|
|
|
import argparse |
|
import importlib.metadata |
|
import json |
|
import logging |
|
import os |
|
import platform |
|
import subprocess |
|
import sys |
|
from datetime import datetime |
|
from functools import partial |
|
from typing import Any, Dict, List, Optional, Tuple, Union |
|
|
|
from datasets import Dataset as HFDataset |
|
|
|
from . import evaluate, get_logger, load_dataset |
|
from .artifact import UnitxtArtifactNotFoundError |
|
from .benchmark import Benchmark |
|
|
|
|
|
from .inference import ( |
|
CrossProviderInferenceEngine, |
|
HFAutoModelInferenceEngine, |
|
InferenceEngine, |
|
) |
|
from .metric_utils import EvaluationResults |
|
from .parsing_utils import parse_key_equals_value_string_to_dict |
|
from .settings_utils import settings |
|
from .standard import DatasetRecipe |
|
|
|
|
|
|
|
logger = get_logger() |
|
|
|
|
|
def try_parse_json(value: str) -> Union[str, dict, None]: |
|
"""Attempts to parse a string as JSON or key=value pairs. |
|
|
|
Returns the original string if parsing fails |
|
and the string doesn't look like JSON/kv pairs. |
|
Raises ArgumentTypeError if it looks like JSON but is invalid. |
|
""" |
|
if value is None: |
|
return None |
|
try: |
|
|
|
if "=" in value and "{" not in value: |
|
parsed_dict = parse_key_equals_value_string_to_dict(value) |
|
if parsed_dict: |
|
return parsed_dict |
|
|
|
|
|
return json.loads(value) |
|
|
|
except json.JSONDecodeError as e: |
|
if value.strip().startswith("{") or value.strip().startswith("["): |
|
raise argparse.ArgumentTypeError( |
|
f"Invalid JSON: '{value}'. Hint: Use double quotes for JSON strings and check syntax." |
|
) from e |
|
return value |
|
except Exception as e: |
|
logger.error(f"Error parsing argument '{value}': {e}") |
|
raise argparse.ArgumentTypeError(f"Could not parse argument: '{value}'") from e |
|
|
|
|
|
def setup_parser() -> argparse.ArgumentParser: |
|
"""Sets up the argument parser.""" |
|
parser = argparse.ArgumentParser( |
|
formatter_class=argparse.RawTextHelpFormatter, |
|
description="CLI utility for running evaluations with unitxt.", |
|
) |
|
|
|
|
|
parser.add_argument( |
|
"--tasks", |
|
"-t", |
|
dest="tasks", |
|
type=partial(str.split, sep="+"), |
|
required=True, |
|
help="Plus-separated (+) list of Unitxt task/dataset identifier strings.\n" |
|
"Each task format: 'card=<card_ref>,template=<template_ref>,...'\n" |
|
"Example: 'card=cards.mmlu,t=t.mmlu.all+card=cards.hellaswag,t=t.hellaswag.no'", |
|
) |
|
|
|
parser.add_argument( |
|
"--split", |
|
type=str, |
|
default="test", |
|
help="Dataset split to use (e.g., 'train', 'validation', 'test'). Default: 'test'.", |
|
) |
|
parser.add_argument( |
|
"--num_fewshots", |
|
type=int, |
|
default=None, |
|
help="number of fewshots to use", |
|
) |
|
parser.add_argument( |
|
"--limit", |
|
"-L", |
|
type=int, |
|
default=None, |
|
metavar="N", |
|
help="Limit the number of examples per task/dataset.", |
|
) |
|
|
|
parser.add_argument( |
|
"--batch_size", |
|
"-b", |
|
type=int, |
|
default=1, |
|
help="Batch size for use in inference when selected model is hf. Default 1", |
|
) |
|
|
|
|
|
parser.add_argument( |
|
"--model", |
|
"-m", |
|
type=str, |
|
default="hf", |
|
choices=["hf", "cross_provider"], |
|
help="Specifies the model type/engine.\n" |
|
"- 'hf': Local Hugging Face model via HFAutoModel (default). Requires 'pretrained=...' in --model_args.\n" |
|
"- 'cross_provider': Remote model via CrossProviderInferenceEngine. Requires 'model_name=...' in --model_args.", |
|
) |
|
parser.add_argument( |
|
"--model_args", |
|
"-a", |
|
type=try_parse_json, |
|
default={}, |
|
help="Comma separated string or JSON formatted arguments for the model/inference engine.\n" |
|
"Examples:\n" |
|
"- For --model hf (default): 'pretrained=meta-llama/Llama-3.1-8B-Instruct,torch_dtype=bfloat16,device=cuda'\n" |
|
" (Note: 'pretrained' key is REQUIRED. Other args like 'torch_dtype', 'device', generation params are passed too)\n" |
|
"- For --model generic_remote: 'model_name=llama-3-3-70b-instruct,max_tokens=256,temperature=0.7'\n" |
|
" (Note: 'model_name' key is REQUIRED)\n" |
|
'- JSON format: \'{"pretrained": "my_model", "torch_dtype": "float32"}\' or \'{"model_name": "openai/gpt-4o"}\'', |
|
) |
|
|
|
parser.add_argument( |
|
"--gen_kwargs", |
|
type=try_parse_json, |
|
default=None, |
|
help=( |
|
"Comma delimited string for model generation on greedy_until tasks," |
|
""" e.g. temperature=0,top_p=0.1.""" |
|
), |
|
) |
|
|
|
parser.add_argument( |
|
"--chat_template_kwargs", |
|
type=try_parse_json, |
|
default=None, |
|
help=( |
|
"Comma delimited string for tokenizer kwargs" |
|
"e.g. thinking=True (https://github.com/huggingface/transformers/blob/9a1c1fe7edaefdb25ab37116a979832df298d6ea/src/transformers/tokenization_utils_base.py#L1542)" |
|
), |
|
) |
|
|
|
|
|
parser.add_argument( |
|
"--output_path", |
|
"-o", |
|
type=str, |
|
default=".", |
|
help="Directory to save evaluation results and logs. Default: current directory.", |
|
) |
|
parser.add_argument( |
|
"--output_file_prefix", |
|
type=str, |
|
default="evaluation_results", |
|
help="Prefix for the output JSON file names. Default: 'evaluation_results'.", |
|
) |
|
parser.add_argument( |
|
"--log_samples", |
|
"-s", |
|
action="store_true", |
|
default=False, |
|
help="If True, save individual predictions and scores to a separate JSON file.", |
|
) |
|
parser.add_argument( |
|
"--verbosity", |
|
"-v", |
|
type=str.upper, |
|
default="INFO", |
|
choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"], |
|
help="Controls logging verbosity level. Default: INFO.", |
|
) |
|
|
|
parser.add_argument( |
|
"--apply_chat_template", |
|
action="store_true", |
|
default=False, |
|
) |
|
|
|
|
|
parser.add_argument( |
|
"--trust_remote_code", |
|
action="store_true", |
|
default=False, |
|
help="Allow execution of unverified code from the HuggingFace Hub (used by datasets/unitxt).", |
|
) |
|
parser.add_argument( |
|
"--disable_hf_cache", |
|
action="store_true", |
|
default=False, |
|
help="Disable HuggingFace datasets caching.", |
|
) |
|
parser.add_argument( |
|
"--cache_dir", |
|
type=str, |
|
default=None, |
|
help="Directory for HuggingFace datasets cache (overrides default).", |
|
) |
|
|
|
return parser |
|
|
|
|
|
def setup_logging(verbosity: str) -> None: |
|
"""Configures logging based on verbosity level.""" |
|
logging.basicConfig( |
|
level=verbosity, |
|
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", |
|
force=True, |
|
) |
|
|
|
global logger |
|
logger = get_logger() |
|
logger.setLevel(verbosity) |
|
|
|
|
|
def prepare_output_paths(output_path: str, prefix: str) -> Tuple[str, str]: |
|
"""Creates output directory and defines file paths. |
|
|
|
Args: |
|
output_path (str): The directory where output files will be saved. |
|
prefix (str): The prefix for the output file names. |
|
|
|
Returns: |
|
Tuple[str, str]: A tuple containing the path for the results summary file |
|
and the path for the detailed samples file. |
|
""" |
|
os.makedirs(output_path, exist_ok=True) |
|
results_file_path = os.path.join(output_path, f"{prefix}.json") |
|
samples_file_path = os.path.join(output_path, f"{prefix}_samples.json") |
|
return results_file_path, samples_file_path |
|
|
|
|
|
def configure_unitxt_settings(args: argparse.Namespace): |
|
"""Configures unitxt settings and returns a context manager. |
|
|
|
Args: |
|
args (argparse.Namespace): Parsed command-line arguments. |
|
|
|
Returns: |
|
ContextManager: A context manager for applying unitxt settings. |
|
""" |
|
unitxt_settings_dict = { |
|
"disable_hf_datasets_cache": args.disable_hf_cache, |
|
"allow_unverified_code": args.trust_remote_code, |
|
} |
|
if args.cache_dir: |
|
unitxt_settings_dict["hf_cache_dir"] = args.cache_dir |
|
|
|
os.environ["HF_DATASETS_CACHE"] = args.cache_dir |
|
os.environ["HF_HOME"] = args.cache_dir |
|
logger.info(f"Set HF_DATASETS_CACHE to: {args.cache_dir}") |
|
|
|
if args.disable_hf_cache: |
|
os.environ["UNITXT_DISABLE_HF_DATASETS_CACHE"] = "True" |
|
|
|
logger.info(f"Applying unitxt settings: {unitxt_settings_dict}") |
|
return settings.context(**unitxt_settings_dict) |
|
|
|
|
|
def cli_load_dataset(args: argparse.Namespace) -> HFDataset: |
|
"""Loads the dataset based on command line arguments. |
|
|
|
Args: |
|
args (argparse.Namespace): Parsed command-line arguments. |
|
|
|
Returns: |
|
HFDataset: The loaded dataset. |
|
|
|
Raises: |
|
UnitxtArtifactNotFoundError: If the specified card or template artifact is not found. |
|
FileNotFoundError: If a specified file (e.g., in a local card path) is not found. |
|
AttributeError: If there's an issue accessing attributes during loading. |
|
ValueError: If there's a value-related error during loading (e.g., parsing). |
|
""" |
|
logger.info( |
|
f"Loading task/dataset using identifier: '{args.tasks}' with split '{args.split}'" |
|
) |
|
|
|
benchmark_subsets = {} |
|
for task_str in args.tasks: |
|
dataset_args = task_str_to_dataset_args(task_str, args) |
|
|
|
benchmark_subsets[task_str] = DatasetRecipe(**dataset_args) |
|
|
|
benchmark = Benchmark(subsets=benchmark_subsets) |
|
|
|
test_dataset = load_dataset(benchmark, split=args.split) |
|
logger.info( |
|
f"Dataset loaded successfully. Number of instances: {len(test_dataset)}" |
|
) |
|
return test_dataset |
|
|
|
|
|
def task_str_to_dataset_args(task_str, args): |
|
dataset_args = parse_key_equals_value_string_to_dict(task_str) |
|
|
|
if args.limit is not None: |
|
assert f"max_{args.split}_instances" not in dataset_args, ( |
|
"limit was inputted both as an arg and as a task parameter" |
|
) |
|
|
|
|
|
dataset_args[f"max_{args.split}_instances"] = args.limit |
|
|
|
logger.info( |
|
f"Applying limit from --limit argument: max_{args.split}_instances={args.limit}" |
|
) |
|
|
|
if args.num_fewshots: |
|
assert "num_demos" not in dataset_args, ( |
|
"num_demos was inputted both as an arg and as a task parameter" |
|
) |
|
dataset_args["num_demos"] = args.num_fewshots |
|
dataset_args.update( |
|
{ |
|
"demos_taken_from": "train", |
|
"demos_pool_size": -1, |
|
"demos_removed_from_data": True, |
|
} |
|
) |
|
logger.info( |
|
f"Applying limit from --limit argument: num_demos={args.num_fewshots}" |
|
) |
|
|
|
if args.apply_chat_template: |
|
assert "format" not in dataset_args, ( |
|
"format was inputted as a task parameter, but chat_api was requested" |
|
) |
|
dataset_args["format"] = "formats.chat_api" |
|
logger.info( |
|
"Applying chat template from --apply_chat_template argument: format=formats.chat_api" |
|
) |
|
|
|
return dataset_args |
|
|
|
|
|
def prepare_kwargs(kwargs: dict) -> Dict[str, Any]: |
|
"""Prepares the model arguments dictionary. |
|
|
|
Args: |
|
kwargs (dict): Parsed command-line arguments. |
|
|
|
Returns: |
|
Dict[str, Any]: The processed model arguments dictionary. |
|
""" |
|
|
|
kwargs_dict = kwargs if isinstance(kwargs, dict) else {} |
|
if not isinstance(kwargs, dict) and kwargs is not None: |
|
logger.warning( |
|
f"Could not parse kwargs '{kwargs}' as JSON or key-value pairs. Treating as empty." |
|
) |
|
|
|
logger.info(f"Using kwargs: {kwargs_dict}") |
|
return kwargs_dict |
|
|
|
|
|
def initialize_inference_engine( |
|
args: argparse.Namespace, |
|
model_args_dict: Dict[str, Any], |
|
chat_kwargs_dict: Dict[str, Any], |
|
) -> InferenceEngine: |
|
"""Initializes the appropriate inference engine based on arguments. |
|
|
|
Args: |
|
args (argparse.Namespace): Parsed command-line arguments. |
|
model_args_dict (Dict[str, Any]): Processed model arguments. |
|
chat_kwargs_dict (Dict[str, Any]): Processed chat arguments. |
|
|
|
Returns: |
|
InferenceEngine: The initialized inference engine instance. |
|
|
|
Raises: |
|
SystemExit: If required dependencies are missing for the selected model type. |
|
ValueError: If required keys are missing in model_args for the selected model type. |
|
""" |
|
inference_model = None |
|
|
|
if args.model.lower() == "hf": |
|
if "pretrained" not in model_args_dict: |
|
logger.error( |
|
"Missing 'pretrained=<model_id_or_path>' in --model_args for '--model hf'." |
|
) |
|
raise ValueError( |
|
"Argument 'pretrained' is required in --model_args when --model is 'hf'" |
|
) |
|
|
|
local_model_name = model_args_dict.pop("pretrained") |
|
logger.info( |
|
f"Initializing HFAutoModelInferenceEngine for model: {local_model_name}" |
|
) |
|
|
|
model_args_dict.update({"batch_size": args.batch_size}) |
|
logger.info(f"HFAutoModelInferenceEngine args: {model_args_dict}") |
|
|
|
inference_model = HFAutoModelInferenceEngine( |
|
model_name=local_model_name, |
|
**model_args_dict, |
|
chat_kwargs_dict=chat_kwargs_dict, |
|
) |
|
|
|
|
|
elif args.model.lower() == "cross_provider": |
|
if "model_name" not in model_args_dict: |
|
logger.error( |
|
"Missing 'model_name=<provider/model_id>' in --model_args for '--model cross_provider'." |
|
) |
|
raise ValueError( |
|
"Argument 'model_name' is required in --model_args when --model is 'cross_provider'" |
|
) |
|
|
|
remote_model_name = model_args_dict.pop("model_name") |
|
logger.info( |
|
f"Initializing CrossProviderInferenceEngine for model: {remote_model_name}" |
|
) |
|
|
|
if ( |
|
"max_tokens" not in model_args_dict |
|
and "max_new_tokens" not in model_args_dict |
|
): |
|
logger.warning( |
|
f"'max_tokens' or 'max_new_tokens' not found in --model_args, {remote_model_name} might require it." |
|
) |
|
|
|
logger.info(f"CrossProviderInferenceEngine args: {model_args_dict}") |
|
|
|
|
|
inference_model = CrossProviderInferenceEngine( |
|
model=remote_model_name, |
|
**model_args_dict, |
|
) |
|
else: |
|
|
|
logger.error( |
|
f"Invalid --model type specified: {args.model}. Use 'hf' or 'cross_provider'." |
|
) |
|
sys.exit(1) |
|
|
|
return inference_model |
|
|
|
|
|
def run_inference(engine: InferenceEngine, dataset: HFDataset) -> List[Any]: |
|
"""Runs inference using the initialized engine. |
|
|
|
Args: |
|
engine (InferenceEngine): The inference engine instance. |
|
dataset (HFDataset): The dataset to run inference on. |
|
|
|
Returns: |
|
List[Any]: A list of predictions. |
|
|
|
Raises: |
|
Exception: If an error occurs during inference. |
|
""" |
|
logger.info("Starting inference...") |
|
try: |
|
predictions = engine.infer(dataset) |
|
logger.info("Inference completed.") |
|
if not predictions: |
|
logger.warning("Inference returned no predictions.") |
|
return [] |
|
if len(predictions) != len(dataset): |
|
logger.error( |
|
f"Inference returned an unexpected number of predictions ({len(predictions)}). Expected {len(dataset)}." |
|
) |
|
|
|
return predictions |
|
except Exception: |
|
logger.exception("An error occurred during inference") |
|
raise |
|
|
|
|
|
def run_evaluation(predictions: List[Any], dataset: HFDataset) -> EvaluationResults: |
|
"""Runs evaluation on the predictions. |
|
|
|
Args: |
|
predictions (List[Any]): The list of predictions from the model. |
|
dataset (HFDataset): The dataset containing references and other data. |
|
|
|
Returns: |
|
EvaluationResults: The evaluated dataset (list of instances with scores). |
|
|
|
Raises: |
|
RuntimeError: If evaluation returns no results or an unexpected type. |
|
Exception: If any other error occurs during evaluation. |
|
""" |
|
logger.info("Starting evaluation...") |
|
if not predictions: |
|
logger.warning("Skipping evaluation as there are no predictions.") |
|
return [] |
|
|
|
try: |
|
evaluation_results = evaluate(predictions=predictions, data=dataset) |
|
logger.info("Evaluation completed.") |
|
if not evaluation_results: |
|
logger.error("Evaluation returned no results (empty list/None).") |
|
|
|
raise RuntimeError("Evaluation returned no results.") |
|
if not isinstance(evaluation_results, EvaluationResults): |
|
logger.error( |
|
f"Evaluation returned unexpected type: {type(evaluation_results)}. Expected list." |
|
) |
|
raise RuntimeError( |
|
f"Evaluation returned unexpected type: {type(evaluation_results)}" |
|
) |
|
|
|
return evaluation_results |
|
except Exception: |
|
logger.exception("An error occurred during evaluation") |
|
raise |
|
|
|
|
|
def _get_unitxt_commit_hash() -> Optional[str]: |
|
"""Tries to get the git commit hash of the installed unitxt package.""" |
|
try: |
|
|
|
|
|
|
|
current_script_path = os.path.abspath(__file__) |
|
package_dir = os.path.dirname(current_script_path) |
|
|
|
|
|
|
|
git_command = ["git", "-C", os.path.abspath(package_dir), "rev-parse", "HEAD"] |
|
logger.debug(f"Running git command: {' '.join(git_command)}") |
|
result = subprocess.run( |
|
git_command, |
|
capture_output=True, |
|
text=True, |
|
check=False, |
|
encoding="utf-8", |
|
errors="ignore", |
|
) |
|
if result.returncode == 0: |
|
commit_hash = result.stdout.strip() |
|
logger.info(f"Found unitxt git commit hash: {commit_hash}") |
|
|
|
if len(commit_hash) == 40 and all( |
|
c in "0123456789abcdef" for c in commit_hash |
|
): |
|
return commit_hash |
|
logger.warning( |
|
f"Git command output '{commit_hash}' doesn't look like a valid commit hash." |
|
) |
|
return None |
|
stderr_msg = result.stderr.strip() if result.stderr else "No stderr" |
|
logger.warning( |
|
f"Could not get unitxt git commit hash (git command failed with code {result.returncode}): {stderr_msg}" |
|
) |
|
return None |
|
except ImportError: |
|
logger.warning("unitxt package not found, cannot determine commit hash.") |
|
return None |
|
except FileNotFoundError: |
|
logger.warning( |
|
"'git' command not found in PATH. Cannot determine unitxt commit hash." |
|
) |
|
return None |
|
except Exception as e: |
|
logger.warning( |
|
f"Error getting unitxt commit hash: {e}", exc_info=True |
|
) |
|
return None |
|
|
|
|
|
def _get_installed_packages() -> Dict[str, str]: |
|
"""Gets a dictionary of installed packages and their versions.""" |
|
packages = {} |
|
try: |
|
for dist in importlib.metadata.distributions(): |
|
|
|
name = dist.metadata.get("Name") |
|
version = dist.metadata.get("Version") |
|
if name and version: |
|
packages[name] = version |
|
elif name: |
|
packages[name] = "N/A" |
|
logger.debug(f"Could not find version for package: {name}") |
|
|
|
logger.info(f"Collected versions for {len(packages)} installed packages.") |
|
except Exception as e: |
|
logger.warning(f"Could not retrieve installed package list: {e}", exc_info=True) |
|
return packages |
|
|
|
|
|
def _get_unitxt_version() -> str: |
|
"""Gets the installed unitxt version using importlib.metadata.""" |
|
try: |
|
version = importlib.metadata.version("unitxt") |
|
logger.info(f"Found unitxt version using importlib.metadata: {version}") |
|
return version |
|
except importlib.metadata.PackageNotFoundError: |
|
logger.warning( |
|
"Could not find 'unitxt' package version using importlib.metadata. Is it installed correctly?" |
|
) |
|
return "N/A" |
|
except Exception as e: |
|
logger.warning( |
|
f"Error getting unitxt version using importlib.metadata: {e}", exc_info=True |
|
) |
|
return "N/A" |
|
|
|
|
|
def prepend_timestamp_to_path(original_path, timestamp): |
|
"""Takes a path string and a timestamp string, prepends the timestamp to the filename part of the path, and returns the new path string.""" |
|
directory, filename = os.path.split(original_path) |
|
|
|
new_filename = f"{timestamp}_{filename}" |
|
|
|
return os.path.join(directory, new_filename) |
|
|
|
|
|
def _save_results_to_disk( |
|
args: argparse.Namespace, |
|
global_scores: Dict[str, Any], |
|
all_samples_data: Dict[str, List[Dict[str, Any]]], |
|
results_path: str, |
|
samples_path: str, |
|
) -> None: |
|
"""Saves the configuration, environment info, global scores, and samples to JSON files. |
|
|
|
Args: |
|
args (argparse.Namespace): Parsed command-line arguments. |
|
global_scores (Dict[str, Any]): Dictionary of global scores. |
|
all_samples_data (Dict[str, List[Dict[str, Any]]]): List of processed sample data. |
|
results_path (str): Path to save the summary results JSON file. |
|
samples_path (str): Path to save the detailed samples JSON file. |
|
""" |
|
|
|
config_to_save = {} |
|
for k, v in vars(args).items(): |
|
|
|
if isinstance(v, (str, int, float, bool, list, dict, type(None))): |
|
config_to_save[k] = v |
|
else: |
|
try: |
|
|
|
config_to_save[k] = repr(v) |
|
except Exception: |
|
|
|
config_to_save[k] = ( |
|
f"<Object of type {type(v).__name__} could not be represented>" |
|
) |
|
|
|
|
|
unitxt_commit = _get_unitxt_commit_hash() |
|
|
|
unitxt_pkg_version = _get_unitxt_version() |
|
|
|
environment_info = { |
|
"timestamp_utc": datetime.utcnow().isoformat() + "Z", |
|
"command_line_invocation": sys.argv, |
|
"parsed_arguments": config_to_save, |
|
"unitxt_version": unitxt_pkg_version, |
|
"unitxt_commit_hash": unitxt_commit if unitxt_commit else "N/A", |
|
"python_version": platform.python_version(), |
|
"system": platform.system(), |
|
"system_version": platform.version(), |
|
"installed_packages": _get_installed_packages(), |
|
} |
|
|
|
|
|
results_summary = { |
|
"environment_info": environment_info, |
|
"results": global_scores, |
|
} |
|
|
|
|
|
|
|
timestamp = datetime.now().strftime("%Y-%m-%dT%H:%M:%S") |
|
|
|
results_path = prepend_timestamp_to_path(results_path, timestamp) |
|
samples_path = prepend_timestamp_to_path(samples_path, timestamp) |
|
|
|
|
|
logger.info(f"Saving global results summary to: {results_path}") |
|
try: |
|
with open(results_path, "w", encoding="utf-8") as f: |
|
json.dump(results_summary, f, indent=4, ensure_ascii=False) |
|
except OSError as e: |
|
logger.error(f"Failed to write results summary file {results_path}: {e}") |
|
except TypeError as e: |
|
logger.error( |
|
f"Failed to serialize results summary to JSON: {e}. Check data types." |
|
) |
|
|
|
|
|
|
|
|
|
if args.log_samples: |
|
logger.info(f"Saving detailed samples to: {samples_path}") |
|
|
|
samples_output = { |
|
"environment_info": environment_info, |
|
"samples": all_samples_data, |
|
} |
|
try: |
|
with open(samples_path, "w", encoding="utf-8") as f: |
|
json.dump(samples_output, f, indent=4, ensure_ascii=False) |
|
except OSError as e: |
|
logger.error(f"Failed to write samples file {samples_path}: {e}") |
|
except TypeError as e: |
|
logger.error(f"Failed to serialize samples to JSON: {e}. Check data types.") |
|
|
|
|
|
def process_and_save_results( |
|
args: argparse.Namespace, |
|
evaluation_results: EvaluationResults, |
|
results_path: str, |
|
samples_path: str, |
|
) -> None: |
|
"""Processes, prints, and saves the evaluation results. |
|
|
|
Args: |
|
args (argparse.Namespace): Parsed command-line arguments. |
|
evaluation_results (EvaluationResults): The list of evaluated instances. |
|
results_path (str): Path to save the summary results JSON file. |
|
samples_path (str): Path to save the detailed samples JSON file. |
|
|
|
Raises: |
|
Exception: If an error occurs during result processing or saving (re-raised). |
|
""" |
|
try: |
|
|
|
|
|
subsets_scores = evaluation_results.subsets_scores |
|
instances_results = evaluation_results.instance_scores |
|
|
|
subset_instances = {} |
|
for instance in instances_results: |
|
if instance["subset"][0] not in subset_instances: |
|
subset_instances[instance["subset"][0]] = [] |
|
del instance["postprocessors"] |
|
subset_instances[instance["subset"][0]].append(instance) |
|
|
|
logger.info(f"\n{subsets_scores.summary}") |
|
|
|
|
|
|
|
_save_results_to_disk( |
|
args, subsets_scores, subset_instances, results_path, samples_path |
|
) |
|
|
|
except Exception: |
|
logger.exception( |
|
"An error occurred during result processing or saving" |
|
) |
|
raise |
|
|
|
|
|
def main(): |
|
"""Main function to parse arguments and run evaluation.""" |
|
parser = setup_parser() |
|
args = parser.parse_args() |
|
|
|
|
|
setup_logging(args.verbosity) |
|
|
|
logger.info("Starting Unitxt Evaluation CLI") |
|
|
|
logger.debug(f"Raw command line arguments: {sys.argv}") |
|
logger.debug(f"Parsed arguments: {vars(args)}") |
|
logger.debug( |
|
f"Parsed model_args type: {type(args.model_args)}, value: {args.model_args}" |
|
) |
|
|
|
try: |
|
results_path, samples_path = prepare_output_paths( |
|
args.output_path, args.output_file_prefix |
|
) |
|
|
|
|
|
with configure_unitxt_settings(args): |
|
test_dataset = cli_load_dataset(args) |
|
model_args_dict = prepare_kwargs(args.model_args) |
|
gen_kwargs_dict = prepare_kwargs(args.gen_kwargs) |
|
chat_kwargs_dict = prepare_kwargs(args.chat_template_kwargs) |
|
|
|
model_args_dict.update(gen_kwargs_dict) |
|
inference_model = initialize_inference_engine( |
|
args, model_args_dict, chat_kwargs_dict |
|
) |
|
predictions = run_inference(inference_model, test_dataset) |
|
evaluation_results = run_evaluation(predictions, test_dataset) |
|
process_and_save_results( |
|
args, evaluation_results, results_path, samples_path |
|
) |
|
|
|
|
|
except (UnitxtArtifactNotFoundError, FileNotFoundError) as e: |
|
logger.exception(f"Error loading artifact or file: {e}") |
|
sys.exit(1) |
|
except (AttributeError, ValueError) as e: |
|
|
|
logger.exception(f"Configuration or value error: {e}") |
|
sys.exit(1) |
|
except ImportError as e: |
|
|
|
logger.exception(f"Missing dependency: {e}") |
|
sys.exit(1) |
|
except RuntimeError as e: |
|
|
|
logger.exception(f"Runtime error during processing: {e}") |
|
sys.exit(1) |
|
except Exception as e: |
|
|
|
logger.exception(f"An unexpected error occurred: {e}") |
|
sys.exit(1) |
|
|
|
logger.info("Unitxt Evaluation CLI finished successfully.") |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|