545 c096080 fdbdc43 c096080 8e99545 c096080 8e99545 c096080 8e99545 c096080 8e99545 f1c3297 0b1ba24 f1c3297 85300cd f1c3297 85300cd f1c3297 0b1ba24 f1c3297 85300cd 0b1ba24 85300cd 22947dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 |
"""This section describes unitxt operators for structured data.
These operators are specialized in handling structured data like tables.
For tables, expected input format is:
.. code-block:: text
{
"header": ["col1", "col2"],
"rows": [["row11", "row12"], ["row21", "row22"], ["row31", "row32"]]
}
For triples, expected input format is:
.. code-block:: text
[[ "subject1", "relation1", "object1" ], [ "subject1", "relation2", "object2"]]
For key-value pairs, expected input format is:
.. code-block:: text
{"key1": "value1", "key2": value2, "key3": "value3"}
"""
import ast
import json
import random
from abc import ABC, abstractmethod
from typing import (
Any,
Dict,
List,
Optional,
Tuple,
)
import pandas as pd
from .augmentors import TypeDependentAugmentor
from .dict_utils import dict_get
from .error_utils import UnitxtWarning
from .operators import FieldOperator, InstanceOperator
from .random_utils import new_random_generator
from .serializers import ImageSerializer, TableSerializer
from .type_utils import isoftype
from .types import Table, ToolCall
from .utils import recursive_copy
def shuffle_columns(table: Table, seed=0) -> Table:
# extract header & rows from the dictionary
header = table.get("header", [])
rows = table.get("rows", [])
# shuffle the indices first
indices = list(range(len(header)))
random_generator = new_random_generator({"table": table, "seed": seed})
random_generator.shuffle(indices)
# shuffle the header & rows based on that indices
shuffled_header = [header[i] for i in indices]
shuffled_rows = [[row[i] for i in indices] for row in rows]
table["header"] = shuffled_header
table["rows"] = shuffled_rows
return table
def shuffle_rows(table: Table, seed=0) -> Table:
# extract header & rows from the dictionary
rows = table.get("rows", [])
# shuffle rows
random_generator = new_random_generator({"table": table, "seed": seed})
random_generator.shuffle(rows)
table["rows"] = rows
return table
class SerializeTable(ABC, TableSerializer):
"""TableSerializer converts a given table into a flat sequence with special symbols.
Output format varies depending on the chosen serializer. This abstract class defines structure of a typical table serializer that any concrete implementation should follow.
"""
seed: int = 0
shuffle_rows: bool = False
shuffle_columns: bool = False
def serialize(self, value: Table, instance: Dict[str, Any]) -> str:
value = recursive_copy(value)
if self.shuffle_columns:
value = shuffle_columns(table=value, seed=self.seed)
if self.shuffle_rows:
value = shuffle_rows(table=value, seed=self.seed)
return self.serialize_table(value)
# main method to serialize a table
@abstractmethod
def serialize_table(self, table_content: Dict) -> str:
pass
# method to process table header
def process_header(self, header: List):
pass
# method to process a table row
def process_row(self, row: List, row_index: int):
pass
# Concrete classes implementing table serializers
class SerializeTableAsIndexedRowMajor(SerializeTable):
"""Indexed Row Major Table Serializer.
Commonly used row major serialization format.
Format: col : col1 | col2 | col 3 row 1 : val1 | val2 | val3 | val4 row 2 : val1 | ...
"""
# main method that processes a table
# table_content must be in the presribed input format
def serialize_table(self, table_content: Dict) -> str:
# Extract headers and rows from the dictionary
header = table_content.get("header", [])
rows = table_content.get("rows", [])
assert header and rows, "Incorrect input table format"
# Process table header first
serialized_tbl_str = self.process_header(header) + " "
# Process rows sequentially starting from row 1
for i, row in enumerate(rows, start=1):
serialized_tbl_str += self.process_row(row, row_index=i) + " "
# return serialized table as a string
return serialized_tbl_str.strip()
# serialize header into a string containing the list of column names separated by '|' symbol
def process_header(self, header: List):
return "col : " + " | ".join(header)
# serialize a table row into a string containing the list of cell values separated by '|'
def process_row(self, row: List, row_index: int):
serialized_row_str = ""
row_cell_values = [
str(value) if isinstance(value, (int, float)) else value for value in row
]
serialized_row_str += " | ".join([str(value) for value in row_cell_values])
return f"row {row_index} : {serialized_row_str}"
class SerializeTableAsMarkdown(SerializeTable):
"""Markdown Table Serializer.
Markdown table format is used in GitHub code primarily.
Format:
.. code-block:: text
|col1|col2|col3|
|---|---|---|
|A|4|1|
|I|2|1|
...
"""
# main method that serializes a table.
# table_content must be in the presribed input format.
def serialize_table(self, table_content: Dict) -> str:
# Extract headers and rows from the dictionary
header = table_content.get("header", [])
rows = table_content.get("rows", [])
assert header and rows, "Incorrect input table format"
# Process table header first
serialized_tbl_str = self.process_header(header)
# Process rows sequentially starting from row 1
for i, row in enumerate(rows, start=1):
serialized_tbl_str += self.process_row(row, row_index=i)
# return serialized table as a string
return serialized_tbl_str.strip()
# serialize header into a string containing the list of column names
def process_header(self, header: List):
header_str = "|{}|\n".format("|".join(header))
header_str += "|{}|\n".format("|".join(["---"] * len(header)))
return header_str
# serialize a table row into a string containing the list of cell values
def process_row(self, row: List, row_index: int):
row_str = ""
row_str += "|{}|\n".format("|".join(str(cell) for cell in row))
return row_str
class SerializeTableAsDFLoader(SerializeTable):
"""DFLoader Table Serializer.
Pandas dataframe based code snippet format serializer.
Format(Sample):
.. code-block:: python
pd.DataFrame({
"name" : ["Alex", "Diana", "Donald"],
"age" : [26, 34, 39]
},
index=[0,1,2])
"""
# main method that serializes a table.
# table_content must be in the presribed input format.
def serialize_table(self, table_content: Dict) -> str:
# Extract headers and rows from the dictionary
header = table_content.get("header", [])
rows = table_content.get("rows", [])
assert header and rows, "Incorrect input table format"
# Fix duplicate columns, ensuring the first occurrence has no suffix
header = [
f"{col}_{header[:i].count(col)}" if header[:i].count(col) > 0 else col
for i, col in enumerate(header)
]
# Create a pandas DataFrame
df = pd.DataFrame(rows, columns=header)
# Generate output string in the desired format
data_dict = df.to_dict(orient="list")
return (
"pd.DataFrame({\n"
+ json.dumps(data_dict)[1:-1]
+ "},\nindex="
+ str(list(range(len(rows))))
+ ")"
)
class SerializeTableAsJson(SerializeTable):
"""JSON Table Serializer.
Json format based serializer.
Format(Sample):
.. code-block:: json
{
"0":{"name":"Alex","age":26},
"1":{"name":"Diana","age":34},
"2":{"name":"Donald","age":39}
}
"""
# main method that serializes a table.
# table_content must be in the presribed input format.
def serialize_table(self, table_content: Dict) -> str:
# Extract headers and rows from the dictionary
header = table_content.get("header", [])
rows = table_content.get("rows", [])
assert header and rows, "Incorrect input table format"
# Generate output dictionary
output_dict = {}
for i, row in enumerate(rows):
output_dict[i] = {header[j]: value for j, value in enumerate(row)}
# Convert dictionary to JSON string
return json.dumps(output_dict)
class SerializeTableAsHTML(SerializeTable):
"""HTML Table Serializer.
HTML table format used for rendering tables in web pages.
Format(Sample):
.. code-block:: html
<table>
<thead>
<tr><th>name</th><th>age</th><th>sex</th></tr>
</thead>
<tbody>
<tr><td>Alice</td><td>26</td><td>F</td></tr>
<tr><td>Raj</td><td>34</td><td>M</td></tr>
</tbody>
</table>
"""
# main method that serializes a table.
# table_content must be in the prescribed input format.
def serialize_table(self, table_content: Dict) -> str:
# Extract headers and rows from the dictionary
header = table_content.get("header", [])
rows = table_content.get("rows", [])
assert header and rows, "Incorrect input table format"
# Build the HTML table structure
serialized_tbl_str = "<table>\n"
serialized_tbl_str += self.process_header(header) + "\n"
serialized_tbl_str += self.process_rows(rows) + "\n"
serialized_tbl_str += "</table>"
return serialized_tbl_str.strip()
# serialize the header into an HTML <thead> section
def process_header(self, header: List) -> str:
header_html = " <thead>\n <tr>"
for col in header:
header_html += f"<th>{col}</th>"
header_html += "</tr>\n </thead>"
return header_html
# serialize the rows into an HTML <tbody> section
def process_rows(self, rows: List[List]) -> str:
rows_html = " <tbody>"
for row in rows:
rows_html += "\n <tr>"
for cell in row:
rows_html += f"<td>{cell}</td>"
rows_html += "</tr>"
rows_html += "\n </tbody>"
return rows_html
class SerializeTableAsConcatenation(SerializeTable):
"""Concat Serializer.
Concat all table content to one string of header and rows.
Format(Sample):
name age Alex 26 Diana 34
"""
def serialize_table(self, table_content: Dict) -> str:
# Extract headers and rows from the dictionary
header = table_content["header"]
rows = table_content["rows"]
assert header and rows, "Incorrect input table format"
# Process table header first
serialized_tbl_str = " ".join([str(i) for i in header])
# Process rows sequentially starting from row 1
for row in rows:
serialized_tbl_str += " " + " ".join([str(i) for i in row])
# return serialized table as a string
return serialized_tbl_str.strip()
class SerializeTableAsImage(SerializeTable):
_requirements_list = ["matplotlib", "pillow"]
def serialize_table(self, table_content: Dict) -> str:
raise NotImplementedError()
def serialize(self, value: Table, instance: Dict[str, Any]) -> str:
table_content = recursive_copy(value)
if self.shuffle_columns:
table_content = shuffle_columns(table=table_content, seed=self.seed)
if self.shuffle_rows:
table_content = shuffle_rows(table=table_content, seed=self.seed)
import io
import matplotlib.pyplot as plt
import pandas as pd
from PIL import Image
# Extract headers and rows from the dictionary
header = table_content.get("header", [])
rows = table_content.get("rows", [])
assert header and rows, "Incorrect input table format"
# Fix duplicate columns, ensuring the first occurrence has no suffix
header = [
f"{col}_{header[:i].count(col)}" if header[:i].count(col) > 0 else col
for i, col in enumerate(header)
]
# Create a pandas DataFrame
df = pd.DataFrame(rows, columns=header)
# Fix duplicate columns, ensuring the first occurrence has no suffix
df.columns = [
f"{col}_{i}" if df.columns.duplicated()[i] else col
for i, col in enumerate(df.columns)
]
# Create a matplotlib table
plt.rcParams["font.family"] = "Serif"
fig, ax = plt.subplots(figsize=(len(header) * 1.5, len(rows) * 0.5))
ax.axis("off") # Turn off the axes
table = pd.plotting.table(ax, df, loc="center", cellLoc="center")
table.auto_set_column_width(col=range(len(df.columns)))
table.scale(1.5, 1.5)
# Save the plot to a BytesIO buffer
buf = io.BytesIO()
plt.savefig(buf, format="png", bbox_inches="tight", dpi=150)
plt.close(fig) # Close the figure to free up memory
buf.seek(0)
# Load the image from the buffer using PIL
image = Image.open(buf)
return ImageSerializer().serialize({"image": image, "format": "png"}, instance)
# truncate cell value to maximum allowed length
def truncate_cell(cell_value, max_len):
if cell_value is None:
return None
if isinstance(cell_value, int) or isinstance(cell_value, float):
return None
if cell_value.strip() == "":
return None
if len(cell_value) > max_len:
return cell_value[:max_len]
return None
class TruncateTableCells(InstanceOperator):
"""Limit the maximum length of cell values in a table to reduce the overall length.
Args:
max_length (int) - maximum allowed length of cell values
For tasks that produce a cell value as answer, truncating a cell value should be replicated
with truncating the corresponding answer as well. This has been addressed in the implementation.
"""
max_length: int = 15
table: str = None
text_output: Optional[str] = None
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
table = dict_get(instance, self.table)
answers = []
if self.text_output is not None:
answers = dict_get(instance, self.text_output)
self.truncate_table(table_content=table, answers=answers)
return instance
# truncate table cells
def truncate_table(self, table_content: Dict, answers: Optional[List]):
cell_mapping = {}
# One row at a time
for row in table_content.get("rows", []):
for i, cell in enumerate(row):
truncated_cell = truncate_cell(cell, self.max_length)
if truncated_cell is not None:
cell_mapping[cell] = truncated_cell
row[i] = truncated_cell
# Update values in answer list to truncated values
if answers is not None:
for i, case in enumerate(answers):
answers[i] = cell_mapping.get(case, case)
class TruncateTableRows(FieldOperator):
"""Limits table rows to specified limit by removing excess rows via random selection.
Args:
rows_to_keep (int): number of rows to keep.
"""
rows_to_keep: int = 10
def process_value(self, table: Any) -> Any:
return self.truncate_table_rows(table_content=table)
def truncate_table_rows(self, table_content: Dict):
# Get rows from table
rows = table_content.get("rows", [])
num_rows = len(rows)
# if number of rows are anyway lesser, return.
if num_rows <= self.rows_to_keep:
return table_content
# calculate number of rows to delete, delete them
rows_to_delete = num_rows - self.rows_to_keep
# Randomly select rows to be deleted
deleted_rows_indices = random.sample(range(len(rows)), rows_to_delete)
remaining_rows = [
row for i, row in enumerate(rows) if i not in deleted_rows_indices
]
table_content["rows"] = remaining_rows
return table_content
class GetNumOfTableCells(FieldOperator):
"""Get the number of cells in the given table."""
def process_value(self, table: Any) -> Any:
num_of_rows = len(table.get("rows"))
num_of_cols = len(table.get("header"))
return num_of_rows * num_of_cols
class SerializeTableRowAsText(InstanceOperator):
"""Serializes a table row as text.
Args:
fields (str) - list of fields to be included in serialization.
to_field (str) - serialized text field name.
max_cell_length (int) - limits cell length to be considered, optional.
"""
fields: str
to_field: str
max_cell_length: Optional[int] = None
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
linearized_str = ""
for field in self.fields:
value = dict_get(instance, field)
if self.max_cell_length is not None:
truncated_value = truncate_cell(value, self.max_cell_length)
if truncated_value is not None:
value = truncated_value
linearized_str = linearized_str + field + " is " + str(value) + ", "
instance[self.to_field] = linearized_str
return instance
class SerializeTableRowAsList(InstanceOperator):
"""Serializes a table row as list.
Args:
fields (str) - list of fields to be included in serialization.
to_field (str) - serialized text field name.
max_cell_length (int) - limits cell length to be considered, optional.
"""
fields: str
to_field: str
max_cell_length: Optional[int] = None
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
linearized_str = ""
for field in self.fields:
value = dict_get(instance, field)
if self.max_cell_length is not None:
truncated_value = truncate_cell(value, self.max_cell_length)
if truncated_value is not None:
value = truncated_value
linearized_str = linearized_str + field + ": " + str(value) + ", "
instance[self.to_field] = linearized_str
return instance
class SerializeTriples(FieldOperator):
"""Serializes triples into a flat sequence.
Sample input in expected format:
[[ "First Clearing", "LOCATION", "On NYS 52 1 Mi. Youngsville" ], [ "On NYS 52 1 Mi. Youngsville", "CITY_OR_TOWN", "Callicoon, New York"]]
Sample output:
First Clearing : LOCATION : On NYS 52 1 Mi. Youngsville | On NYS 52 1 Mi. Youngsville : CITY_OR_TOWN : Callicoon, New York
"""
def process_value(self, tripleset: Any) -> Any:
return self.serialize_triples(tripleset)
def serialize_triples(self, tripleset) -> str:
return " | ".join(
f"{subj} : {rel.lower()} : {obj}" for subj, rel, obj in tripleset
)
class SerializeKeyValPairs(FieldOperator):
"""Serializes key, value pairs into a flat sequence.
Sample input in expected format: {"name": "Alex", "age": 31, "sex": "M"}
Sample output: name is Alex, age is 31, sex is M
"""
def process_value(self, kvpairs: Any) -> Any:
return self.serialize_kvpairs(kvpairs)
def serialize_kvpairs(self, kvpairs) -> str:
serialized_str = ""
for key, value in kvpairs.items():
serialized_str += f"{key} is {value}, "
# Remove the trailing comma and space then return
return serialized_str[:-2]
class ListToKeyValPairs(InstanceOperator):
"""Maps list of keys and values into key:value pairs.
Sample input in expected format: {"keys": ["name", "age", "sex"], "values": ["Alex", 31, "M"]}
Sample output: {"name": "Alex", "age": 31, "sex": "M"}
"""
fields: List[str]
to_field: str
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
keylist = dict_get(instance, self.fields[0])
valuelist = dict_get(instance, self.fields[1])
output_dict = {}
for key, value in zip(keylist, valuelist):
output_dict[key] = value
instance[self.to_field] = output_dict
return instance
class ConvertTableColNamesToSequential(FieldOperator):
"""Replaces actual table column names with static sequential names like col_0, col_1,...
.. code-block:: text
Sample input:
{
"header": ["name", "age"],
"rows": [["Alex", 21], ["Donald", 34]]
}
Sample output:
{
"header": ["col_0", "col_1"],
"rows": [["Alex", 21], ["Donald", 34]]
}
"""
def process_value(self, table: Any) -> Any:
table_input = recursive_copy(table)
return self.replace_header(table_content=table_input)
# replaces header with sequential column names
def replace_header(self, table_content: Dict) -> str:
# Extract header from the dictionary
header = table_content.get("header", [])
assert header, "Input table missing header"
new_header = ["col_" + str(i) for i in range(len(header))]
table_content["header"] = new_header
return table_content
class ShuffleTableRows(TypeDependentAugmentor):
"""Shuffles the input table rows randomly.
.. code-block:: text
Sample Input:
{
"header": ["name", "age"],
"rows": [["Alex", 26], ["Raj", 34], ["Donald", 39]],
}
Sample Output:
{
"header": ["name", "age"],
"rows": [["Donald", 39], ["Raj", 34], ["Alex", 26]],
}
"""
augmented_type = Table
seed = 0
def process_value(self, table: Any) -> Any:
table_input = recursive_copy(table)
return shuffle_rows(table_input, self.seed)
class ShuffleTableColumns(TypeDependentAugmentor):
"""Shuffles the table columns randomly.
.. code-block:: text
Sample Input:
{
"header": ["name", "age"],
"rows": [["Alex", 26], ["Raj", 34], ["Donald", 39]],
}
Sample Output:
{
"header": ["age", "name"],
"rows": [[26, "Alex"], [34, "Raj"], [39, "Donald"]],
}
"""
augmented_type = Table
seed = 0
def process_value(self, table: Any) -> Any:
table_input = recursive_copy(table)
return shuffle_columns(table_input, self.seed)
class LoadJson(FieldOperator):
failure_value: Any = None
allow_failure: bool = False
def process_value(self, value: str) -> Any:
if self.allow_failure:
try:
return json.loads(value)
except json.JSONDecodeError:
return self.failure_value
else:
return json.loads(value, strict=False)
class PythonCallProcessor(FieldOperator):
def process_value(self, value: str) -> ToolCall:
expr = ast.parse(value, mode="eval").body
function = expr.func.id
args = {}
for kw in expr.keywords:
args[kw.arg] = ast.literal_eval(kw.value)
# Handle positional args, if any
if expr.args:
args["_args"] = [ast.literal_eval(arg) for arg in expr.args]
return {"name": function, "arguments": args}
def extract_possible_json_str(text):
"""Extract potential JSON string from text by finding outermost braces/brackets."""
# Find first opening delimiter
start_positions = [pos for pos in [text.find("{"), text.find("[")] if pos != -1]
start = min(start_positions) if start_positions else 0
# Find last closing delimiter
end_positions = [pos for pos in [text.rfind("}"), text.rfind("]")] if pos != -1]
end = max(end_positions) if end_positions else len(text) - 1
return text[start : end + 1]
class ToolCallPostProcessor(FieldOperator):
failure_value: Any = None
allow_failure: bool = False
def process_value(self, value: str) -> ToolCall:
value = extract_possible_json_str(
value
) # clear tokens such as <tool_call> focusing on the call json itself
if self.allow_failure:
try:
result = json.loads(value)
except json.JSONDecodeError:
return self.failure_value
else:
result = json.loads(value, strict=False)
if isoftype(result, List[ToolCall]):
if len(result) > 1:
UnitxtWarning(f"More than one tool returned from model: {result}")
return self.failure_value
return result[0]
if not isoftype(result, ToolCall):
return self.failure_value
return result
class MultipleToolCallPostProcessor(FieldOperator):
failure_value: Any = None
allow_failure: bool = False
def process_value(self, value: str) -> List[ToolCall]:
if self.allow_failure:
try:
result = json.loads(value)
except json.JSONDecodeError:
return self.failure_value
else:
result = json.loads(value, strict=False)
if isoftype(result, List[ToolCall]):
return result
if not isoftype(result, ToolCall):
return self.failure_value
return [result]
class DumpJson(FieldOperator):
def process_value(self, value: str) -> str:
return json.dumps(value)
class MapHTMLTableToJSON(FieldOperator):
"""Converts HTML table format to the basic one (JSON).
JSON format:
.. code-block:: json
{
"header": ["col1", "col2"],
"rows": [["row11", "row12"], ["row21", "row22"], ["row31", "row32"]]
}
"""
_requirements_list = ["bs4"]
def process_value(self, table: Any) -> Any:
return self.convert_to_json(table_content=table)
def convert_to_json(self, table_content: str) -> Dict:
from bs4 import BeautifulSoup
soup = BeautifulSoup(table_content, "html.parser")
# Extract header
header = []
header_cells = soup.find("thead").find_all("th")
for cell in header_cells:
header.append(cell.get_text())
# Extract rows
rows = []
for row in soup.find("tbody").find_all("tr"):
row_data = []
for cell in row.find_all("td"):
row_data.append(cell.get_text())
rows.append(row_data)
# return dictionary
return {"header": header, "rows": rows}
class MapTableListsToStdTableJSON(FieldOperator):
"""Converts lists table format to the basic one (JSON).
JSON format:
.. code-block:: json
{
"header": ["col1", "col2"],
"rows": [["row11", "row12"], ["row21", "row22"], ["row31", "row32"]]
}
"""
def process_value(self, table: Any) -> Any:
return self.map_tablelists_to_stdtablejson_util(table_content=table)
def map_tablelists_to_stdtablejson_util(self, table_content: str) -> Dict:
return {"header": table_content[0], "rows": table_content[1:]}
class ConstructTableFromRowsCols(InstanceOperator):
"""Maps column and row field into single table field encompassing both header and rows.
field[0] = header string as List
field[1] = rows string as List[List]
field[2] = table caption string(optional)
"""
fields: List[str]
to_field: str
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
header = dict_get(instance, self.fields[0])
rows = dict_get(instance, self.fields[1])
if len(self.fields) >= 3:
caption = instance[self.fields[2]]
else:
caption = None
import ast
header_processed = ast.literal_eval(header)
rows_processed = ast.literal_eval(rows)
output_dict = {"header": header_processed, "rows": rows_processed}
if caption is not None:
output_dict["caption"] = caption
instance[self.to_field] = output_dict
return instance
class TransposeTable(TypeDependentAugmentor):
"""Transpose a table.
.. code-block:: text
Sample Input:
{
"header": ["name", "age", "sex"],
"rows": [["Alice", 26, "F"], ["Raj", 34, "M"], ["Donald", 39, "M"]],
}
Sample Output:
{
"header": [" ", "0", "1", "2"],
"rows": [["name", "Alice", "Raj", "Donald"], ["age", 26, 34, 39], ["sex", "F", "M", "M"]],
}
"""
augmented_type = Table
def process_value(self, table: Any) -> Any:
return self.transpose_table(table)
def transpose_table(self, table: Dict) -> Dict:
# Extract the header and rows from the table object
header = table["header"]
rows = table["rows"]
# Transpose the table by converting rows as columns and vice versa
transposed_header = [" "] + [str(i) for i in range(len(rows))]
transposed_rows = [
[header[i]] + [row[i] for row in rows] for i in range(len(header))
]
return {"header": transposed_header, "rows": transposed_rows}
class DuplicateTableRows(TypeDependentAugmentor):
"""Duplicates specific rows of a table for the given number of times.
Args:
row_indices (List[int]): rows to be duplicated
times(int): each row to be duplicated is to show that many times
"""
augmented_type = Table
row_indices: List[int] = []
times: int = 1
def process_value(self, table: Any) -> Any:
# Extract the header and rows from the table
header = table["header"]
rows = table["rows"]
# Duplicate only the specified rows
duplicated_rows = []
for i, row in enumerate(rows):
if i in self.row_indices:
duplicated_rows.extend(
[row] * self.times
) # Duplicate the selected rows
else:
duplicated_rows.append(row) # Leave other rows unchanged
# Return the new table with selectively duplicated rows
return {"header": header, "rows": duplicated_rows}
class DuplicateTableColumns(TypeDependentAugmentor):
"""Duplicates specific columns of a table for the given number of times.
Args:
column_indices (List[int]): columns to be duplicated
times(int): each column to be duplicated is to show that many times
"""
augmented_type = Table
column_indices: List[int] = []
times: int = 1
def process_value(self, table: Any) -> Any:
# Extract the header and rows from the table
header = table["header"]
rows = table["rows"]
# Duplicate the specified columns in the header
duplicated_header = []
for i, col in enumerate(header):
if i in self.column_indices:
duplicated_header.extend([col] * self.times)
else:
duplicated_header.append(col)
# Duplicate the specified columns in each row
duplicated_rows = []
for row in rows:
new_row = []
for i, value in enumerate(row):
if i in self.column_indices:
new_row.extend([value] * self.times)
else:
new_row.append(value)
duplicated_rows.append(new_row)
# Return the new table with selectively duplicated columns
return {"header": duplicated_header, "rows": duplicated_rows}
class InsertEmptyTableRows(TypeDependentAugmentor):
"""Inserts empty rows in a table randomly for the given number of times.
Args:
times(int) - how many times to insert
"""
augmented_type = Table
times: int = 0
def process_value(self, table: Any) -> Any:
# Extract the header and rows from the table
header = table["header"]
rows = table["rows"]
# Insert empty rows at random positions
for _ in range(self.times):
empty_row = [""] * len(
header
) # Create an empty row with the same number of columns
insert_pos = random.randint(
0, len(rows)
) # Get a random position to insert the empty row created
rows.insert(insert_pos, empty_row)
# Return the modified table
return {"header": header, "rows": rows}
class MaskColumnsNames(TypeDependentAugmentor):
"""Mask the names of tables columns with dummies "Col1", "Col2" etc."""
augmented_type = Table
def process_value(self, table: Any) -> Any:
masked_header = ["Col" + str(ind + 1) for ind in range(len(table["header"]))]
return {"header": masked_header, "rows": table["rows"]}
class ShuffleColumnsNames(TypeDependentAugmentor):
"""Shuffle table columns names to be displayed in random order."""
augmented_type = Table
def process_value(self, table: Any) -> Any:
shuffled_header = table["header"]
random.shuffle(shuffled_header)
return {"header": shuffled_header, "rows": table["rows"]}
class JsonStrToDict(FieldOperator):
"""Convert a Json string of representing key value as dictionary.
Ensure keys and values are strings, and there are no None values.
"""
def process_value(self, text: str) -> List[Tuple[str, str]]:
try:
dict_value = json.loads(text)
except Exception as e:
UnitxtWarning(
f"Unable to convert input text to json format in JsonStrToDict due to {e}. Text: {text}"
)
dict_value = {}
if not isoftype(dict_value, Dict[str, Any]):
UnitxtWarning(
f"Unable to convert input text to dictionary in JsonStrToDict. Text: {text}"
)
dict_value = {}
return {str(k): str(v) for k, v in dict_value.items() if v is not None}
|