Dannong Wang commited on
Commit
734e80e
·
1 Parent(s): d642557

add dataset

Browse files
Files changed (2) hide show
  1. README.md +8 -0
  2. generate_xbrl_extract_hf_split.py +8 -8
README.md CHANGED
@@ -27,3 +27,11 @@ configs:
27
  ---
28
 
29
  # XBRL Extraction Dataset
 
 
 
 
 
 
 
 
 
27
  ---
28
 
29
  # XBRL Extraction Dataset
30
+
31
+ The is the official dataset introduced in the paper [FinLoRA: Benchmarking LoRA Methods for Fine-Tuning LLMs on Financial Datasets](https://arxiv.org/abs/2505.19819)
32
+
33
+ <p>
34
+ <a href="https://huggingface.co/spaces/wangd12/xbrl_llm_demo"><img src="https://raw.githubusercontent.com/wangd12rpi/FinLoRA/main/static/demo_btn.svg"></a>
35
+ <a href="https://huggingface.co/spaces/wangd12/xbrl_llm_demo"><img src="https://raw.githubusercontent.com/wangd12rpi/FinLoRA/main/static/models_btn.svg"></a>
36
+ <a href="https://finlora-docs.readthedocs.io/en/latest/"><img src="https://raw.githubusercontent.com/wangd12rpi/FinLoRA/main/static/doc_btn.svg"></a>
37
+ </p>
generate_xbrl_extract_hf_split.py CHANGED
@@ -100,14 +100,14 @@ def gen_xbrl(cat):
100
 
101
  print(f"train size: {len(train_data)}, test size: {len(test_data)}\n")
102
 
103
- with open(f"{cat}_test.csv", "w", newline="") as f:
104
- w = csv.DictWriter(f, test_data[0].keys(), quoting=csv.QUOTE_ALL)
105
- w.writeheader()
106
- w.writerows(test_data)
107
- with open(f"{cat}_train.csv", "w", newline="") as f:
108
- w = csv.DictWriter(f, train_data[0].keys(), quoting=csv.QUOTE_ALL)
109
- w.writeheader()
110
- w.writerows(train_data)
111
 
112
  return train_data, test_data
113
 
 
100
 
101
  print(f"train size: {len(train_data)}, test size: {len(test_data)}\n")
102
 
103
+ # with open(f"{cat}_test.csv", "w", newline="") as f:
104
+ # w = csv.DictWriter(f, test_data[0].keys(), quoting=csv.QUOTE_ALL)
105
+ # w.writeheader()
106
+ # w.writerows(test_data)
107
+ # with open(f"{cat}_train.csv", "w", newline="") as f:
108
+ # w = csv.DictWriter(f, train_data[0].keys(), quoting=csv.QUOTE_ALL)
109
+ # w.writeheader()
110
+ # w.writerows(train_data)
111
 
112
  return train_data, test_data
113