wangyi111 commited on
Commit
870751d
·
verified ·
1 Parent(s): 51f88fb

Upload senbench_so2sat_wrapper.py

Browse files
so2sat_s1s2/senbench_so2sat_wrapper.py CHANGED
@@ -14,7 +14,7 @@ Path: TypeAlias = str | os.PathLike[str]
14
 
15
  class SenBenchSo2Sat(So2Sat):
16
 
17
- versions = ('3_culture_10')
18
  filenames_by_version: ClassVar[dict[str, dict[str, str]]] = {
19
  # '2': {
20
  # 'train': 'training.h5',
@@ -23,11 +23,16 @@ class SenBenchSo2Sat(So2Sat):
23
  # },
24
  # '3_random': {'train': 'random/training.h5', 'test': 'random/testing.h5'},
25
  # '3_block': {'train': 'block/training.h5', 'test': 'block/testing.h5'},
26
- '3_culture_10': {
27
- 'train': 'culture_10/train-new.h5',
28
- 'val': 'culture_10/val-new.h5',
29
- 'test': 'culture_10/test-new.h5',
30
- },
 
 
 
 
 
31
  }
32
 
33
  classes = (
@@ -86,7 +91,7 @@ class SenBenchSo2Sat(So2Sat):
86
  def __init__(
87
  self,
88
  root: Path = 'data',
89
- version: str = '3_culture_10', # only supported version now
90
  split: str = 'train',
91
  bands: Sequence[str] = BAND_SETS['s2'], # only supported bands now
92
  transforms: Callable[[dict[str, Tensor]], dict[str, Tensor]] | None = None,
@@ -174,52 +179,17 @@ class SenBenchSo2Sat(So2Sat):
174
 
175
 
176
  class ClsDataAugmentation(torch.nn.Module):
177
- BAND_STATS = {
178
- 'mean': {
179
- 'B01': 1353.72696296,
180
- 'B02': 1117.20222222,
181
- 'B03': 1041.8842963,
182
- 'B04': 946.554,
183
- 'B05': 1199.18896296,
184
- 'B06': 2003.00696296,
185
- 'B07': 2374.00874074,
186
- 'B08': 2301.22014815,
187
- 'B8A': 2599.78311111,
188
- 'B09': 732.18207407,
189
- 'B10': 12.09952894,
190
- 'B11': 1820.69659259,
191
- 'B12': 1118.20259259,
192
- #'VV': -12.54847273,
193
- #'VH': -20.19237134
194
- },
195
- 'std': {
196
- 'B01': 897.27143653,
197
- 'B02': 736.01759721,
198
- 'B03': 684.77615743,
199
- 'B04': 620.02902871,
200
- 'B05': 791.86263829,
201
- 'B06': 1341.28018273,
202
- 'B07': 1595.39989386,
203
- 'B08': 1545.52915718,
204
- 'B8A': 1750.12066835,
205
- 'B09': 475.11595216,
206
- 'B10': 98.26600935,
207
- 'B11': 1216.48651476,
208
- 'B12': 736.6981037,
209
- #'VV': 5.25697717,
210
- #'VH': 5.91150917
211
- }
212
- }
213
 
214
- def __init__(self, split, size, bands):
215
  super().__init__()
216
 
217
- mean = []
218
- std = []
219
- for band in bands:
220
- band = band[3:]
221
- mean.append(self.BAND_STATS['mean'][band])
222
- std.append(self.BAND_STATS['std'][band])
 
223
  mean = torch.Tensor(mean)
224
  std = torch.Tensor(std)
225
 
@@ -227,6 +197,7 @@ class ClsDataAugmentation(torch.nn.Module):
227
  self.transform = torch.nn.Sequential(
228
  K.Normalize(mean=mean, std=std),
229
  K.Resize(size=size, align_corners=True),
 
230
  K.RandomHorizontalFlip(p=0.5),
231
  K.RandomVerticalFlip(p=0.5),
232
  )
@@ -250,10 +221,11 @@ class SenBenchSo2SatDataset:
250
  self.root_dir = config.data_path
251
  self.bands = config.band_names
252
  self.version = config.version
 
253
 
254
  def create_dataset(self):
255
- train_transform = ClsDataAugmentation(split="train", size=self.img_size, bands=self.bands)
256
- eval_transform = ClsDataAugmentation(split="test", size=self.img_size, bands=self.bands)
257
 
258
  dataset_train = SenBenchSo2Sat(
259
  root=self.root_dir, version=self.version, split="train", bands=self.bands, transforms=train_transform
 
14
 
15
  class SenBenchSo2Sat(So2Sat):
16
 
17
+ versions = ('4_senbench')
18
  filenames_by_version: ClassVar[dict[str, dict[str, str]]] = {
19
  # '2': {
20
  # 'train': 'training.h5',
 
23
  # },
24
  # '3_random': {'train': 'random/training.h5', 'test': 'random/testing.h5'},
25
  # '3_block': {'train': 'block/training.h5', 'test': 'block/testing.h5'},
26
+ # '3_culture_10': {
27
+ # 'train': 'culture_10/train-new.h5',
28
+ # 'val': 'culture_10/val-new.h5',
29
+ # 'test': 'culture_10/test-new.h5',
30
+ # },
31
+ '4_senbench': {
32
+ 'train': 'train-new.h5',
33
+ 'val': 'val-new.h5',
34
+ 'test': 'test-new.h5'
35
+ }
36
  }
37
 
38
  classes = (
 
91
  def __init__(
92
  self,
93
  root: Path = 'data',
94
+ version: str = '4_senbench', # only supported version now
95
  split: str = 'train',
96
  bands: Sequence[str] = BAND_SETS['s2'], # only supported bands now
97
  transforms: Callable[[dict[str, Tensor]], dict[str, Tensor]] | None = None,
 
179
 
180
 
181
  class ClsDataAugmentation(torch.nn.Module):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
182
 
183
+ def __init__(self, split, size, band_stats):
184
  super().__init__()
185
 
186
+ if band_stats is not None:
187
+ mean = band_stats['mean']
188
+ std = band_stats['std']
189
+ else:
190
+ mean = [0.0]
191
+ std = [1.0]
192
+
193
  mean = torch.Tensor(mean)
194
  std = torch.Tensor(std)
195
 
 
197
  self.transform = torch.nn.Sequential(
198
  K.Normalize(mean=mean, std=std),
199
  K.Resize(size=size, align_corners=True),
200
+ #K.RandomResizedCrop(size=size, scale=(0.8,1.0)),
201
  K.RandomHorizontalFlip(p=0.5),
202
  K.RandomVerticalFlip(p=0.5),
203
  )
 
221
  self.root_dir = config.data_path
222
  self.bands = config.band_names
223
  self.version = config.version
224
+ self.band_stats = config.band_stats
225
 
226
  def create_dataset(self):
227
+ train_transform = ClsDataAugmentation(split="train", size=self.img_size, band_stats=self.band_stats)
228
+ eval_transform = ClsDataAugmentation(split="test", size=self.img_size, band_stats=self.band_stats)
229
 
230
  dataset_train = SenBenchSo2Sat(
231
  root=self.root_dir, version=self.version, split="train", bands=self.bands, transforms=train_transform