Copernicus-Bench / cloud_s3olci /old /dataset_cloud_s3olci.py
wangyi111's picture
Rename cloud_s3olci/dataset_cloud_s3olci.py to cloud_s3olci/old/dataset_cloud_s3olci.py
d75efd8 verified
raw
history blame
3.05 kB
import torch
from torch.utils.data import Dataset, DataLoader
import os
import rasterio
import numpy as np
from datetime import date
from pyproj import Transformer
S3_OLCI_SCALE = [0.0139465,0.0133873,0.0121481,0.0115198,0.0100953,0.0123538,0.00879161,0.00876539,
0.0095103,0.00773378,0.00675523,0.0071996,0.00749684,0.0086512,0.00526779,0.00530267,
0.00493004,0.00549962,0.00502847,0.00326378,0.00324118]
Cls_index_binary = {
'invalid': 0,
'clear': 1,
'cloud': 2,
}
Cls_index_multi = {
'invalid': 0,
'clear': 1,
'cloud-sure': 2,
'cloud-ambiguous': 3,
'cloud shadow': 4,
'snow and ice': 5,
}
class S3OLCI_CloudDataset(Dataset):
'''
1596/399 train/test images 256x256
21 bands
nodata: nan
'''
def __init__(self, root_dir, split='train', mode='multi', meta=True):
self.root_dir = root_dir
self.meta = meta
self.img_dir = os.path.join(root_dir, split, 's3_olci')
self.fpaths = os.listdir(self.img_dir)
self.fpaths = [f for f in self.fpaths if f.endswith('.tif')]
if mode == 'multi':
self.cloud_dir = os.path.join(root_dir, split, 'cloud_multi')
elif mode == 'binary':
self.cloud_dir = os.path.join(root_dir, split, 'cloud_binary')
if self.meta:
self.reference_date = date(1970, 1, 1)
def __len__(self):
return len(self.fpaths)
def __getitem__(self, idx):
fpath = self.fpaths[idx]
fpath_img = os.path.join(self.img_dir, fpath)
fpath_cloud = os.path.join(self.cloud_dir, fpath)
with rasterio.open(fpath_img) as src:
img = src.read()
# convert nan pixels to 0
img[np.isnan(img)] = 0
for b in range(21):
img[b] = img[b] * S3_OLCI_SCALE[b]
if self.meta:
cx,cy = src.xy(src.height // 2, src.width // 2)
crs_transformer = Transformer.from_crs(src.crs, 'epsg:4326')
lon, lat = crs_transformer.transform(cx,cy)
img_fname = os.path.basename(fpath_img)
date_str = img_fname.split('____')[1][:8]
date_obj = date(int(date_str[:4]), int(date_str[4:6]), int(date_str[6:8]))
delta = (date_obj - self.reference_date).days
meta_info = np.array([lon, lat, delta, np.nan]).astype(np.float32)
else:
meta_info = np.array([np.nan,np.nan,np.nan,np.nan]).astype(np.float32)
img = torch.from_numpy(img).float()
with rasterio.open(fpath_cloud) as src:
cloud = src.read(1)
cloud = torch.from_numpy(cloud).long()
return img, cloud, meta_info
if __name__ == '__main__':
dataset = S3OLCI_CloudDataset(root_dir='./cloud_s3olci', split='train', mode='multi')
dataloader = DataLoader(dataset, batch_size=2, shuffle=False)
for img, cloud, meta in dataloader:
print(img.shape, cloud.shape, meta.shape)
break