File size: 3,351 Bytes
95669d7
854043f
e01653e
854043f
b003e9f
 
 
0b5daf1
 
 
 
 
 
 
b003e9f
e01653e
0b5daf1
 
 
 
 
 
 
 
 
 
 
e01653e
0b5daf1
 
 
854043f
 
 
 
 
b003e9f
854043f
b003e9f
 
 
 
 
 
 
 
 
 
854043f
 
95669d7
b003e9f
95669d7
 
b003e9f
95669d7
0b5daf1
b003e9f
 
 
 
 
0b5daf1
b003e9f
0b5daf1
b003e9f
 
 
95669d7
 
b003e9f
95669d7
b003e9f
 
 
 
 
 
 
 
e01653e
0b5daf1
b003e9f
 
 
 
e01653e
0b5daf1
14417ab
b003e9f
0b5daf1
b003e9f
854043f
 
b003e9f
 
854043f
 
b003e9f
 
854043f
b003e9f
 
 
854043f
b003e9f
 
e01653e
14417ab
 
0b5daf1
b003e9f
e01653e
0b5daf1
b003e9f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
#!/usr/bin/env python3
from os import PathLike, listdir, remove
from os.path import isfile, join, exists
from mimetypes import guess_type
from base64 import b64encode, b64decode
from io import BytesIO
import re

import pandas as pd
import numpy as np
from PIL import Image
from PIL import ImageFile
from tqdm import tqdm

from uform import get_model_onnx
from usearch.index import Index, MetricKind
from usearch.io import save_matrix, load_matrix

ImageFile.LOAD_TRUNCATED_IMAGES = True


def is_image(path: PathLike) -> bool:
    if not isfile(path):
        return False
    try:
        Image.open(path)
        return True
    except Exception:
        return False


def image_to_data(path: PathLike) -> str:
    """Convert a file (specified by a path) into a data URI."""
    if not exists(path):
        raise FileNotFoundError
    mime, _ = guess_type(path)
    with open(path, "rb") as fp:
        data = fp.read()
        data64 = b64encode(data).decode("utf-8")
        return f"data:{mime}/jpg;base64,{data64}"


def data_to_image(data_uri: str) -> Image:
    """Convert a base64-encoded data URI to a Pillow Image."""
    base64_str = re.search(r"base64,(.*)", data_uri).group(1)
    image_data = b64decode(base64_str)
    image = Image.open(BytesIO(image_data))
    return image


def trim_extension(filename: str) -> str:
    return filename.rsplit(".", 1)[0]


names = sorted(f for f in listdir("images") if is_image(join("images", f)))
names = [trim_extension(f) for f in names]

table = (
    pd.read_table("images.tsv") if exists("images.tsv") else pd.read_table("images.csv")
)
table = table[table["photo_id"].isin(names)]
table = table.sort_values("photo_id")
table.reset_index()
table.to_csv("images.csv", index=False)

names = list(set(table["photo_id"]).intersection(names))
names_to_delete = [f for f in listdir("images") if trim_extension(f) not in names]
names = list(table["photo_id"])

if len(names_to_delete) > 0:
    print(f"Plans to delete: {len(names_to_delete)} images without metadata")
    for name in names_to_delete:
        remove(join("images", name))

if not exists("images.fbin") and 0:
    model, processor = get_model_onnx(
        "unum-cloud/uform-vl-english-small",
        device="cpu",
        dtype="fp32",
    )
    vectors = []

    for name in tqdm(names, desc="Vectorizing images"):
        image = Image.open(join("images", name + ".jpg"))
        image_data = processor.preprocess_image(image)
        image_embedding = model.encode_image(image_data)
        vectors.append(image_embedding)

    image_mat = np.vstack(vectors)
    save_matrix(image_mat, "images.fbin")

if not exists("images.base64.txt"):

    datas = []
    for name in tqdm(names, desc="Encoding images"):
        data = image_to_data(join("images", name + ".jpg"))
        datas.append(data)

    with open("images.base64.txt", "w") as f:
        f.write("\n".join(datas))

if not exists("images.names.txt"):
    with open("images.names.txt", "w") as f:
        f.write("\n".join(names))

if not exists("images.usearch"):
    image_mat = load_matrix("images.fbin")
    count = image_mat.shape[0]
    ndim = image_mat.shape[1]
    index = Index(ndim=ndim, metric=MetricKind.Cos)

    for idx in tqdm(range(count), desc="Indexing vectors"):
        index.add(idx, image_mat[idx, :].flatten())

    index.save("images.usearch")