davanstrien HF Staff commited on
Commit
3f59035
Β·
1 Parent(s): 43324c8

Remove dots-ocr from README due to compatibility issues

Browse files

The script remains in the repository but is removed from documentation
until compatibility issues are resolved.

Files changed (1) hide show
  1. README.md +2 -39
README.md CHANGED
@@ -50,15 +50,6 @@ State-of-the-art document OCR using [nanonets/Nanonets-OCR-s](https://huggingfac
50
  - πŸ–ΌοΈ **Images** - Captions and descriptions included
51
  - β˜‘οΈ **Forms** - Checkboxes rendered as ☐/β˜‘
52
 
53
- ### dots.ocr (`dots-ocr.py`)
54
-
55
- Advanced document layout analysis and OCR using [rednote-hilab/dots.ocr](https://huggingface.co/rednote-hilab/dots.ocr) that provides:
56
-
57
- - 🎯 **Layout detection** - Bounding boxes for all document elements
58
- - πŸ“‘ **Category classification** - Text, Title, Table, Formula, Picture, etc.
59
- - πŸ“– **Reading order** - Preserves natural reading flow
60
- - 🌍 **Multilingual support** - Handles multiple languages seamlessly
61
- - πŸ”§ **Flexible output** - JSON, structured columns, or markdown
62
 
63
  ## πŸ†• New Features
64
 
@@ -109,13 +100,6 @@ hf jobs uv run --flavor l4x1 \
109
  https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
110
  your-input-dataset your-output-dataset
111
 
112
- # Document layout analysis with dots.ocr
113
- hf jobs uv run --flavor l4x1 \
114
- https://huggingface.co/datasets/uv-scripts/ocr/raw/main/dots-ocr.py \
115
- your-input-dataset your-layout-dataset \
116
- --mode layout-all \
117
- --output-format structured \
118
- --use-transformers # More compatible backend
119
 
120
  # Real example with UFO dataset πŸ›Έ
121
  hf jobs uv run \
@@ -166,10 +150,6 @@ uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
166
  uv run rolm-ocr.py documents extracted-text
167
  uv run rolm-ocr.py images texts --shuffle --max-samples 100 # Random sample
168
 
169
- # dots.ocr examples
170
- uv run dots-ocr.py documents analyzed-docs # Full layout + OCR
171
- uv run dots-ocr.py scans layouts --mode layout-only # Layout only
172
- uv run dots-ocr.py papers markdown --output-format markdown # As markdown
173
  ```
174
 
175
  ## πŸ“ Works With
@@ -184,8 +164,8 @@ Any HuggingFace dataset containing images - documents, forms, receipts, books, h
184
  | -------------------------- | ------- | ----------------------------- |
185
  | `--image-column` | `image` | Column containing images |
186
  | `--batch-size` | `32`/`16`* | Images processed together |
187
- | `--max-model-len` | `8192`/`16384`**/`24000`*** | Max context length |
188
- | `--max-tokens` | `4096`/`8192`**/`16384`*** | Max output tokens |
189
  | `--gpu-memory-utilization` | `0.8` | GPU memory usage (0.0-1.0) |
190
  | `--split` | `train` | Dataset split to process |
191
  | `--max-samples` | None | Limit samples (for testing) |
@@ -195,29 +175,12 @@ Any HuggingFace dataset containing images - documents, forms, receipts, books, h
195
 
196
  *RolmOCR uses batch size 16
197
  **RolmOCR uses 16384/8192
198
- ***dots.ocr uses 24000/16384
199
 
200
  ### RolmOCR Specific
201
 
202
  - Output column is auto-generated from model name (e.g., `rolmocr_text`)
203
  - Use `--output-column` to override the default name
204
 
205
- ### dots.ocr Specific Options
206
-
207
- | Option | Default | Description |
208
- | ------------------- | ------- | ------------------------------------- |
209
- | `--mode` | `layout-all` | Processing mode: `layout-all`, `layout-only`, `ocr`, `grounding-ocr` |
210
- | `--output-format` | `json` | Output format: `json`, `structured`, `markdown` |
211
- | `--filter-category` | None | Filter by layout category (e.g., `Table`, `Formula`) |
212
- | `--output-column` | `dots_ocr_output` | Column name for JSON output |
213
- | `--bbox-column` | `layout_bboxes` | Column for bounding boxes (structured mode) |
214
- | `--category-column` | `layout_categories` | Column for categories (structured mode) |
215
- | `--text-column` | `layout_texts` | Column for texts (structured mode) |
216
- | `--markdown-column` | `markdown` | Column for markdown output |
217
- | `--use-transformers`| `False` | Use transformers backend instead of vLLM (more compatible) |
218
-
219
  πŸ’‘ **Performance tip**: Increase batch size for faster processing (e.g., `--batch-size 128` for A10G GPUs)
220
 
221
- ⚠️ **dots.ocr Note**: If you encounter vLLM initialization errors, use `--use-transformers` for a more compatible (but slower) backend.
222
-
223
  More OCR VLM Scripts coming soon! Stay tuned for updates!
 
50
  - πŸ–ΌοΈ **Images** - Captions and descriptions included
51
  - β˜‘οΈ **Forms** - Checkboxes rendered as ☐/β˜‘
52
 
 
 
 
 
 
 
 
 
 
53
 
54
  ## πŸ†• New Features
55
 
 
100
  https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
101
  your-input-dataset your-output-dataset
102
 
 
 
 
 
 
 
 
103
 
104
  # Real example with UFO dataset πŸ›Έ
105
  hf jobs uv run \
 
150
  uv run rolm-ocr.py documents extracted-text
151
  uv run rolm-ocr.py images texts --shuffle --max-samples 100 # Random sample
152
 
 
 
 
 
153
  ```
154
 
155
  ## πŸ“ Works With
 
164
  | -------------------------- | ------- | ----------------------------- |
165
  | `--image-column` | `image` | Column containing images |
166
  | `--batch-size` | `32`/`16`* | Images processed together |
167
+ | `--max-model-len` | `8192`/`16384`** | Max context length |
168
+ | `--max-tokens` | `4096`/`8192`** | Max output tokens |
169
  | `--gpu-memory-utilization` | `0.8` | GPU memory usage (0.0-1.0) |
170
  | `--split` | `train` | Dataset split to process |
171
  | `--max-samples` | None | Limit samples (for testing) |
 
175
 
176
  *RolmOCR uses batch size 16
177
  **RolmOCR uses 16384/8192
 
178
 
179
  ### RolmOCR Specific
180
 
181
  - Output column is auto-generated from model name (e.g., `rolmocr_text`)
182
  - Use `--output-column` to override the default name
183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
184
  πŸ’‘ **Performance tip**: Increase batch size for faster processing (e.g., `--batch-size 128` for A10G GPUs)
185
 
 
 
186
  More OCR VLM Scripts coming soon! Stay tuned for updates!