File size: 7,533 Bytes
35caaf9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import kornia as K
import torch
from torchgeo.datasets.geo import NonGeoDataset
import os
from collections.abc import Callable, Sequence
from torch import Tensor
import numpy as np
import rasterio
import cv2
from pyproj import Transformer
from datetime import date
from typing import TypeAlias, ClassVar
import pathlib
import logging
logging.getLogger("rasterio").setLevel(logging.ERROR)
Path: TypeAlias = str | os.PathLike[str]
class SenBenchCloudS3(NonGeoDataset):
url = None
#base_dir = 'all_imgs'
splits = ('train', 'val', 'test')
split_filenames = {
'train': 'train.csv',
'val': 'val.csv',
'test': 'test.csv',
}
all_band_names = (
'Oa01_radiance', 'Oa02_radiance', 'Oa03_radiance', 'Oa04_radiance', 'Oa05_radiance', 'Oa06_radiance', 'Oa07_radiance',
'Oa08_radiance', 'Oa09_radiance', 'Oa10_radiance', 'Oa11_radiance', 'Oa12_radiance', 'Oa13_radiance', 'Oa14_radiance',
'Oa15_radiance', 'Oa16_radiance', 'Oa17_radiance', 'Oa18_radiance', 'Oa19_radiance', 'Oa20_radiance', 'Oa21_radiance',
)
all_band_scale = (
0.0139465,0.0133873,0.0121481,0.0115198,0.0100953,0.0123538,0.00879161,
0.00876539,0.0095103,0.00773378,0.00675523,0.0071996,0.00749684,0.0086512,
0.00526779,0.00530267,0.00493004,0.00549962,0.00502847,0.00326378,0.00324118)
rgb_bands = ('Oa08_radiance', 'Oa06_radiance', 'Oa04_radiance')
Cls_index_binary = {
'invalid': 0, # --> 255 should be ignored during training
'clear': 1, # --> 0
'cloud': 2, # --> 1
}
Cls_index_multi = {
'invalid': 0, # --> 255 should be ignored during training
'clear': 1, # --> 0
'cloud-sure': 2, # --> 1
'cloud-ambiguous': 3, # --> 2
'cloud shadow': 4, # --> 3
'snow and ice': 5, # --> 4
}
def __init__(
self,
root: Path = 'data',
split: str = 'train',
bands: Sequence[str] = all_band_names,
mode = 'multi',
transforms: Callable[[dict[str, Tensor]], dict[str, Tensor]] | None = None,
download: bool = False,
) -> None:
self.root = root
self.transforms = transforms
self.download = download
#self.checksum = checksum
assert split in ['train', 'val', 'test']
self.bands = bands
self.band_indices = [(self.all_band_names.index(b)+1) for b in bands if b in self.all_band_names]
self.mode = mode
self.img_dir = os.path.join(self.root, 's3_olci')
self.label_dir = os.path.join(self.root, 'cloud_'+mode)
self.split_csv = os.path.join(self.root, self.split_filenames[split])
self.fnames = []
with open(self.split_csv, 'r') as f:
lines = f.readlines()
for line in lines:
fname = line.strip()
self.fnames.append(fname)
self.reference_date = date(1970, 1, 1)
self.patch_area = (8*300/1000)**2 # patchsize 8 pix, gsd 300m
def __len__(self):
return len(self.fnames)
def __getitem__(self, index):
images, meta_infos = self._load_image(index)
#meta_info = np.array([coord[0], coord[1], np.nan, self.patch_area]).astype(np.float32)
label = self._load_target(index)
sample = {'image': images, 'mask': label, 'meta': meta_infos}
if self.transforms is not None:
sample = self.transforms(sample)
return sample
def _load_image(self, index):
fname = self.fnames[index]
s3_path = os.path.join(self.img_dir, fname)
with rasterio.open(s3_path) as src:
img = src.read()
img[np.isnan(img)] = 0
chs = []
for b in range(21):
ch = img[b]*self.all_band_scale[b]
#ch = cv2.resize(ch, (256,256), interpolation=cv2.INTER_CUBIC)
chs.append(ch)
img = np.stack(chs)
img = torch.from_numpy(img).float()
# get lon, lat
cx,cy = src.xy(src.height // 2, src.width // 2)
if src.crs.to_string() != 'EPSG:4326':
# convert to lon, lat
crs_transformer = Transformer.from_crs(src.crs, 'epsg:4326', always_xy=True)
lon, lat = crs_transformer.transform(cx,cy)
else:
lon, lat = cx, cy
# get time
img_fname = os.path.basename(s3_path)
date_str = img_fname.split('____')[1][:8]
date_obj = date(int(date_str[:4]), int(date_str[4:6]), int(date_str[6:8]))
delta = (date_obj - self.reference_date).days
meta_info = np.array([lon, lat, delta, self.patch_area]).astype(np.float32)
meta_info = torch.from_numpy(meta_info)
return img, meta_info
def _load_target(self, index):
fname = self.fnames[index]
label_path = os.path.join(self.label_dir, fname)
with rasterio.open(label_path) as src:
label = src.read(1)
#label = cv2.resize(label, (256,256), interpolation=cv2.INTER_NEAREST) # 0-650
label[label==0] = 256
label = label - 1
labels = torch.from_numpy(label).long()
return labels
class SegDataAugmentation(torch.nn.Module):
def __init__(self, split, size):
super().__init__()
mean = torch.Tensor([0.0])
std = torch.Tensor([1.0])
self.norm = K.augmentation.Normalize(mean=mean, std=std)
if split == "train":
self.transform = K.augmentation.AugmentationSequential(
K.augmentation.Resize(size=size, align_corners=True),
K.augmentation.RandomRotation(degrees=90, p=0.5, align_corners=True),
K.augmentation.RandomHorizontalFlip(p=0.5),
K.augmentation.RandomVerticalFlip(p=0.5),
data_keys=["input", "mask"],
)
else:
self.transform = K.augmentation.AugmentationSequential(
K.augmentation.Resize(size=size, align_corners=True),
data_keys=["input", "mask"],
)
@torch.no_grad()
def forward(self, batch: dict[str,]):
"""Torchgeo returns a dictionary with 'image' and 'label' keys, but engine expects a tuple"""
x,mask = batch["image"], batch["mask"]
x = self.norm(x)
x_out, mask_out = self.transform(x, mask)
return x_out.squeeze(0), mask_out.squeeze(0).squeeze(0), batch["meta"]
class SenBenchCloudS3Dataset:
def __init__(self, config):
self.dataset_config = config
self.img_size = (config.image_resolution, config.image_resolution)
self.root_dir = config.data_path
self.bands = config.band_names
self.mode = config.mode
def create_dataset(self):
train_transform = SegDataAugmentation(split="train", size=self.img_size)
eval_transform = SegDataAugmentation(split="test", size=self.img_size)
dataset_train = SenBenchCloudS3(
root=self.root_dir, split="train", bands=self.bands, mode=self.mode, transforms=train_transform
)
dataset_val = SenBenchCloudS3(
root=self.root_dir, split="val", bands=self.bands, mode=self.mode, transforms=eval_transform
)
dataset_test = SenBenchCloudS3(
root=self.root_dir, split="test", bands=self.bands, mode=self.mode, transforms=eval_transform
)
return dataset_train, dataset_val, dataset_test |