File size: 7,171 Bytes
d2cbecc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import kornia as K
import torch
from torchgeo.datasets.geo import NonGeoDataset
import os
from collections.abc import Callable, Sequence
from torch import Tensor
import numpy as np
import rasterio
import cv2
from pyproj import Transformer
from datetime import date
from typing import TypeAlias, ClassVar
import pathlib

import logging
import pdb

logging.getLogger("rasterio").setLevel(logging.ERROR)
Path: TypeAlias = str | os.PathLike[str]

class SenBenchAirQualityS5P(NonGeoDataset):
    url = None
    splits = ('train', 'val', 'test')
    split_fnames = {
        'train': 'train.csv',
        'val': 'val.csv',
        'test': 'test.csv',
    }

    def __init__(
        self,
        root: Path = 'data',
        split: str = 'train',
        modality = 'no2', # or 'o3'
        mode = 'annual', # or 'seasonal'
        transforms: Callable[[dict[str, Tensor]], dict[str, Tensor]] | None = None,
        download: bool = False,
    ) -> None:

        self.root = root
        self.transforms = transforms
        self.download = download
        #self.checksum = checksum

        assert split in ['train', 'val', 'test']

        self.modality = modality
        self.mode = mode

        if self.mode == 'annual':
            mode_dir = 's5p_annual'
        elif self.mode == 'seasonal':
            mode_dir = 's5p_seasonal'

        self.img_dir = os.path.join(root, modality, mode_dir)
        self.label_dir = os.path.join(root, modality, 'label_annual')
        
        self.split_csv = os.path.join(self.root, modality, self.split_fnames[split])
        with open(self.split_csv, 'r') as f:
            lines = f.readlines()
            self.pids = []
            for line in lines:
                self.pids.append(line.strip())

        self.reference_date = date(1970, 1, 1)
        self.patch_area = (16*10/1000)**2 # patchsize 16 pix, gsd 10m

    def __len__(self):
        return len(self.pids)

    def __getitem__(self, index):

        images, meta_infos = self._load_image(index)
        #meta_info = np.array([coord[0], coord[1], np.nan, self.patch_area]).astype(np.float32)
        label = self._load_target(index)
        if self.mode == 'annual':
            sample = {'image': images[0], 'groudtruth': label, 'meta': meta_infos[0]}
        elif self.mode == 'seasonal':
            sample = {'image': images, 'groudtruth': label, 'meta': meta_infos}

        #pdb.set_trace()

        if self.transforms is not None:
            sample = self.transforms(sample)

        return sample


    def _load_image(self, index):

        pid = self.pids[index]
        s5p_path = os.path.join(self.img_dir, pid)

        img_fnames = os.listdir(s5p_path)
        s5p_paths = []
        for img_fname in img_fnames:
            s5p_paths.append(os.path.join(s5p_path, img_fname))
        
        imgs = []
        meta_infos = []
        for img_path in s5p_paths:
            with rasterio.open(img_path) as src:
                img = src.read(1)
                img[np.isnan(img)] = 0
                img = cv2.resize(img, (56,56), interpolation=cv2.INTER_CUBIC)
                img = torch.from_numpy(img).float()
                img = img.unsqueeze(0)

                # get lon, lat
                cx,cy = src.xy(src.height // 2, src.width // 2)
                if src.crs.to_string() != 'EPSG:4326':
                    # convert to lon, lat
                    crs_transformer = Transformer.from_crs(src.crs, 'epsg:4326', always_xy=True)
                    lon, lat = crs_transformer.transform(cx,cy)
                else:
                    lon, lat = cx, cy
                # get time
                img_fname = os.path.basename(img_path)
                date_str = img_fname.split('_')[0][:10]
                date_obj = date(int(date_str[:4]), int(date_str[5:7]), int(date_str[8:10]))
                delta = (date_obj - self.reference_date).days
                meta_info = np.array([lon, lat, delta, self.patch_area]).astype(np.float32)
                meta_info = torch.from_numpy(meta_info)

            imgs.append(img)
            meta_infos.append(meta_info)

        if self.mode == 'seasonal':
            # pad to 4 images if less than 4
            while len(imgs) < 4:
                imgs.append(img)
                meta_infos.append(meta_info)

        return imgs, meta_infos

    def _load_target(self, index):

        pid = self.pids[index]
        label_path = os.path.join(self.label_dir, pid+'.tif')

        with rasterio.open(label_path) as src:
            label = src.read(1)
            label = cv2.resize(label, (56,56), interpolation=cv2.INTER_NEAREST) # 0-650
            # label contains -inf
            #pdb.set_trace()
            label[label<-1e10] = np.nan
            label[label>1e10] = np.nan
            label = torch.from_numpy(label.astype('float32'))

        return label



class RegDataAugmentation(torch.nn.Module):
    def __init__(self, split, size):
        super().__init__()

        mean = torch.Tensor([0.0])
        std = torch.Tensor([1.0])

        self.norm = K.augmentation.Normalize(mean=mean, std=std)

        if split == "train":
            self.transform = K.augmentation.AugmentationSequential(
                K.augmentation.Resize(size=size, align_corners=True),
                K.augmentation.RandomRotation(degrees=90, p=0.5, align_corners=True),
                K.augmentation.RandomHorizontalFlip(p=0.5),
                K.augmentation.RandomVerticalFlip(p=0.5),
                data_keys=["input", "input"],
            )
        else:
            self.transform = K.augmentation.AugmentationSequential(
                K.augmentation.Resize(size=size, align_corners=True),
                data_keys=["input", "input"],
            )

    @torch.no_grad()
    def forward(self, batch: dict[str,]):
        """Torchgeo returns a dictionary with 'image' and 'label' keys, but engine expects a tuple"""
        x,mask = batch["image"], batch["groudtruth"]
        x = self.norm(x)
        x_out, mask_out = self.transform(x, mask.unsqueeze(0))
        return x_out.squeeze(0), mask_out.squeeze(0), batch["meta"]


class SenBenchAirQualityS5PDataset:
    def __init__(self, config):
        self.dataset_config = config
        self.img_size = (config.image_resolution, config.image_resolution)
        self.root_dir = config.data_path
        self.modality = config.modality
        self.mode = config.mode

    def create_dataset(self):
        train_transform = RegDataAugmentation(split="train", size=self.img_size)
        eval_transform = RegDataAugmentation(split="test", size=self.img_size)

        dataset_train = SenBenchAirQualityS5P(
            root=self.root_dir, split="train", modality=self.modality, mode=self.mode, transforms=train_transform
        )
        dataset_val = SenBenchAirQualityS5P(
            root=self.root_dir, split="val", modality=self.modality, mode=self.mode, transforms=eval_transform
        )
        dataset_test = SenBenchAirQualityS5P(
            root=self.root_dir, split="test", modality=self.modality, mode=self.mode, transforms=eval_transform
        )

        return dataset_train, dataset_val, dataset_test