Datasets:

ArXiv:
File size: 14,319 Bytes
c7691bd
785e9c6
4eb3906
df63358
6f701a4
4e61338
c7691bd
31312e4
009cdd3
8e99545
df63358
be9ddcf
6c76646
6f701a4
6c76646
 
6f701a4
6c76646
6f701a4
6c76646
6f701a4
 
6c76646
 
4eb3906
c7691bd
 
df63358
c7691bd
4eb3906
6f701a4
 
 
 
 
 
 
 
 
 
8e99545
009cdd3
64819f7
e04f5f0
6f701a4
e04f5f0
 
6f701a4
e04f5f0
 
 
 
785e9c6
e04f5f0
 
1a85f63
e04f5f0
 
 
785e9c6
64819f7
fdbdc43
 
 
64819f7
 
6f701a4
 
c7691bd
 
4eb3906
6f701a4
f8917e6
1a85f63
be9ddcf
 
 
 
8a5c6b5
 
4eb3906
6f701a4
d2c1791
 
 
6f701a4
 
d2c1791
 
 
6f701a4
 
be9ddcf
 
 
 
 
 
 
 
6f701a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be9ddcf
6f701a4
 
 
 
 
8f55dd1
 
 
 
 
 
e04f5f0
c7691bd
 
 
 
 
 
 
 
 
e04f5f0
 
 
6f701a4
d2c1791
 
 
 
6f701a4
d2c1791
 
 
 
6f701a4
 
 
 
 
 
 
 
d2c1791
785e9c6
6f701a4
785e9c6
d2c1791
 
785e9c6
e04f5f0
 
 
 
 
6f701a4
 
785e9c6
6f701a4
785e9c6
 
d2c1791
785e9c6
 
 
d2c1791
 
785e9c6
6f701a4
785e9c6
 
 
f8917e6
 
6f701a4
 
f8917e6
1a85f63
 
6f701a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e99545
df63358
 
 
31312e4
 
 
c552902
785e9c6
6f701a4
c552902
df63358
31312e4
 
 
 
 
 
 
 
 
 
 
 
785e9c6
31312e4
 
 
 
 
785e9c6
1a85f63
 
 
d2c1791
1a85f63
 
d2c1791
 
1a85f63
 
 
 
 
6f701a4
1a85f63
 
6f701a4
1a85f63
6f701a4
1a85f63
 
 
6f701a4
1a85f63
 
 
6f701a4
1a85f63
6f701a4
1a85f63
 
 
 
 
 
 
f8917e6
 
 
1a85f63
 
4e61338
 
 
 
 
 
 
 
 
 
 
 
6f701a4
009cdd3
22cd19f
c7691bd
6f701a4
4eb3906
009cdd3
c7691bd
be9ddcf
4eb3906
f352686
e04f5f0
f352686
 
 
 
 
 
22947dc
 
 
22cd19f
c7691bd
 
 
be9ddcf
 
 
 
 
 
 
c7691bd
 
 
 
 
 
22cd19f
6f701a4
af22a0d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
import warnings
from typing import Any, Dict, List, Optional, Union

from .artifact import fetch_artifact
from .deprecation_utils import deprecation
from .error_utils import Documentation, UnitxtError, UnitxtWarning, error_context
from .logging_utils import get_logger
from .metrics import MetricsList
from .operator import InstanceOperator
from .operators import ArtifactFetcherMixin
from .settings_utils import get_constants, get_settings
from .templates import Template
from .type_utils import (
    Type,
    get_args,
    get_origin,
    is_type_dict,
    isoftype,
    parse_type_dict,
    parse_type_string,
    to_type_dict,
    to_type_string,
    verify_required_schema,
)

constants = get_constants()
logger = get_logger()
settings = get_settings()


@deprecation(
    version="2.0.0",
    msg="use python type instead of type strings (e.g Dict[str] instead of 'Dict[str]')",
)
def parse_string_types_instead_of_actual_objects(obj):
    if isinstance(obj, dict):
        return parse_type_dict(obj)
    return parse_type_string(obj)


class Task(InstanceOperator, ArtifactFetcherMixin):
    """Task packs the different instance fields into dictionaries by their roles in the task.

    Args:
        input_fields (Union[Dict[str, str], List[str]]):
            Dictionary with string names of instance input fields and types of respective values.
            In case a list is passed, each type will be assumed to be Any.
        reference_fields (Union[Dict[str, str], List[str]]):
            Dictionary with string names of instance output fields and types of respective values.
            In case a list is passed, each type will be assumed to be Any.
        metrics (List[str]):
            List of names of metrics to be used in the task.
        prediction_type (Optional[str]):
            Need to be consistent with all used metrics. Defaults to None, which means that it will
            be set to Any.
        defaults (Optional[Dict[str, Any]]):
            An optional dictionary with default values for chosen input/output keys. Needs to be
            consistent with names and types provided in 'input_fields' and/or 'output_fields' arguments.
            Will not overwrite values if already provided in a given instance.

    The output instance contains three fields:
        1. "input_fields" whose value is a sub-dictionary of the input instance, consisting of all the fields listed in Arg 'input_fields'.
        2. "reference_fields" -- for the fields listed in Arg "reference_fields".
        3. "metrics" -- to contain the value of Arg 'metrics'
    """

    input_fields: Optional[Union[Dict[str, Type], Dict[str, str], List[str]]] = None
    reference_fields: Optional[Union[Dict[str, Type], Dict[str, str], List[str]]] = None
    inputs: Optional[Union[Dict[str, Type], Dict[str, str], List[str]]] = None
    outputs: Optional[Union[Dict[str, Type], Dict[str, str], List[str]]] = None
    metrics: List[str]
    prediction_type: Optional[Union[Type, str]] = None
    augmentable_inputs: List[str] = []
    defaults: Optional[Dict[str, Any]] = None
    default_template: Template = None

    def prepare_args(self):
        super().prepare_args()
        if isinstance(self.metrics, str):
            self.metrics = [self.metrics]

        if self.input_fields is not None and self.inputs is not None:
            raise UnitxtError(
                "Conflicting attributes: 'input_fields' cannot be set simultaneously with 'inputs'. Use only 'input_fields'",
                Documentation.ADDING_TASK,
            )
        if self.reference_fields is not None and self.outputs is not None:
            raise UnitxtError(
                "Conflicting attributes: 'reference_fields' cannot be set simultaneously with 'output'. Use only 'reference_fields'",
                Documentation.ADDING_TASK,
            )

        if self.default_template is not None and not isoftype(
            self.default_template, Template
        ):
            raise UnitxtError(
                f"The task's 'default_template' attribute is not of type Template. The 'default_template' attribute is of type {type(self.default_template)}: {self.default_template}",
                Documentation.ADDING_TASK,
            )

        self.input_fields = (
            self.input_fields if self.input_fields is not None else self.inputs
        )
        self.reference_fields = (
            self.reference_fields if self.reference_fields is not None else self.outputs
        )

        if isoftype(self.input_fields, Dict[str, str]):
            self.input_fields = parse_string_types_instead_of_actual_objects(
                self.input_fields
            )
        if isoftype(self.reference_fields, Dict[str, str]):
            self.reference_fields = parse_string_types_instead_of_actual_objects(
                self.reference_fields
            )

        if isinstance(self.prediction_type, str):
            self.prediction_type = parse_string_types_instead_of_actual_objects(
                self.prediction_type
            )

        if hasattr(self, "inputs") and self.inputs is not None:
            self.inputs = self.input_fields

        if hasattr(self, "outputs") and self.outputs is not None:
            self.outputs = self.reference_fields

    def task_deprecations(self):
        if hasattr(self, "inputs") and self.inputs is not None:
            depr_message = (
                "The 'inputs' field is deprecated. Please use 'input_fields' instead."
            )
            warnings.warn(depr_message, DeprecationWarning, stacklevel=2)
        if hasattr(self, "outputs") and self.outputs is not None:
            depr_message = "The 'outputs' field is deprecated. Please use 'reference_fields' instead."
            warnings.warn(depr_message, DeprecationWarning, stacklevel=2)

    def verify(self):
        self.task_deprecations()

        if self.input_fields is None:
            raise UnitxtError(
                "Missing attribute in task: 'input_fields' not set.",
                Documentation.ADDING_TASK,
            )
        if self.reference_fields is None:
            raise UnitxtError(
                "Missing attribute in task: 'reference_fields' not set.",
                Documentation.ADDING_TASK,
            )
        for io_type in ["input_fields", "reference_fields"]:
            data = (
                self.input_fields
                if io_type == "input_fields"
                else self.reference_fields
            )

            if isinstance(data, list) or not is_type_dict(data):
                UnitxtWarning(
                    f"'{io_type}' field of Task should be a dictionary of field names and their types. "
                    f"For example, {{'text': str, 'classes': List[str]}}. Instead only '{data}' was "
                    f"passed. All types will be assumed to be 'Any'. In future version of unitxt this "
                    f"will raise an exception.",
                    Documentation.ADDING_TASK,
                )
                if isinstance(data, dict):
                    data = parse_type_dict(to_type_dict(data))
                else:
                    data = {key: Any for key in data}

                if io_type == "input_fields":
                    self.input_fields = data
                else:
                    self.reference_fields = data

        if not self.prediction_type:
            UnitxtWarning(
                "'prediction_type' was not set in Task. It is used to check the output of "
                "template post processors is compatible with the expected input of the metrics. "
                "Setting `prediction_type` to 'Any' (no checking is done). In future version "
                "of unitxt this will raise an exception.",
                Documentation.ADDING_TASK,
            )
            self.prediction_type = Any

        self.check_metrics_type()

        for augmentable_input in self.augmentable_inputs:
            assert (
                augmentable_input in self.input_fields
            ), f"augmentable_input {augmentable_input} is not part of {self.input_fields}"

        self.verify_defaults()

    @classmethod
    def process_data_after_load(cls, data):
        possible_dicts = ["inputs", "input_fields", "outputs", "reference_fields"]
        for dict_name in possible_dicts:
            if dict_name in data and isinstance(data[dict_name], dict):
                data[dict_name] = parse_type_dict(data[dict_name])
        if "prediction_type" in data:
            data["prediction_type"] = parse_type_string(data["prediction_type"])
        return data

    def process_data_before_dump(self, data):
        possible_dicts = ["inputs", "input_fields", "outputs", "reference_fields"]
        for dict_name in possible_dicts:
            if dict_name in data and isinstance(data[dict_name], dict):
                if not isoftype(data[dict_name], Dict[str, str]):
                    data[dict_name] = to_type_dict(data[dict_name])
        if "prediction_type" in data:
            if not isinstance(data["prediction_type"], str):
                data["prediction_type"] = to_type_string(data["prediction_type"])
        return data

    @classmethod
    def get_metrics_artifact_without_load(cls, metric_id: str):
        with settings.context(skip_artifacts_prepare_and_verify=True):
            metric, _ = fetch_artifact(metric_id)
        if isinstance(metric, MetricsList):
            return metric.items
        return [metric]

    def check_metrics_type(self) -> None:
        prediction_type = self.prediction_type
        for metric_id in self.metrics:
            metric_artifacts_list = Task.get_metrics_artifact_without_load(metric_id)
            for metric_artifact in metric_artifacts_list:
                metric_prediction_type = metric_artifact.prediction_type
                if (
                    prediction_type == metric_prediction_type
                    or prediction_type == Any
                    or metric_prediction_type == Any
                    or (
                        get_origin(metric_prediction_type) is Union
                        and prediction_type in get_args(metric_prediction_type)
                    )
                ):
                    continue

                raise UnitxtError(
                    f"The task's prediction type ({prediction_type}) and '{metric_id}' "
                    f"metric's prediction type ({metric_prediction_type}) are different.",
                    Documentation.ADDING_TASK,
                )

    def verify_defaults(self):
        if self.defaults:
            if not isinstance(self.defaults, dict):
                raise UnitxtError(
                    f"If specified, the 'defaults' must be a dictionary, "
                    f"however, '{self.defaults}' was provided instead, "
                    f"which is of type '{to_type_string(type(self.defaults))}'.",
                    Documentation.ADDING_TASK,
                )

            for default_name, default_value in self.defaults.items():
                assert isinstance(default_name, str), (
                    f"If specified, all keys of the 'defaults' must be strings, "
                    f"however, the key '{default_name}' is of type '{to_type_string(type(default_name))}'."
                )

                val_type = self.input_fields.get(
                    default_name
                ) or self.reference_fields.get(default_name)

                assert val_type, (
                    f"If specified, all keys of the 'defaults' must refer to a chosen "
                    f"key in either 'input_fields' or 'reference_fields'. However, the name '{default_name}' "
                    f"was provided which does not match any of the keys."
                )

                assert isoftype(default_value, val_type), (
                    f"The value of '{default_name}' from the 'defaults' must be of "
                    f"type '{to_type_string(val_type)}', however, it is of type '{to_type_string(type(default_value))}'."
                )

    def set_default_values(self, instance: Dict[str, Any]) -> Dict[str, Any]:
        if self.defaults:
            instance = {**self.defaults, **instance}
        return instance

    def process(
        self, instance: Dict[str, Any], stream_name: Optional[str] = None
    ) -> Dict[str, Any]:
        instance = self.set_default_values(instance)

        with error_context(
            self,
            stage="Schema Verification",
            help="https://www.unitxt.ai/en/latest/docs/adding_task.html",
        ):
            verify_required_schema(
                self.input_fields,
                instance,
                class_name="Task",
                id=self.__id__,
                description=self.__description__,
            )
        input_fields = {key: instance[key] for key in self.input_fields.keys()}
        data_classification_policy = instance.get("data_classification_policy", [])

        result = {
            "input_fields": input_fields,
            "metrics": self.metrics,
            "data_classification_policy": data_classification_policy,
            "media": instance.get("media", {}),
            "recipe_metadata": instance.get("recipe_metadata", {}),
        }
        if constants.demos_field in instance:
            # for the case of recipe.skip_demoed_instances
            result[constants.demos_field] = instance[constants.demos_field]

        if constants.instruction_field in instance:
            result[constants.instruction_field] = instance[constants.instruction_field]

        if constants.system_prompt_field in instance:
            result[constants.system_prompt_field] = instance[
                constants.system_prompt_field
            ]

        if stream_name == constants.inference_stream:
            return result

        verify_required_schema(
            self.reference_fields,
            instance,
            class_name="Task",
            id=self.__id__,
            description=self.__description__,
        )
        result["reference_fields"] = {
            key: instance[key] for key in self.reference_fields.keys()
        }

        return result


@deprecation(version="2.0.0", alternative=Task)
class FormTask(Task):
    pass