upload cloud_s3olci dataset
Browse files
cloud_s3olci/cloud_s3olci.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ce5697ab3c60e43e92a24968d6dcb1b7080da0a8c9016782e8926a88a4733d8
|
3 |
+
size 6991634480
|
cloud_s3olci/dataset_cloud_s3olci.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.utils.data import Dataset, DataLoader
|
3 |
+
import os
|
4 |
+
import rasterio
|
5 |
+
import numpy as np
|
6 |
+
from datetime import date
|
7 |
+
from pyproj import Transformer
|
8 |
+
|
9 |
+
S3_OLCI_SCALE = [0.0139465,0.0133873,0.0121481,0.0115198,0.0100953,0.0123538,0.00879161,0.00876539,
|
10 |
+
0.0095103,0.00773378,0.00675523,0.0071996,0.00749684,0.0086512,0.00526779,0.00530267,
|
11 |
+
0.00493004,0.00549962,0.00502847,0.00326378,0.00324118]
|
12 |
+
|
13 |
+
Cls_index_binary = {
|
14 |
+
'invalid': 0,
|
15 |
+
'clear': 1,
|
16 |
+
'cloud': 2,
|
17 |
+
}
|
18 |
+
|
19 |
+
Cls_index_multi = {
|
20 |
+
'invalid': 0,
|
21 |
+
'clear': 1,
|
22 |
+
'cloud-sure': 2,
|
23 |
+
'cloud-ambiguous': 3,
|
24 |
+
'cloud shadow': 4,
|
25 |
+
'snow and ice': 5,
|
26 |
+
}
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
class S3OLCI_CloudDataset(Dataset):
|
31 |
+
'''
|
32 |
+
1596/399 train/test images 256x256
|
33 |
+
21 bands
|
34 |
+
nodata: nan
|
35 |
+
|
36 |
+
'''
|
37 |
+
def __init__(self, root_dir, split='train', mode='multi', meta=True):
|
38 |
+
self.root_dir = root_dir
|
39 |
+
self.meta = meta
|
40 |
+
|
41 |
+
self.img_dir = os.path.join(root_dir, split, 's3_olci')
|
42 |
+
self.fpaths = os.listdir(self.img_dir)
|
43 |
+
self.fpaths = [f for f in self.fpaths if f.endswith('.tif')]
|
44 |
+
|
45 |
+
if mode == 'multi':
|
46 |
+
self.cloud_dir = os.path.join(root_dir, split, 'cloud_multi')
|
47 |
+
elif mode == 'binary':
|
48 |
+
self.cloud_dir = os.path.join(root_dir, split, 'cloud_binary')
|
49 |
+
|
50 |
+
if self.meta:
|
51 |
+
self.reference_date = date(1970, 1, 1)
|
52 |
+
|
53 |
+
|
54 |
+
def __len__(self):
|
55 |
+
return len(self.fpaths)
|
56 |
+
|
57 |
+
def __getitem__(self, idx):
|
58 |
+
fpath = self.fpaths[idx]
|
59 |
+
fpath_img = os.path.join(self.img_dir, fpath)
|
60 |
+
fpath_cloud = os.path.join(self.cloud_dir, fpath)
|
61 |
+
|
62 |
+
with rasterio.open(fpath_img) as src:
|
63 |
+
img = src.read()
|
64 |
+
# convert nan pixels to 0
|
65 |
+
img[np.isnan(img)] = 0
|
66 |
+
|
67 |
+
for b in range(21):
|
68 |
+
img[b] = img[b] * S3_OLCI_SCALE[b]
|
69 |
+
|
70 |
+
if self.meta:
|
71 |
+
cx,cy = src.xy(src.height // 2, src.width // 2)
|
72 |
+
crs_transformer = Transformer.from_crs(src.crs, 'epsg:4326')
|
73 |
+
lon, lat = crs_transformer.transform(cx,cy)
|
74 |
+
img_fname = os.path.basename(fpath_img)
|
75 |
+
date_str = img_fname.split('____')[1][:8]
|
76 |
+
date_obj = date(int(date_str[:4]), int(date_str[4:6]), int(date_str[6:8]))
|
77 |
+
delta = (date_obj - self.reference_date).days
|
78 |
+
meta_info = np.array([lon, lat, delta, np.nan]).astype(np.float32)
|
79 |
+
else:
|
80 |
+
meta_info = np.array([np.nan,np.nan,np.nan,np.nan]).astype(np.float32)
|
81 |
+
|
82 |
+
img = torch.from_numpy(img).float()
|
83 |
+
|
84 |
+
with rasterio.open(fpath_cloud) as src:
|
85 |
+
cloud = src.read(1)
|
86 |
+
cloud = torch.from_numpy(cloud).long()
|
87 |
+
|
88 |
+
return img, cloud, meta_info
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
if __name__ == '__main__':
|
93 |
+
dataset = S3OLCI_CloudDataset(root_dir='./cloud_s3olci', split='train', mode='multi')
|
94 |
+
dataloader = DataLoader(dataset, batch_size=2, shuffle=False)
|
95 |
+
for img, cloud, meta in dataloader:
|
96 |
+
print(img.shape, cloud.shape, meta.shape)
|
97 |
+
break
|