Delete l2_bigearthnet_s1s2/cobench_bigearthnets12_wrapper_csv.py
Browse files
l2_bigearthnet_s1s2/cobench_bigearthnets12_wrapper_csv.py
DELETED
@@ -1,329 +0,0 @@
|
|
1 |
-
import glob
|
2 |
-
import os
|
3 |
-
from typing import Callable, Optional
|
4 |
-
from collections.abc import Sequence
|
5 |
-
|
6 |
-
import kornia.augmentation as K
|
7 |
-
import pandas as pd
|
8 |
-
import rasterio
|
9 |
-
import torch
|
10 |
-
from torch import Generator, Tensor
|
11 |
-
from torch.utils.data import random_split
|
12 |
-
from torchgeo.datasets import BigEarthNet
|
13 |
-
#from torchgeo.datasets.geo import NonGeoDataset
|
14 |
-
|
15 |
-
from pyproj import Transformer
|
16 |
-
from datetime import date
|
17 |
-
import numpy as np
|
18 |
-
import pdb
|
19 |
-
import ast
|
20 |
-
|
21 |
-
|
22 |
-
class CoBenchBigEarthNetS12(BigEarthNet):
|
23 |
-
#url = ''
|
24 |
-
splits = ('train', 'val', 'test')
|
25 |
-
label_filenames = {
|
26 |
-
'train': 'multilabel-train.csv',
|
27 |
-
'val': 'multilabel-val.csv',
|
28 |
-
'test': 'multilabel-test.csv',
|
29 |
-
}
|
30 |
-
image_size = (120, 120)
|
31 |
-
all_band_names_s1 = ('VV','VH')
|
32 |
-
all_band_names_s2 = ('B01', 'B02', 'B03', 'B04', 'B05', 'B06', 'B07', 'B08', 'B8A', 'B09', 'B11', 'B12')
|
33 |
-
|
34 |
-
def __init__(
|
35 |
-
self,
|
36 |
-
root: str = "data",
|
37 |
-
split: str = "train",
|
38 |
-
bands: str = "all",
|
39 |
-
band_names: Sequence[str] = ('B01', 'B02', 'B03', 'B04', 'B05', 'B06', 'B07', 'B08', 'B8A', 'B09', 'B11', 'B12'),
|
40 |
-
num_classes: int = 19,
|
41 |
-
transforms: Optional[Callable[[dict[str, Tensor]], dict[str, Tensor]]] = None,
|
42 |
-
download: bool = False,
|
43 |
-
checksum: bool = False,
|
44 |
-
) -> None:
|
45 |
-
|
46 |
-
assert split in self.splits
|
47 |
-
assert bands in ['s1', 's2']
|
48 |
-
assert num_classes in [43, 19]
|
49 |
-
self.root = root
|
50 |
-
self.split = split
|
51 |
-
self.bands = bands
|
52 |
-
self.num_classes = num_classes
|
53 |
-
self.transforms = transforms
|
54 |
-
|
55 |
-
|
56 |
-
self.band_names = band_names
|
57 |
-
if self.bands == 's1':
|
58 |
-
self.all_band_names = self.all_band_names_s1
|
59 |
-
else:
|
60 |
-
self.all_band_names = self.all_band_names_s2
|
61 |
-
self.band_indices = [(self.all_band_names.index(b)+1) for b in band_names if b in self.all_band_names]
|
62 |
-
|
63 |
-
self.class2idx_43 = {c: i for i, c in enumerate(self.class_sets[43])}
|
64 |
-
self.class2idx_19 = {c: i for i, c in enumerate(self.class_sets[19])}
|
65 |
-
#self._verify()
|
66 |
-
|
67 |
-
#self.folders = self._load_folders()
|
68 |
-
self.img_paths = []
|
69 |
-
self.labels = []
|
70 |
-
self.csv = pd.read_csv(os.path.join(self.root,self.label_filenames[self.split]))
|
71 |
-
for i, row in self.csv.iterrows():
|
72 |
-
if self.bands == 's1':
|
73 |
-
s1_path = os.path.join(self.root, row['s1_path'])
|
74 |
-
self.img_paths.append(s1_path)
|
75 |
-
elif self.bands == 's2':
|
76 |
-
s2_path = os.path.join(self.root, row['s2_path'])
|
77 |
-
self.img_paths.append(s2_path)
|
78 |
-
labels = row['labels']
|
79 |
-
labels_list = ast.literal_eval(labels)
|
80 |
-
self.labels.append(labels_list)
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
self.patch_area = (16*10/1000)**2
|
85 |
-
self.reference_date = date(1970, 1, 1)
|
86 |
-
|
87 |
-
def __len__(self):
|
88 |
-
return len(self.img_paths)
|
89 |
-
|
90 |
-
def get_class2idx(self, label: str, level=19):
|
91 |
-
assert level == 19 or level == 43, "level must be 19 or 43"
|
92 |
-
return self.class2idx_19[label] if level == 19 else self.class2idx_43[label]
|
93 |
-
|
94 |
-
def _load_target(self, index: int) -> Tensor:
|
95 |
-
image_labels = self.labels[index]
|
96 |
-
|
97 |
-
# labels -> indices
|
98 |
-
indices = [
|
99 |
-
self.get_class2idx(label, level=self.num_classes) for label in image_labels
|
100 |
-
]
|
101 |
-
|
102 |
-
image_target = torch.zeros(self.num_classes, dtype=torch.long)
|
103 |
-
image_target[indices] = 1
|
104 |
-
|
105 |
-
return image_target
|
106 |
-
|
107 |
-
def _load_image(self, index: int) -> Tensor:
|
108 |
-
path = self.img_paths[index]
|
109 |
-
# Bands are of different spatial resolutions
|
110 |
-
# Resample to (120, 120)
|
111 |
-
with rasterio.open(path) as src:
|
112 |
-
array = src.read(
|
113 |
-
self.band_indices,
|
114 |
-
).astype('float32')
|
115 |
-
|
116 |
-
cx,cy = src.xy(src.height // 2, src.width // 2)
|
117 |
-
if src.crs.to_string() != 'EPSG:4326':
|
118 |
-
crs_transformer = Transformer.from_crs(src.crs, 'epsg:4326', always_xy=True)
|
119 |
-
lon, lat = crs_transformer.transform(cx,cy)
|
120 |
-
else:
|
121 |
-
lon, lat = cx, cy
|
122 |
-
|
123 |
-
if self.bands == 's1':
|
124 |
-
date_str = path.split('/')[-1].split('_')[4]
|
125 |
-
else:
|
126 |
-
date_str = path.split('/')[-1].split('_')[2]
|
127 |
-
date_obj = date(int(date_str[:4]), int(date_str[4:6]), int(date_str[6:8]))
|
128 |
-
delta = (date_obj - self.reference_date).days
|
129 |
-
|
130 |
-
tensor = torch.from_numpy(array).float()
|
131 |
-
return tensor, (lon,lat), delta
|
132 |
-
|
133 |
-
def __getitem__(self, index: int) -> dict[str, Tensor]:
|
134 |
-
|
135 |
-
image, coord, delta = self._load_image(index)
|
136 |
-
meta_info = np.array([coord[0], coord[1], delta, self.patch_area]).astype(np.float32)
|
137 |
-
label = self._load_target(index)
|
138 |
-
sample: dict[str, Tensor] = {'image': image, 'label': label, 'meta':meta_info}
|
139 |
-
|
140 |
-
if self.transforms is not None:
|
141 |
-
sample = self.transforms(sample)
|
142 |
-
|
143 |
-
return sample
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
class ClsDataAugmentation(torch.nn.Module):
|
148 |
-
|
149 |
-
def __init__(self, split, size, bands, band_stats):
|
150 |
-
super().__init__()
|
151 |
-
|
152 |
-
self.bands = bands
|
153 |
-
|
154 |
-
if band_stats is not None:
|
155 |
-
mean = band_stats['mean']
|
156 |
-
std = band_stats['std']
|
157 |
-
else:
|
158 |
-
mean = [0.0]
|
159 |
-
std = [1.0]
|
160 |
-
|
161 |
-
mean = torch.Tensor(mean)
|
162 |
-
std = torch.Tensor(std)
|
163 |
-
|
164 |
-
if split == "train":
|
165 |
-
self.transform = torch.nn.Sequential(
|
166 |
-
K.Normalize(mean=mean, std=std),
|
167 |
-
K.Resize(size=size, align_corners=True),
|
168 |
-
K.RandomHorizontalFlip(p=0.5),
|
169 |
-
K.RandomVerticalFlip(p=0.5),
|
170 |
-
)
|
171 |
-
else:
|
172 |
-
self.transform = torch.nn.Sequential(
|
173 |
-
K.Normalize(mean=mean, std=std),
|
174 |
-
K.Resize(size=size, align_corners=True),
|
175 |
-
)
|
176 |
-
|
177 |
-
@torch.no_grad()
|
178 |
-
def forward(self, sample: dict[str,]):
|
179 |
-
"""Torchgeo returns a dictionary with 'image' and 'label' keys, but engine expects a tuple."""
|
180 |
-
if self.bands == "rgb":
|
181 |
-
sample["image"] = sample["image"][1:4, ...].flip(dims=(0,))
|
182 |
-
# get in rgb order and then normalization can be applied
|
183 |
-
x_out = self.transform(sample["image"]).squeeze(0)
|
184 |
-
return x_out, sample["label"], sample["meta"]
|
185 |
-
|
186 |
-
|
187 |
-
class ClsDataAugmentationSoftCon(torch.nn.Module):
|
188 |
-
|
189 |
-
def __init__(self, split, size, bands, band_stats):
|
190 |
-
super().__init__()
|
191 |
-
|
192 |
-
self.bands = bands
|
193 |
-
|
194 |
-
if band_stats is not None:
|
195 |
-
self.mean = band_stats['mean']
|
196 |
-
self.std = band_stats['std']
|
197 |
-
else:
|
198 |
-
self.mean = [0.0]
|
199 |
-
self.std = [1.0]
|
200 |
-
|
201 |
-
# mean = torch.Tensor(mean)
|
202 |
-
# std = torch.Tensor(std)
|
203 |
-
|
204 |
-
if split == "train":
|
205 |
-
self.transform = torch.nn.Sequential(
|
206 |
-
#K.Normalize(mean=mean, std=std),
|
207 |
-
K.Resize(size=size, align_corners=True),
|
208 |
-
K.RandomHorizontalFlip(p=0.5),
|
209 |
-
K.RandomVerticalFlip(p=0.5),
|
210 |
-
)
|
211 |
-
else:
|
212 |
-
self.transform = torch.nn.Sequential(
|
213 |
-
#K.Normalize(mean=mean, std=std),
|
214 |
-
K.Resize(size=size, align_corners=True),
|
215 |
-
)
|
216 |
-
|
217 |
-
@torch.no_grad()
|
218 |
-
def forward(self, sample: dict[str,]):
|
219 |
-
"""Torchgeo returns a dictionary with 'image' and 'label' keys, but engine expects a tuple."""
|
220 |
-
if self.bands == 's1':
|
221 |
-
sample_img = sample["image"]
|
222 |
-
### normalize s1
|
223 |
-
self.max_q = torch.quantile(sample_img.reshape(2,-1),0.99,dim=1)
|
224 |
-
self.min_q = torch.quantile(sample_img.reshape(2,-1),0.01,dim=1)
|
225 |
-
img_bands = []
|
226 |
-
for b in range(2):
|
227 |
-
img = sample_img[b,:,:].clone()
|
228 |
-
## outlier
|
229 |
-
max_q = self.max_q[b]
|
230 |
-
min_q = self.min_q[b]
|
231 |
-
img = torch.clamp(img, min_q, max_q)
|
232 |
-
## normalize
|
233 |
-
img = self.normalize(img,self.mean[b],self.std[b])
|
234 |
-
img_bands.append(img)
|
235 |
-
sample_img = torch.stack(img_bands,dim=0) # VV,VH (w,h,c)
|
236 |
-
elif self.bands == 's2':
|
237 |
-
sample_img = sample["image"]
|
238 |
-
img_bands = []
|
239 |
-
for b in range(12):
|
240 |
-
img = sample_img[b,:,:].clone()
|
241 |
-
## normalize
|
242 |
-
img = self.normalize(img,self.mean[b],self.std[b])
|
243 |
-
img_bands.append(img)
|
244 |
-
if b==9:
|
245 |
-
# pad zero to B10
|
246 |
-
img_bands.append(torch.zeros_like(img))
|
247 |
-
sample_img = torch.stack(img_bands,dim=0)
|
248 |
-
|
249 |
-
x_out = self.transform(sample_img).squeeze(0)
|
250 |
-
return x_out, sample["label"], sample["meta"]
|
251 |
-
|
252 |
-
@torch.no_grad()
|
253 |
-
def normalize(self, img, mean, std):
|
254 |
-
min_value = mean - 2 * std
|
255 |
-
max_value = mean + 2 * std
|
256 |
-
img = (img - min_value) / (max_value - min_value)
|
257 |
-
img = torch.clamp(img, 0, 1)
|
258 |
-
return img
|
259 |
-
|
260 |
-
|
261 |
-
class CoBenchBigEarthNetS12Dataset:
|
262 |
-
def __init__(self, config):
|
263 |
-
self.dataset_config = config
|
264 |
-
self.img_size = (config.image_resolution, config.image_resolution)
|
265 |
-
self.root_dir = config.data_path
|
266 |
-
self.bands = config.modality
|
267 |
-
self.band_names = config.band_names
|
268 |
-
self.num_classes = config.num_classes
|
269 |
-
self.band_stats = config.band_stats
|
270 |
-
self.norm_form = config.norm_form if 'norm_form' in config else None
|
271 |
-
|
272 |
-
if self.bands == "rgb":
|
273 |
-
# start with rgb and extract later
|
274 |
-
self.input_bands = "s2"
|
275 |
-
else:
|
276 |
-
self.input_bands = self.bands
|
277 |
-
|
278 |
-
def create_dataset(self):
|
279 |
-
|
280 |
-
if self.norm_form == 'softcon':
|
281 |
-
train_transform = ClsDataAugmentationSoftCon(
|
282 |
-
split="train", size=self.img_size, bands=self.bands, band_stats=self.band_stats
|
283 |
-
)
|
284 |
-
eval_transform = ClsDataAugmentationSoftCon(
|
285 |
-
split="test", size=self.img_size, bands=self.bands, band_stats=self.band_stats
|
286 |
-
)
|
287 |
-
else:
|
288 |
-
train_transform = ClsDataAugmentation(
|
289 |
-
split="train", size=self.img_size, bands=self.bands, band_stats=self.band_stats
|
290 |
-
)
|
291 |
-
eval_transform = ClsDataAugmentation(
|
292 |
-
split="test", size=self.img_size, bands=self.bands, band_stats=self.band_stats
|
293 |
-
)
|
294 |
-
|
295 |
-
dataset_train = CoBenchBigEarthNetS12(
|
296 |
-
root=self.root_dir,
|
297 |
-
num_classes=self.num_classes,
|
298 |
-
split="train",
|
299 |
-
bands=self.input_bands,
|
300 |
-
band_names=self.band_names,
|
301 |
-
transforms=train_transform,
|
302 |
-
)
|
303 |
-
|
304 |
-
# num_subset_samples = int(0.1 * len(dataset_train))
|
305 |
-
# # Split the dataset into the subset and the remaining part
|
306 |
-
# subset_train, _ = random_split(
|
307 |
-
# dataset_train,
|
308 |
-
# [num_subset_samples, len(dataset_train) - num_subset_samples],
|
309 |
-
# generator=Generator().manual_seed(42),
|
310 |
-
# )
|
311 |
-
|
312 |
-
dataset_val = CoBenchBigEarthNetS12(
|
313 |
-
root=self.root_dir,
|
314 |
-
num_classes=self.num_classes,
|
315 |
-
split="validation",
|
316 |
-
bands=self.input_bands,
|
317 |
-
band_names=self.band_names,
|
318 |
-
transforms=eval_transform,
|
319 |
-
)
|
320 |
-
dataset_test = CoBenchBigEarthNetS12(
|
321 |
-
root=self.root_dir,
|
322 |
-
num_classes=self.num_classes,
|
323 |
-
split="test",
|
324 |
-
bands=self.input_bands,
|
325 |
-
band_names=self.band_names,
|
326 |
-
transforms=eval_transform,
|
327 |
-
)
|
328 |
-
|
329 |
-
return dataset_train, dataset_val, dataset_test
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|