|
import kornia.augmentation as K |
|
import torch |
|
from torchgeo.datasets import So2Sat |
|
import os |
|
from collections.abc import Callable, Sequence |
|
from torch import Tensor |
|
import numpy as np |
|
import rasterio |
|
from pyproj import Transformer |
|
import h5py |
|
from typing import TypeAlias, ClassVar |
|
import pathlib |
|
Path: TypeAlias = str | os.PathLike[str] |
|
|
|
class SenBenchSo2Sat(So2Sat): |
|
|
|
versions = ('3_culture_10') |
|
filenames_by_version: ClassVar[dict[str, dict[str, str]]] = { |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
'3_culture_10': { |
|
'train': 'culture_10/train-new.h5', |
|
'val': 'culture_10/val-new.h5', |
|
'test': 'culture_10/test-new.h5', |
|
}, |
|
} |
|
|
|
classes = ( |
|
'Compact high rise', |
|
'Compact mid rise', |
|
'Compact low rise', |
|
'Open high rise', |
|
'Open mid rise', |
|
'Open low rise', |
|
'Lightweight low rise', |
|
'Large low rise', |
|
'Sparsely built', |
|
'Heavy industry', |
|
'Dense trees', |
|
'Scattered trees', |
|
'Bush, scrub', |
|
'Low plants', |
|
'Bare rock or paved', |
|
'Bare soil or sand', |
|
'Water', |
|
) |
|
|
|
all_s1_band_names = ( |
|
'S1_B1', |
|
'S1_B2', |
|
'S1_B3', |
|
'S1_B4', |
|
'S1_B5', |
|
'S1_B6', |
|
'S1_B7', |
|
'S1_B8', |
|
) |
|
all_s2_band_names = ( |
|
'S2_B02', |
|
'S2_B03', |
|
'S2_B04', |
|
'S2_B05', |
|
'S2_B06', |
|
'S2_B07', |
|
'S2_B08', |
|
'S2_B8A', |
|
'S2_B11', |
|
'S2_B12', |
|
) |
|
all_band_names = all_s1_band_names + all_s2_band_names |
|
|
|
rgb_bands = ('S2_B04', 'S2_B03', 'S2_B02') |
|
|
|
BAND_SETS: ClassVar[dict[str, tuple[str, ...]]] = { |
|
'all': all_band_names, |
|
's1': all_s1_band_names, |
|
's2': all_s2_band_names, |
|
'rgb': rgb_bands, |
|
} |
|
|
|
def __init__( |
|
self, |
|
root: Path = 'data', |
|
version: str = '3_culture_10', |
|
split: str = 'train', |
|
bands: Sequence[str] = BAND_SETS['s2'], |
|
transforms: Callable[[dict[str, Tensor]], dict[str, Tensor]] | None = None, |
|
download: bool = False, |
|
) -> None: |
|
|
|
|
|
|
|
assert version in self.versions |
|
assert split in self.filenames_by_version[version] |
|
|
|
self._validate_bands(bands) |
|
self.s1_band_indices: np.typing.NDArray[np.int_] = np.array( |
|
[ |
|
self.all_s1_band_names.index(b) |
|
for b in bands |
|
if b in self.all_s1_band_names |
|
] |
|
).astype(int) |
|
|
|
self.s1_band_names = [self.all_s1_band_names[i] for i in self.s1_band_indices] |
|
|
|
self.s2_band_indices: np.typing.NDArray[np.int_] = np.array( |
|
[ |
|
self.all_s2_band_names.index(b) |
|
for b in bands |
|
if b in self.all_s2_band_names |
|
] |
|
).astype(int) |
|
|
|
self.s2_band_names = [self.all_s2_band_names[i] for i in self.s2_band_indices] |
|
|
|
self.bands = bands |
|
|
|
self.root = root |
|
self.version = version |
|
self.split = split |
|
self.transforms = transforms |
|
|
|
|
|
self.fn = os.path.join(self.root, self.filenames_by_version[version][split]) |
|
|
|
|
|
|
|
|
|
with h5py.File(self.fn, 'r') as f: |
|
self.size: int = f['label'].shape[0] |
|
|
|
self.patch_area = (16*10/1000)**2 |
|
|
|
|
|
def __getitem__(self, index: int) -> dict[str, Tensor]: |
|
"""Return an index within the dataset. |
|
|
|
Args: |
|
index: index to return |
|
|
|
Returns: |
|
data and label at that index |
|
""" |
|
|
|
with h5py.File(self.fn, 'r') as f: |
|
|
|
|
|
s2 = f['sen2'][index].astype(np.float32) |
|
s2 = np.take(s2, indices=self.s2_band_indices, axis=2) |
|
|
|
|
|
label = torch.tensor(f['label'][index].argmax()) |
|
|
|
|
|
s2 = np.rollaxis(s2, 2, 0) |
|
|
|
|
|
s2 = torch.from_numpy(s2) |
|
|
|
meta_info = np.array([np.nan, np.nan, np.nan, self.patch_area]).astype(np.float32) |
|
|
|
sample = {'image': s2, 'label': label, 'meta': torch.from_numpy(meta_info)} |
|
|
|
if self.transforms is not None: |
|
sample = self.transforms(sample) |
|
|
|
return sample |
|
|
|
|
|
class ClsDataAugmentation(torch.nn.Module): |
|
BAND_STATS = { |
|
'mean': { |
|
'B01': 1353.72696296, |
|
'B02': 1117.20222222, |
|
'B03': 1041.8842963, |
|
'B04': 946.554, |
|
'B05': 1199.18896296, |
|
'B06': 2003.00696296, |
|
'B07': 2374.00874074, |
|
'B08': 2301.22014815, |
|
'B8A': 2599.78311111, |
|
'B09': 732.18207407, |
|
'B10': 12.09952894, |
|
'B11': 1820.69659259, |
|
'B12': 1118.20259259, |
|
|
|
|
|
}, |
|
'std': { |
|
'B01': 897.27143653, |
|
'B02': 736.01759721, |
|
'B03': 684.77615743, |
|
'B04': 620.02902871, |
|
'B05': 791.86263829, |
|
'B06': 1341.28018273, |
|
'B07': 1595.39989386, |
|
'B08': 1545.52915718, |
|
'B8A': 1750.12066835, |
|
'B09': 475.11595216, |
|
'B10': 98.26600935, |
|
'B11': 1216.48651476, |
|
'B12': 736.6981037, |
|
|
|
|
|
} |
|
} |
|
|
|
def __init__(self, split, size, bands): |
|
super().__init__() |
|
|
|
mean = [] |
|
std = [] |
|
for band in bands: |
|
band = band[3:] |
|
mean.append(self.BAND_STATS['mean'][band]) |
|
std.append(self.BAND_STATS['std'][band]) |
|
mean = torch.Tensor(mean) |
|
std = torch.Tensor(std) |
|
|
|
if split == "train": |
|
self.transform = torch.nn.Sequential( |
|
K.Normalize(mean=mean, std=std), |
|
K.Resize(size=size, align_corners=True), |
|
K.RandomHorizontalFlip(p=0.5), |
|
K.RandomVerticalFlip(p=0.5), |
|
) |
|
else: |
|
self.transform = torch.nn.Sequential( |
|
K.Normalize(mean=mean, std=std), |
|
K.Resize(size=size, align_corners=True), |
|
) |
|
|
|
@torch.no_grad() |
|
def forward(self, batch: dict[str,]): |
|
"""Torchgeo returns a dictionary with 'image' and 'label' keys, but engine expects a tuple""" |
|
x_out = self.transform(batch["image"]).squeeze(0) |
|
return x_out, batch["label"], batch["meta"] |
|
|
|
|
|
class SenBenchSo2SatDataset: |
|
def __init__(self, config): |
|
self.dataset_config = config |
|
self.img_size = (config.image_resolution, config.image_resolution) |
|
self.root_dir = config.data_path |
|
self.bands = config.band_names |
|
self.version = config.version |
|
|
|
def create_dataset(self): |
|
train_transform = ClsDataAugmentation(split="train", size=self.img_size, bands=self.bands) |
|
eval_transform = ClsDataAugmentation(split="test", size=self.img_size, bands=self.bands) |
|
|
|
dataset_train = SenBenchSo2Sat( |
|
root=self.root_dir, version=self.version, split="train", bands=self.bands, transforms=train_transform |
|
) |
|
dataset_val = SenBenchSo2Sat( |
|
root=self.root_dir, version=self.version, split="val", bands=self.bands, transforms=eval_transform |
|
) |
|
dataset_test = SenBenchSo2Sat( |
|
root=self.root_dir, version=self.version, split="test", bands=self.bands, transforms=eval_transform |
|
) |
|
|
|
return dataset_train, dataset_val, dataset_test |