wangyi111 commited on
Commit
7f33f41
·
verified ·
1 Parent(s): c28d49f

upload cloud_s3olci dataset

Browse files
cloud_s3olci/cloud_s3olci.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ce5697ab3c60e43e92a24968d6dcb1b7080da0a8c9016782e8926a88a4733d8
3
+ size 6991634480
cloud_s3olci/dataset_cloud_s3olci.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.utils.data import Dataset, DataLoader
3
+ import os
4
+ import rasterio
5
+ import numpy as np
6
+ from datetime import date
7
+ from pyproj import Transformer
8
+
9
+ S3_OLCI_SCALE = [0.0139465,0.0133873,0.0121481,0.0115198,0.0100953,0.0123538,0.00879161,0.00876539,
10
+ 0.0095103,0.00773378,0.00675523,0.0071996,0.00749684,0.0086512,0.00526779,0.00530267,
11
+ 0.00493004,0.00549962,0.00502847,0.00326378,0.00324118]
12
+
13
+ Cls_index_binary = {
14
+ 'invalid': 0,
15
+ 'clear': 1,
16
+ 'cloud': 2,
17
+ }
18
+
19
+ Cls_index_multi = {
20
+ 'invalid': 0,
21
+ 'clear': 1,
22
+ 'cloud-sure': 2,
23
+ 'cloud-ambiguous': 3,
24
+ 'cloud shadow': 4,
25
+ 'snow and ice': 5,
26
+ }
27
+
28
+
29
+
30
+ class S3OLCI_CloudDataset(Dataset):
31
+ '''
32
+ 1596/399 train/test images 256x256
33
+ 21 bands
34
+ nodata: nan
35
+
36
+ '''
37
+ def __init__(self, root_dir, split='train', mode='multi', meta=True):
38
+ self.root_dir = root_dir
39
+ self.meta = meta
40
+
41
+ self.img_dir = os.path.join(root_dir, split, 's3_olci')
42
+ self.fpaths = os.listdir(self.img_dir)
43
+ self.fpaths = [f for f in self.fpaths if f.endswith('.tif')]
44
+
45
+ if mode == 'multi':
46
+ self.cloud_dir = os.path.join(root_dir, split, 'cloud_multi')
47
+ elif mode == 'binary':
48
+ self.cloud_dir = os.path.join(root_dir, split, 'cloud_binary')
49
+
50
+ if self.meta:
51
+ self.reference_date = date(1970, 1, 1)
52
+
53
+
54
+ def __len__(self):
55
+ return len(self.fpaths)
56
+
57
+ def __getitem__(self, idx):
58
+ fpath = self.fpaths[idx]
59
+ fpath_img = os.path.join(self.img_dir, fpath)
60
+ fpath_cloud = os.path.join(self.cloud_dir, fpath)
61
+
62
+ with rasterio.open(fpath_img) as src:
63
+ img = src.read()
64
+ # convert nan pixels to 0
65
+ img[np.isnan(img)] = 0
66
+
67
+ for b in range(21):
68
+ img[b] = img[b] * S3_OLCI_SCALE[b]
69
+
70
+ if self.meta:
71
+ cx,cy = src.xy(src.height // 2, src.width // 2)
72
+ crs_transformer = Transformer.from_crs(src.crs, 'epsg:4326')
73
+ lon, lat = crs_transformer.transform(cx,cy)
74
+ img_fname = os.path.basename(fpath_img)
75
+ date_str = img_fname.split('____')[1][:8]
76
+ date_obj = date(int(date_str[:4]), int(date_str[4:6]), int(date_str[6:8]))
77
+ delta = (date_obj - self.reference_date).days
78
+ meta_info = np.array([lon, lat, delta, np.nan]).astype(np.float32)
79
+ else:
80
+ meta_info = np.array([np.nan,np.nan,np.nan,np.nan]).astype(np.float32)
81
+
82
+ img = torch.from_numpy(img).float()
83
+
84
+ with rasterio.open(fpath_cloud) as src:
85
+ cloud = src.read(1)
86
+ cloud = torch.from_numpy(cloud).long()
87
+
88
+ return img, cloud, meta_info
89
+
90
+
91
+
92
+ if __name__ == '__main__':
93
+ dataset = S3OLCI_CloudDataset(root_dir='./cloud_s3olci', split='train', mode='multi')
94
+ dataloader = DataLoader(dataset, batch_size=2, shuffle=False)
95
+ for img, cloud, meta in dataloader:
96
+ print(img.shape, cloud.shape, meta.shape)
97
+ break