File size: 3,250 Bytes
90ee866
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f32932
 
 
 
 
 
 
90ee866
 
 
2f32932
f27db47
2f32932
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f27db47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90ee866
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: validation
    path: data/validation-*
  - split: test
    path: data/test-*
dataset_info:
  features:
  - name: query
    dtype: string
  - name: question
    dtype: string
  - name: answer
    dtype: string
  - name: table_names
    sequence: string
  - name: tables
    sequence: string
  - name: source
    dtype: string
  - name: target
    dtype: string
  splits:
  - name: train
    num_bytes: 6532402
    num_examples: 384
  - name: validation
    num_bytes: 826593
    num_examples: 45
  - name: test
    num_bytes: 1057831
    num_examples: 86
  download_size: 711704
  dataset_size: 8416826
license: apache-2.0
task_categories:
- table-question-answering
language:
- en
size_categories:
- 1K<n<10K
---
# Dataset Card for "atis-tableQA"

# Usage
```python
import pandas as pd
from datasets import load_dataset

atis_tableQA = load_dataset("vaishali/atis-tableQA")

for sample in atis_tableQA['train']:
  question = sample['question']
  sql_query = sample['query'],
  answer = pd.read_json(sample['answer'], orient='split')

  # flattened input
  input_to_llm = sample["source"]
  target = sample["target"]
```

# BibTeX entry and citation info
```
@inproceedings{pal-etal-2023-multitabqa,
    title = "{M}ulti{T}ab{QA}: Generating Tabular Answers for Multi-Table Question Answering",
    author = "Pal, Vaishali  and
      Yates, Andrew  and
      Kanoulas, Evangelos  and
      de Rijke, Maarten",
    booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
    month = jul,
    year = "2023",
    address = "Toronto, Canada",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2023.acl-long.348",
    doi = "10.18653/v1/2023.acl-long.348",
    pages = "6322--6334",
    abstract = "Recent advances in tabular question answering (QA) with large language models are constrained in their coverage and only answer questions over a single table. However, real-world queries are complex in nature, often over multiple tables in a relational database or web page. Single table questions do not involve common table operations such as set operations, Cartesian products (joins), or nested queries. Furthermore, multi-table operations often result in a tabular output, which necessitates table generation capabilities of tabular QA models. To fill this gap, we propose a new task of answering questions over multiple tables. Our model, MultiTabQA, not only answers questions over multiple tables, but also generalizes to generate tabular answers. To enable effective training, we build a pre-training dataset comprising of 132,645 SQL queries and tabular answers. Further, we evaluate the generated tables by introducing table-specific metrics of varying strictness assessing various levels of granularity of the table structure. MultiTabQA outperforms state-of-the-art single table QA models adapted to a multi-table QA setting by finetuning on three datasets: Spider, Atis and GeoQuery.",
}
```

[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)