upload eurosat-ms and eurosat-sar
Browse files- eurosat_s1sar/dataset_eu.py +189 -0
- eurosat_s1sar/eurosat_sar.zip +3 -0
- eurosat_s2ms/dataset_eu.py +189 -0
- eurosat_s2ms/eurosat_ms.zip +3 -0
eurosat_s1sar/dataset_eu.py
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
from torch.utils.data import Dataset, DataLoader, Subset
|
4 |
+
from pathlib import Path
|
5 |
+
import os
|
6 |
+
import rasterio
|
7 |
+
import cv2
|
8 |
+
import pdb
|
9 |
+
from pyproj import Transformer
|
10 |
+
|
11 |
+
|
12 |
+
EXTENSIONS = (".jpg", ".jpeg", ".png", ".ppm", ".bmp", ".pgm", ".tif", ".tiff", ".webp")
|
13 |
+
ALL_BANDS = ['B01', 'B02', 'B03', 'B04', 'B05', 'B06', 'B07', 'B08', 'B09', 'B10', 'B11', 'B12', 'B8A']
|
14 |
+
S2A_BANDS = ['B01', 'B02', 'B03', 'B04', 'B05', 'B06', 'B07', 'B08', 'B09', 'B11', 'B12', 'B8A']
|
15 |
+
RGB_BANDS = ['B04', 'B03', 'B02']
|
16 |
+
S1_BANDS = ['VV', 'VH']
|
17 |
+
|
18 |
+
### SSL4EO stats
|
19 |
+
BAND_STATS = {
|
20 |
+
'mean': {
|
21 |
+
'B01': 1353.72696296,
|
22 |
+
'B02': 1117.20222222,
|
23 |
+
'B03': 1041.8842963,
|
24 |
+
'B04': 946.554,
|
25 |
+
'B05': 1199.18896296,
|
26 |
+
'B06': 2003.00696296,
|
27 |
+
'B07': 2374.00874074,
|
28 |
+
'B08': 2301.22014815,
|
29 |
+
'B8A': 2599.78311111,
|
30 |
+
'B09': 732.18207407,
|
31 |
+
'B10': 12.09952894,
|
32 |
+
'B11': 1820.69659259,
|
33 |
+
'B12': 1118.20259259,
|
34 |
+
'VV': -12.54847273,
|
35 |
+
'VH': -20.19237134
|
36 |
+
},
|
37 |
+
'std': {
|
38 |
+
'B01': 897.27143653,
|
39 |
+
'B02': 736.01759721,
|
40 |
+
'B03': 684.77615743,
|
41 |
+
'B04': 620.02902871,
|
42 |
+
'B05': 791.86263829,
|
43 |
+
'B06': 1341.28018273,
|
44 |
+
'B07': 1595.39989386,
|
45 |
+
'B08': 1545.52915718,
|
46 |
+
'B8A': 1750.12066835,
|
47 |
+
'B09': 475.11595216,
|
48 |
+
'B10': 98.26600935,
|
49 |
+
'B11': 1216.48651476,
|
50 |
+
'B12': 736.6981037,
|
51 |
+
'VV': 5.25697717,
|
52 |
+
'VH': 5.91150917
|
53 |
+
}
|
54 |
+
}
|
55 |
+
|
56 |
+
# BAND_STATS_S1 = {
|
57 |
+
# 'mean': {
|
58 |
+
# 'VV': -12.54847273,
|
59 |
+
# 'VH': -20.19237134
|
60 |
+
# },
|
61 |
+
# 'std': {
|
62 |
+
# 'VV': 5.25697717,
|
63 |
+
# 'VH': 5.91150917
|
64 |
+
# }
|
65 |
+
# }
|
66 |
+
|
67 |
+
|
68 |
+
def is_valid_file(filename):
|
69 |
+
return filename.lower().endswith(EXTENSIONS)
|
70 |
+
|
71 |
+
def normalize(img, mean, std):
|
72 |
+
min_value = mean - 2 * std
|
73 |
+
max_value = mean + 2 * std
|
74 |
+
img = (img - min_value) / (max_value - min_value) * 255.0
|
75 |
+
img = np.clip(img, 0, 255).astype(np.uint8)
|
76 |
+
#img = (img - min_value) / (max_value - min_value)
|
77 |
+
#img = np.clip(img, 0, 1).astype(np.float32)
|
78 |
+
return img
|
79 |
+
|
80 |
+
class EurosatDataset(Dataset):
|
81 |
+
|
82 |
+
def __init__(self, root, bands='B2', split='train', transform=None, normalize=False, meta=False):
|
83 |
+
self.root = Path(root,split)
|
84 |
+
self.transform = transform
|
85 |
+
if bands=='B13':
|
86 |
+
self.bands = ALL_BANDS
|
87 |
+
elif bands=='B12':
|
88 |
+
self.bands = S2A_BANDS
|
89 |
+
elif bands=='RGB':
|
90 |
+
self.bands = RGB_BANDS
|
91 |
+
elif bands=='B2':
|
92 |
+
self.bands = S1_BANDS
|
93 |
+
|
94 |
+
self.normalize = normalize
|
95 |
+
|
96 |
+
self.classes = sorted([d.name for d in self.root.iterdir() if d.is_dir()])
|
97 |
+
self.class_to_idx = {cls_name: i for i, cls_name in enumerate(self.classes)}
|
98 |
+
|
99 |
+
self.samples = []
|
100 |
+
self.targets = []
|
101 |
+
|
102 |
+
#pdb.set_trace()
|
103 |
+
for froot, _, fnames in sorted(os.walk(self.root, followlinks=True)):
|
104 |
+
for fname in sorted(fnames):
|
105 |
+
if is_valid_file(fname):
|
106 |
+
path = os.path.join(froot, fname)
|
107 |
+
self.samples.append(path)
|
108 |
+
target = self.class_to_idx[Path(path).parts[-2]]
|
109 |
+
self.targets.append(target)
|
110 |
+
#print(self.root)
|
111 |
+
#print(f"Found {len(self.samples)} images belonging to {len(self.classes)} classes")
|
112 |
+
self.meta = meta
|
113 |
+
|
114 |
+
def __getitem__(self, index):
|
115 |
+
path = self.samples[index]
|
116 |
+
target = self.targets[index]
|
117 |
+
|
118 |
+
with rasterio.open(path) as f:
|
119 |
+
if self.bands == ALL_BANDS:
|
120 |
+
array = f.read().astype(np.int16)
|
121 |
+
elif self.bands == S2A_BANDS:
|
122 |
+
array = f.read((1,2,3,4,5,6,7,8,9,11,12,13)).astype(np.int16)
|
123 |
+
elif self.bands == RGB_BANDS:
|
124 |
+
array = f.read((4,3,2)).astype(np.int16)
|
125 |
+
elif self.bands == S1_BANDS:
|
126 |
+
array = f.read().astype(np.float32)
|
127 |
+
|
128 |
+
img = array.transpose(1, 2, 0)
|
129 |
+
|
130 |
+
if self.meta:
|
131 |
+
# get lon, lat, time
|
132 |
+
cx,cy = f.xy(f.height // 2, f.width // 2)
|
133 |
+
# convert to lon, lat
|
134 |
+
crs_transformer = Transformer.from_crs(f.crs, 'epsg:4326')
|
135 |
+
lon, lat = crs_transformer.transform(cx,cy)
|
136 |
+
# no time
|
137 |
+
meta_info = np.array([lon, lat, 0, 0]).astype(np.float32)
|
138 |
+
#meta_info = np.array([0, 0, 0, 0]).astype(np.float32)
|
139 |
+
#meta_info = np.array([np.nan, np.nan, np.nan, np.nan]).astype(np.float32)
|
140 |
+
|
141 |
+
channels = []
|
142 |
+
|
143 |
+
for i,b in enumerate(self.bands):
|
144 |
+
ch = img[:,:,i]
|
145 |
+
if self.normalize:
|
146 |
+
ch = normalize(ch, mean=BAND_STATS['mean'][b], std=BAND_STATS['std'][b])
|
147 |
+
elif self.bands == S2A_BANDS:
|
148 |
+
ch = (ch / 10000.0 * 255.0).astype('uint8')
|
149 |
+
|
150 |
+
if b=='B8A': # EuSAT band order is different than SSL4EO
|
151 |
+
channels.insert(8,ch)
|
152 |
+
else:
|
153 |
+
channels.append(ch)
|
154 |
+
#img = np.dstack(channels)
|
155 |
+
img = np.stack(channels, axis=0).astype('float32') / 255.0
|
156 |
+
|
157 |
+
if self.transform is not None:
|
158 |
+
img = self.transform(img)
|
159 |
+
|
160 |
+
if self.meta:
|
161 |
+
return img, target, meta_info
|
162 |
+
else:
|
163 |
+
return img, target
|
164 |
+
|
165 |
+
def __len__(self):
|
166 |
+
return len(self.samples)
|
167 |
+
|
168 |
+
|
169 |
+
class Subset(Dataset):
|
170 |
+
r"""
|
171 |
+
Subset of a dataset at specified indices.
|
172 |
+
|
173 |
+
Arguments:
|
174 |
+
dataset (Dataset): The whole Dataset
|
175 |
+
indices (sequence): Indices in the whole set selected for subset
|
176 |
+
"""
|
177 |
+
def __init__(self, dataset, indices, transform=None):
|
178 |
+
self.dataset = dataset
|
179 |
+
self.indices = indices
|
180 |
+
self.transform = transform
|
181 |
+
|
182 |
+
def __getitem__(self, idx):
|
183 |
+
im, target = self.dataset[self.indices[idx]]
|
184 |
+
if self.transform:
|
185 |
+
im = self.transform(im)
|
186 |
+
return im, target
|
187 |
+
|
188 |
+
def __len__(self):
|
189 |
+
return len(self.indices)
|
eurosat_s1sar/eurosat_sar.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3556e8fe70f2043d5a19ebbdc0ec77fadc4e55633307170e0a10b08fb4f47696
|
3 |
+
size 922582952
|
eurosat_s2ms/dataset_eu.py
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
from torch.utils.data import Dataset, DataLoader, Subset
|
4 |
+
from pathlib import Path
|
5 |
+
import os
|
6 |
+
import rasterio
|
7 |
+
import cv2
|
8 |
+
import pdb
|
9 |
+
from pyproj import Transformer
|
10 |
+
|
11 |
+
|
12 |
+
EXTENSIONS = (".jpg", ".jpeg", ".png", ".ppm", ".bmp", ".pgm", ".tif", ".tiff", ".webp")
|
13 |
+
ALL_BANDS = ['B01', 'B02', 'B03', 'B04', 'B05', 'B06', 'B07', 'B08', 'B09', 'B10', 'B11', 'B12', 'B8A']
|
14 |
+
S2A_BANDS = ['B01', 'B02', 'B03', 'B04', 'B05', 'B06', 'B07', 'B08', 'B09', 'B11', 'B12', 'B8A']
|
15 |
+
RGB_BANDS = ['B04', 'B03', 'B02']
|
16 |
+
S1_BANDS = ['VV', 'VH']
|
17 |
+
|
18 |
+
### SSL4EO stats
|
19 |
+
BAND_STATS = {
|
20 |
+
'mean': {
|
21 |
+
'B01': 1353.72696296,
|
22 |
+
'B02': 1117.20222222,
|
23 |
+
'B03': 1041.8842963,
|
24 |
+
'B04': 946.554,
|
25 |
+
'B05': 1199.18896296,
|
26 |
+
'B06': 2003.00696296,
|
27 |
+
'B07': 2374.00874074,
|
28 |
+
'B08': 2301.22014815,
|
29 |
+
'B8A': 2599.78311111,
|
30 |
+
'B09': 732.18207407,
|
31 |
+
'B10': 12.09952894,
|
32 |
+
'B11': 1820.69659259,
|
33 |
+
'B12': 1118.20259259,
|
34 |
+
'VV': -12.54847273,
|
35 |
+
'VH': -20.19237134
|
36 |
+
},
|
37 |
+
'std': {
|
38 |
+
'B01': 897.27143653,
|
39 |
+
'B02': 736.01759721,
|
40 |
+
'B03': 684.77615743,
|
41 |
+
'B04': 620.02902871,
|
42 |
+
'B05': 791.86263829,
|
43 |
+
'B06': 1341.28018273,
|
44 |
+
'B07': 1595.39989386,
|
45 |
+
'B08': 1545.52915718,
|
46 |
+
'B8A': 1750.12066835,
|
47 |
+
'B09': 475.11595216,
|
48 |
+
'B10': 98.26600935,
|
49 |
+
'B11': 1216.48651476,
|
50 |
+
'B12': 736.6981037,
|
51 |
+
'VV': 5.25697717,
|
52 |
+
'VH': 5.91150917
|
53 |
+
}
|
54 |
+
}
|
55 |
+
|
56 |
+
# BAND_STATS_S1 = {
|
57 |
+
# 'mean': {
|
58 |
+
# 'VV': -12.54847273,
|
59 |
+
# 'VH': -20.19237134
|
60 |
+
# },
|
61 |
+
# 'std': {
|
62 |
+
# 'VV': 5.25697717,
|
63 |
+
# 'VH': 5.91150917
|
64 |
+
# }
|
65 |
+
# }
|
66 |
+
|
67 |
+
|
68 |
+
def is_valid_file(filename):
|
69 |
+
return filename.lower().endswith(EXTENSIONS)
|
70 |
+
|
71 |
+
def normalize(img, mean, std):
|
72 |
+
min_value = mean - 2 * std
|
73 |
+
max_value = mean + 2 * std
|
74 |
+
img = (img - min_value) / (max_value - min_value) * 255.0
|
75 |
+
img = np.clip(img, 0, 255).astype(np.uint8)
|
76 |
+
#img = (img - min_value) / (max_value - min_value)
|
77 |
+
#img = np.clip(img, 0, 1).astype(np.float32)
|
78 |
+
return img
|
79 |
+
|
80 |
+
class EurosatDataset(Dataset):
|
81 |
+
|
82 |
+
def __init__(self, root, bands='B2', split='train', transform=None, normalize=False, meta=False):
|
83 |
+
self.root = Path(root,split)
|
84 |
+
self.transform = transform
|
85 |
+
if bands=='B13':
|
86 |
+
self.bands = ALL_BANDS
|
87 |
+
elif bands=='B12':
|
88 |
+
self.bands = S2A_BANDS
|
89 |
+
elif bands=='RGB':
|
90 |
+
self.bands = RGB_BANDS
|
91 |
+
elif bands=='B2':
|
92 |
+
self.bands = S1_BANDS
|
93 |
+
|
94 |
+
self.normalize = normalize
|
95 |
+
|
96 |
+
self.classes = sorted([d.name for d in self.root.iterdir() if d.is_dir()])
|
97 |
+
self.class_to_idx = {cls_name: i for i, cls_name in enumerate(self.classes)}
|
98 |
+
|
99 |
+
self.samples = []
|
100 |
+
self.targets = []
|
101 |
+
|
102 |
+
#pdb.set_trace()
|
103 |
+
for froot, _, fnames in sorted(os.walk(self.root, followlinks=True)):
|
104 |
+
for fname in sorted(fnames):
|
105 |
+
if is_valid_file(fname):
|
106 |
+
path = os.path.join(froot, fname)
|
107 |
+
self.samples.append(path)
|
108 |
+
target = self.class_to_idx[Path(path).parts[-2]]
|
109 |
+
self.targets.append(target)
|
110 |
+
#print(self.root)
|
111 |
+
#print(f"Found {len(self.samples)} images belonging to {len(self.classes)} classes")
|
112 |
+
self.meta = meta
|
113 |
+
|
114 |
+
def __getitem__(self, index):
|
115 |
+
path = self.samples[index]
|
116 |
+
target = self.targets[index]
|
117 |
+
|
118 |
+
with rasterio.open(path) as f:
|
119 |
+
if self.bands == ALL_BANDS:
|
120 |
+
array = f.read().astype(np.int16)
|
121 |
+
elif self.bands == S2A_BANDS:
|
122 |
+
array = f.read((1,2,3,4,5,6,7,8,9,11,12,13)).astype(np.int16)
|
123 |
+
elif self.bands == RGB_BANDS:
|
124 |
+
array = f.read((4,3,2)).astype(np.int16)
|
125 |
+
elif self.bands == S1_BANDS:
|
126 |
+
array = f.read().astype(np.float32)
|
127 |
+
|
128 |
+
img = array.transpose(1, 2, 0)
|
129 |
+
|
130 |
+
if self.meta:
|
131 |
+
# get lon, lat, time
|
132 |
+
cx,cy = f.xy(f.height // 2, f.width // 2)
|
133 |
+
# convert to lon, lat
|
134 |
+
crs_transformer = Transformer.from_crs(f.crs, 'epsg:4326')
|
135 |
+
lon, lat = crs_transformer.transform(cx,cy)
|
136 |
+
# no time
|
137 |
+
meta_info = np.array([lon, lat, 0, 0]).astype(np.float32)
|
138 |
+
#meta_info = np.array([0, 0, 0, 0]).astype(np.float32)
|
139 |
+
#meta_info = np.array([np.nan, np.nan, np.nan, np.nan]).astype(np.float32)
|
140 |
+
|
141 |
+
channels = []
|
142 |
+
|
143 |
+
for i,b in enumerate(self.bands):
|
144 |
+
ch = img[:,:,i]
|
145 |
+
if self.normalize:
|
146 |
+
ch = normalize(ch, mean=BAND_STATS['mean'][b], std=BAND_STATS['std'][b])
|
147 |
+
elif self.bands == S2A_BANDS:
|
148 |
+
ch = (ch / 10000.0 * 255.0).astype('uint8')
|
149 |
+
|
150 |
+
if b=='B8A': # EuSAT band order is different than SSL4EO
|
151 |
+
channels.insert(8,ch)
|
152 |
+
else:
|
153 |
+
channels.append(ch)
|
154 |
+
#img = np.dstack(channels)
|
155 |
+
img = np.stack(channels, axis=0).astype('float32') / 255.0
|
156 |
+
|
157 |
+
if self.transform is not None:
|
158 |
+
img = self.transform(img)
|
159 |
+
|
160 |
+
if self.meta:
|
161 |
+
return img, target, meta_info
|
162 |
+
else:
|
163 |
+
return img, target
|
164 |
+
|
165 |
+
def __len__(self):
|
166 |
+
return len(self.samples)
|
167 |
+
|
168 |
+
|
169 |
+
class Subset(Dataset):
|
170 |
+
r"""
|
171 |
+
Subset of a dataset at specified indices.
|
172 |
+
|
173 |
+
Arguments:
|
174 |
+
dataset (Dataset): The whole Dataset
|
175 |
+
indices (sequence): Indices in the whole set selected for subset
|
176 |
+
"""
|
177 |
+
def __init__(self, dataset, indices, transform=None):
|
178 |
+
self.dataset = dataset
|
179 |
+
self.indices = indices
|
180 |
+
self.transform = transform
|
181 |
+
|
182 |
+
def __getitem__(self, idx):
|
183 |
+
im, target = self.dataset[self.indices[idx]]
|
184 |
+
if self.transform:
|
185 |
+
im = self.transform(im)
|
186 |
+
return im, target
|
187 |
+
|
188 |
+
def __len__(self):
|
189 |
+
return len(self.indices)
|
eurosat_s2ms/eurosat_ms.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:201940af1e4e2f40ae2b26491f059a7efd389233ffcfd66a5e27727d2fe92745
|
3 |
+
size 2027392300
|