File size: 9,532 Bytes
b36d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.chat_models import ChatOpenAI\n",
    "from langchain.memory import ConversationBufferMemory\n",
    "from langchain.prompts import PromptTemplate\n",
    "from langchain.chains import LLMChain\n",
    "from langchain.utilities import SQLDatabase\n",
    "from sqlalchemy import create_engine  # Import create_engine\n",
    "\n",
    "# --- Initialize Core Components ---\n",
    "\n",
    "# 1. Dialogue Context (Memory)\n",
    "memory = ConversationBufferMemory()\n",
    "\n",
    "# 2. LLM (for routing, service selection, state tracking, and response generation)\n",
    "llm = ChatOpenAI(temperature=0, model_name=\"gpt-3.5-turbo\")  # Or another suitable model\n",
    "\n",
    "# 3. Database (using SQLite in-memory for demonstration)\n",
    "engine = create_engine(\"sqlite:///:memory:\")  # Create an in-memory SQLite engine\n",
    "db = SQLDatabase(engine)  # Pass the engine to SQLDatabase\n",
    "\n",
    "# --- Define Prompts ---\n",
    "\n",
    "# Router Prompt\n",
    "router_template = \"\"\"\n",
    "You are a helpful assistant that classifies user input into two categories:\n",
    "\n",
    "1. open-domain: General conversation, chit-chat, or questions not related to a specific task.\n",
    "2. task-oriented: The user wants to perform a specific action or get information related to a predefined service.\n",
    "\n",
    "Based on the dialogue history, classify the latest user input:\n",
    "\n",
    "{chat_history}\n",
    "\n",
    "User: {user_input}\n",
    "\n",
    "Classification:\n",
    "\"\"\"\n",
    "router_prompt = PromptTemplate(\n",
    "    input_variables=[\"chat_history\", \"user_input\"], template=router_template\n",
    ")\n",
    "\n",
    "# Service Selection Prompt\n",
    "service_selection_template = \"\"\"\n",
    "You are a helpful assistant that classifies user input into one of the following predefined services:\n",
    "\n",
    "Services:\n",
    "- book_flight: For booking flight tickets.\n",
    "- check_order_status: For checking the status of an order.\n",
    "- find_restaurants: For finding restaurants based on criteria.\n",
    "\n",
    "Based on the dialogue history, which service best matches the user's intent?\n",
    "\n",
    "{chat_history}\n",
    "\n",
    "User: {user_input}\n",
    "\n",
    "Selected Service:\n",
    "\"\"\"\n",
    "service_selection_prompt = PromptTemplate(\n",
    "    input_variables=[\"chat_history\", \"user_input\"],\n",
    "    template=service_selection_template,\n",
    ")\n",
    "\n",
    "# Dialogue State Tracking Prompt\n",
    "state_tracking_template = \"\"\"\n",
    "You are a helpful assistant that extracts information from user input to fill in the slots for a specific service.\n",
    "\n",
    "Service: {service}\n",
    "Slots: {slots}\n",
    "\n",
    "Based on the dialogue history, extract the values for each slot from the conversation. \n",
    "Return the output in JSON format. If a slot is not filled, use null as the value.\n",
    "\n",
    "{chat_history}\n",
    "\n",
    "User: {user_input}\n",
    "\n",
    "Extracted Information (JSON):\n",
    "\"\"\"\n",
    "state_tracking_prompt = PromptTemplate(\n",
    "    input_variables=[\"service\", \"slots\", \"chat_history\", \"user_input\"],\n",
    "    template=state_tracking_template,\n",
    ")\n",
    "\n",
    "# Response Generation Prompt\n",
    "response_generation_template = \"\"\"\n",
    "You are a helpful assistant that generates natural language responses to the user.\n",
    "\n",
    "Dialogue History:\n",
    "{chat_history}\n",
    "\n",
    "User: {user_input}\n",
    "\n",
    "{slot_info}\n",
    "\n",
    "{db_results}\n",
    "\n",
    "Response:\n",
    "\"\"\"\n",
    "response_generation_prompt = PromptTemplate(\n",
    "    input_variables=[\"chat_history\", \"user_input\", \"slot_info\", \"db_results\"],\n",
    "    template=response_generation_template,\n",
    ")\n",
    "\n",
    "# --- Define Chains ---\n",
    "\n",
    "router_chain = LLMChain(llm=llm, prompt=router_prompt, output_key=\"classification\")\n",
    "service_selection_chain = LLMChain(\n",
    "    llm=llm, prompt=service_selection_prompt, output_key=\"service\"\n",
    ")\n",
    "state_tracking_chain = LLMChain(\n",
    "    llm=llm, prompt=state_tracking_prompt, output_key=\"slot_json\"\n",
    ")\n",
    "response_generation_chain = LLMChain(\n",
    "    llm=llm, prompt=response_generation_prompt, output_key=\"response\"\n",
    ")\n",
    "\n",
    "# --- Define Service Slots ---\n",
    "# (In a real application, this would likely be loaded from a configuration file or database)\n",
    "service_slots = {\n",
    "    \"book_flight\": [\"destination\", \"departure_date\", \"num_passengers\"],\n",
    "    \"check_order_status\": [\"order_id\"],\n",
    "    \"find_restaurants\": [\"cuisine\", \"location\", \"price_range\"],\n",
    "}\n",
    "\n",
    "# --- Main Dialogue Loop ---\n",
    "\n",
    "def process_user_input(user_input):\n",
    "    # 1. Add user input to memory\n",
    "    memory.chat_memory.add_user_message(user_input)\n",
    "\n",
    "    # 2. Route the input\n",
    "    router_output = router_chain(\n",
    "        {\"chat_history\": memory.load_memory_variables({}), \"user_input\": user_input}\n",
    "    )\n",
    "    classification = router_output[\"classification\"].strip()\n",
    "\n",
    "    print(f\"Router Classification: {classification}\")\n",
    "\n",
    "    if classification == \"open-domain\":\n",
    "        # 3. Handle open-domain conversation\n",
    "        llm_response = llm(memory.load_memory_variables({})[\"history\"])\n",
    "        response = llm_response.content\n",
    "    else:\n",
    "        # 4. Select the service\n",
    "        service_output = service_selection_chain(\n",
    "            {\"chat_history\": memory.load_memory_variables({}), \"user_input\": user_input}\n",
    "        )\n",
    "        service = service_output[\"service\"].strip()\n",
    "\n",
    "        print(f\"Selected Service: {service}\")\n",
    "\n",
    "        if service not in service_slots:\n",
    "            response = \"I'm sorry, I cannot understand that service request yet. We currently support booking flights, checking order status and finding restaurants only.\"\n",
    "        else:\n",
    "            # 5. Track the dialogue state (slot filling)\n",
    "            slots = service_slots[service]\n",
    "            state_output = state_tracking_chain(\n",
    "                {\n",
    "                    \"service\": service,\n",
    "                    \"slots\": \", \".join(slots),\n",
    "                    \"chat_history\": memory.load_memory_variables({}),\n",
    "                    \"user_input\": user_input,\n",
    "                }\n",
    "            )\n",
    "            slot_json_str = state_output[\"slot_json\"].strip()\n",
    "\n",
    "            print(f\"Slot Filling Output (JSON): {slot_json_str}\")\n",
    "\n",
    "            try:\n",
    "                import json\n",
    "                slot_values = json.loads(slot_json_str)\n",
    "            except json.JSONDecodeError:\n",
    "                slot_values = {}  # Handle cases where JSON decoding fails\n",
    "                response = \"I'm sorry, there seems to be a problem understanding your request details.\"\n",
    "\n",
    "            # (Optional) 6. Database interaction (based on service and filled slots)\n",
    "            db_results = \"\"  # Initialize db_results as an empty string\n",
    "            if service == \"check_order_status\" and \"order_id\" in slot_values:\n",
    "                try:\n",
    "                    order_id = slot_values[\"order_id\"]\n",
    "                    # Basic query without table information\n",
    "                    db_results = db.run(f\"SELECT * FROM orders WHERE order_id = '{order_id}'\")\n",
    "                    db_results = f\"Database Results: {db_results}\"\n",
    "                except Exception as e:\n",
    "                    print(f\"Error during database query: {e}\")\n",
    "                    db_results = \"\"\n",
    "\n",
    "            # 7. Generate the response\n",
    "            response_output = response_generation_chain(\n",
    "                {\n",
    "                    \"chat_history\": memory.load_memory_variables({}),\n",
    "                    \"user_input\": user_input,\n",
    "                    \"slot_info\": f\"Slots: {slot_json_str}\",\n",
    "                    \"db_results\": db_results,\n",
    "                }\n",
    "            )\n",
    "            response = response_output[\"response\"]\n",
    "\n",
    "    # 8. Add the system response to memory\n",
    "    memory.chat_memory.add_ai_message(response)\n",
    "\n",
    "    return response\n",
    "\n",
    "# --- Example Usage ---\n",
    "\n",
    "while True:\n",
    "    user_input = input(\"You: \")\n",
    "    if user_input.lower() == \"exit\":\n",
    "        break\n",
    "    response = process_user_input(user_input)\n",
    "    print(f\"AI: {response}\")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "crawl_data",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "name": "python",
   "version": "3.10.13"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}