wangyi111 commited on
Commit
8c29425
·
verified ·
1 Parent(s): 43a00ab

Delete l2_bigearthnet_s1s2/cobench_bigearthnets12_wrapper_csv.py

Browse files
l2_bigearthnet_s1s2/cobench_bigearthnets12_wrapper_csv.py DELETED
@@ -1,329 +0,0 @@
1
- import glob
2
- import os
3
- from typing import Callable, Optional
4
- from collections.abc import Sequence
5
-
6
- import kornia.augmentation as K
7
- import pandas as pd
8
- import rasterio
9
- import torch
10
- from torch import Generator, Tensor
11
- from torch.utils.data import random_split
12
- from torchgeo.datasets import BigEarthNet
13
- #from torchgeo.datasets.geo import NonGeoDataset
14
-
15
- from pyproj import Transformer
16
- from datetime import date
17
- import numpy as np
18
- import pdb
19
- import ast
20
-
21
-
22
- class CoBenchBigEarthNetS12(BigEarthNet):
23
- #url = ''
24
- splits = ('train', 'val', 'test')
25
- label_filenames = {
26
- 'train': 'multilabel-train.csv',
27
- 'val': 'multilabel-val.csv',
28
- 'test': 'multilabel-test.csv',
29
- }
30
- image_size = (120, 120)
31
- all_band_names_s1 = ('VV','VH')
32
- all_band_names_s2 = ('B01', 'B02', 'B03', 'B04', 'B05', 'B06', 'B07', 'B08', 'B8A', 'B09', 'B11', 'B12')
33
-
34
- def __init__(
35
- self,
36
- root: str = "data",
37
- split: str = "train",
38
- bands: str = "all",
39
- band_names: Sequence[str] = ('B01', 'B02', 'B03', 'B04', 'B05', 'B06', 'B07', 'B08', 'B8A', 'B09', 'B11', 'B12'),
40
- num_classes: int = 19,
41
- transforms: Optional[Callable[[dict[str, Tensor]], dict[str, Tensor]]] = None,
42
- download: bool = False,
43
- checksum: bool = False,
44
- ) -> None:
45
-
46
- assert split in self.splits
47
- assert bands in ['s1', 's2']
48
- assert num_classes in [43, 19]
49
- self.root = root
50
- self.split = split
51
- self.bands = bands
52
- self.num_classes = num_classes
53
- self.transforms = transforms
54
-
55
-
56
- self.band_names = band_names
57
- if self.bands == 's1':
58
- self.all_band_names = self.all_band_names_s1
59
- else:
60
- self.all_band_names = self.all_band_names_s2
61
- self.band_indices = [(self.all_band_names.index(b)+1) for b in band_names if b in self.all_band_names]
62
-
63
- self.class2idx_43 = {c: i for i, c in enumerate(self.class_sets[43])}
64
- self.class2idx_19 = {c: i for i, c in enumerate(self.class_sets[19])}
65
- #self._verify()
66
-
67
- #self.folders = self._load_folders()
68
- self.img_paths = []
69
- self.labels = []
70
- self.csv = pd.read_csv(os.path.join(self.root,self.label_filenames[self.split]))
71
- for i, row in self.csv.iterrows():
72
- if self.bands == 's1':
73
- s1_path = os.path.join(self.root, row['s1_path'])
74
- self.img_paths.append(s1_path)
75
- elif self.bands == 's2':
76
- s2_path = os.path.join(self.root, row['s2_path'])
77
- self.img_paths.append(s2_path)
78
- labels = row['labels']
79
- labels_list = ast.literal_eval(labels)
80
- self.labels.append(labels_list)
81
-
82
-
83
-
84
- self.patch_area = (16*10/1000)**2
85
- self.reference_date = date(1970, 1, 1)
86
-
87
- def __len__(self):
88
- return len(self.img_paths)
89
-
90
- def get_class2idx(self, label: str, level=19):
91
- assert level == 19 or level == 43, "level must be 19 or 43"
92
- return self.class2idx_19[label] if level == 19 else self.class2idx_43[label]
93
-
94
- def _load_target(self, index: int) -> Tensor:
95
- image_labels = self.labels[index]
96
-
97
- # labels -> indices
98
- indices = [
99
- self.get_class2idx(label, level=self.num_classes) for label in image_labels
100
- ]
101
-
102
- image_target = torch.zeros(self.num_classes, dtype=torch.long)
103
- image_target[indices] = 1
104
-
105
- return image_target
106
-
107
- def _load_image(self, index: int) -> Tensor:
108
- path = self.img_paths[index]
109
- # Bands are of different spatial resolutions
110
- # Resample to (120, 120)
111
- with rasterio.open(path) as src:
112
- array = src.read(
113
- self.band_indices,
114
- ).astype('float32')
115
-
116
- cx,cy = src.xy(src.height // 2, src.width // 2)
117
- if src.crs.to_string() != 'EPSG:4326':
118
- crs_transformer = Transformer.from_crs(src.crs, 'epsg:4326', always_xy=True)
119
- lon, lat = crs_transformer.transform(cx,cy)
120
- else:
121
- lon, lat = cx, cy
122
-
123
- if self.bands == 's1':
124
- date_str = path.split('/')[-1].split('_')[4]
125
- else:
126
- date_str = path.split('/')[-1].split('_')[2]
127
- date_obj = date(int(date_str[:4]), int(date_str[4:6]), int(date_str[6:8]))
128
- delta = (date_obj - self.reference_date).days
129
-
130
- tensor = torch.from_numpy(array).float()
131
- return tensor, (lon,lat), delta
132
-
133
- def __getitem__(self, index: int) -> dict[str, Tensor]:
134
-
135
- image, coord, delta = self._load_image(index)
136
- meta_info = np.array([coord[0], coord[1], delta, self.patch_area]).astype(np.float32)
137
- label = self._load_target(index)
138
- sample: dict[str, Tensor] = {'image': image, 'label': label, 'meta':meta_info}
139
-
140
- if self.transforms is not None:
141
- sample = self.transforms(sample)
142
-
143
- return sample
144
-
145
-
146
-
147
- class ClsDataAugmentation(torch.nn.Module):
148
-
149
- def __init__(self, split, size, bands, band_stats):
150
- super().__init__()
151
-
152
- self.bands = bands
153
-
154
- if band_stats is not None:
155
- mean = band_stats['mean']
156
- std = band_stats['std']
157
- else:
158
- mean = [0.0]
159
- std = [1.0]
160
-
161
- mean = torch.Tensor(mean)
162
- std = torch.Tensor(std)
163
-
164
- if split == "train":
165
- self.transform = torch.nn.Sequential(
166
- K.Normalize(mean=mean, std=std),
167
- K.Resize(size=size, align_corners=True),
168
- K.RandomHorizontalFlip(p=0.5),
169
- K.RandomVerticalFlip(p=0.5),
170
- )
171
- else:
172
- self.transform = torch.nn.Sequential(
173
- K.Normalize(mean=mean, std=std),
174
- K.Resize(size=size, align_corners=True),
175
- )
176
-
177
- @torch.no_grad()
178
- def forward(self, sample: dict[str,]):
179
- """Torchgeo returns a dictionary with 'image' and 'label' keys, but engine expects a tuple."""
180
- if self.bands == "rgb":
181
- sample["image"] = sample["image"][1:4, ...].flip(dims=(0,))
182
- # get in rgb order and then normalization can be applied
183
- x_out = self.transform(sample["image"]).squeeze(0)
184
- return x_out, sample["label"], sample["meta"]
185
-
186
-
187
- class ClsDataAugmentationSoftCon(torch.nn.Module):
188
-
189
- def __init__(self, split, size, bands, band_stats):
190
- super().__init__()
191
-
192
- self.bands = bands
193
-
194
- if band_stats is not None:
195
- self.mean = band_stats['mean']
196
- self.std = band_stats['std']
197
- else:
198
- self.mean = [0.0]
199
- self.std = [1.0]
200
-
201
- # mean = torch.Tensor(mean)
202
- # std = torch.Tensor(std)
203
-
204
- if split == "train":
205
- self.transform = torch.nn.Sequential(
206
- #K.Normalize(mean=mean, std=std),
207
- K.Resize(size=size, align_corners=True),
208
- K.RandomHorizontalFlip(p=0.5),
209
- K.RandomVerticalFlip(p=0.5),
210
- )
211
- else:
212
- self.transform = torch.nn.Sequential(
213
- #K.Normalize(mean=mean, std=std),
214
- K.Resize(size=size, align_corners=True),
215
- )
216
-
217
- @torch.no_grad()
218
- def forward(self, sample: dict[str,]):
219
- """Torchgeo returns a dictionary with 'image' and 'label' keys, but engine expects a tuple."""
220
- if self.bands == 's1':
221
- sample_img = sample["image"]
222
- ### normalize s1
223
- self.max_q = torch.quantile(sample_img.reshape(2,-1),0.99,dim=1)
224
- self.min_q = torch.quantile(sample_img.reshape(2,-1),0.01,dim=1)
225
- img_bands = []
226
- for b in range(2):
227
- img = sample_img[b,:,:].clone()
228
- ## outlier
229
- max_q = self.max_q[b]
230
- min_q = self.min_q[b]
231
- img = torch.clamp(img, min_q, max_q)
232
- ## normalize
233
- img = self.normalize(img,self.mean[b],self.std[b])
234
- img_bands.append(img)
235
- sample_img = torch.stack(img_bands,dim=0) # VV,VH (w,h,c)
236
- elif self.bands == 's2':
237
- sample_img = sample["image"]
238
- img_bands = []
239
- for b in range(12):
240
- img = sample_img[b,:,:].clone()
241
- ## normalize
242
- img = self.normalize(img,self.mean[b],self.std[b])
243
- img_bands.append(img)
244
- if b==9:
245
- # pad zero to B10
246
- img_bands.append(torch.zeros_like(img))
247
- sample_img = torch.stack(img_bands,dim=0)
248
-
249
- x_out = self.transform(sample_img).squeeze(0)
250
- return x_out, sample["label"], sample["meta"]
251
-
252
- @torch.no_grad()
253
- def normalize(self, img, mean, std):
254
- min_value = mean - 2 * std
255
- max_value = mean + 2 * std
256
- img = (img - min_value) / (max_value - min_value)
257
- img = torch.clamp(img, 0, 1)
258
- return img
259
-
260
-
261
- class CoBenchBigEarthNetS12Dataset:
262
- def __init__(self, config):
263
- self.dataset_config = config
264
- self.img_size = (config.image_resolution, config.image_resolution)
265
- self.root_dir = config.data_path
266
- self.bands = config.modality
267
- self.band_names = config.band_names
268
- self.num_classes = config.num_classes
269
- self.band_stats = config.band_stats
270
- self.norm_form = config.norm_form if 'norm_form' in config else None
271
-
272
- if self.bands == "rgb":
273
- # start with rgb and extract later
274
- self.input_bands = "s2"
275
- else:
276
- self.input_bands = self.bands
277
-
278
- def create_dataset(self):
279
-
280
- if self.norm_form == 'softcon':
281
- train_transform = ClsDataAugmentationSoftCon(
282
- split="train", size=self.img_size, bands=self.bands, band_stats=self.band_stats
283
- )
284
- eval_transform = ClsDataAugmentationSoftCon(
285
- split="test", size=self.img_size, bands=self.bands, band_stats=self.band_stats
286
- )
287
- else:
288
- train_transform = ClsDataAugmentation(
289
- split="train", size=self.img_size, bands=self.bands, band_stats=self.band_stats
290
- )
291
- eval_transform = ClsDataAugmentation(
292
- split="test", size=self.img_size, bands=self.bands, band_stats=self.band_stats
293
- )
294
-
295
- dataset_train = CoBenchBigEarthNetS12(
296
- root=self.root_dir,
297
- num_classes=self.num_classes,
298
- split="train",
299
- bands=self.input_bands,
300
- band_names=self.band_names,
301
- transforms=train_transform,
302
- )
303
-
304
- # num_subset_samples = int(0.1 * len(dataset_train))
305
- # # Split the dataset into the subset and the remaining part
306
- # subset_train, _ = random_split(
307
- # dataset_train,
308
- # [num_subset_samples, len(dataset_train) - num_subset_samples],
309
- # generator=Generator().manual_seed(42),
310
- # )
311
-
312
- dataset_val = CoBenchBigEarthNetS12(
313
- root=self.root_dir,
314
- num_classes=self.num_classes,
315
- split="validation",
316
- bands=self.input_bands,
317
- band_names=self.band_names,
318
- transforms=eval_transform,
319
- )
320
- dataset_test = CoBenchBigEarthNetS12(
321
- root=self.root_dir,
322
- num_classes=self.num_classes,
323
- split="test",
324
- bands=self.input_bands,
325
- band_names=self.band_names,
326
- transforms=eval_transform,
327
- )
328
-
329
- return dataset_train, dataset_val, dataset_test