# Dataset for HybRank You can download preprocessed data from [HuggingFace Repo](https://huggingface.co/datasets/ustc-zhangzm/HybRank) Note that `train_scores.hdf5` of `MS MARCO` dataset files are split via ```bash split -d -b 3G train_scores.hdf5 train_scores.hdf5. ``` Run following command to concatenate these files after all shards have been downloaded ```bash cat train_scores.hdf5.* > train_scores.hdf5 ``` Or you can generate data by yourself via the following steps: ## Dependencies ``` java 11.0.16 maven 3.8.6 anserini 0.14.3 faiss-cpu 1.7.2 pyserini 0.17.1 ``` ## Natural Questions ### 1. Download raw data (Refer to [DPR](https://github.com/facebookresearch/DPR) for more details of the dataset) ```shell python download_DPR_data.py --resource data.wikipedia_split.psgs_w100 python download_DPR_data.py --resource data.retriever.nq python download_DPR_data.py --resource data.retriever.qas.nq mkdir -p raw && mv downloads raw/NQ ``` ### 2. Convert collections to jsonl format for Pyserini ```shell python convert_NQ_collection_to_jsonl.py --collection-path raw/NQ/data/wikipedia_split/psgs_w100.tsv --output-folder pyserini/collections/NQ ``` ### 3. Build Lucene indexes via Pyserini ```shell python -m pyserini.index.lucene \ --collection JsonCollection \ --input pyserini/collections/NQ \ --index pyserini/indexes/NQ \ --generator DefaultLuceneDocumentGenerator \ --threads 1 \ --storePositions --storeDocvectors --storeRaw ``` ### 4. Generate data ```shell RETRIEVERS=("DPR-Multi" "DPR-Single" "ANCE" "FiD-KD" "RocketQA-retriever" "RocketQAv2-retriever" "RocketQA-reranker" "RocketQAv2-reranker") for RETRIEVER in ${RETRIEVERS[@]}; do python generate_NQ_data.py --retriever $RETRIEVER done ``` Note that before generate data for retriever `RocketQA*`, please generate the retrieval results following the instructions in `data/RocketQA_baselines/README.md`. Data for other retrievers can be generated directly. ## MS MARCO & TREC 2019/2020 ### 1. Download raw data (Refer to [MS MARCO](https://microsoft.github.io/msmarco/) for more details of the dataset) * Download and uncompress MSMARCO Passage Ranking Collections and Queries [collectionandqueries.tar.gz](https://msmarco.blob.core.windows.net/msmarcoranking/collectionandqueries.tar.gz) to `data/raw/MSMARCO/` * TREC DL Test Queries and Qrels * [TREC DL-2019](https://microsoft.github.io/msmarco/TREC-Deep-Learning-2019.html) * Download and uncompress [msmarco-test2019-queries.tsv](https://msmarco.blob.core.windows.net/msmarcoranking/msmarco-test2019-queries.tsv.gz) * Download [2019qrels-pass.txt](https://trec.nist.gov/data/deep/2019qrels-pass.txt) * [TREC DL-2020](https://microsoft.github.io/msmarco/TREC-Deep-Learning-2020) * Download and uncompress [msmarco-test2019-queries.tsv](https://msmarco.blob.core.windows.net/msmarcoranking/msmarco-test2020-queries.tsv.gz) * Download [2019qrels-pass.txt](https://trec.nist.gov/data/deep/2020qrels-pass.txt) * Put them into `data/raw/TRECDL/` ### 2. Convert collections to jsonl format for Pyserini ```shell python convert_MSMARCO_collection_to_jsonl.py --collection-path raw/MSMARCO/collection.tsv --output-folder pyserini/collections/MSMARCO ``` ### 3. Build Lucene indexes via Pyserini ```shell python -m pyserini.index.lucene \ --collection JsonCollection \ --input pyserini/collections/MSMARCO \ --index pyserini/indexes/MSMARCO \ --generator DefaultLuceneDocumentGenerator \ --threads 1 \ --storePositions --storeDocvectors --storeRaw ``` ### 4. Generate data ```shell RETRIEVERS=("ANCE" "DistilBERT-KD" "TAS-B" "TCT-ColBERT-v1" "TCT-ColBERT-v2" "RocketQA-retriever" "RocketQAv2-retriever" "RocketQA-reranker" "RocketQAv2-reranker") for RETRIEVER in ${RETRIEVERS[@]}; do python generate_MSMARCO_data.py --retriever $RETRIEVER done ``` ```shell RETRIEVERS=("ANCE" "DistilBERT-KD" "TAS-B" "TCT-ColBERT-v1" "TCT-ColBERT-v2" "RocketQA-retriever" "RocketQAv2-retriever" "RocketQA-reranker" "RocketQAv2-reranker") SPLITS=("2019" "2020") for RETRIEVER in ${RETRIEVERS[@]}; do for SPLIT in ${SPLITS[@]}; do python generate_TRECDL_data.py --split $SPLIT --retriever $RETRIEVER done done ```