Datasets:

ArXiv:
File size: 39,235 Bytes
063834c
3478957
af22a0d
bc4266b
1ec0bfb
af22a0d
246d7cc
6b26378
4e61338
d2c1791
8e99545
3478957
ba7196e
4e61338
ba7196e
 
 
 
 
 
e9c817b
ba7196e
110df4d
 
8e99545
ba7196e
c7691bd
8e99545
63d3ef3
c7691bd
 
63d3ef3
d2c1791
e1ab91f
 
 
 
d2c1791
 
e1ab91f
 
 
009cdd3
3478957
63d3ef3
3478957
835bd85
 
 
 
6f701a4
835bd85
 
3478957
63d3ef3
3478957
 
 
 
e1ab91f
 
 
ba7196e
 
 
 
8e99545
ba7196e
110df4d
 
ba7196e
4e61338
ba7196e
e9c817b
ba7196e
 
 
e1ab91f
8e99545
 
 
 
 
 
f352686
e1ab91f
f352686
e1ab91f
 
6f701a4
 
 
 
e1ab91f
 
63d3ef3
6f701a4
 
af22a0d
6f701a4
af22a0d
ba7196e
 
 
 
 
 
2a28be6
 
 
3478957
 
 
 
 
 
 
 
6f701a4
 
ba7196e
 
 
 
 
 
 
3478957
6f701a4
ba7196e
 
 
 
6f701a4
22947dc
 
6f701a4
63d3ef3
c7691bd
63d3ef3
 
f352686
e1ab91f
d2c1791
63d3ef3
 
c7691bd
ba7196e
c7691bd
 
 
 
ba7196e
 
 
 
 
 
c7691bd
ba7196e
c7691bd
 
 
 
 
ba7196e
 
 
 
 
 
 
 
 
c7691bd
3478957
6f701a4
3478957
63d3ef3
e1ab91f
 
 
 
3478957
6f701a4
 
3478957
 
cbce8ee
e1ab91f
ba7196e
e1ab91f
 
d2c1791
 
ba7196e
d2c1791
 
e1ab91f
 
 
 
 
 
63d3ef3
d2c1791
 
 
 
 
 
 
c7691bd
 
 
 
 
 
 
d2c1791
 
 
 
 
 
 
 
 
 
c096080
d2c1791
 
 
c7691bd
d2c1791
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba7196e
a30c920
63d3ef3
ba7196e
e1ab91f
6f701a4
 
 
 
e1ab91f
eb86bdf
ba7196e
 
 
 
6f701a4
 
 
e1ab91f
6f701a4
 
 
 
e1ab91f
3478957
 
 
 
e9c817b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba7196e
 
 
 
 
 
 
 
 
e9c817b
 
 
 
 
 
 
 
 
12fa196
835bd85
 
6f701a4
 
 
e1ab91f
6f701a4
 
 
 
e1ab91f
 
6f701a4
 
 
 
e1ab91f
 
835bd85
 
af22a0d
 
 
 
 
 
 
e04f5f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af22a0d
 
fdbdc43
 
e04f5f0
 
af22a0d
 
 
 
 
 
 
 
 
 
 
c7691bd
 
 
6f701a4
 
af22a0d
 
6f701a4
af22a0d
6f701a4
af22a0d
6f701a4
af22a0d
6f701a4
af22a0d
6f701a4
 
 
 
 
af22a0d
 
6f701a4
 
af22a0d
6f701a4
 
af22a0d
6f701a4
af22a0d
 
 
 
 
 
6f701a4
af22a0d
6f701a4
af22a0d
6f701a4
af22a0d
6f701a4
 
af22a0d
6f701a4
 
 
 
 
af22a0d
 
 
 
 
 
 
 
 
 
 
 
 
 
6f701a4
af22a0d
6f701a4
af22a0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f701a4
 
af22a0d
ba7196e
 
af22a0d
 
 
ba7196e
af22a0d
 
6f701a4
 
 
 
 
fdbdc43
6f701a4
fdbdc43
6f701a4
fdbdc43
 
6f701a4
 
 
fdbdc43
 
6f701a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba7196e
8f55dd1
 
 
 
 
 
 
 
 
f1c3297
 
8f55dd1
 
 
 
 
 
 
 
 
 
f1c3297
 
 
 
8f55dd1
 
 
5f2e7a1
3478957
 
 
8294e30
3478957
 
 
8f55dd1
d61c5be
8f55dd1
 
 
 
 
3478957
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f55dd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba7196e
3478957
 
 
 
 
 
 
 
 
 
 
ba7196e
6f701a4
e1ab91f
 
ba7196e
 
6f701a4
e1ab91f
6f701a4
 
8294e30
3478957
e1ab91f
ba7196e
 
3478957
ba7196e
6f701a4
d61c5be
 
 
6f701a4
d61c5be
d2c1791
 
 
d61c5be
 
 
ba7196e
6f701a4
3478957
 
 
6f701a4
3478957
d2c1791
 
 
3478957
 
6f701a4
3478957
 
 
 
d2c1791
 
 
3478957
 
ba7196e
 
 
 
 
 
3478957
 
ba7196e
 
 
8f55dd1
 
 
 
 
 
 
 
 
 
 
 
c7691bd
8f55dd1
 
 
 
 
 
 
 
 
 
 
 
ba7196e
8f55dd1
df63358
 
 
 
 
 
 
 
 
8f55dd1
 
 
 
 
 
c7691bd
8f55dd1
 
 
 
c7691bd
ba7196e
c7691bd
ba7196e
 
 
6f701a4
d61c5be
 
2a28be6
ba7196e
2a28be6
 
e04f5f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a28be6
 
 
 
 
 
 
 
6f701a4
 
 
2a28be6
6f701a4
2a28be6
d2c1791
6f701a4
2a28be6
af22a0d
d2c1791
af22a0d
eb86bdf
2a28be6
6f701a4
2a28be6
d2c1791
6f701a4
2a28be6
af22a0d
d2c1791
af22a0d
2a28be6
 
3478957
 
63d3ef3
 
be9ddcf
 
 
 
 
 
 
 
 
 
 
 
6db8cc3
5f2e7a1
 
 
 
 
8294e30
 
6db8cc3
8294e30
6db8cc3
 
2a28be6
e1ab91f
2a28be6
6db8cc3
e1ab91f
3478957
6db8cc3
 
 
ba7196e
e1ab91f
6f701a4
8294e30
 
6db8cc3
 
 
6f701a4
 
 
3478957
6f701a4
8294e30
 
6db8cc3
 
3478957
6db8cc3
 
eb86bdf
ba7196e
 
 
 
eb86bdf
ba7196e
 
 
 
 
eb86bdf
 
6b26378
 
8294e30
6f701a4
3478957
 
6b26378
ba7196e
 
 
6f701a4
3478957
d2c1791
 
 
3478957
6b26378
 
8294e30
ba7196e
2a28be6
 
 
 
3478957
ba7196e
 
 
 
 
 
 
 
 
 
 
 
 
2a28be6
6f701a4
 
ba7196e
6f701a4
2a28be6
d2c1791
 
 
3478957
 
be9ddcf
3478957
 
6f701a4
3478957
 
 
 
 
6b26378
 
4e61338
 
 
 
 
 
 
 
 
 
063834c
 
 
 
 
 
 
50eeb1b
 
 
063834c
50eeb1b
6f701a4
 
 
 
 
50eeb1b
 
 
063834c
 
50eeb1b
063834c
 
 
50eeb1b
ba7196e
 
 
6f701a4
8294e30
ba7196e
50eeb1b
063834c
 
 
50eeb1b
063834c
 
 
 
3478957
063834c
 
 
 
 
 
 
 
 
 
 
 
2a28be6
 
 
 
063834c
 
 
 
 
2a28be6
063834c
 
3478957
063834c
 
 
50eeb1b
 
63d3ef3
 
 
 
 
 
246d7cc
63d3ef3
246d7cc
63d3ef3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
import json
from abc import abstractmethod
from random import random
from typing import Any, Dict, List, Optional, Tuple, Union

from .artifact import Artifact
from .collections import DictCollection, ListCollection
from .dataclass import NonPositionalField
from .dict_utils import dict_get, dict_set
from .error_utils import Documentation, UnitxtError
from .operator import InstanceOperator, Operator
from .random_utils import new_random_generator
from .serializers import (
    ConversationSerializer,
    DialogSerializer,
    ImageSerializer,
    ListSerializer,
    MultiTypeSerializer,
    NumberQuantizingSerializer,
    Serializer,
    SQLDatabaseAsSchemaSerializer,
    TableSerializer,
    ToolCallSerializer,
    ToolsSerializer,
    VideoSerializer,
)
from .settings_utils import get_constants
from .type_utils import isoftype, to_type_string

constants = get_constants()


class TemplateFormatKeyError(UnitxtError):
    def __init__(self, template, data, data_type, format_str, format_name):
        keys = ", ".join(data.keys())
        super().__init__(
            f"Available {data_type}s are [{keys}] "
            f"but {template.__class__.__name__}.{format_name} format requires a different ones: '{format_str}'",
            Documentation.ADDING_TEMPLATE,
        )


class Template(InstanceOperator):
    """The role of template is to take the fields of every instance and verbalize it.

    Meaning the template is taking the instance and generating source, target and references.

    Args:
        skip_rendered_instance (bool): if "source", "target", and "references" are already defined fields in the instance, skip its processing
        postprocessors: a list of strings being artifact names of text processors, to be applied on the model output
        instruction: a formatting string that yields an instruction with potential participation of values from the "input_fields" part of the instance
        target_prefix: a string to be used to format the prompt. Not a formatting string.

    """

    skip_rendered_instance: bool = NonPositionalField(default=True)
    postprocessors: List[str] = NonPositionalField(
        default_factory=lambda: ["processors.to_string_stripped"]
    )
    instruction: str = NonPositionalField(default="")
    target_prefix: str = NonPositionalField(default="")
    title_fields: List[str] = NonPositionalField(default_factory=list)
    serializer: Serializer = NonPositionalField(
        default_factory=lambda: MultiTypeSerializer(
            serializers=[
                ImageSerializer(),
                VideoSerializer(),
                TableSerializer(),
                ToolCallSerializer(),
                ToolsSerializer(),
                DialogSerializer(),
                ConversationSerializer(),
                ListSerializer(),
                SQLDatabaseAsSchemaSerializer(),
            ]
        )
    )

    def verify(self):
        super().verify()
        assert isoftype(
            self.postprocessors, List[Union[Operator, str]]
        ), f"The template post processors field '{self.postprocessors}' is not a list of processors. Instead it is of type '{to_type_string(type(self.postprocessors))}'."

    def input_fields_to_instruction_and_target_prefix(self, input_fields, instruction):
        instruction = self.apply_formatting(
            input_fields, "input field", instruction, "instruction"
        )
        target_prefix = self.apply_formatting(
            input_fields,
            "input field",
            self.target_prefix,
            "target_prefix",
        )
        return instruction, target_prefix

    def preprocess_input_and_reference_fields(
        self, input_fields: Dict[str, Any], reference_fields: Dict[str, Any]
    ) -> Tuple[Dict[str, Any], Dict[str, Any]]:
        return input_fields, reference_fields

    def preprocess_input_fields(self, input_fields: Dict[str, Any]):
        return input_fields

    def preprocess_reference_fields(self, reference_fields: Dict[str, Any]):
        return reference_fields

    def process(
        self, instance: Dict[str, Any], stream_name: Optional[str] = None
    ) -> Dict[str, Any]:
        if self.skip_rendered_instance:
            if (
                "source" in instance
                and "target" in instance
                and "references" in instance
            ):
                return instance

        input_fields = instance.get("input_fields")
        reference_fields = instance.get("reference_fields")

        if stream_name != constants.inference_stream:
            input_fields, reference_fields = self.preprocess_input_and_reference_fields(
                input_fields, reference_fields
            )

        input_fields = self.preprocess_input_fields(input_fields)

        self.set_titles(input_fields)

        serialized_inputs = self.serialize(input_fields, instance)

        source = self.input_fields_to_source(serialized_inputs)
        instruction, target_prefix = self.input_fields_to_instruction_and_target_prefix(
            serialized_inputs,
            instance.get(constants.instruction_field, self.instruction),
        )

        result = {
            **instance,
            "source": source,
            constants.instruction_field: instruction,
            "target_prefix": target_prefix,
            "postprocessors": self.postprocessors,
        }

        if stream_name == constants.inference_stream:
            return self.post_process_instance(result)

        if reference_fields is None:
            raise ValueError("Should have reference_fields")

        reference_fields = self.preprocess_reference_fields(reference_fields)

        serialized_references = self.serialize(
            reference_fields, instance
        )  # Dict[str, str]

        target, references = self.reference_fields_to_target_and_references(
            serialized_references
        )

        result["target"] = target
        result["references"] = references

        return self.post_process_instance(result)

    def post_process_instance(self, instance):
        return instance

    def serialize(
        self, data: Dict[str, Any], instance: Dict[str, Any]
    ) -> Dict[str, str]:
        return {k: self.serializer.serialize(v, instance) for k, v in data.items()}

    @abstractmethod
    def input_fields_to_source(self, input_fields: Dict[str, object]) -> str:
        pass

    def set_titles(self, data):
        for field in self.title_fields:
            data[field] = data[field].title()

    @abstractmethod
    def reference_fields_to_target_and_references(
        self, reference_fields: Dict[str, object]
    ) -> Tuple[str, List[str]]:
        pass

    def apply_formatting(
        self, data: Dict[str, Any], data_type: str, format_str: str, format_name: str
    ) -> str:
        try:
            if format_str is None:
                raise UnitxtError(
                    f"Required field '{format_name}' of class {self.__class__.__name__} not set in {self.__class__.__name__}",
                    Documentation.ADDING_TEMPLATE,
                )
            return format_str.format(**data)
        except KeyError as e:
            raise TemplateFormatKeyError(
                self, data, data_type, format_str, format_name
            ) from e


class ApplyTemplate(InstanceOperator):
    demos_field: Optional[str] = None

    @abstractmethod
    def get_template(self, instance: Dict[str, Any]) -> Template:
        pass

    def apply(
        self,
        template: Template,
        instance: Dict[str, Any],
        stream_name: Optional[str] = None,
    ):
        return template.process_instance(instance, stream_name)

    def process(
        self, instance: Dict[str, Any], stream_name: Optional[str] = None
    ) -> Dict[str, Any]:
        template = self.get_template(instance)

        if self.demos_field is not None:
            if self.demos_field not in instance:
                raise ValueError("Demos field is missing.")
            instance[self.demos_field] = [
                self.apply(template, demo_instance)
                for demo_instance in instance[self.demos_field]
            ]
        dict_set(instance, "recipe_metadata/template", template)
        return self.apply(template, instance, stream_name)


class ApplySingleTemplate(ApplyTemplate):
    template: Template

    def get_template(self, instance: Dict[str, Any]) -> Template:
        return self.template


class ApplyRandomTemplate(ApplyTemplate):
    templates: List[Template]

    def get_template(self, instance: Dict[str, Any]) -> Template:
        random_generator = new_random_generator(
            {**instance["input_fields"], **instance["reference_fields"]}
        )
        return random_generator.choice(self.templates)


class InputFormatTemplate(Template):
    input_format: str

    def input_fields_to_source(self, input_fields: Dict[str, object]) -> str:
        return self.apply_formatting(
            input_fields,
            "input field",
            self.input_format,
            "input_format",
        )


class OutputFormatTemplate(Template):
    output_format: str = None

    def reference_fields_to_target_and_references(
        self, reference_fields: Dict[str, object]
    ) -> str:
        target = self.apply_formatting(
            reference_fields,
            "reference field",
            self.output_format,
            "output_format",
        )
        references = [target]
        return target, references


class JsonOutputFormatTemplate(Template):
    output_fields: Dict[str, str]
    wrap_with_list_fields: List[str]

    def reference_fields_to_target_and_references(
        self, reference_fields: Dict[str, object]
    ) -> str:
        data = {}
        for field, target_field in self.output_fields.items():
            value = reference_fields[field]
            if field in self.wrap_with_list_fields:
                value = [value]
            data[target_field] = value
        target = json.dumps(data, ensure_ascii=False)
        references = [target]
        return target, references


class InputOutputTemplate(InputFormatTemplate, OutputFormatTemplate):
    """Generate field 'source' from fields designated as input, and fields 'target' and 'references' from fields designated as output, of the processed instance.

    Args specify the formatting strings with which to glue together the input and reference fields of the processed instance into one string ('source' and 'target'), and into a list of strings ('references').
    """

    pass


class JsonOutputTemplate(InputFormatTemplate, JsonOutputFormatTemplate):
    """Generate field 'source' from fields designated as input, and fields 'target' and 'references' from fields designated as output, of the processed instance.

    Args specify the formatting strings with which to glue together the input and reference fields of the processed instance into one string ('source' and 'target'), and into a list of strings ('references').
    """

    pass


class InputOutputTemplateWithCustomTarget(InputOutputTemplate):
    reference: str

    def reference_fields_to_target_and_references(
        self, reference_fields: Dict[str, object]
    ) -> str:
        target = self.apply_formatting(
            reference_fields,
            "reference field",
            self.output_format,
            "output_format",
        )
        reference = self.apply_formatting(
            reference_fields,
            "reference field",
            self.reference,
            "reference",
        )
        return target, [reference]


class PairwiseChoiceTemplate(InputOutputTemplate):
    """PairwiseChoiceTemplate.

    Requirements:
     The answer field value should be of type Literal["choice_a", "choice_b", "tie"]

    Args:
         choice_a_field (str):
            The field which contains choice_a value
         choice_b_field (str):
            The field which contains choice_b value
         answer_field (str):
            The field which contains the answer value.
            Should be of type Literal["choice_1", "choice_2", "tie"]
         choice_a_label (str):
            The label of choice A answer as it is verbalized in the template.
         choice_b_label (str):
            The label of choice B answer as it is verbalized in the template.
         choice_tie_label (str):
            The label of a tie answer as it should be verbalized in the template.
         shuffle (bool):
            whether to shuffle the choices or not. This is done to take into account position bias.

    shuffle: 50% of the time:
     1. The values of choice_a_field and choice_b_field will be swapped.
     2. If the values of answer_field is choice_a_label, set it to choice_b_label.
        Else if the values of answer_field is choice_b_label, set it to choice_a_label.
        Else if the value of answer_field is choice_tie_label, do nothing.

    """

    choice_a_field: str
    choice_b_field: str
    answer_field: str
    choice_a_label: str
    choice_b_label: str
    choice_tie_label: str
    shuffle: bool

    def verify(self):
        super().verify()

    def verbalize_answer_field(self, reference_fields: Dict[str, object]):
        answer = reference_fields[self.answer_field]
        assert answer in ["choice_a", "choice_b", "tie"]
        if answer == "choice_a":
            reference_fields[self.answer_field] = self.choice_a_label
        elif answer == "choice_b":
            reference_fields[self.answer_field] = self.choice_b_label
        else:
            reference_fields[self.answer_field] = self.choice_tie_label

        return reference_fields

    def shuffle_values(
        self, input_fields: Dict[str, object], reference_fields: Dict[str, object]
    ):
        if not self.shuffle:
            return input_fields, reference_fields
        outcome = random()  # A float between 0 and 1
        if outcome <= 0.5:
            choice_a_value = input_fields[self.choice_a_field]
            choice_b_value = input_fields[self.choice_b_field]

            input_fields[self.choice_a_field] = choice_b_value
            input_fields[self.choice_b_field] = choice_a_value

            answer = reference_fields[self.answer_field]
            assert answer in [
                self.choice_a_label,
                self.choice_b_label,
                self.choice_tie_label,
            ]
            if answer == self.choice_a_label:
                reference_fields[self.answer_field] = self.choice_b_label
            elif answer == self.choice_b_label:
                reference_fields[self.answer_field] = self.choice_a_label

        return input_fields, reference_fields

    def preprocess_input_and_reference_fields(
        self, input_fields: Dict[str, Any], reference_fields: Dict[str, Any]
    ) -> Tuple[Dict[str, Any], Dict[str, Any]]:
        reference_fields = self.verbalize_answer_field(reference_fields)
        input_fields, reference_fields = self.shuffle_values(
            input_fields, reference_fields
        )
        return input_fields, reference_fields


class DialogFieldsData(Artifact):
    user_role_label: str
    assistant_role_label: str
    system_role_label: str
    dialog_field: str


class DialogTemplate(InputOutputTemplate):
    dialog_fields: List[DialogFieldsData]
    turns_separator: str = "\n\n"
    label_separator: str = " "

    def process_dialog(self, input_fields: Dict[str, object]):
        for dialog_fields in self.dialog_fields:
            dialog = input_fields[dialog_fields.dialog_field]
            # TODO: update isoftype method to support Literal verification and check
            #  it's List[Tuple[Literal["user", "assistant", "system"], str]] (Issue #799)
            assert isoftype(dialog, List[Tuple[str, str]])

            user_role_label = dialog_fields.user_role_label
            assistant_role_label = dialog_fields.assistant_role_label
            system_role_label = dialog_fields.system_role_label

            dialog_str = ""
            for i, turn in enumerate(dialog):
                (turn_type, turn_text) = turn
                turns_separator = "" if i == 0 else self.turns_separator
                if turn_type == "user":
                    dialog_str += f"{turns_separator}{user_role_label}{self.label_separator}{turn_text}"
                elif turn_type == "assistant":
                    dialog_str += f"{turns_separator}{assistant_role_label}{self.label_separator}{turn_text}"
                elif turn_type == "system":
                    dialog_str += f"{turns_separator}{system_role_label}{self.label_separator}{turn_text}"

            input_fields[dialog_fields.dialog_field] = dialog_str
        return input_fields

    def preprocess_input_fields(self, input_fields: Dict[str, Any]):
        return self.process_dialog(input_fields)


class DialogPairwiseChoiceTemplate(DialogTemplate, PairwiseChoiceTemplate):
    pass


class PairwiseComparativeRatingTemplate(InputOutputTemplate):
    """PairwiseChoiceTemplate.

    Args:
         choice_a_field (str): The field which contains choice_a value

         choice_b_field (str): The field which contains choice_b value

         answer_field (str): The field which contains the answer value. The value should be an int.
         Positive for preferring choice_a, and negative for preferring choice_b

         shuffle (bool): whether to shuffle the choices or not. This is done to take into account position bias.

    shuffle: 50% of the time:
    | 1) The values of choice_a_field and choice_b_field will be swapped.
    | 2) Replace the values of answer_field with its mapped value according to the reverse_preference_map Dict.

    """

    choice_a_field: str
    choice_b_field: str
    choice_a_id_field: str
    choice_b_id_field: str
    answer_field: str
    shuffle: bool

    def shuffle_values(
        self, input_fields: Dict[str, object], reference_fields: Dict[str, object]
    ):
        if not self.shuffle:
            return input_fields, reference_fields
        outcome = random()  # A float between 0 and 1
        if outcome <= 0.5:
            choice_a_value = input_fields[self.choice_a_field]
            choice_b_value = input_fields[self.choice_b_field]
            input_fields[self.choice_a_field] = choice_b_value
            input_fields[self.choice_b_field] = choice_a_value

            choice_a_id_value = input_fields[self.choice_a_id_field]
            choice_b_id_value = input_fields[self.choice_b_id_field]
            input_fields[self.choice_a_id_field] = choice_b_id_value
            input_fields[self.choice_b_id_field] = choice_a_id_value

            assert isinstance(reference_fields[self.answer_field], int)
            reference_fields[self.answer_field] = (
                int(reference_fields[self.answer_field]) * -1
            )

        return input_fields, reference_fields

    def preprocess_input_and_reference_fields(
        self, input_fields: Dict[str, Any], reference_fields: Dict[str, Any]
    ) -> Tuple[Dict[str, Any], Dict[str, Any]]:
        input_fields, reference_fields = self.shuffle_values(
            input_fields, reference_fields
        )
        return input_fields, reference_fields


class MultipleChoiceTemplate(InputFormatTemplate):
    """Formats the input that specifies a multiple-choice question, with a list of possible answers to choose from, and identifies the correct answer.

    Args:
        target_prefix (str): Optional prefix that can be added before the target label in
            generated prompts or outputs.
        choices_field (str): The key under which the multiple choices are stored in the
            input and reference dictionaries.
        target_field (str): The key under which the correct choice is stored in the
            reference dictionary (can be integer index or textual label).
        choices_separator (str): A string used to join formatted
            choices (e.g. ", ").
        source_choice_format (str): A Python format string used for displaying each choice
            in the input fields (e.g. "{choice_numeral}. {choice_text}").
        target_choice_format (str): A Python format string used for displaying each choice
            in the target or final output (e.g. "{choice_numeral}").
        enumerator (str): Determines how choice numerals are enumerated. Possible values
            include "capitals", "lowercase", "numbers", or "roman".
        shuffle_choices (bool): If True, shuffle the choices. The shuffling seed can be
            set with `shuffle_choices_seed`.
        shuffle_choices_seed (int, optional): If provided, the choices are shuffled with
            this fixed integer seed for reproducibility.
        sort_choices_by_length (bool): If True, sorts choices
            by their length (ascending).
        sort_choices_alphabetically (bool): If True, sorts choices
            in alphabetical order.
        reverse_choices (bool): If True, reverses the order of the choices after any
            sorting has been applied. Defaults to False to preserve backward compatibility.
    """

    target_prefix: str = ""
    choices_field: str = "choices"
    target_field: str = "label"
    choices_separator: str = ", "
    source_choice_format: str = "{choice_numeral}. {choice_text}"
    target_choice_format: str = "{choice_numeral}"
    enumerator: str = "capitals"

    shuffle_choices: bool = False
    shuffle_choices_seed: int = None
    sort_choices_by_length: bool = False
    sort_choices_alphabetically: bool = False
    reverse_choices: bool = False  # False by default for backward-compat
    place_correct_choice_position: int = None

    def prepare(self):
        super().prepare()
        if self.enumerator == "capitals":
            self.enumerator = "ABCDEFGHIJKLMNOP"
        if self.enumerator == "lowercase":
            self.enumerator = "abcdefghijklmnop"
        if self.enumerator == "numbers":
            self.enumerator = [str(i + 1) for i in range(20)]
        if self.enumerator == "roman":
            self.enumerator = [
                "I",
                "II",
                "III",
                "IV",
                "V",
                "VI",
                "VII",
                "VIII",
                "IX",
                "X",
                "XI",
                "XII",
                "XIII",
                "XIV",
                "XV",
                "XVI",
                "XVII",
                "XVIII",
                "XIX",
                "XX",
            ]

    def verify(self):
        super().verify()
        if self.shuffle_choices and (
            self.sort_choices_by_length
            or self.sort_choices_alphabetically
            or self.reverse_choices
            or self.place_correct_choice_position is not None
        ):
            raise UnitxtError(
                "You cannot combine shuffle_choices with sorting or reversing flags."
            )

        if self.sort_choices_by_length and self.sort_choices_alphabetically:
            raise UnitxtError(
                "You cannot combine both sort_choices_by_length and sort_choices_alphabetically simultaneously."
            )
        if self.place_correct_choice_position is not None and (
            self.sort_choices_by_length
            or self.sort_choices_alphabetically
            or self.reverse_choices
        ):
            raise UnitxtError(
                "You cannot combine place_correct_choice_position with sorting or reversing flags."
            )

    def inputs_to_choices(self, data: Dict[str, Any], choice_format: str) -> str:
        choices = data[self.choices_field]
        enumrated_choices = []
        for i, choice in enumerate(choices):
            enumrated_choices.append(
                choice_format.format(
                    choice_text=choice,
                    choice_numeral=self.enumerator[i],
                )
            )
        return enumrated_choices

    def inputs_to_numerals(self, input_fields: Dict[str, Any]) -> Tuple[str, str]:
        return self.inputs_to_choices(input_fields, "{choice_numeral}")

    def prepare_multiple_choice_inputs(
        self, input_fields: Dict[str, Any]
    ) -> Dict[str, Any]:
        choices = self.inputs_to_choices(input_fields, self.source_choice_format)
        return {
            "numerals": self.inputs_to_numerals(input_fields),
            **input_fields,
            self.choices_field: self.choices_separator.join(choices),
        }

    def preprocess_input_fields(self, input_fields: Dict[str, Any]) -> Dict[str, Any]:
        return self.prepare_multiple_choice_inputs(input_fields)

    def outputs_to_target_index(self, reference_fields: Dict[str, object]) -> int:
        target = reference_fields[self.target_field]

        if not isinstance(target, int):
            try:
                return reference_fields[self.choices_field].index(target)
            except ValueError as e:
                raise UnitxtError(
                    f"MultipleChoiceTemplate could not locate textual target '{target}' in choices list: {reference_fields[self.choices_field]}",
                    Documentation.ADDING_TEMPLATE,
                ) from e
        return target

    def preprocess_reference_fields(self, reference_fields: Dict[str, Any]):
        target = reference_fields[self.target_field]

        if not isinstance(target, int):
            try:
                target = reference_fields[self.choices_field].index(target)
            except ValueError as e:
                raise UnitxtError(
                    f"MultipleChoiceTemplate could not locate textual target '{target}' in choices list: {reference_fields[self.choices_field]}",
                    Documentation.ADDING_TEMPLATE,
                ) from e

        choices = self.inputs_to_choices(reference_fields, self.target_choice_format)

        try:
            target = choices[target]
        except IndexError as e:
            raise UnitxtError(
                f"MultipleChoiceTemplate cannot find index number {target} in choices: {choices}",
                Documentation.ADDING_TEMPLATE,
            ) from e

        return {self.target_field: target}

    def reference_fields_to_target_and_references(
        self, reference_fields: Dict[str, object]
    ) -> str:
        target = reference_fields[self.target_field]
        return target, [target]

    def preprocess_input_and_reference_fields(
        self, input_fields: Dict[str, Any], reference_fields: Dict[str, Any]
    ) -> Tuple[Dict[str, Any], Dict[str, Any]]:
        if (
            not self.shuffle_choices
            and not self.sort_choices_by_length
            and not self.sort_choices_alphabetically
            and not self.reverse_choices
            and self.place_correct_choice_position is None
        ):
            return input_fields, reference_fields

        choices = input_fields[self.choices_field]
        target_index = self.outputs_to_target_index(reference_fields)
        original_label_choice = reference_fields[self.choices_field][target_index]

        if self.sort_choices_by_length:
            choices.sort(key=len)
        if self.sort_choices_alphabetically:
            choices.sort()
        if self.reverse_choices:
            choices.reverse()
        if self.shuffle_choices:
            random_generator = new_random_generator(
                self.shuffle_choices_seed
                if self.shuffle_choices_seed is not None
                else {**input_fields}
            )
            random_generator.shuffle(choices)
        if self.place_correct_choice_position is not None:
            fix_pos = self.place_correct_choice_position

            # Supporting negative indexes similar to Python lists
            # If fix_pos is negative, convert it to a valid positive index by adding len(choices).
            # For example, -1 becomes the last index, -2 becomes the one before last, etc.
            if fix_pos < 0:
                fix_pos += len(choices)
            self.place_correct_choice_position = fix_pos
            # Remove the original label choice from the list
            if not 0 <= self.place_correct_choice_position < len(choices):
                raise ValueError(
                    f"fix_correct_choice_position={self.place_correct_choice_position} out of range (0..{len(choices) - 1})."
                )
            choices.remove(original_label_choice)
            choices.insert(self.place_correct_choice_position, original_label_choice)

        # Update both input_fields and reference_fields once at the end
        input_fields[self.choices_field] = choices
        reference_fields[self.choices_field] = choices
        reference_fields[self.target_field] = choices.index(original_label_choice)

        return input_fields, reference_fields

    def post_process_instance(self, instance):
        instance["input_fields"]["options"] = self.inputs_to_choices(
            instance["input_fields"], self.target_choice_format
        )
        return instance


class YesNoTemplate(InputFormatTemplate):
    """A template for generating binary Yes/No questions asking whether an input text is of a specific class.

    Args:
        input_format:
            Defines the format of the question.
        class_field:
            Defines the field that contains the name of the class that this template
            asks of.
        label_field:
            Defines the field which contains the true label of the input text. If a gold label is equal to the
            value in class_name, then the correct output is self.yes_answer (by default, "Yes").
            Otherwise the correct output is self.no_answer (by default, "No").
        yes_answer:
            The output value for when the gold label equals self.class_name.
            Defaults to "Yes".
        no_answer:
            The output value for when the gold label differs from self.class_name.
            Defaults to "No".
    """

    input_format: str = None
    class_field: str = None
    label_field: str = None
    yes_answer: str = "Yes"
    no_answer: str = "No"

    def reference_fields_to_target_and_references(
        self, reference_fields: Dict[str, object]
    ) -> str:
        try:
            gold_class_names = reference_fields[self.label_field]
        except KeyError as e:
            raise UnitxtError(
                f"Available reference_fields are {list(reference_fields.keys())}, missing required label field: '{self.label_field}'."
            ) from e
        if not isinstance(gold_class_names, list):
            raise UnitxtError(
                f"Unexpected value for gold_class_names: '{gold_class_names}'. Expecting a list."
            )
        try:
            queried_class_name = reference_fields[self.class_field]
        except KeyError as e:
            raise UnitxtError(
                f"Available reference_fields are {list(reference_fields.keys())}, missing required class field: '{self.class_field}'."
            ) from e
        if not queried_class_name or not isinstance(queried_class_name, str):
            raise UnitxtError(
                f"Unexpected value for queried_class_names: '{queried_class_name}'. Expected a string."
            )
        if queried_class_name in gold_class_names:
            return self.yes_answer, [self.yes_answer]
        return self.no_answer, [self.no_answer]


class NullTemplate(Template):
    """Templates that returns empty prompt and no references."""

    postprocessors = []

    def input_fields_to_source(self, input_fields: Dict[str, object]) -> str:
        return ""

    def reference_fields_to_target_and_references(self, reference_fields):
        return "", []


class KeyValTemplate(Template):
    """Generate field 'source' from fields designated as input, and fields 'target' and 'references' from fields designated as output, of the processed instance.

    Args specify with what separators to glue together the input and output designated fields of the processed instance into one string ('source' and 'target'), and into a list of strings ('references').
    """

    pairs_separator: str = ", "
    key_val_separator: str = ": "
    use_keys_for_inputs: bool = True
    outputs_key_val_separator: str = ": "
    use_keys_for_outputs: bool = False

    def process_dict(
        self, data: Dict[str, object], key_val_sep, pairs_sep, use_keys
    ) -> str:
        pairs = []
        for key, val in data.items():
            key_val = [key, str(val)] if use_keys else [str(val)]
            pairs.append(key_val_sep.join(key_val))
        return pairs_sep.join(pairs)

    def input_fields_to_source(self, input_fields: Dict[str, object]) -> str:
        return self.process_dict(
            input_fields,
            key_val_sep=self.key_val_separator,
            pairs_sep=self.pairs_separator,
            use_keys=self.use_keys_for_inputs,
        )

    def reference_fields_to_target_and_references(
        self, reference_fields: Dict[str, object]
    ) -> str:
        target = self.process_dict(
            reference_fields,
            key_val_sep=self.key_val_separator,
            pairs_sep=self.pairs_separator,
            use_keys=self.use_keys_for_outputs,
        )
        return target, [target]


class OutputQuantizingTemplate(InputOutputTemplate):
    serializer: MultiTypeSerializer = NonPositionalField(
        default_factory=MultiTypeSerializer
    )
    quantum: Union[float, int] = 0.1

    def prepare(self):
        super().prepare()
        self.serializer.add_serializers(
            [NumberQuantizingSerializer(quantum=self.quantum)]
        )


class MultiLabelTemplate(InputOutputTemplate):
    labels_field: str = "labels"
    labels_separator: str = ", "
    postprocessors = ["processors.to_list_by_comma"]
    output_format: str = "{labels}"
    empty_label: str = "None"

    def preprocess_reference_fields(
        self, reference_fields: Dict[str, Any]
    ) -> Dict[str, Any]:
        labels = reference_fields[self.labels_field]
        if not isinstance(labels, list):
            raise UnitxtError(
                f"MultiLabelTemplate requires labels field '{self.labels_field}' to be a list. Got {self.labels_field}<{type(labels).__name__}>: {labels}",
                Documentation.ADDING_TEMPLATE,
            )
        if len(labels) == 0:
            labels = [self.empty_label]
        labels_str = self.labels_separator.join(labels)
        return {self.labels_field: labels_str}


class MultiReferenceTemplate(InputOutputTemplate):
    references_field: str = "references"
    random_reference: bool = False
    serializer: Serializer = NonPositionalField(default_factory=MultiTypeSerializer)

    def serialize(
        self, data: Dict[str, Any], instance: Dict[str, Any]
    ) -> Dict[str, str]:
        result = {}
        for k, v in data.items():
            if k == self.references_field:
                v = [self.serializer.serialize(item, instance) for item in v]
            else:
                v = self.serializer.serialize(v, instance)
            result[k] = v
        return result

    def reference_fields_to_target_and_references(
        self, reference_fields: Dict[str, object]
    ) -> Tuple[str, List[str]]:
        references = reference_fields[self.references_field]
        if not isoftype(references, List[str]):
            raise UnitxtError(
                f"MultiReferenceTemplate requires references field '{self.references_field}' to be List[str]. Got {self.references_field}<{type(references).__name__}>: {references}",
                Documentation.ADDING_TEMPLATE,
            )
        if len(references) == 0:
            return "", []

        if self.random_reference:
            random_generator = new_random_generator(reference_fields)
            target = random_generator.choice(references)
        else:
            target = references[0]

        return target, references


class MultiTurnTemplate(MultiReferenceTemplate):
    input_format = ""
    turns_field: str

    def post_process_instance(self, instance):
        turns = dict_get(instance["input_fields"], self.turns_field)
        instance["__turns__"] = turns
        return super().post_process_instance(instance)


def escape_chars(s, chars_to_escape):
    for char in chars_to_escape:
        s = s.replace(char, f"\\{char}")
    return s


class SpanLabelingBaseTemplate(MultiLabelTemplate):
    spans_starts_field: str = "spans_starts"
    spans_ends_field: str = "spans_ends"
    text_field: str = "text"
    labels_support: list = None

    def extract_span_label_pairs(self, reference_fields):
        spans_starts = reference_fields[self.spans_starts_field]
        spans_ends = reference_fields[self.spans_ends_field]
        text = reference_fields[self.text_field]
        labels = reference_fields[self.labels_field]

        spans = []
        for span_start, span_end, label in zip(spans_starts, spans_ends, labels):
            if self.labels_support is None or label in self.labels_support:
                spans.append((span_start, span_end, text[span_start:span_end], label))

        for span in sorted(spans):
            if self.labels_support is None or span[3] in self.labels_support:
                yield span[2], span[3]

    def preprocess_reference_fields(
        self, reference_fields: Dict[str, Any]
    ) -> Dict[str, Any]:
        span_labels_pairs = self.extract_span_label_pairs(reference_fields)
        targets = self.span_label_pairs_to_targets(span_labels_pairs)
        return super().preprocess_reference_fields({"labels": targets})

    @abstractmethod
    def span_label_pairs_to_targets(self, pairs):
        pass


class SpanLabelingTemplate(SpanLabelingBaseTemplate):
    span_label_format: str = "{span}: {label}"
    escape_characters: List[str] = [":", ","]
    postprocessors: List[str] = ["processors.to_span_label_pairs"]

    def span_label_pairs_to_targets(self, span_label_pairs):
        targets = []
        for span, label in span_label_pairs:
            if self.escape_characters is not None:
                span = escape_chars(span, self.escape_characters)
            target = self.span_label_format.format(span=span, label=label)
            targets.append(target)
        return targets


class SpanLabelingJsonTemplate(SpanLabelingBaseTemplate):
    postprocessors = [
        "processors.load_json",
        "processors.dict_of_lists_to_value_key_pairs",
    ]

    def span_label_pairs_to_targets(self, span_label_pairs):
        groups = {}
        for span, label in span_label_pairs:
            if label not in groups:
                groups[label] = []
            groups[label].append(span)
        if len(groups) > 0:
            targets = [json.dumps(groups, ensure_ascii=False)]
        else:
            targets = []
        return targets


class TemplatesList(ListCollection):
    def verify(self):
        for template in self.items:
            assert isinstance(template, Template)


class TemplatesDict(DictCollection):
    def verify(self):
        for template in self.items.values():
            assert isinstance(template, Template)