|
""" |
|
Parse all paragraphs from all *.fb2 files in the input directory, create a Huggingface Dataset and push it |
|
to the Hub as `vldsavelyev/murakami`. |
|
""" |
|
|
|
|
|
import os |
|
from pathlib import Path |
|
from lxml import etree |
|
import datasets |
|
|
|
datasets.logging.set_verbosity_info() |
|
|
|
|
|
_DESCRIPTION = """\ |
|
Russian translations of Murakami novels, to fine-tune a generative language model. Source is FB2 files |
|
from http://flibusta.is/a/8570. |
|
""" |
|
|
|
|
|
class Builder(datasets.GeneratorBasedBuilder): |
|
"""Murakami novels, translated to Russian.""" |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
|
|
|
|
|
|
MIN_CHAPTER_SIZE = 500 |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=datasets.Features({"text": datasets.Value("string")}), |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager): |
|
fb2_dir = dl_manager.download_and_extract("data.zip") |
|
fb2_paths = list(Path(fb2_dir).glob("**/*.fb2")) |
|
if len(fb2_paths) > 0: |
|
print(f"Found {len(fb2_paths)} fb2 files") |
|
else: |
|
raise ValueError(f"No fb2 files found in {fb2_dir}") |
|
|
|
smallest_path = min(fb2_paths, key=os.path.getsize) |
|
print(f"Using smallest title as a training example: {smallest_path}") |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"filepaths": [p for p in fb2_paths if p != smallest_path], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={ |
|
"filepaths": [smallest_path], |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepaths): |
|
for fileidx, filepath in enumerate(filepaths): |
|
title, chapters = self._extract_text_from_fb2(filepath, fileidx) |
|
for i, chapter in enumerate(chapters): |
|
yield f"{title} {i}", {"text": chapter} |
|
|
|
@staticmethod |
|
def _extract_text_from_fb2(filepath: Path, fileidx: int) -> tuple[str, list[str]]: |
|
""" |
|
Parse a FB2 file and return book chapters, along with the book title. |
|
""" |
|
|
|
with filepath.open("rb") as file: |
|
fb2_data = file.read() |
|
|
|
|
|
root = etree.fromstring(fb2_data) |
|
|
|
|
|
title = root.xpath( |
|
"//fb:title-info/fb:book-title", |
|
namespaces={"fb": "http://www.gribuser.ru/xml/fictionbook/2.0"}, |
|
)[0].text |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
chapters: list[str] = [] |
|
|
|
def _add_chapter(text: str): |
|
if not text: |
|
return |
|
if ( |
|
Builder.MIN_CHAPTER_SIZE is not None |
|
and len(text) < Builder.MIN_CHAPTER_SIZE |
|
): |
|
|
|
pass |
|
else: |
|
|
|
chapters.append(text) |
|
|
|
chapter = "" |
|
for e in root.iter(): |
|
if e.tag.endswith("}p"): |
|
chapter += (e.text or "") + (e.tail or "") |
|
elif e.tag.endswith("}section"): |
|
_add_chapter(chapter) |
|
chapter = "" |
|
_add_chapter(chapter) |
|
|
|
print(f'{filepath}: "{title}", found {len(chapters)} chapters') |
|
|
|
|
|
return title, chapters |
|
|