repo_name
stringclasses
6 values
hexsha
stringclasses
6 values
file_path
stringclasses
6 values
code
stringclasses
6 values
apis
sequence
extract_api
stringclasses
6 values
adcrn/knest
a274dc9ddb642cc30f837e225f000bf33430eb43
utils/compare.py
# UCF Senior Design 2017-18 # Group 38 from PIL import Image import cv2 import imagehash import math import numpy as np DIFF_THRES = 20 LIMIT = 2 RESIZE = 1000 def calc_hash(img): """ Calculate the wavelet hash of the image img: (ndarray) image file """ # resize image if height > 1000 img = resize(img) return imagehash.whash(Image.fromarray(img)) def compare(hash1, hash2): """ Calculate the difference between two images hash1: (array) first wavelet hash hash2: (array) second wavelet hash """ return hash1 - hash2 def limit(img, std_hash, count): """ Determine whether image should be removed from image dictionary in main.py img: (ndarray) image file std_hash: (array) wavelet hash of comparison standard count: (int) global count of images similar to comparison standard """ # calculate hash for given image cmp_hash = calc_hash(img) # compare to standard diff = compare(std_hash, cmp_hash) # image is similar to standard if diff <= DIFF_THRES: # if there are 3 similar images already, remove image if count >= LIMIT: return 'remove' # non-similar image found else: # update comparison standard return 'update_std' # else continue reading images with same standard return 'continue' def resize(img): """ Resize an image img: (ndarray) RGB color image """ # get dimensions of image width = np.shape(img)[1] height = np.shape(img)[0] # if height of image is greater than 1000, resize it to 1000 if width > RESIZE: # keep resize proportional scale = RESIZE / width resized_img = cv2.resize( img, (RESIZE, math.floor(height / scale)), cv2.INTER_AREA) # return resized image return resized_img # if height of image is less than 1000, return image unresized return img def set_standard(images, filename): """ Set new comparison standard and update information images: (dictionary) dictionary containing all the image data filename: (String) name of the image file """ return filename, calc_hash(images[filename]), 0
[ "numpy.shape" ]
[(22, 'PIL.Image.fromarray', 'Image.fromarray', (['img'], {}), False, 'from PIL import Image\n'), (68, 'numpy.shape', 'np.shape', (['img'], {}), True, 'import numpy as np\n'), (69, 'numpy.shape', 'np.shape', (['img'], {}), True, 'import numpy as np\n'), (76, 'math.floor', 'math.floor', (['(height / scale)'], {}), False, 'import math\n')]
dongmengshi/easylearn
df528aaa69c3cf61f5459a04671642eb49421dfb
eslearn/utils/lc_featureSelection_variance.py
# -*- coding: utf-8 -*- """ Created on Tue Jul 24 14:38:20 2018 dimension reduction with VarianceThreshold using sklearn. Feature selector that removes all low-variance features. @author: lenovo """ from sklearn.feature_selection import VarianceThreshold import numpy as np # np.random.seed(1) X = np.random.randn(100, 10) X = np.hstack([X, np.zeros([100, 5])]) # def featureSelection_variance(X, thrd): sel = VarianceThreshold(threshold=thrd) X_selected = sel.fit_transform(X) mask = sel.get_support() return X_selected, mask X = [[0, 2, 0, 3], [0, 1, 4, 3], [0, 1, 1, 3]] selector = VarianceThreshold() selector.fit_transform(X) selector.variances_
[ "numpy.zeros", "numpy.random.seed", "numpy.random.randn", "sklearn.feature_selection.VarianceThreshold" ]
[(11, 'numpy.random.seed', 'np.random.seed', (['(1)'], {}), True, 'import numpy as np\n'), (12, 'numpy.random.randn', 'np.random.randn', (['(100)', '(10)'], {}), True, 'import numpy as np\n'), (25, 'sklearn.feature_selection.VarianceThreshold', 'VarianceThreshold', ([], {}), False, 'from sklearn.feature_selection import VarianceThreshold\n'), (18, 'sklearn.feature_selection.VarianceThreshold', 'VarianceThreshold', ([], {'threshold': 'thrd'}), False, 'from sklearn.feature_selection import VarianceThreshold\n'), (13, 'numpy.zeros', 'np.zeros', (['[100, 5]'], {}), True, 'import numpy as np\n')]
silent567/examples
e9de12549125ecd93a4924f6b8e2bbf66d7635d9
mnist/my_multi_tune3.py
#!/usr/bin/env python # coding=utf-8 from my_multi_main3 import main import numpy as np import argparse import time parser = argparse.ArgumentParser(description='PyTorch MNIST Example') parser.add_argument('--batch-size', type=int, default=64, metavar='N', help='input batch size for training (default: 64)') parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', help='input batch size for testing (default: 1000)') parser.add_argument('--epochs', type=int, default=10, metavar='N', help='number of epochs to train (default: 10)') parser.add_argument('--lr', type=float, default=0.01, metavar='LR', help='learning rate (default: 0.01)') parser.add_argument('--momentum', type=float, default=0.5, metavar='M', help='SGD momentum (default: 0.5)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument('--log-interval', type=int, default=10, metavar='N', help='how many batches to wait before logging training status') parser.add_argument('--save-model', action='store_true', default=False, help='For Saving the current Model') parser.add_argument('--norm-flag', type=bool, default=False, help='Triggering the Layer Normalization flag for attention scores') parser.add_argument('--gamma', type=float, default=None, help='Controlling the sparisty of gfusedmax/sparsemax, the smaller, the more sparse') parser.add_argument('--lam', type=float, default=1.0, help='Lambda: Controlling the smoothness of gfusedmax, the larger, the smoother') parser.add_argument('--max-type', type=str, default='softmax',choices=['softmax','sparsemax','gfusedmax'], help='mapping function in attention') parser.add_argument('--optim-type', type=str, default='SGD',choices=['SGD','Adam'], help='mapping function in attention') parser.add_argument('--head-cnt', type=int, default=2, metavar='S', choices=[1,2,4,5,10], help='Number of heads for attention (default: 1)') args = parser.parse_args() hyperparameter_choices = { 'lr':list(10**np.arange(-4,-1,0.5)), 'norm_flag': [True,False], 'gamma':list(10**np.arange(-1,3,0.5))+[None,], 'lam':list(10**np.arange(-2,2,0.5)), 'max_type':['softmax','sparsemax','gfusedmax'], # 'max_type':['sparsemax'], 'optim_type':['SGD','Adam'], 'head_cnt':[1,2,4,5,10,20] } param_num = 25 record = np.zeros([param_num,len(hyperparameter_choices)+1]) record_name = 'record3_multi_%s.csv'%time.strftime('%Y-%m-%d_%H-%M-%S',time.localtime()) for n in range(param_num): for param_index,(k,v) in enumerate(hyperparameter_choices.items()): print(param_index,k) value_index = np.random.choice(len(v)) if isinstance(v[value_index],str) or isinstance(v[value_index],bool) or v[value_index] is None: record[n,param_index] = value_index else: record[n,param_index] = v[value_index] setattr(args,k,v[value_index]) record[n,-1] = main(args) np.savetxt(record_name, record, delimiter=',')
[ "numpy.arange", "numpy.savetxt" ]
[(9, 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""PyTorch MNIST Example"""'}), False, 'import argparse\n'), (66, 'my_multi_main3.main', 'main', (['args'], {}), False, 'from my_multi_main3 import main\n'), (67, 'numpy.savetxt', 'np.savetxt', (['record_name', 'record'], {'delimiter': '""","""'}), True, 'import numpy as np\n'), (56, 'time.localtime', 'time.localtime', ([], {}), False, 'import time\n'), (44, 'numpy.arange', 'np.arange', (['(-4)', '(-1)', '(0.5)'], {}), True, 'import numpy as np\n'), (47, 'numpy.arange', 'np.arange', (['(-2)', '(2)', '(0.5)'], {}), True, 'import numpy as np\n'), (46, 'numpy.arange', 'np.arange', (['(-1)', '(3)', '(0.5)'], {}), True, 'import numpy as np\n')]
neonbjb/DL-Art-School
a6f0f854b987ac724e258af8b042ea4459a571bc
codes/data/image_corruptor.py
import functools import random from math import cos, pi import cv2 import kornia import numpy as np import torch from kornia.augmentation import ColorJitter from data.util import read_img from PIL import Image from io import BytesIO # Get a rough visualization of the above distribution. (Y-axis is meaningless, just spreads data) from utils.util import opt_get ''' if __name__ == '__main__': import numpy as np import matplotlib.pyplot as plt data = np.asarray([get_rand() for _ in range(5000)]) plt.plot(data, np.random.uniform(size=(5000,)), 'x') plt.show() ''' def kornia_color_jitter_numpy(img, setting): if setting * 255 > 1: # I'm using Kornia's ColorJitter, which requires pytorch arrays in b,c,h,w format. img = torch.from_numpy(img).permute(2,0,1).unsqueeze(0) img = ColorJitter(setting, setting, setting, setting)(img) img = img.squeeze(0).permute(1,2,0).numpy() return img # Performs image corruption on a list of images from a configurable set of corruption # options. class ImageCorruptor: def __init__(self, opt): self.opt = opt self.reset_random() self.blur_scale = opt['corruption_blur_scale'] if 'corruption_blur_scale' in opt.keys() else 1 self.fixed_corruptions = opt['fixed_corruptions'] if 'fixed_corruptions' in opt.keys() else [] self.num_corrupts = opt['num_corrupts_per_image'] if 'num_corrupts_per_image' in opt.keys() else 0 self.cosine_bias = opt_get(opt, ['cosine_bias'], True) if self.num_corrupts == 0: return else: self.random_corruptions = opt['random_corruptions'] if 'random_corruptions' in opt.keys() else [] def reset_random(self): if 'random_seed' in self.opt.keys(): self.rand = random.Random(self.opt['random_seed']) else: self.rand = random.Random() # Feeds a random uniform through a cosine distribution to slightly bias corruptions towards "uncorrupted". # Return is on [0,1] with a bias towards 0. def get_rand(self): r = self.rand.random() if self.cosine_bias: return 1 - cos(r * pi / 2) else: return r def corrupt_images(self, imgs, return_entropy=False): if self.num_corrupts == 0 and not self.fixed_corruptions: if return_entropy: return imgs, [] else: return imgs if self.num_corrupts == 0: augmentations = [] else: augmentations = random.choices(self.random_corruptions, k=self.num_corrupts) # Sources of entropy corrupted_imgs = [] entropy = [] undo_fns = [] applied_augs = augmentations + self.fixed_corruptions for img in imgs: for aug in augmentations: r = self.get_rand() img, undo_fn = self.apply_corruption(img, aug, r, applied_augs) if undo_fn is not None: undo_fns.append(undo_fn) for aug in self.fixed_corruptions: r = self.get_rand() img, undo_fn = self.apply_corruption(img, aug, r, applied_augs) entropy.append(r) if undo_fn is not None: undo_fns.append(undo_fn) # Apply undo_fns after all corruptions are finished, in same order. for ufn in undo_fns: img = ufn(img) corrupted_imgs.append(img) if return_entropy: return corrupted_imgs, entropy else: return corrupted_imgs def apply_corruption(self, img, aug, rand_val, applied_augmentations): undo_fn = None if 'color_quantization' in aug: # Color quantization quant_div = 2 ** (int(rand_val * 10 / 3) + 2) img = img * 255 img = (img // quant_div) * quant_div img = img / 255 elif 'color_jitter' in aug: lo_end = 0 hi_end = .2 setting = rand_val * (hi_end - lo_end) + lo_end img = kornia_color_jitter_numpy(img, setting) elif 'gaussian_blur' in aug: img = cv2.GaussianBlur(img, (0,0), self.blur_scale*rand_val*1.5) elif 'motion_blur' in aug: # Motion blur intensity = self.blur_scale*rand_val * 3 + 1 angle = random.randint(0,360) k = np.zeros((intensity, intensity), dtype=np.float32) k[(intensity - 1) // 2, :] = np.ones(intensity, dtype=np.float32) k = cv2.warpAffine(k, cv2.getRotationMatrix2D((intensity / 2 - 0.5, intensity / 2 - 0.5), angle, 1.0), (intensity, intensity)) k = k * (1.0 / np.sum(k)) img = cv2.filter2D(img, -1, k) elif 'block_noise' in aug: # Large distortion blocks in part of an img, such as is used to mask out a face. pass elif 'lq_resampling' in aug: # Random mode interpolation HR->LR->HR if 'lq_resampling4x' == aug: scale = 4 else: if rand_val < .3: scale = 1 elif rand_val < .7: scale = 2 else: scale = 4 if scale > 1: interpolation_modes = [cv2.INTER_NEAREST, cv2.INTER_CUBIC, cv2.INTER_LINEAR, cv2.INTER_LANCZOS4] mode = random.randint(0,4) % len(interpolation_modes) # Downsample first, then upsample using the random mode. img = cv2.resize(img, dsize=(img.shape[1]//scale, img.shape[0]//scale), interpolation=mode) def lq_resampling_undo_fn(scale, img): return cv2.resize(img, dsize=(img.shape[1]*scale, img.shape[0]*scale), interpolation=cv2.INTER_LINEAR) undo_fn = functools.partial(lq_resampling_undo_fn, scale) elif 'color_shift' in aug: # Color shift pass elif 'interlacing' in aug: # Interlacing distortion pass elif 'chromatic_aberration' in aug: # Chromatic aberration pass elif 'noise' in aug: # Random noise if 'noise-5' == aug: noise_intensity = 5 / 255.0 else: noise_intensity = (rand_val*6) / 255.0 img += np.random.rand(*img.shape) * noise_intensity elif 'jpeg' in aug: if 'noise' not in applied_augmentations and 'noise-5' not in applied_augmentations: if aug == 'jpeg': lo=10 range=20 elif aug == 'jpeg-low': lo=15 range=10 elif aug == 'jpeg-medium': lo=23 range=25 elif aug == 'jpeg-broad': lo=15 range=60 elif aug == 'jpeg-normal': lo=47 range=35 else: raise NotImplementedError("specified jpeg corruption doesn't exist") # JPEG compression qf = (int((1-rand_val)*range) + lo) # Use PIL to perform a mock compression to a data buffer, then swap back to cv2. img = (img * 255).astype(np.uint8) img = Image.fromarray(img) buffer = BytesIO() img.save(buffer, "JPEG", quality=qf, optimize=True) buffer.seek(0) jpeg_img_bytes = np.asarray(bytearray(buffer.read()), dtype="uint8") img = read_img("buffer", jpeg_img_bytes, rgb=True) elif 'saturation' in aug: # Lightening / saturation saturation = rand_val * .3 img = np.clip(img + saturation, a_max=1, a_min=0) elif 'greyscale' in aug: img = np.tile(np.mean(img, axis=2, keepdims=True), [1,1,3]) elif 'none' not in aug: raise NotImplementedError("Augmentation doesn't exist") return img, undo_fn
[ "numpy.mean", "numpy.ones", "numpy.clip", "torch.from_numpy", "numpy.random.rand", "numpy.zeros", "numpy.sum" ]
[(47, 'utils.util.opt_get', 'opt_get', (['opt', "['cosine_bias']", '(True)'], {}), False, 'from utils.util import opt_get\n'), (33, 'kornia.augmentation.ColorJitter', 'ColorJitter', (['setting', 'setting', 'setting', 'setting'], {}), False, 'from kornia.augmentation import ColorJitter\n'), (55, 'random.Random', 'random.Random', (["self.opt['random_seed']"], {}), False, 'import random\n'), (57, 'random.Random', 'random.Random', ([], {}), False, 'import random\n'), (78, 'random.choices', 'random.choices', (['self.random_corruptions'], {'k': 'self.num_corrupts'}), False, 'import random\n'), (64, 'math.cos', 'cos', (['(r * pi / 2)'], {}), False, 'from math import cos, pi\n'), (122, 'cv2.GaussianBlur', 'cv2.GaussianBlur', (['img', '(0, 0)', '(self.blur_scale * rand_val * 1.5)'], {}), False, 'import cv2\n'), (32, 'torch.from_numpy', 'torch.from_numpy', (['img'], {}), False, 'import torch\n'), (126, 'random.randint', 'random.randint', (['(0)', '(360)'], {}), False, 'import random\n'), (127, 'numpy.zeros', 'np.zeros', (['(intensity, intensity)'], {'dtype': 'np.float32'}), True, 'import numpy as np\n'), (128, 'numpy.ones', 'np.ones', (['intensity'], {'dtype': 'np.float32'}), True, 'import numpy as np\n'), (132, 'cv2.filter2D', 'cv2.filter2D', (['img', '(-1)', 'k'], {}), False, 'import cv2\n'), (129, 'cv2.getRotationMatrix2D', 'cv2.getRotationMatrix2D', (['(intensity / 2 - 0.5, intensity / 2 - 0.5)', 'angle', '(1.0)'], {}), False, 'import cv2\n'), (131, 'numpy.sum', 'np.sum', (['k'], {}), True, 'import numpy as np\n'), (151, 'cv2.resize', 'cv2.resize', (['img'], {'dsize': '(img.shape[1] // scale, img.shape[0] // scale)', 'interpolation': 'mode'}), False, 'import cv2\n'), (154, 'functools.partial', 'functools.partial', (['lq_resampling_undo_fn', 'scale'], {}), False, 'import functools\n'), (149, 'random.randint', 'random.randint', (['(0)', '(4)'], {}), False, 'import random\n'), (153, 'cv2.resize', 'cv2.resize', (['img'], {'dsize': '(img.shape[1] * scale, img.shape[0] * scale)', 'interpolation': 'cv2.INTER_LINEAR'}), False, 'import cv2\n'), (170, 'numpy.random.rand', 'np.random.rand', (['*img.shape'], {}), True, 'import numpy as np\n'), (194, 'PIL.Image.fromarray', 'Image.fromarray', (['img'], {}), False, 'from PIL import Image\n'), (195, 'io.BytesIO', 'BytesIO', ([], {}), False, 'from io import BytesIO\n'), (199, 'data.util.read_img', 'read_img', (['"""buffer"""', 'jpeg_img_bytes'], {'rgb': '(True)'}), False, 'from data.util import read_img\n'), (203, 'numpy.clip', 'np.clip', (['(img + saturation)'], {'a_max': '(1)', 'a_min': '(0)'}), True, 'import numpy as np\n'), (205, 'numpy.mean', 'np.mean', (['img'], {'axis': '(2)', 'keepdims': '(True)'}), True, 'import numpy as np\n')]
pclucas14/continuum
09034db1371e9646ca660fd4d4df73e61bf77067
tests/test_background_swap.py
import os from torch.utils.data import DataLoader from continuum.datasets import CIFAR10, InMemoryDataset from continuum.datasets import MNIST import torchvision from continuum.scenarios import TransformationIncremental import pytest import numpy as np from continuum.transforms.bg_swap import BackgroundSwap DATA_PATH = os.environ.get("CONTINUUM_DATA_PATH") # Uncomment for debugging via image output # import matplotlib.pyplot as plt def test_bg_swap_fast(): """ Fast test for background swap. """ bg_x = np.ones(shape=[2, 5, 5, 3]) * -1 bg_y = np.random.rand(2) fg = np.random.normal(loc=.5, scale=.1, size=[5, 5]) bg = InMemoryDataset(bg_x, bg_y) bg_swap = BackgroundSwap(bg, input_dim=(5, 5), normalize_bg=None) spliced_1_channel = bg_swap(fg)[:, :, 0] assert np.array_equal((spliced_1_channel <= -1), (fg <= .5)) @pytest.mark.slow def test_background_swap_numpy(): """ Test background swap on a single ndarray input. """ mnist = MNIST(DATA_PATH, download=True, train=True) cifar = CIFAR10(DATA_PATH, download=True, train=True) bg_swap = BackgroundSwap(cifar, input_dim=(28, 28)) im = mnist.get_data()[0][0] im = bg_swap(im) # Uncomment for debugging # plt.imshow(im, interpolation='nearest') # plt.show() @pytest.mark.slow def test_background_swap_torch(): """ Test background swap on a single tensor input. """ cifar = CIFAR10(DATA_PATH, download=True, train=True) mnist = torchvision.datasets.MNIST(DATA_PATH, train=True, download=True, transform=torchvision.transforms.Compose([ torchvision.transforms.ToTensor() ])) bg_swap = BackgroundSwap(cifar, input_dim=(28, 28)) im = mnist[0][0] im = bg_swap(im) # Uncomment for debugging # plt.imshow(im.permute(1, 2, 0), interpolation='nearest') # plt.show() @pytest.mark.slow def test_background_tranformation(): """ Example code using TransformationIncremental to create a setting with 3 tasks. """ cifar = CIFAR10(DATA_PATH, train=True) mnist = MNIST(DATA_PATH, download=False, train=True) nb_task = 3 list_trsf = [] for i in range(nb_task): list_trsf.append([torchvision.transforms.ToTensor(), BackgroundSwap(cifar, bg_label=i, input_dim=(28, 28)), torchvision.transforms.ToPILImage()]) scenario = TransformationIncremental(mnist, base_transformations=[torchvision.transforms.ToTensor()], incremental_transformations=list_trsf) folder = "tests/samples/background_trsf/" if not os.path.exists(folder): os.makedirs(folder) for task_id, task_data in enumerate(scenario): task_data.plot(path=folder, title=f"background_{task_id}.jpg", nb_samples=100, shape=[28, 28, 3]) loader = DataLoader(task_data) _, _, _ = next(iter(loader))
[ "numpy.array_equal", "numpy.ones", "torch.utils.data.DataLoader", "numpy.random.normal", "numpy.random.rand" ]
[(13, 'os.environ.get', 'os.environ.get', (['"""CONTINUUM_DATA_PATH"""'], {}), False, 'import os\n'), (24, 'numpy.random.rand', 'np.random.rand', (['(2)'], {}), True, 'import numpy as np\n'), (26, 'numpy.random.normal', 'np.random.normal', ([], {'loc': '(0.5)', 'scale': '(0.1)', 'size': '[5, 5]'}), True, 'import numpy as np\n'), (27, 'continuum.datasets.InMemoryDataset', 'InMemoryDataset', (['bg_x', 'bg_y'], {}), False, 'from continuum.datasets import CIFAR10, InMemoryDataset\n'), (29, 'continuum.transforms.bg_swap.BackgroundSwap', 'BackgroundSwap', (['bg'], {'input_dim': '(5, 5)', 'normalize_bg': 'None'}), False, 'from continuum.transforms.bg_swap import BackgroundSwap\n'), (33, 'numpy.array_equal', 'np.array_equal', (['(spliced_1_channel <= -1)', '(fg <= 0.5)'], {}), True, 'import numpy as np\n'), (41, 'continuum.datasets.MNIST', 'MNIST', (['DATA_PATH'], {'download': '(True)', 'train': '(True)'}), False, 'from continuum.datasets import MNIST\n'), (42, 'continuum.datasets.CIFAR10', 'CIFAR10', (['DATA_PATH'], {'download': '(True)', 'train': '(True)'}), False, 'from continuum.datasets import CIFAR10, InMemoryDataset\n'), (44, 'continuum.transforms.bg_swap.BackgroundSwap', 'BackgroundSwap', (['cifar'], {'input_dim': '(28, 28)'}), False, 'from continuum.transforms.bg_swap import BackgroundSwap\n'), (59, 'continuum.datasets.CIFAR10', 'CIFAR10', (['DATA_PATH'], {'download': '(True)', 'train': '(True)'}), False, 'from continuum.datasets import CIFAR10, InMemoryDataset\n'), (66, 'continuum.transforms.bg_swap.BackgroundSwap', 'BackgroundSwap', (['cifar'], {'input_dim': '(28, 28)'}), False, 'from continuum.transforms.bg_swap import BackgroundSwap\n'), (81, 'continuum.datasets.CIFAR10', 'CIFAR10', (['DATA_PATH'], {'train': '(True)'}), False, 'from continuum.datasets import CIFAR10, InMemoryDataset\n'), (82, 'continuum.datasets.MNIST', 'MNIST', (['DATA_PATH'], {'download': '(False)', 'train': '(True)'}), False, 'from continuum.datasets import MNIST\n'), (23, 'numpy.ones', 'np.ones', ([], {'shape': '[2, 5, 5, 3]'}), True, 'import numpy as np\n'), (91, 'os.path.exists', 'os.path.exists', (['folder'], {}), False, 'import os\n'), (92, 'os.makedirs', 'os.makedirs', (['folder'], {}), False, 'import os\n'), (95, 'torch.utils.data.DataLoader', 'DataLoader', (['task_data'], {}), False, 'from torch.utils.data import DataLoader\n'), (86, 'torchvision.transforms.ToTensor', 'torchvision.transforms.ToTensor', ([], {}), False, 'import torchvision\n'), (86, 'continuum.transforms.bg_swap.BackgroundSwap', 'BackgroundSwap', (['cifar'], {'bg_label': 'i', 'input_dim': '(28, 28)'}), False, 'from continuum.transforms.bg_swap import BackgroundSwap\n'), (87, 'torchvision.transforms.ToPILImage', 'torchvision.transforms.ToPILImage', ([], {}), False, 'import torchvision\n'), (88, 'torchvision.transforms.ToTensor', 'torchvision.transforms.ToTensor', ([], {}), False, 'import torchvision\n'), (63, 'torchvision.transforms.ToTensor', 'torchvision.transforms.ToTensor', ([], {}), False, 'import torchvision\n')]
g-nightingale/tox_examples
d7714375c764580b4b8af9db61332ced4e851def
packaging/squarer/ml_squarer.py
import numpy as np def train_ml_squarer() -> None: print("Training!") def square() -> int: """Square a number...maybe""" return np.random.randint(1, 100) if __name__ == '__main__': train_ml_squarer()
[ "numpy.random.randint" ]
[(10, 'numpy.random.randint', 'np.random.randint', (['(1)', '(100)'], {}), True, 'import numpy as np\n')]