Update README.md
Browse files
README.md
CHANGED
@@ -1,32 +1,124 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
dataset_info:
|
4 |
-
features:
|
5 |
-
- name: input_ids
|
6 |
-
sequence: int16
|
7 |
-
- name: coords
|
8 |
-
sequence:
|
9 |
-
sequence: float32
|
10 |
-
- name: forces
|
11 |
-
sequence:
|
12 |
-
sequence: float32
|
13 |
-
- name: formation_energy
|
14 |
-
dtype: float32
|
15 |
-
- name: total_energy
|
16 |
-
dtype: float32
|
17 |
-
- name: has_formation_energy
|
18 |
-
dtype: bool
|
19 |
-
- name: length
|
20 |
-
dtype: int64
|
21 |
-
splits:
|
22 |
-
- name: train
|
23 |
-
num_bytes: 43353603080
|
24 |
-
num_examples: 15000000
|
25 |
-
download_size: 44763791790
|
26 |
-
dataset_size: 43353603080
|
27 |
-
configs:
|
28 |
-
- config_name: default
|
29 |
-
data_files:
|
30 |
-
- split: train
|
31 |
-
path: data/train-*
|
32 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
dataset_info:
|
4 |
+
features:
|
5 |
+
- name: input_ids
|
6 |
+
sequence: int16
|
7 |
+
- name: coords
|
8 |
+
sequence:
|
9 |
+
sequence: float32
|
10 |
+
- name: forces
|
11 |
+
sequence:
|
12 |
+
sequence: float32
|
13 |
+
- name: formation_energy
|
14 |
+
dtype: float32
|
15 |
+
- name: total_energy
|
16 |
+
dtype: float32
|
17 |
+
- name: has_formation_energy
|
18 |
+
dtype: bool
|
19 |
+
- name: length
|
20 |
+
dtype: int64
|
21 |
+
splits:
|
22 |
+
- name: train
|
23 |
+
num_bytes: 43353603080
|
24 |
+
num_examples: 15000000
|
25 |
+
download_size: 44763791790
|
26 |
+
dataset_size: 43353603080
|
27 |
+
configs:
|
28 |
+
- config_name: default
|
29 |
+
data_files:
|
30 |
+
- split: train
|
31 |
+
path: data/train-*
|
32 |
+
---
|
33 |
+
|
34 |
+
## Dataset Description
|
35 |
+
|
36 |
+
This dataset contains a collection of 3D atomistic datasets with force and energy labels gathered from a series of sources:
|
37 |
+
|
38 |
+
- [Open Catalyst Project](https://github.com/FAIR-Chem/fairchem)
|
39 |
+
- OC20, OC22, ODAC23
|
40 |
+
- [Materials Project Trajectory Dataset (MPtrj)](https://figshare.com/articles/dataset/Materials_Project_Trjectory_MPtrj_Dataset/23713842)
|
41 |
+
- [SPICE 1.1.4](https://www.nature.com/articles/s41597-022-01882-6)
|
42 |
+
|
43 |
+
## Dataset Structure
|
44 |
+
|
45 |
+
### Data Instances
|
46 |
+
|
47 |
+
For each instance, there is set of atomic numbers (`input_ids`), 3-D coordinates (`coords`), a set of forces per atom (`forces`), the total and formation energy per
|
48 |
+
system (`total_energy`/`formation_energy`) and a boolean `has_formation_energy` that signifies whether the dataset has a valid formation energy.
|
49 |
+
|
50 |
+
```
|
51 |
+
{'input_ids': [26, 28, 28, 28],
|
52 |
+
'coords': [[0.0, 0.0, 0.0],
|
53 |
+
[0.0, 0.0, 3.5395920276641846],
|
54 |
+
[0.0, 1.7669789791107178, 1.7697960138320923],
|
55 |
+
[1.7669789791107178, 0.0, 1.7697960138320923]],
|
56 |
+
'forces': [[-1.999999987845058e-08, 2.999999892949745e-08, -0.0],
|
57 |
+
[-5.99999978589949e-08, 5.99999978589949e-08, 9.99999993922529e-09],
|
58 |
+
[-0.0014535699738189578, 0.0014535400550812483, 9.99999993922529e-09],
|
59 |
+
[0.001453649951145053, -0.0014536300441250205, -2.999999892949745e-08]],
|
60 |
+
'formation_energy': 0.6030612587928772,
|
61 |
+
'total_energy': -25.20570182800293,
|
62 |
+
'has_formation_energy': True}
|
63 |
+
```
|
64 |
+
|
65 |
+
The numbers of atoms within each sample for each dataset varies but the number of samples for each dataset is balanced.
|
66 |
+
`MPtrj` and `SPICE` are upsampled 2x and 3x respectively to ensure a balanced dataset distribution. The datasets are
|
67 |
+
interleaved until we run out of samples where there are 3,160,790 systems from each dataset (2x MPtrj runs out of samples first).
|
68 |
+
|
69 |
+
|
70 |
+
### Citation Information
|
71 |
+
|
72 |
+
```
|
73 |
+
@article{ocp_dataset,
|
74 |
+
author = {Chanussot*, Lowik and Das*, Abhishek and Goyal*, Siddharth and Lavril*, Thibaut and Shuaibi*, Muhammed and Riviere, Morgane and Tran, Kevin and Heras-Domingo, Javier and Ho, Caleb and Hu, Weihua and Palizhati, Aini and Sriram, Anuroop and Wood, Brandon and Yoon, Junwoong and Parikh, Devi and Zitnick, C. Lawrence and Ulissi, Zachary},
|
75 |
+
title = {Open Catalyst 2020 (OC20) Dataset and Community Challenges},
|
76 |
+
journal = {ACS Catalysis},
|
77 |
+
year = {2021},
|
78 |
+
doi = {10.1021/acscatal.0c04525},
|
79 |
+
}
|
80 |
+
```
|
81 |
+
|
82 |
+
```
|
83 |
+
@article{oc22_dataset,
|
84 |
+
author = {Tran*, Richard and Lan*, Janice and Shuaibi*, Muhammed and Wood*, Brandon and Goyal*, Siddharth and Das, Abhishek and Heras-Domingo, Javier and Kolluru, Adeesh and Rizvi, Ammar and Shoghi, Nima and Sriram, Anuroop and Ulissi, Zachary and Zitnick, C. Lawrence},
|
85 |
+
title = {The Open Catalyst 2022 (OC22) dataset and challenges for oxide electrocatalysts},
|
86 |
+
journal = {ACS Catalysis},
|
87 |
+
year={2023},
|
88 |
+
}
|
89 |
+
```
|
90 |
+
|
91 |
+
```
|
92 |
+
@article{odac23_dataset,
|
93 |
+
author = {Anuroop Sriram and Sihoon Choi and Xiaohan Yu and Logan M. Brabson and Abhishek Das and Zachary Ulissi and Matt Uyttendaele and Andrew J. Medford and David S. Sholl},
|
94 |
+
title = {The Open DAC 2023 Dataset and Challenges for Sorbent Discovery in Direct Air Capture},
|
95 |
+
year = {2023},
|
96 |
+
journal={arXiv preprint arXiv:2311.00341},
|
97 |
+
}
|
98 |
+
```
|
99 |
+
|
100 |
+
```
|
101 |
+
@article{deng_2023_chgnet,
|
102 |
+
author={Deng, Bowen and Zhong, Peichen and Jun, KyuJung and Riebesell, Janosh and Han, Kevin and Bartel, Christopher J. and Ceder, Gerbrand},
|
103 |
+
title={CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling},
|
104 |
+
journal={Nature Machine Intelligence},
|
105 |
+
year={2023},
|
106 |
+
DOI={10.1038/s42256-023-00716-3},
|
107 |
+
pages={1–11}
|
108 |
+
}
|
109 |
+
```
|
110 |
+
|
111 |
+
```
|
112 |
+
@article{eastman2023spice,
|
113 |
+
title={Spice, a dataset of drug-like molecules and peptides for training machine learning potentials},
|
114 |
+
author={Eastman, Peter and Behara, Pavan Kumar and Dotson, David L and Galvelis, Raimondas and Herr, John E and Horton, Josh T and Mao, Yuezhi and Chodera, John D and Pritchard, Benjamin P and Wang, Yuanqing and others},
|
115 |
+
journal={Scientific Data},
|
116 |
+
volume={10},
|
117 |
+
number={1},
|
118 |
+
pages={11},
|
119 |
+
year={2023},
|
120 |
+
publisher={Nature Publishing Group UK London}
|
121 |
+
}
|
122 |
+
```
|
123 |
+
|
124 |
+
|