import os import re from typing import ( Any, Dict, List, Optional, ) from .operators import FieldOperator, InstanceOperator from .settings_utils import get_settings from .utils import retry_connection_with_exponential_backoff settings = get_settings() class Split(FieldOperator): by: str def process_value(self, value: str) -> List[str]: return value.split(self.by) class RegexSplit(FieldOperator): by: str def process_value(self, value: str) -> List[str]: return re.split(self.by, value) class TokensSplit(FieldOperator): model: str _requirements_list = ["transformers"] def prepare(self): super().prepare() from transformers import AutoTokenizer path = self.model if settings.hf_offline_models_path is not None: path = os.path.join(settings.hf_offline_models_path, path) self.tokenizer = AutoTokenizer.from_pretrained(path) def process_value(self, value: str) -> List[str]: return self.tokenizer.tokenize(value) class TokensSlice(FieldOperator): model: str start: Optional[int] = None stop: Optional[int] = None step: Optional[int] = None _requirements_list = ["transformers"] @retry_connection_with_exponential_backoff(backoff_factor=2) def prepare(self): super().prepare() from transformers import AutoTokenizer path = self.model if settings.hf_offline_models_path is not None: path = os.path.join(settings.hf_offline_models_path, path) self.tokenizer = AutoTokenizer.from_pretrained(path) def process_value(self, value: str) -> str: encoded = self.tokenizer.encode(value) slicer = slice(self.start, self.stop, self.step) sliced = encoded[slicer] return self.tokenizer.decode(sliced) class Join(FieldOperator): by: str def process_value(self, value: List[str]) -> str: return self.by.join(value) class FormatText(InstanceOperator): to_field: str text: str def process( self, instance: Dict[str, Any], stream_name: Optional[str] = None ) -> Dict[str, Any]: instance[self.to_field] = self.text.format(**instance) return instance class Strip(FieldOperator): def process_value(self, value: str) -> str: return value.strip() class Replace(FieldOperator): old: str new: str def process_value(self, value: str) -> str: return value.replace(self.old, self.new) class MapReplace(FieldOperator): mapping: Dict[str, str] def process_value(self, value: Any) -> Any: for key, val in self.mapping.items(): value = value.replace(key, val) return value class RegexReplace(FieldOperator): pattern: str # A regex pattern replacement: str # The replacement string or template def prepare(self): super().prepare() self.pattern = re.compile(self.pattern) def process_value(self, value: Any) -> Any: if isinstance(value, str): return re.sub(self.pattern, self.replacement, value) return value # If not a string, return the value as is