Image Description
# [![version](https://img.shields.io/pypi/v/unitxt)](https://pypi.org/project/unitxt/) ![license](https://img.shields.io/github/license/ibm/unitxt) ![python](https://img.shields.io/badge/python-3.8%20|%203.9-blue) ![tests](https://img.shields.io/github/actions/workflow/status/ibm/unitxt/library_tests.yml?branch=main&label=tests) [![Coverage Status](https://coveralls.io/repos/github/IBM/unitxt/badge.svg)](https://coveralls.io/github/IBM/unitxt) ![Read the Docs](https://img.shields.io/readthedocs/unitxt) [![downloads](https://static.pepy.tech/personalized-badge/unitxt?period=total&units=international_system&left_color=grey&right_color=green&left_text=downloads)](https://pepy.tech/project/unitxt) ### 🦄 Unitxt is a Python library for enterprise-grade evaluation of AI performance, offering the world's largest catalog of tools and data for end-to-end AI benchmarking # ## Why Unitxt? - 🌐 **Comprehensive**: Evaluate text, tables, vision, speech, and code in one unified framework - 💼 **Enterprise-Ready**: Battle-tested components with extensive catalog of benchmarks - 🧠 **Model Agnostic**: Works with HuggingFace, OpenAI, WatsonX, and custom models - 🔒 **Reproducible**: Shareable, modular components ensure consistent results ## Quick Links - 📖 [Documentation](https://www.unitxt.ai) - 🚀 [Getting Started](https://www.unitxt.ai) - 📁 [Browse Catalog](https://www.unitxt.ai/en/latest/catalog/catalog.__dir__.html) # Installation ```bash pip install unitxt ``` # Quick Start ## Command Line Evaluation ```bash # Simple evaluation unitxt-evaluate \ --tasks "card=cards.mmlu_pro.engineering" \ --model cross_provider \ --model_args "model_name=llama-3-1-8b-instruct" \ --limit 10 # Multi-task evaluation unitxt-evaluate \ --tasks "card=cards.text2sql.bird+card=cards.mmlu_pro.engineering" \ --model cross_provider \ --model_args "model_name=llama-3-1-8b-instruct,max_tokens=256" \ --split test \ --limit 10 \ --output_path ./results/evaluate_cli \ --log_samples \ --apply_chat_template # Benchmark evaluation unitxt-evaluate \ --tasks "benchmarks.tool_calling" \ --model cross_provider \ --model_args "model_name=llama-3-1-8b-instruct,max_tokens=256" \ --split test \ --limit 10 \ --output_path ./results/evaluate_cli \ --log_samples \ --apply_chat_template ``` ## Loading as Dataset Load thousands of datasets in chat API format, ready for any model: ```python from unitxt import load_dataset dataset = load_dataset( card="cards.gpqa.diamond", split="test", format="formats.chat_api", ) ``` ## 📊 Available on The Catalog ![Tasks](https://img.shields.io/badge/Tasks-68-blue) ![Datasets](https://img.shields.io/badge/Datasets-3254-blue) ![Prompts](https://img.shields.io/badge/Prompts-357-blue) ![Benchmarks](https://img.shields.io/badge/Benchmarks-11-blue) ![Metrics](https://img.shields.io/badge/Metrics-584-blue) ## 🚀 Interactive Dashboard Launch the graphical user interface to explore datasets and benchmarks: ``` pip install unitxt[ui] unitxt-explore ``` # Complete Python Example Evaluate your own data with any model: ```python # Import required components from unitxt import evaluate, create_dataset from unitxt.blocks import Task, InputOutputTemplate from unitxt.inference import HFAutoModelInferenceEngine # Question-answer dataset data = [ {"question": "What is the capital of Texas?", "answer": "Austin"}, {"question": "What is the color of the sky?", "answer": "Blue"}, ] # Define the task and evaluation metric task = Task( input_fields={"question": str}, reference_fields={"answer": str}, prediction_type=str, metrics=["metrics.accuracy"], ) # Create a template to format inputs and outputs template = InputOutputTemplate( instruction="Answer the following question.", input_format="{question}", output_format="{answer}", postprocessors=["processors.lower_case"], ) # Prepare the dataset dataset = create_dataset( task=task, template=template, format="formats.chat_api", test_set=data, split="test", ) # Set up the model (supports Hugging Face, WatsonX, OpenAI, etc.) model = HFAutoModelInferenceEngine( model_name="Qwen/Qwen1.5-0.5B-Chat", max_new_tokens=32 ) # Generate predictions and evaluate predictions = model(dataset) results = evaluate(predictions=predictions, data=dataset) # Print results print("Global Results:\n", results.global_scores.summary) print("Instance Results:\n", results.instance_scores.summary) ``` # Contributing Read the [contributing guide](./CONTRIBUTING.md) for details on how to contribute to Unitxt. # # Citation If you use Unitxt in your research, please cite our paper: ```bib @inproceedings{bandel-etal-2024-unitxt, title = "Unitxt: Flexible, Shareable and Reusable Data Preparation and Evaluation for Generative {AI}", author = "Bandel, Elron and Perlitz, Yotam and Venezian, Elad and Friedman, Roni and Arviv, Ofir and Orbach, Matan and Don-Yehiya, Shachar and Sheinwald, Dafna and Gera, Ariel and Choshen, Leshem and Shmueli-Scheuer, Michal and Katz, Yoav", editor = "Chang, Kai-Wei and Lee, Annie and Rajani, Nazneen", booktitle = "Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 3: System Demonstrations)", month = jun, year = "2024", address = "Mexico City, Mexico", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2024.naacl-demo.21", pages = "207--215", } ```