Copernicus-Bench / deprecated /biomass_s3olci /dataset_biomass_s3olci.py
wangyi111's picture
Rename biomass_s3olci/dataset_biomass_s3olci.py to deprecated/biomass_s3olci/dataset_biomass_s3olci.py
e45cef9 verified
from torch.utils.data import DataLoader, Dataset
import cv2
import os
import rasterio
import torch
import numpy as np
from pyproj import Transformer
from datetime import date
S3_OLCI_SCALE = [0.0139465,0.0133873,0.0121481,0.0115198,0.0100953,0.0123538,0.00879161,0.00876539,
0.0095103,0.00773378,0.00675523,0.0071996,0.00749684,0.0086512,0.00526779,0.00530267,
0.00493004,0.00549962,0.00502847,0.00326378,0.00324118]
BIOMASS_MEAN = 93.8317
BIOMASS_STD = 110.5369
class S3OLCI_BiomassDataset(Dataset):
'''
4000/1000 train/test images 94x94x21 (full dataset is 25K)
CCI biomass regression 282x282
nodata: -inf
time series: 1-4 images / location
'''
def __init__(self, root_dir, split='train', mode='static'):
self.root_dir = root_dir
self.split = split
self.mode = mode
self.img_dir = os.path.join(root_dir, split, 's3_olci')
self.biomass_dir = os.path.join(root_dir, split, 'biomass')
self.fnames = os.listdir(self.biomass_dir)
if self.mode == 'static':
self.static_csv = os.path.join(root_dir, split, 'static_fnames.csv')
with open(self.static_csv, 'r') as f:
lines = f.readlines()
self.static_img = {}
for line in lines:
dirname = line.strip().split(',')[0]
img_fname = line.strip().split(',')[1]
self.static_img[dirname] = img_fname
def __len__(self):
return len(self.fnames)
def __getitem__(self, idx):
fname = self.fnames[idx]
biomass_path = os.path.join(self.biomass_dir, fname)
s3_path = os.path.join(self.img_dir, fname.replace('.tif',''))
if self.mode == 'static':
img_fname = self.static_img[fname.replace('.tif','')]
s3_paths = [os.path.join(s3_path, img_fname)]
else:
img_fnames = os.listdir(s3_path)
s3_paths = []
for img_fname in img_fnames:
s3_paths.append(os.path.join(s3_path, img_fname))
imgs = []
img_paths = []
meta_infos = []
for img_path in s3_paths:
with rasterio.open(img_path) as src:
img = src.read()
chs = []
for b in range(21):
#ch = cv2.resize(img[b], (94,94), interpolation=cv2.INTER_CUBIC)
ch = cv2.resize(img[b], (282,282), interpolation=cv2.INTER_CUBIC)
chs.append(ch)
img = np.stack(chs)
img[np.isnan(img)] = 0
for b in range(21):
img[b] = img[b]*S3_OLCI_SCALE[b]
img = torch.from_numpy(img).float()
if self.meta:
cx,cy = src.xy(src.height // 2, src.width // 2)
#crs_transformer = Transformer.from_crs(src.crs, 'epsg:4326')
#lon, lat = crs_transformer.transform(cx,cy)
lon, lat = cx, cy
img_fname = os.path.basename(img_path)
date_str = img_fname.split('_')[1][:8]
date_obj = date(int(date_str[:4]), int(date_str[4:6]), int(date_str[6:8]))
delta = (date_obj - self.reference_date).days
meta_info = np.array([lon, lat, delta, np.nan]).astype(np.float32)
else:
meta_info = np.array([np.nan,np.nan,np.nan,np.nan]).astype(np.float32)
imgs.append(img)
img_paths.append(img_path)
if self.mode == 'series':
# pad to 4 images if less than 4
while len(imgs) < 4:
imgs.append(img)
img_paths.append(img_path)
meta_infos.append(meta_info)
with rasterio.open(biomass_path) as src:
biomass = src.read(1)
biomass = cv2.resize(biomass, (282,282), interpolation=cv2.INTER_CUBIC) # 0-650
biomass = torch.from_numpy(biomass.astype('float32'))
biomass = (biomass - BIOMASS_MEAN) / BIOMASS_STD # 0-center normalized
if self.mode == 'static':
return imgs[0], meta_infos[0], biomass # 94x94x21, 282x282
elif self.mode == 'series':
return imgs[0], imgs[1], imgs[2], imgs[3], meta_infos[0], meta_infos[1], meta_infos[2], meta_infos[3], biomass # 94x94x21, 94x94x21, 94x94x21, 94x94x21, 282x282