Upload 4 files
Browse files
Alpaca_+_Llama_7b_full_example.ipynb
CHANGED
@@ -35,9 +35,7 @@
|
|
35 |
"else:\n",
|
36 |
" # Use this for older GPUs (V100, Tesla T4, RTX 20xx)\n",
|
37 |
" !pip install \"unsloth[colab] @ git+https://github.com/unslothai/unsloth.git\"\n",
|
38 |
-
"pass
|
39 |
-
"\n",
|
40 |
-
"!pip install \"git+https://github.com/huggingface/transformers.git\" # Native 4bit loading works!"
|
41 |
]
|
42 |
},
|
43 |
{
|
@@ -280,11 +278,12 @@
|
|
280 |
"# 4bit pre quantized models we support for 4x faster downloading + no OOMs.\n",
|
281 |
"fourbit_models = [\n",
|
282 |
" \"unsloth/mistral-7b-bnb-4bit\",\n",
|
|
|
283 |
" \"unsloth/llama-2-7b-bnb-4bit\",\n",
|
284 |
" \"unsloth/llama-2-13b-bnb-4bit\",\n",
|
285 |
" \"unsloth/codellama-34b-bnb-4bit\",\n",
|
286 |
" \"unsloth/tinyllama-bnb-4bit\",\n",
|
287 |
-
"]\n",
|
288 |
"\n",
|
289 |
"model, tokenizer = FastLanguageModel.from_pretrained(\n",
|
290 |
" model_name = \"unsloth/llama-2-7b-bnb-4bit\", # Choose ANY! eg mistralai/Mistral-7B-Instruct-v0.2\n",
|
@@ -348,7 +347,11 @@
|
|
348 |
"\n",
|
349 |
"**[NOTE]** To train only on completions (ignoring the user's input) read TRL's docs [here](https://huggingface.co/docs/trl/sft_trainer#train-on-completions-only).\n",
|
350 |
"\n",
|
351 |
-
"**[NOTE]** Remember to add the **EOS_TOKEN** to the tokenized output!! Otherwise you'll get infinite generations
|
|
|
|
|
|
|
|
|
352 |
],
|
353 |
"metadata": {
|
354 |
"id": "vITh0KVJ10qX"
|
@@ -656,6 +659,7 @@
|
|
656 |
"\n",
|
657 |
"trainer = SFTTrainer(\n",
|
658 |
" model = model,\n",
|
|
|
659 |
" train_dataset = dataset,\n",
|
660 |
" dataset_text_field = \"text\",\n",
|
661 |
" max_seq_length = max_seq_length,\n",
|
@@ -1054,7 +1058,7 @@
|
|
1054 |
"cell_type": "code",
|
1055 |
"source": [
|
1056 |
"# alpaca_prompt = Copied from above\n",
|
1057 |
-
"\n",
|
1058 |
"inputs = tokenizer(\n",
|
1059 |
"[\n",
|
1060 |
" alpaca_prompt.format(\n",
|
@@ -1062,7 +1066,7 @@
|
|
1062 |
" \"1, 1, 2, 3, 5, 8\", # input\n",
|
1063 |
" \"\", # output - leave this blank for generation!\n",
|
1064 |
" )\n",
|
1065 |
-
"]
|
1066 |
"\n",
|
1067 |
"outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)\n",
|
1068 |
"tokenizer.batch_decode(outputs)"
|
@@ -1101,7 +1105,7 @@
|
|
1101 |
"cell_type": "code",
|
1102 |
"source": [
|
1103 |
"# alpaca_prompt = Copied from above\n",
|
1104 |
-
"\n",
|
1105 |
"inputs = tokenizer(\n",
|
1106 |
"[\n",
|
1107 |
" alpaca_prompt.format(\n",
|
@@ -1109,7 +1113,7 @@
|
|
1109 |
" \"1, 1, 2, 3, 5, 8\", # input\n",
|
1110 |
" \"\", # output - leave this blank for generation!\n",
|
1111 |
" )\n",
|
1112 |
-
"]
|
1113 |
"\n",
|
1114 |
"from transformers import TextStreamer\n",
|
1115 |
"text_streamer = TextStreamer(tokenizer)\n",
|
@@ -1187,6 +1191,7 @@
|
|
1187 |
" dtype = dtype,\n",
|
1188 |
" load_in_4bit = load_in_4bit,\n",
|
1189 |
" )\n",
|
|
|
1190 |
"\n",
|
1191 |
"# alpaca_prompt = You MUST copy from above!\n",
|
1192 |
"\n",
|
@@ -1197,7 +1202,7 @@
|
|
1197 |
" \"\", # input\n",
|
1198 |
" \"\", # output - leave this blank for generation!\n",
|
1199 |
" )\n",
|
1200 |
-
"]
|
1201 |
"\n",
|
1202 |
"from transformers import TextStreamer\n",
|
1203 |
"text_streamer = TextStreamer(tokenizer)\n",
|
@@ -1227,7 +1232,7 @@
|
|
1227 |
{
|
1228 |
"cell_type": "markdown",
|
1229 |
"source": [
|
1230 |
-
"You can also use Hugging Face's `AutoModelForPeftCausalLM`"
|
1231 |
],
|
1232 |
"metadata": {
|
1233 |
"id": "TGKU509CuMmq"
|
@@ -1237,6 +1242,7 @@
|
|
1237 |
"cell_type": "code",
|
1238 |
"source": [
|
1239 |
"if False:\n",
|
|
|
1240 |
" from peft import AutoModelForPeftCausalLM\n",
|
1241 |
" from transformers import AutoTokenizer\n",
|
1242 |
" model = AutoModelForPeftCausalLM.from_pretrained(\n",
|
@@ -1256,7 +1262,7 @@
|
|
1256 |
"source": [
|
1257 |
"### Saving to float16 for VLLM\n",
|
1258 |
"\n",
|
1259 |
-
"We also support saving to `float16` directly. Select `merged_16bit` for float16 or `merged_4bit` for int4. We also allow `lora` adapters as a fallback. Use `push_to_hub_merged` to upload to your Hugging Face account!"
|
1260 |
],
|
1261 |
"metadata": {
|
1262 |
"id": "-xp0YDnKuN98"
|
@@ -1266,16 +1272,16 @@
|
|
1266 |
"cell_type": "code",
|
1267 |
"source": [
|
1268 |
"# Merge to 16bit\n",
|
1269 |
-
"if False: model.save_pretrained_merged(\"
|
1270 |
-
"if False: model.push_to_hub_merged(\"
|
1271 |
"\n",
|
1272 |
"# Merge to 4bit\n",
|
1273 |
-
"if False: model.save_pretrained_merged(\"
|
1274 |
-
"if False: model.push_to_hub_merged(\"
|
1275 |
"\n",
|
1276 |
"# Just LoRA adapters\n",
|
1277 |
-
"if False: model.save_pretrained_merged(\"
|
1278 |
-
"if False: model.push_to_hub_merged(\"
|
1279 |
],
|
1280 |
"metadata": {
|
1281 |
"id": "vnFt-4ymuPM1"
|
@@ -1287,7 +1293,12 @@
|
|
1287 |
"cell_type": "markdown",
|
1288 |
"source": [
|
1289 |
"### GGUF / llama.cpp Conversion\n",
|
1290 |
-
"To save to `GGUF` / `llama.cpp`, we support it natively now! We clone `llama.cpp` and we default save it to `q8_0`. We allow all methods like `q4_k_m`. Use `save_pretrained_gguf` for local saving and `push_to_hub_gguf` for uploading to HF
|
|
|
|
|
|
|
|
|
|
|
1291 |
],
|
1292 |
"metadata": {
|
1293 |
"id": "8xg8B-N7uQcE"
|
@@ -1297,16 +1308,16 @@
|
|
1297 |
"cell_type": "code",
|
1298 |
"source": [
|
1299 |
"# Save to 8bit Q8_0\n",
|
1300 |
-
"if False: model.save_pretrained_gguf(\"
|
1301 |
-
"if False: model.push_to_hub_gguf(\"
|
1302 |
"\n",
|
1303 |
"# Save to 16bit GGUF\n",
|
1304 |
-
"if False: model.save_pretrained_gguf(\"
|
1305 |
-
"if False: model.push_to_hub_gguf(\"
|
1306 |
"\n",
|
1307 |
"# Save to q4_k_m GGUF\n",
|
1308 |
-
"if False: model.save_pretrained_gguf(\"
|
1309 |
-
"if False: model.push_to_hub_gguf(\"
|
1310 |
],
|
1311 |
"metadata": {
|
1312 |
"id": "8T822D9fuR0g"
|
@@ -1317,7 +1328,7 @@
|
|
1317 |
{
|
1318 |
"cell_type": "markdown",
|
1319 |
"source": [
|
1320 |
-
"Now, use the `
|
1321 |
],
|
1322 |
"metadata": {
|
1323 |
"id": "RiRcv_rquUq0"
|
@@ -1333,8 +1344,10 @@
|
|
1333 |
"2. Mistral 7b 2x faster [free Colab](https://colab.research.google.com/drive/1Dyauq4kTZoLewQ1cApceUQVNcnnNTzg_?usp=sharing)\n",
|
1334 |
"3. TinyLlama 4x faster full Alpaca 52K in 1 hour [free Colab](https://colab.research.google.com/drive/1AZghoNBQaMDgWJpi4RbffGM1h6raLUj9?usp=sharing)\n",
|
1335 |
"4. CodeLlama 34b 2x faster [A100 on Colab](https://colab.research.google.com/drive/1y7A0AxE3y8gdj4AVkl2aZX47Xu3P1wJT?usp=sharing)\n",
|
1336 |
-
"5.
|
1337 |
"6. We also did a [blog](https://huggingface.co/blog/unsloth-trl) with 🤗 HuggingFace, and we're in the TRL [docs](https://huggingface.co/docs/trl/main/en/sft_trainer#accelerate-fine-tuning-2x-using-unsloth)!\n",
|
|
|
|
|
1338 |
"\n",
|
1339 |
"<div class=\"align-center\">\n",
|
1340 |
" <a href=\"https://github.com/unslothai/unsloth\"><img src=\"https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png\" width=\"115\"></a>\n",
|
|
|
35 |
"else:\n",
|
36 |
" # Use this for older GPUs (V100, Tesla T4, RTX 20xx)\n",
|
37 |
" !pip install \"unsloth[colab] @ git+https://github.com/unslothai/unsloth.git\"\n",
|
38 |
+
"pass"
|
|
|
|
|
39 |
]
|
40 |
},
|
41 |
{
|
|
|
278 |
"# 4bit pre quantized models we support for 4x faster downloading + no OOMs.\n",
|
279 |
"fourbit_models = [\n",
|
280 |
" \"unsloth/mistral-7b-bnb-4bit\",\n",
|
281 |
+
" \"unsloth/mistral-7b-instruct-v0.2-bnb-4bit\",\n",
|
282 |
" \"unsloth/llama-2-7b-bnb-4bit\",\n",
|
283 |
" \"unsloth/llama-2-13b-bnb-4bit\",\n",
|
284 |
" \"unsloth/codellama-34b-bnb-4bit\",\n",
|
285 |
" \"unsloth/tinyllama-bnb-4bit\",\n",
|
286 |
+
"] # More models at https://huggingface.co/unsloth\n",
|
287 |
"\n",
|
288 |
"model, tokenizer = FastLanguageModel.from_pretrained(\n",
|
289 |
" model_name = \"unsloth/llama-2-7b-bnb-4bit\", # Choose ANY! eg mistralai/Mistral-7B-Instruct-v0.2\n",
|
|
|
347 |
"\n",
|
348 |
"**[NOTE]** To train only on completions (ignoring the user's input) read TRL's docs [here](https://huggingface.co/docs/trl/sft_trainer#train-on-completions-only).\n",
|
349 |
"\n",
|
350 |
+
"**[NOTE]** Remember to add the **EOS_TOKEN** to the tokenized output!! Otherwise you'll get infinite generations!\n",
|
351 |
+
"\n",
|
352 |
+
"If you want to use the `ChatML` template for ShareGPT datasets, try our conversational [notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing).\n",
|
353 |
+
"\n",
|
354 |
+
"For text completions like novel writing, try this [notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing)."
|
355 |
],
|
356 |
"metadata": {
|
357 |
"id": "vITh0KVJ10qX"
|
|
|
659 |
"\n",
|
660 |
"trainer = SFTTrainer(\n",
|
661 |
" model = model,\n",
|
662 |
+
" tokenizer = tokenizer,\n",
|
663 |
" train_dataset = dataset,\n",
|
664 |
" dataset_text_field = \"text\",\n",
|
665 |
" max_seq_length = max_seq_length,\n",
|
|
|
1058 |
"cell_type": "code",
|
1059 |
"source": [
|
1060 |
"# alpaca_prompt = Copied from above\n",
|
1061 |
+
"FastLanguageModel.for_inference(model) # Enable native 2x faster inference\n",
|
1062 |
"inputs = tokenizer(\n",
|
1063 |
"[\n",
|
1064 |
" alpaca_prompt.format(\n",
|
|
|
1066 |
" \"1, 1, 2, 3, 5, 8\", # input\n",
|
1067 |
" \"\", # output - leave this blank for generation!\n",
|
1068 |
" )\n",
|
1069 |
+
"], return_tensors = \"pt\").to(\"cuda\")\n",
|
1070 |
"\n",
|
1071 |
"outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)\n",
|
1072 |
"tokenizer.batch_decode(outputs)"
|
|
|
1105 |
"cell_type": "code",
|
1106 |
"source": [
|
1107 |
"# alpaca_prompt = Copied from above\n",
|
1108 |
+
"FastLanguageModel.for_inference(model) # Enable native 2x faster inference\n",
|
1109 |
"inputs = tokenizer(\n",
|
1110 |
"[\n",
|
1111 |
" alpaca_prompt.format(\n",
|
|
|
1113 |
" \"1, 1, 2, 3, 5, 8\", # input\n",
|
1114 |
" \"\", # output - leave this blank for generation!\n",
|
1115 |
" )\n",
|
1116 |
+
"], return_tensors = \"pt\").to(\"cuda\")\n",
|
1117 |
"\n",
|
1118 |
"from transformers import TextStreamer\n",
|
1119 |
"text_streamer = TextStreamer(tokenizer)\n",
|
|
|
1191 |
" dtype = dtype,\n",
|
1192 |
" load_in_4bit = load_in_4bit,\n",
|
1193 |
" )\n",
|
1194 |
+
" FastLanguageModel.for_inference(model) # Enable native 2x faster inference\n",
|
1195 |
"\n",
|
1196 |
"# alpaca_prompt = You MUST copy from above!\n",
|
1197 |
"\n",
|
|
|
1202 |
" \"\", # input\n",
|
1203 |
" \"\", # output - leave this blank for generation!\n",
|
1204 |
" )\n",
|
1205 |
+
"], return_tensors = \"pt\").to(\"cuda\")\n",
|
1206 |
"\n",
|
1207 |
"from transformers import TextStreamer\n",
|
1208 |
"text_streamer = TextStreamer(tokenizer)\n",
|
|
|
1232 |
{
|
1233 |
"cell_type": "markdown",
|
1234 |
"source": [
|
1235 |
+
"You can also use Hugging Face's `AutoModelForPeftCausalLM`. Only use this if you do not have `unsloth` installed. It can be hopelessly slow, since `4bit` model downloading is not supported, and Unsloth's **inference is 2x faster**."
|
1236 |
],
|
1237 |
"metadata": {
|
1238 |
"id": "TGKU509CuMmq"
|
|
|
1242 |
"cell_type": "code",
|
1243 |
"source": [
|
1244 |
"if False:\n",
|
1245 |
+
" # I highly do NOT suggest - use Unsloth if possible\n",
|
1246 |
" from peft import AutoModelForPeftCausalLM\n",
|
1247 |
" from transformers import AutoTokenizer\n",
|
1248 |
" model = AutoModelForPeftCausalLM.from_pretrained(\n",
|
|
|
1262 |
"source": [
|
1263 |
"### Saving to float16 for VLLM\n",
|
1264 |
"\n",
|
1265 |
+
"We also support saving to `float16` directly. Select `merged_16bit` for float16 or `merged_4bit` for int4. We also allow `lora` adapters as a fallback. Use `push_to_hub_merged` to upload to your Hugging Face account! You can go to https://huggingface.co/settings/tokens for your personal tokens."
|
1266 |
],
|
1267 |
"metadata": {
|
1268 |
"id": "-xp0YDnKuN98"
|
|
|
1272 |
"cell_type": "code",
|
1273 |
"source": [
|
1274 |
"# Merge to 16bit\n",
|
1275 |
+
"if False: model.save_pretrained_merged(\"model\", tokenizer, save_method = \"merged_16bit\",)\n",
|
1276 |
+
"if False: model.push_to_hub_merged(\"hf/model\", tokenizer, save_method = \"merged_16bit\", token = \"\")\n",
|
1277 |
"\n",
|
1278 |
"# Merge to 4bit\n",
|
1279 |
+
"if False: model.save_pretrained_merged(\"model\", tokenizer, save_method = \"merged_4bit\",)\n",
|
1280 |
+
"if False: model.push_to_hub_merged(\"hf/model\", tokenizer, save_method = \"merged_4bit\", token = \"\")\n",
|
1281 |
"\n",
|
1282 |
"# Just LoRA adapters\n",
|
1283 |
+
"if False: model.save_pretrained_merged(\"model\", tokenizer, save_method = \"lora\",)\n",
|
1284 |
+
"if False: model.push_to_hub_merged(\"hf/model\", tokenizer, save_method = \"lora\", token = \"\")"
|
1285 |
],
|
1286 |
"metadata": {
|
1287 |
"id": "vnFt-4ymuPM1"
|
|
|
1293 |
"cell_type": "markdown",
|
1294 |
"source": [
|
1295 |
"### GGUF / llama.cpp Conversion\n",
|
1296 |
+
"To save to `GGUF` / `llama.cpp`, we support it natively now! We clone `llama.cpp` and we default save it to `q8_0`. We allow all methods like `q4_k_m`. Use `save_pretrained_gguf` for local saving and `push_to_hub_gguf` for uploading to HF.\n",
|
1297 |
+
"\n",
|
1298 |
+
"Some supported quant methods (full list on our [Wiki page](https://github.com/unslothai/unsloth/wiki#gguf-quantization-options)):\n",
|
1299 |
+
"* `q8_0` - Fast conversion. High resource use, but generally acceptable.\n",
|
1300 |
+
"* `q4_k_m` - Recommended. Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q4_K.\n",
|
1301 |
+
"* `q5_k_m` - Recommended. Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q5_K."
|
1302 |
],
|
1303 |
"metadata": {
|
1304 |
"id": "8xg8B-N7uQcE"
|
|
|
1308 |
"cell_type": "code",
|
1309 |
"source": [
|
1310 |
"# Save to 8bit Q8_0\n",
|
1311 |
+
"if False: model.save_pretrained_gguf(\"model\", tokenizer,)\n",
|
1312 |
+
"if False: model.push_to_hub_gguf(\"hf/model\", tokenizer, token = \"\")\n",
|
1313 |
"\n",
|
1314 |
"# Save to 16bit GGUF\n",
|
1315 |
+
"if False: model.save_pretrained_gguf(\"model\", tokenizer, quantization_method = \"f16\")\n",
|
1316 |
+
"if False: model.push_to_hub_gguf(\"hf/model\", tokenizer, quantization_method = \"f16\", token = \"\")\n",
|
1317 |
"\n",
|
1318 |
"# Save to q4_k_m GGUF\n",
|
1319 |
+
"if False: model.save_pretrained_gguf(\"model\", tokenizer, quantization_method = \"q4_k_m\")\n",
|
1320 |
+
"if False: model.push_to_hub_gguf(\"hf/model\", tokenizer, quantization_method = \"q4_k_m\", token = \"\")"
|
1321 |
],
|
1322 |
"metadata": {
|
1323 |
"id": "8T822D9fuR0g"
|
|
|
1328 |
{
|
1329 |
"cell_type": "markdown",
|
1330 |
"source": [
|
1331 |
+
"Now, use the `model-unsloth.gguf` file or `model-unsloth-Q4_K_M.gguf` file in `llama.cpp` or a UI based system like `GPT4All`. You can install GPT4All by going [here](https://gpt4all.io/index.html)."
|
1332 |
],
|
1333 |
"metadata": {
|
1334 |
"id": "RiRcv_rquUq0"
|
|
|
1344 |
"2. Mistral 7b 2x faster [free Colab](https://colab.research.google.com/drive/1Dyauq4kTZoLewQ1cApceUQVNcnnNTzg_?usp=sharing)\n",
|
1345 |
"3. TinyLlama 4x faster full Alpaca 52K in 1 hour [free Colab](https://colab.research.google.com/drive/1AZghoNBQaMDgWJpi4RbffGM1h6raLUj9?usp=sharing)\n",
|
1346 |
"4. CodeLlama 34b 2x faster [A100 on Colab](https://colab.research.google.com/drive/1y7A0AxE3y8gdj4AVkl2aZX47Xu3P1wJT?usp=sharing)\n",
|
1347 |
+
"5. Mistral 7b [free Kaggle version](https://www.kaggle.com/code/danielhanchen/kaggle-mistral-7b-unsloth-notebook)\n",
|
1348 |
"6. We also did a [blog](https://huggingface.co/blog/unsloth-trl) with 🤗 HuggingFace, and we're in the TRL [docs](https://huggingface.co/docs/trl/main/en/sft_trainer#accelerate-fine-tuning-2x-using-unsloth)!\n",
|
1349 |
+
"7. `ChatML` for ShareGPT datasets, [conversational notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing)\n",
|
1350 |
+
"8. Text completions like novel writing [notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing)\n",
|
1351 |
"\n",
|
1352 |
"<div class=\"align-center\">\n",
|
1353 |
" <a href=\"https://github.com/unslothai/unsloth\"><img src=\"https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png\" width=\"115\"></a>\n",
|
Alpaca_+_Mistral_7b_full_example.ipynb
CHANGED
@@ -35,9 +35,7 @@
|
|
35 |
"else:\n",
|
36 |
" # Use this for older GPUs (V100, Tesla T4, RTX 20xx)\n",
|
37 |
" !pip install \"unsloth[colab] @ git+https://github.com/unslothai/unsloth.git\"\n",
|
38 |
-
"pass
|
39 |
-
"\n",
|
40 |
-
"!pip install \"git+https://github.com/huggingface/transformers.git\" # Native 4bit loading works!"
|
41 |
]
|
42 |
},
|
43 |
{
|
@@ -280,14 +278,15 @@
|
|
280 |
"# 4bit pre quantized models we support for 4x faster downloading + no OOMs.\n",
|
281 |
"fourbit_models = [\n",
|
282 |
" \"unsloth/mistral-7b-bnb-4bit\",\n",
|
|
|
283 |
" \"unsloth/llama-2-7b-bnb-4bit\",\n",
|
284 |
" \"unsloth/llama-2-13b-bnb-4bit\",\n",
|
285 |
" \"unsloth/codellama-34b-bnb-4bit\",\n",
|
286 |
" \"unsloth/tinyllama-bnb-4bit\",\n",
|
287 |
-
"]\n",
|
288 |
"\n",
|
289 |
"model, tokenizer = FastLanguageModel.from_pretrained(\n",
|
290 |
-
" model_name = \"unsloth/mistral-7b-bnb-4bit\", # Choose ANY! eg
|
291 |
" max_seq_length = max_seq_length,\n",
|
292 |
" dtype = dtype,\n",
|
293 |
" load_in_4bit = load_in_4bit,\n",
|
@@ -348,7 +347,11 @@
|
|
348 |
"\n",
|
349 |
"**[NOTE]** To train only on completions (ignoring the user's input) read TRL's docs [here](https://huggingface.co/docs/trl/sft_trainer#train-on-completions-only).\n",
|
350 |
"\n",
|
351 |
-
"**[NOTE]** Remember to add the **EOS_TOKEN** to the tokenized output!! Otherwise you'll get infinite generations
|
|
|
|
|
|
|
|
|
352 |
],
|
353 |
"metadata": {
|
354 |
"id": "vITh0KVJ10qX"
|
@@ -656,6 +659,7 @@
|
|
656 |
"\n",
|
657 |
"trainer = SFTTrainer(\n",
|
658 |
" model = model,\n",
|
|
|
659 |
" train_dataset = dataset,\n",
|
660 |
" dataset_text_field = \"text\",\n",
|
661 |
" max_seq_length = max_seq_length,\n",
|
@@ -1054,7 +1058,7 @@
|
|
1054 |
"cell_type": "code",
|
1055 |
"source": [
|
1056 |
"# alpaca_prompt = Copied from above\n",
|
1057 |
-
"\n",
|
1058 |
"inputs = tokenizer(\n",
|
1059 |
"[\n",
|
1060 |
" alpaca_prompt.format(\n",
|
@@ -1062,7 +1066,7 @@
|
|
1062 |
" \"1, 1, 2, 3, 5, 8\", # input\n",
|
1063 |
" \"\", # output - leave this blank for generation!\n",
|
1064 |
" )\n",
|
1065 |
-
"]
|
1066 |
"\n",
|
1067 |
"outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)\n",
|
1068 |
"tokenizer.batch_decode(outputs)"
|
@@ -1108,7 +1112,7 @@
|
|
1108 |
"cell_type": "code",
|
1109 |
"source": [
|
1110 |
"# alpaca_prompt = Copied from above\n",
|
1111 |
-
"\n",
|
1112 |
"inputs = tokenizer(\n",
|
1113 |
"[\n",
|
1114 |
" alpaca_prompt.format(\n",
|
@@ -1116,7 +1120,7 @@
|
|
1116 |
" \"1, 1, 2, 3, 5, 8\", # input\n",
|
1117 |
" \"\", # output - leave this blank for generation!\n",
|
1118 |
" )\n",
|
1119 |
-
"]
|
1120 |
"\n",
|
1121 |
"from transformers import TextStreamer\n",
|
1122 |
"text_streamer = TextStreamer(tokenizer)\n",
|
@@ -1201,17 +1205,9 @@
|
|
1201 |
" dtype = dtype,\n",
|
1202 |
" load_in_4bit = load_in_4bit,\n",
|
1203 |
" )\n",
|
|
|
1204 |
"\n",
|
1205 |
-
"alpaca_prompt =
|
1206 |
-
"\n",
|
1207 |
-
"### Instruction:\n",
|
1208 |
-
"{}\n",
|
1209 |
-
"\n",
|
1210 |
-
"### Input:\n",
|
1211 |
-
"{}\n",
|
1212 |
-
"\n",
|
1213 |
-
"### Response:\n",
|
1214 |
-
"{}\"\"\"\n",
|
1215 |
"\n",
|
1216 |
"inputs = tokenizer(\n",
|
1217 |
"[\n",
|
@@ -1220,7 +1216,7 @@
|
|
1220 |
" \"\", # input\n",
|
1221 |
" \"\", # output - leave this blank for generation!\n",
|
1222 |
" )\n",
|
1223 |
-
"]
|
1224 |
"\n",
|
1225 |
"outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)\n",
|
1226 |
"tokenizer.batch_decode(outputs)"
|
@@ -1256,7 +1252,7 @@
|
|
1256 |
{
|
1257 |
"cell_type": "markdown",
|
1258 |
"source": [
|
1259 |
-
"You can also use Hugging Face's `AutoModelForPeftCausalLM`"
|
1260 |
],
|
1261 |
"metadata": {
|
1262 |
"id": "QQMjaNrjsU5_"
|
@@ -1266,6 +1262,7 @@
|
|
1266 |
"cell_type": "code",
|
1267 |
"source": [
|
1268 |
"if False:\n",
|
|
|
1269 |
" from peft import AutoModelForPeftCausalLM\n",
|
1270 |
" from transformers import AutoTokenizer\n",
|
1271 |
" model = AutoModelForPeftCausalLM.from_pretrained(\n",
|
@@ -1285,7 +1282,7 @@
|
|
1285 |
"source": [
|
1286 |
"### Saving to float16 for VLLM\n",
|
1287 |
"\n",
|
1288 |
-
"We also support saving to `float16` directly. Select `merged_16bit` for float16 or `merged_4bit` for int4. We also allow `lora` adapters as a fallback. Use `push_to_hub_merged` to upload to your Hugging Face account!"
|
1289 |
],
|
1290 |
"metadata": {
|
1291 |
"id": "f422JgM9sdVT"
|
@@ -1295,16 +1292,16 @@
|
|
1295 |
"cell_type": "code",
|
1296 |
"source": [
|
1297 |
"# Merge to 16bit\n",
|
1298 |
-
"if False: model.save_pretrained_merged(\"
|
1299 |
-
"if False: model.push_to_hub_merged(\"
|
1300 |
"\n",
|
1301 |
"# Merge to 4bit\n",
|
1302 |
-
"if False: model.save_pretrained_merged(\"
|
1303 |
-
"if False: model.push_to_hub_merged(\"
|
1304 |
"\n",
|
1305 |
"# Just LoRA adapters\n",
|
1306 |
-
"if False: model.save_pretrained_merged(\"
|
1307 |
-
"if False: model.push_to_hub_merged(\"
|
1308 |
],
|
1309 |
"metadata": {
|
1310 |
"id": "iHjt_SMYsd3P"
|
@@ -1316,7 +1313,12 @@
|
|
1316 |
"cell_type": "markdown",
|
1317 |
"source": [
|
1318 |
"### GGUF / llama.cpp Conversion\n",
|
1319 |
-
"To save to `GGUF` / `llama.cpp`, we support it natively now! We clone `llama.cpp` and we default save it to `q8_0`. We allow all methods like `q4_k_m`. Use `save_pretrained_gguf` for local saving and `push_to_hub_gguf` for uploading to HF
|
|
|
|
|
|
|
|
|
|
|
1320 |
],
|
1321 |
"metadata": {
|
1322 |
"id": "TCv4vXHd61i7"
|
@@ -1326,16 +1328,16 @@
|
|
1326 |
"cell_type": "code",
|
1327 |
"source": [
|
1328 |
"# Save to 8bit Q8_0\n",
|
1329 |
-
"if False: model.save_pretrained_gguf(\"
|
1330 |
-
"if False: model.push_to_hub_gguf(\"
|
1331 |
"\n",
|
1332 |
"# Save to 16bit GGUF\n",
|
1333 |
-
"if False: model.save_pretrained_gguf(\"
|
1334 |
-
"if False: model.push_to_hub_gguf(\"
|
1335 |
"\n",
|
1336 |
"# Save to q4_k_m GGUF\n",
|
1337 |
-
"if False: model.save_pretrained_gguf(\"
|
1338 |
-
"if False: model.push_to_hub_gguf(\"
|
1339 |
],
|
1340 |
"metadata": {
|
1341 |
"id": "FqfebeAdT073"
|
@@ -1346,7 +1348,7 @@
|
|
1346 |
{
|
1347 |
"cell_type": "markdown",
|
1348 |
"source": [
|
1349 |
-
"Now, use the `
|
1350 |
],
|
1351 |
"metadata": {
|
1352 |
"id": "bDp0zNpwe6U_"
|
@@ -1362,8 +1364,10 @@
|
|
1362 |
"2. Llama 7b 2x faster [free Colab](https://colab.research.google.com/drive/1lBzz5KeZJKXjvivbYvmGarix9Ao6Wxe5?usp=sharing)\n",
|
1363 |
"3. TinyLlama 4x faster full Alpaca 52K in 1 hour [free Colab](https://colab.research.google.com/drive/1AZghoNBQaMDgWJpi4RbffGM1h6raLUj9?usp=sharing)\n",
|
1364 |
"4. CodeLlama 34b 2x faster [A100 on Colab](https://colab.research.google.com/drive/1y7A0AxE3y8gdj4AVkl2aZX47Xu3P1wJT?usp=sharing)\n",
|
1365 |
-
"5.
|
1366 |
"6. We also did a [blog](https://huggingface.co/blog/unsloth-trl) with 🤗 HuggingFace, and we're in the TRL [docs](https://huggingface.co/docs/trl/main/en/sft_trainer#accelerate-fine-tuning-2x-using-unsloth)!\n",
|
|
|
|
|
1367 |
"\n",
|
1368 |
"<div class=\"align-center\">\n",
|
1369 |
" <a href=\"https://github.com/unslothai/unsloth\"><img src=\"https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png\" width=\"115\"></a>\n",
|
|
|
35 |
"else:\n",
|
36 |
" # Use this for older GPUs (V100, Tesla T4, RTX 20xx)\n",
|
37 |
" !pip install \"unsloth[colab] @ git+https://github.com/unslothai/unsloth.git\"\n",
|
38 |
+
"pass"
|
|
|
|
|
39 |
]
|
40 |
},
|
41 |
{
|
|
|
278 |
"# 4bit pre quantized models we support for 4x faster downloading + no OOMs.\n",
|
279 |
"fourbit_models = [\n",
|
280 |
" \"unsloth/mistral-7b-bnb-4bit\",\n",
|
281 |
+
" \"unsloth/mistral-7b-instruct-v0.2-bnb-4bit\",\n",
|
282 |
" \"unsloth/llama-2-7b-bnb-4bit\",\n",
|
283 |
" \"unsloth/llama-2-13b-bnb-4bit\",\n",
|
284 |
" \"unsloth/codellama-34b-bnb-4bit\",\n",
|
285 |
" \"unsloth/tinyllama-bnb-4bit\",\n",
|
286 |
+
"] # More models at https://huggingface.co/unsloth\n",
|
287 |
"\n",
|
288 |
"model, tokenizer = FastLanguageModel.from_pretrained(\n",
|
289 |
+
" model_name = \"unsloth/mistral-7b-bnb-4bit\", # Choose ANY! eg teknium/OpenHermes-2.5-Mistral-7B\n",
|
290 |
" max_seq_length = max_seq_length,\n",
|
291 |
" dtype = dtype,\n",
|
292 |
" load_in_4bit = load_in_4bit,\n",
|
|
|
347 |
"\n",
|
348 |
"**[NOTE]** To train only on completions (ignoring the user's input) read TRL's docs [here](https://huggingface.co/docs/trl/sft_trainer#train-on-completions-only).\n",
|
349 |
"\n",
|
350 |
+
"**[NOTE]** Remember to add the **EOS_TOKEN** to the tokenized output!! Otherwise you'll get infinite generations!\n",
|
351 |
+
"\n",
|
352 |
+
"If you want to use the `ChatML` template for ShareGPT datasets, try our conversational [notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing).\n",
|
353 |
+
"\n",
|
354 |
+
"For text completions like novel writing, try this [notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing)."
|
355 |
],
|
356 |
"metadata": {
|
357 |
"id": "vITh0KVJ10qX"
|
|
|
659 |
"\n",
|
660 |
"trainer = SFTTrainer(\n",
|
661 |
" model = model,\n",
|
662 |
+
" tokenizer = tokenizer,\n",
|
663 |
" train_dataset = dataset,\n",
|
664 |
" dataset_text_field = \"text\",\n",
|
665 |
" max_seq_length = max_seq_length,\n",
|
|
|
1058 |
"cell_type": "code",
|
1059 |
"source": [
|
1060 |
"# alpaca_prompt = Copied from above\n",
|
1061 |
+
"FastLanguageModel.for_inference(model) # Enable native 2x faster inference\n",
|
1062 |
"inputs = tokenizer(\n",
|
1063 |
"[\n",
|
1064 |
" alpaca_prompt.format(\n",
|
|
|
1066 |
" \"1, 1, 2, 3, 5, 8\", # input\n",
|
1067 |
" \"\", # output - leave this blank for generation!\n",
|
1068 |
" )\n",
|
1069 |
+
"], return_tensors = \"pt\").to(\"cuda\")\n",
|
1070 |
"\n",
|
1071 |
"outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)\n",
|
1072 |
"tokenizer.batch_decode(outputs)"
|
|
|
1112 |
"cell_type": "code",
|
1113 |
"source": [
|
1114 |
"# alpaca_prompt = Copied from above\n",
|
1115 |
+
"FastLanguageModel.for_inference(model) # Enable native 2x faster inference\n",
|
1116 |
"inputs = tokenizer(\n",
|
1117 |
"[\n",
|
1118 |
" alpaca_prompt.format(\n",
|
|
|
1120 |
" \"1, 1, 2, 3, 5, 8\", # input\n",
|
1121 |
" \"\", # output - leave this blank for generation!\n",
|
1122 |
" )\n",
|
1123 |
+
"], return_tensors = \"pt\").to(\"cuda\")\n",
|
1124 |
"\n",
|
1125 |
"from transformers import TextStreamer\n",
|
1126 |
"text_streamer = TextStreamer(tokenizer)\n",
|
|
|
1205 |
" dtype = dtype,\n",
|
1206 |
" load_in_4bit = load_in_4bit,\n",
|
1207 |
" )\n",
|
1208 |
+
" FastLanguageModel.for_inference(model) # Enable native 2x faster inference\n",
|
1209 |
"\n",
|
1210 |
+
"# alpaca_prompt = You MUST copy from above!\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1211 |
"\n",
|
1212 |
"inputs = tokenizer(\n",
|
1213 |
"[\n",
|
|
|
1216 |
" \"\", # input\n",
|
1217 |
" \"\", # output - leave this blank for generation!\n",
|
1218 |
" )\n",
|
1219 |
+
"], return_tensors = \"pt\").to(\"cuda\")\n",
|
1220 |
"\n",
|
1221 |
"outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)\n",
|
1222 |
"tokenizer.batch_decode(outputs)"
|
|
|
1252 |
{
|
1253 |
"cell_type": "markdown",
|
1254 |
"source": [
|
1255 |
+
"You can also use Hugging Face's `AutoModelForPeftCausalLM`. Only use this if you do not have `unsloth` installed. It can be hopelessly slow, since `4bit` model downloading is not supported, and Unsloth's **inference is 2x faster**."
|
1256 |
],
|
1257 |
"metadata": {
|
1258 |
"id": "QQMjaNrjsU5_"
|
|
|
1262 |
"cell_type": "code",
|
1263 |
"source": [
|
1264 |
"if False:\n",
|
1265 |
+
" # I highly do NOT suggest - use Unsloth if possible\n",
|
1266 |
" from peft import AutoModelForPeftCausalLM\n",
|
1267 |
" from transformers import AutoTokenizer\n",
|
1268 |
" model = AutoModelForPeftCausalLM.from_pretrained(\n",
|
|
|
1282 |
"source": [
|
1283 |
"### Saving to float16 for VLLM\n",
|
1284 |
"\n",
|
1285 |
+
"We also support saving to `float16` directly. Select `merged_16bit` for float16 or `merged_4bit` for int4. We also allow `lora` adapters as a fallback. Use `push_to_hub_merged` to upload to your Hugging Face account! You can go to https://huggingface.co/settings/tokens for your personal tokens."
|
1286 |
],
|
1287 |
"metadata": {
|
1288 |
"id": "f422JgM9sdVT"
|
|
|
1292 |
"cell_type": "code",
|
1293 |
"source": [
|
1294 |
"# Merge to 16bit\n",
|
1295 |
+
"if False: model.save_pretrained_merged(\"model\", tokenizer, save_method = \"merged_16bit\",)\n",
|
1296 |
+
"if False: model.push_to_hub_merged(\"hf/model\", tokenizer, save_method = \"merged_16bit\", token = \"\")\n",
|
1297 |
"\n",
|
1298 |
"# Merge to 4bit\n",
|
1299 |
+
"if False: model.save_pretrained_merged(\"model\", tokenizer, save_method = \"merged_4bit\",)\n",
|
1300 |
+
"if False: model.push_to_hub_merged(\"hf/model\", tokenizer, save_method = \"merged_4bit\", token = \"\")\n",
|
1301 |
"\n",
|
1302 |
"# Just LoRA adapters\n",
|
1303 |
+
"if False: model.save_pretrained_merged(\"model\", tokenizer, save_method = \"lora\",)\n",
|
1304 |
+
"if False: model.push_to_hub_merged(\"hf/model\", tokenizer, save_method = \"lora\", token = \"\")"
|
1305 |
],
|
1306 |
"metadata": {
|
1307 |
"id": "iHjt_SMYsd3P"
|
|
|
1313 |
"cell_type": "markdown",
|
1314 |
"source": [
|
1315 |
"### GGUF / llama.cpp Conversion\n",
|
1316 |
+
"To save to `GGUF` / `llama.cpp`, we support it natively now! We clone `llama.cpp` and we default save it to `q8_0`. We allow all methods like `q4_k_m`. Use `save_pretrained_gguf` for local saving and `push_to_hub_gguf` for uploading to HF.\n",
|
1317 |
+
"\n",
|
1318 |
+
"Some supported quant methods (full list on our [Wiki page](https://github.com/unslothai/unsloth/wiki#gguf-quantization-options)):\n",
|
1319 |
+
"* `q8_0` - Fast conversion. High resource use, but generally acceptable.\n",
|
1320 |
+
"* `q4_k_m` - Recommended. Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q4_K.\n",
|
1321 |
+
"* `q5_k_m` - Recommended. Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q5_K."
|
1322 |
],
|
1323 |
"metadata": {
|
1324 |
"id": "TCv4vXHd61i7"
|
|
|
1328 |
"cell_type": "code",
|
1329 |
"source": [
|
1330 |
"# Save to 8bit Q8_0\n",
|
1331 |
+
"if False: model.save_pretrained_gguf(\"model\", tokenizer,)\n",
|
1332 |
+
"if False: model.push_to_hub_gguf(\"hf/model\", tokenizer, token = \"\")\n",
|
1333 |
"\n",
|
1334 |
"# Save to 16bit GGUF\n",
|
1335 |
+
"if False: model.save_pretrained_gguf(\"model\", tokenizer, quantization_method = \"f16\")\n",
|
1336 |
+
"if False: model.push_to_hub_gguf(\"hf/model\", tokenizer, quantization_method = \"f16\", token = \"\")\n",
|
1337 |
"\n",
|
1338 |
"# Save to q4_k_m GGUF\n",
|
1339 |
+
"if False: model.save_pretrained_gguf(\"model\", tokenizer, quantization_method = \"q4_k_m\")\n",
|
1340 |
+
"if False: model.push_to_hub_gguf(\"hf/model\", tokenizer, quantization_method = \"q4_k_m\", token = \"\")"
|
1341 |
],
|
1342 |
"metadata": {
|
1343 |
"id": "FqfebeAdT073"
|
|
|
1348 |
{
|
1349 |
"cell_type": "markdown",
|
1350 |
"source": [
|
1351 |
+
"Now, use the `model-unsloth.gguf` file or `model-unsloth-Q4_K_M.gguf` file in `llama.cpp` or a UI based system like `GPT4All`. You can install GPT4All by going [here](https://gpt4all.io/index.html)."
|
1352 |
],
|
1353 |
"metadata": {
|
1354 |
"id": "bDp0zNpwe6U_"
|
|
|
1364 |
"2. Llama 7b 2x faster [free Colab](https://colab.research.google.com/drive/1lBzz5KeZJKXjvivbYvmGarix9Ao6Wxe5?usp=sharing)\n",
|
1365 |
"3. TinyLlama 4x faster full Alpaca 52K in 1 hour [free Colab](https://colab.research.google.com/drive/1AZghoNBQaMDgWJpi4RbffGM1h6raLUj9?usp=sharing)\n",
|
1366 |
"4. CodeLlama 34b 2x faster [A100 on Colab](https://colab.research.google.com/drive/1y7A0AxE3y8gdj4AVkl2aZX47Xu3P1wJT?usp=sharing)\n",
|
1367 |
+
"5. Mistral 7b [free Kaggle version](https://www.kaggle.com/code/danielhanchen/kaggle-mistral-7b-unsloth-notebook)\n",
|
1368 |
"6. We also did a [blog](https://huggingface.co/blog/unsloth-trl) with 🤗 HuggingFace, and we're in the TRL [docs](https://huggingface.co/docs/trl/main/en/sft_trainer#accelerate-fine-tuning-2x-using-unsloth)!\n",
|
1369 |
+
"7. `ChatML` for ShareGPT datasets, [conversational notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing)\n",
|
1370 |
+
"8. Text completions like novel writing [notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing)\n",
|
1371 |
"\n",
|
1372 |
"<div class=\"align-center\">\n",
|
1373 |
" <a href=\"https://github.com/unslothai/unsloth\"><img src=\"https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png\" width=\"115\"></a>\n",
|
Alpaca_+_TinyLlama_+_RoPE_Scaling_full_example.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
DPO_Zephyr_Unsloth_Example.ipynb
CHANGED
The diff for this file is too large to render.
See raw diff
|
|