wangyi111 commited on
Commit
516a1d6
·
verified ·
1 Parent(s): 85837ab

Upload senbench_clouds2_wrapper.py

Browse files
Files changed (1) hide show
  1. cloud_s2/senbench_clouds2_wrapper.py +188 -0
cloud_s2/senbench_clouds2_wrapper.py ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import kornia as K
2
+ import torch
3
+ from torchgeo.datasets.geo import NonGeoDataset
4
+ import os
5
+ from collections.abc import Callable, Sequence
6
+ from torch import Tensor
7
+ import numpy as np
8
+ import rasterio
9
+ import cv2
10
+ from pyproj import Transformer
11
+ from datetime import date
12
+ from typing import TypeAlias, ClassVar
13
+ import pathlib
14
+ from shapely import wkt
15
+ import pandas as pd
16
+ import tacoreader
17
+
18
+ import logging
19
+ import pdb
20
+
21
+ logging.getLogger("rasterio").setLevel(logging.ERROR)
22
+ Path: TypeAlias = str | os.PathLike[str]
23
+
24
+ class SenBenchCloudS2(NonGeoDataset):
25
+ url = None
26
+ #base_dir = 'all_imgs'
27
+ all_band_names = ('B01', 'B02', 'B03', 'B04', 'B05', 'B06', 'B07', 'B08', 'B8A', 'B09', 'B10', 'B11', 'B12')
28
+
29
+ split_filenames = {
30
+ 'train': 'cloudsen12-l1c-train.taco',
31
+ 'val': 'cloudsen12-l1c-val.taco',
32
+ 'test': 'cloudsen12-l1c-test.taco',
33
+ }
34
+
35
+ Cls_index_multi = {
36
+ 'clear': 0,
37
+ 'thick cloud': 1,
38
+ 'thin cloud': 2,
39
+ 'cloud shadow': 3,
40
+ }
41
+
42
+
43
+
44
+ def __init__(
45
+ self,
46
+ root: Path = 'data',
47
+ split: str = 'train',
48
+ bands: Sequence[str] = all_band_names,
49
+ transforms: Callable[[dict[str, Tensor]], dict[str, Tensor]] | None = None,
50
+ download: bool = False,
51
+ ) -> None:
52
+
53
+ self.root = root
54
+ self.transforms = transforms
55
+ self.download = download
56
+ #self.checksum = checksum
57
+
58
+ assert split in ['train', 'val', 'test']
59
+
60
+ self.bands = bands
61
+ self.band_indices = [(self.all_band_names.index(b)+1) for b in bands if b in self.all_band_names]
62
+
63
+ taco_file = os.path.join(root,self.split_filenames[split])
64
+ self.dataset = tacoreader.load(taco_file)
65
+ self.cache = {}
66
+
67
+ # filter corrupted entries
68
+ count = 0
69
+ count_corrupted = 0
70
+ #pdb.set_trace()
71
+ for i in range(len(self.dataset)):
72
+ try:
73
+ sample = self.dataset.read(i)
74
+ s2l1c = sample.read(0) # str
75
+ target = sample.read(1) # str
76
+ coord = sample['stac:centroid'][0] # str
77
+ time_start = sample['stac:time_start'][0] # str
78
+ self.cache[count] = (s2l1c, target, coord, time_start)
79
+ count += 1
80
+ except Exception as e:
81
+ count_corrupted += 1
82
+ self.length = count
83
+ print(split,count,"valid samples.")
84
+
85
+ self.reference_date = date(1970, 1, 1)
86
+ self.patch_area = (16*10/1000)**2 # patchsize 16 pix, gsd 10m
87
+
88
+ def __len__(self):
89
+ return self.length
90
+
91
+ def __getitem__(self, index):
92
+
93
+ #pdb.set_trace()
94
+
95
+ # if index not in self.cache:
96
+ # sample = self.dataset.read(index)
97
+ # s2l1c = sample.read(0) # str
98
+ # target = sample.read(1) # str
99
+ # coord = sample['stac:centroid'][0] # str
100
+ # time_start = sample['stac:time_start'][0] # str
101
+ # self.cache[index] = (s2l1c, target, coord, time_start)
102
+ # else:
103
+ #pdb.set_trace()
104
+ s2l1c, target, coord, time_start = self.cache[index]
105
+
106
+ # Open the files and load data
107
+ with rasterio.open(s2l1c) as src, rasterio.open(target) as dst:
108
+ s2l1c_data = src.read().astype('float32')
109
+ target_data = dst.read(1)
110
+ image = torch.from_numpy(s2l1c_data)
111
+ label = torch.from_numpy(target_data).long()
112
+
113
+ coord = wkt.loads(coord).coords[0]
114
+ date_obj = pd.to_datetime(time_start, unit='s').date()
115
+ delta = (date_obj - self.reference_date).days
116
+ meta_info = np.array([coord[0], coord[1], delta, self.patch_area]).astype(np.float32)
117
+ meta_info = torch.from_numpy(meta_info)
118
+
119
+ sample = {'image': image, 'mask': label, 'meta': meta_info}
120
+
121
+ if self.transforms is not None:
122
+ sample = self.transforms(sample)
123
+
124
+ return sample
125
+
126
+
127
+ class SegDataAugmentation(torch.nn.Module):
128
+ def __init__(self, split, size, band_stats):
129
+ super().__init__()
130
+
131
+ if band_stats is not None:
132
+ mean = band_stats['mean']
133
+ std = band_stats['std']
134
+ else:
135
+ mean = [0.0]
136
+ std = [1.0]
137
+
138
+ mean = torch.Tensor(mean)
139
+ std = torch.Tensor(std)
140
+
141
+ self.norm = K.augmentation.Normalize(mean=mean, std=std)
142
+
143
+ if split == "train":
144
+ self.transform = K.augmentation.AugmentationSequential(
145
+ K.augmentation.Resize(size=size, align_corners=True),
146
+ K.augmentation.RandomRotation(degrees=90, p=0.5, align_corners=True),
147
+ K.augmentation.RandomHorizontalFlip(p=0.5),
148
+ K.augmentation.RandomVerticalFlip(p=0.5),
149
+ data_keys=["input", "mask"],
150
+ )
151
+ else:
152
+ self.transform = K.augmentation.AugmentationSequential(
153
+ K.augmentation.Resize(size=size, align_corners=True),
154
+ data_keys=["input", "mask"],
155
+ )
156
+
157
+ @torch.no_grad()
158
+ def forward(self, batch: dict[str,]):
159
+ """Torchgeo returns a dictionary with 'image' and 'label' keys, but engine expects a tuple"""
160
+ x,mask = batch["image"], batch["mask"]
161
+ x = self.norm(x)
162
+ x_out, mask_out = self.transform(x, mask)
163
+ return x_out.squeeze(0), mask_out.squeeze(0).squeeze(0), batch["meta"]
164
+
165
+
166
+ class SenBenchCloudS2Dataset:
167
+ def __init__(self, config):
168
+ self.dataset_config = config
169
+ self.img_size = (config.image_resolution, config.image_resolution)
170
+ self.root_dir = config.data_path
171
+ self.bands = config.band_names
172
+ self.band_stats = config.band_stats
173
+
174
+ def create_dataset(self):
175
+ train_transform = SegDataAugmentation(split="train", size=self.img_size, band_stats=self.band_stats)
176
+ eval_transform = SegDataAugmentation(split="test", size=self.img_size, band_stats=self.band_stats)
177
+
178
+ dataset_train = SenBenchCloudS2(
179
+ root=self.root_dir, split="train", bands=self.bands, transforms=train_transform
180
+ )
181
+ dataset_val = SenBenchCloudS2(
182
+ root=self.root_dir, split="val", bands=self.bands, transforms=eval_transform
183
+ )
184
+ dataset_test = SenBenchCloudS2(
185
+ root=self.root_dir, split="test", bands=self.bands, transforms=eval_transform
186
+ )
187
+
188
+ return dataset_train, dataset_val, dataset_test