Giguru Scheuer
commited on
Commit
·
a50bb4c
1
Parent(s):
b572f80
Added 'test_collection'
Browse files- test.py +4 -0
- trec-cast-2019-multi-turn.py +35 -6
test.py
CHANGED
@@ -1,4 +1,8 @@
|
|
1 |
from datasets import load_dataset
|
|
|
|
|
|
|
|
|
2 |
qrels = load_dataset('trec-cast-2019-multi-turn.py', 'qrels')
|
3 |
qrels.items()
|
4 |
|
|
|
1 |
from datasets import load_dataset
|
2 |
+
|
3 |
+
collection = load_dataset('trec-cast-2019-multi-turn.py')
|
4 |
+
collection.items()
|
5 |
+
|
6 |
qrels = load_dataset('trec-cast-2019-multi-turn.py', 'qrels')
|
7 |
qrels.items()
|
8 |
|
trec-cast-2019-multi-turn.py
CHANGED
@@ -20,11 +20,22 @@ import csv
|
|
20 |
|
21 |
# Find for instance the citation on arxiv or on the dataset repo/website
|
22 |
_CITATION = """\
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
"""
|
24 |
|
25 |
# You can copy an official description
|
26 |
_DESCRIPTION = """\
|
27 |
-
|
|
|
|
|
|
|
28 |
"""
|
29 |
|
30 |
_HOMEPAGE = "http://www.treccast.ai"
|
@@ -37,12 +48,16 @@ _URL = "https://huggingface.co/datasets/uva-irlab/trec-cast-2019-multi-turn/reso
|
|
37 |
_URLs = {
|
38 |
'topics': _URL+"cast2019_test_annotated.tsv",
|
39 |
'qrels': _URL+"2019qrels.txt",
|
|
|
|
|
|
|
|
|
40 |
}
|
41 |
|
42 |
|
43 |
class TrecCast2019MultiTurn(datasets.GeneratorBasedBuilder):
|
44 |
"""
|
45 |
-
|
46 |
"""
|
47 |
|
48 |
VERSION = datasets.Version("1.0.0")
|
@@ -59,12 +74,19 @@ class TrecCast2019MultiTurn(datasets.GeneratorBasedBuilder):
|
|
59 |
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
60 |
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
61 |
BUILDER_CONFIGS = [
|
62 |
-
datasets.BuilderConfig(name="qrels",
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
]
|
65 |
|
66 |
# It's not mandatory to have a default configuration. Just use one if it make sense.
|
67 |
-
DEFAULT_CONFIG_NAME =
|
68 |
|
69 |
def _info(self):
|
70 |
# This is the name of the configuration selected in BUILDER_CONFIGS above
|
@@ -82,6 +104,10 @@ class TrecCast2019MultiTurn(datasets.GeneratorBasedBuilder):
|
|
82 |
'rank': datasets.Value("string"),
|
83 |
})),
|
84 |
})
|
|
|
|
|
|
|
|
|
85 |
return datasets.DatasetInfo(
|
86 |
# This is the description that will appear on the datasets page.
|
87 |
description=_DESCRIPTION,
|
@@ -138,7 +164,7 @@ class TrecCast2019MultiTurn(datasets.GeneratorBasedBuilder):
|
|
138 |
for qid in qrels.keys():
|
139 |
yield qid, {'qid': qid, 'qrels': qrels[qid]}
|
140 |
|
141 |
-
|
142 |
topics_file = csv.reader(open(file), delimiter="\t")
|
143 |
topics = defaultdict(list)
|
144 |
for row in topics_file:
|
@@ -152,3 +178,6 @@ class TrecCast2019MultiTurn(datasets.GeneratorBasedBuilder):
|
|
152 |
query = queries[idx]
|
153 |
qid = f"{conversation_id}_{str(idx+1)}"
|
154 |
yield qid, ({'query': query, 'history': queries[:idx], 'qid': qid})
|
|
|
|
|
|
|
|
20 |
|
21 |
# Find for instance the citation on arxiv or on the dataset repo/website
|
22 |
_CITATION = """\
|
23 |
+
@misc{dalton2020trec,
|
24 |
+
title={TREC CAsT 2019: The Conversational Assistance Track Overview},
|
25 |
+
author={Jeffrey Dalton and Chenyan Xiong and Jamie Callan},
|
26 |
+
year={2020},
|
27 |
+
eprint={2003.13624},
|
28 |
+
archivePrefix={arXiv},
|
29 |
+
primaryClass={cs.IR}
|
30 |
+
}
|
31 |
"""
|
32 |
|
33 |
# You can copy an official description
|
34 |
_DESCRIPTION = """\
|
35 |
+
The Conversational Assistance Track (CAsT) is a new track for TREC 2019 to facilitate Conversational Information
|
36 |
+
Seeking (CIS) research and to create a large-scale reusable test collection for conversational search systems.
|
37 |
+
The document corpus is 38,426,252 passages from the TREC Complex Answer Retrieval (CAR) and Microsoft MAchine
|
38 |
+
Reading COmprehension (MARCO) datasets.
|
39 |
"""
|
40 |
|
41 |
_HOMEPAGE = "http://www.treccast.ai"
|
|
|
48 |
_URLs = {
|
49 |
'topics': _URL+"cast2019_test_annotated.tsv",
|
50 |
'qrels': _URL+"2019qrels.txt",
|
51 |
+
'test_collection': {
|
52 |
+
'msmarco': 'https://msmarco.blob.core.windows.net/msmarcoranking/collection.tar.gz',
|
53 |
+
'car': "http://trec-car.cs.unh.edu/datareleases/v2.0/paragraphCorpus.v2.0.tar.xz",
|
54 |
+
}
|
55 |
}
|
56 |
|
57 |
|
58 |
class TrecCast2019MultiTurn(datasets.GeneratorBasedBuilder):
|
59 |
"""
|
60 |
+
|
61 |
"""
|
62 |
|
63 |
VERSION = datasets.Version("1.0.0")
|
|
|
74 |
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
75 |
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
76 |
BUILDER_CONFIGS = [
|
77 |
+
datasets.BuilderConfig(name="qrels",
|
78 |
+
version=VERSION,
|
79 |
+
description=""),
|
80 |
+
datasets.BuilderConfig(name="topics",
|
81 |
+
version=VERSION,
|
82 |
+
description="The topics contain the queries, query IDs and their history."),
|
83 |
+
datasets.BuilderConfig(name="test_collection",
|
84 |
+
version=VERSION,
|
85 |
+
description="The test collection will provide the passages of TREC CAR and MSMARCO"),
|
86 |
]
|
87 |
|
88 |
# It's not mandatory to have a default configuration. Just use one if it make sense.
|
89 |
+
DEFAULT_CONFIG_NAME = "test_collection"
|
90 |
|
91 |
def _info(self):
|
92 |
# This is the name of the configuration selected in BUILDER_CONFIGS above
|
|
|
104 |
'rank': datasets.Value("string"),
|
105 |
})),
|
106 |
})
|
107 |
+
elif self.config.name == 'test_collection':
|
108 |
+
features = datasets.Features({
|
109 |
+
"docid": datasets.Value("string"),
|
110 |
+
})
|
111 |
return datasets.DatasetInfo(
|
112 |
# This is the description that will appear on the datasets page.
|
113 |
description=_DESCRIPTION,
|
|
|
164 |
for qid in qrels.keys():
|
165 |
yield qid, {'qid': qid, 'qrels': qrels[qid]}
|
166 |
|
167 |
+
elif split == 'topics':
|
168 |
topics_file = csv.reader(open(file), delimiter="\t")
|
169 |
topics = defaultdict(list)
|
170 |
for row in topics_file:
|
|
|
178 |
query = queries[idx]
|
179 |
qid = f"{conversation_id}_{str(idx+1)}"
|
180 |
yield qid, ({'query': query, 'history': queries[:idx], 'qid': qid})
|
181 |
+
|
182 |
+
else:
|
183 |
+
raise NotImplementedError(f"'{split}' is not yet implemented")
|