Upload dataset_biomass_s3olci.py
Browse files
biomass_s3olci/dataset_biomass_s3olci.py
CHANGED
@@ -4,6 +4,8 @@ import os
|
|
4 |
import rasterio
|
5 |
import torch
|
6 |
import numpy as np
|
|
|
|
|
7 |
|
8 |
S3_OLCI_SCALE = [0.0139465,0.0133873,0.0121481,0.0115198,0.0100953,0.0123538,0.00879161,0.00876539,
|
9 |
0.0095103,0.00773378,0.00675523,0.0071996,0.00749684,0.0086512,0.00526779,0.00530267,
|
@@ -16,7 +18,7 @@ BIOMASS_STD = 110.5369
|
|
16 |
class S3OLCI_BiomassDataset(Dataset):
|
17 |
'''
|
18 |
4000/1000 train/test images 94x94x21 (full dataset is 25K)
|
19 |
-
CCI biomass 282x282
|
20 |
nodata: -inf
|
21 |
time series: 1-4 images / location
|
22 |
|
@@ -32,6 +34,18 @@ class S3OLCI_BiomassDataset(Dataset):
|
|
32 |
|
33 |
self.fnames = os.listdir(self.biomass_dir)
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
def __len__(self):
|
36 |
return len(self.fnames)
|
37 |
|
@@ -39,13 +53,19 @@ class S3OLCI_BiomassDataset(Dataset):
|
|
39 |
fname = self.fnames[idx]
|
40 |
biomass_path = os.path.join(self.biomass_dir, fname)
|
41 |
s3_path = os.path.join(self.img_dir, fname.replace('.tif',''))
|
42 |
-
img_fnames = os.listdir(s3_path)
|
43 |
-
s3_paths = []
|
44 |
-
for img_fname in img_fnames:
|
45 |
-
s3_paths.append(os.path.join(s3_path, img_fname))
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
imgs = []
|
48 |
img_paths = []
|
|
|
49 |
for img_path in s3_paths:
|
50 |
with rasterio.open(img_path) as src:
|
51 |
img = src.read()
|
@@ -59,12 +79,30 @@ class S3OLCI_BiomassDataset(Dataset):
|
|
59 |
for b in range(21):
|
60 |
img[b] = img[b]*S3_OLCI_SCALE[b]
|
61 |
img = torch.from_numpy(img).float()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
imgs.append(img)
|
63 |
img_paths.append(img_path)
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
68 |
|
69 |
with rasterio.open(biomass_path) as src:
|
70 |
biomass = src.read(1)
|
@@ -72,6 +110,6 @@ class S3OLCI_BiomassDataset(Dataset):
|
|
72 |
biomass = torch.from_numpy(biomass.astype('float32'))
|
73 |
biomass = (biomass - BIOMASS_MEAN) / BIOMASS_STD # 0-center normalized
|
74 |
if self.mode == 'static':
|
75 |
-
return imgs[0], biomass # 94x94x21, 282x282
|
76 |
elif self.mode == 'series':
|
77 |
-
return imgs[0], imgs[1], imgs[2], imgs[3], biomass # 94x94x21, 94x94x21, 94x94x21, 94x94x21, 282x282
|
|
|
4 |
import rasterio
|
5 |
import torch
|
6 |
import numpy as np
|
7 |
+
from pyproj import Transformer
|
8 |
+
from datetime import date
|
9 |
|
10 |
S3_OLCI_SCALE = [0.0139465,0.0133873,0.0121481,0.0115198,0.0100953,0.0123538,0.00879161,0.00876539,
|
11 |
0.0095103,0.00773378,0.00675523,0.0071996,0.00749684,0.0086512,0.00526779,0.00530267,
|
|
|
18 |
class S3OLCI_BiomassDataset(Dataset):
|
19 |
'''
|
20 |
4000/1000 train/test images 94x94x21 (full dataset is 25K)
|
21 |
+
CCI biomass regression 282x282
|
22 |
nodata: -inf
|
23 |
time series: 1-4 images / location
|
24 |
|
|
|
34 |
|
35 |
self.fnames = os.listdir(self.biomass_dir)
|
36 |
|
37 |
+
if self.mode == 'static':
|
38 |
+
self.static_csv = os.path.join(root_dir, split, 'static_fnames.csv')
|
39 |
+
with open(self.static_csv, 'r') as f:
|
40 |
+
lines = f.readlines()
|
41 |
+
self.static_img = {}
|
42 |
+
for line in lines:
|
43 |
+
dirname = line.strip().split(',')[0]
|
44 |
+
img_fname = line.strip().split(',')[1]
|
45 |
+
self.static_img[dirname] = img_fname
|
46 |
+
|
47 |
+
|
48 |
+
|
49 |
def __len__(self):
|
50 |
return len(self.fnames)
|
51 |
|
|
|
53 |
fname = self.fnames[idx]
|
54 |
biomass_path = os.path.join(self.biomass_dir, fname)
|
55 |
s3_path = os.path.join(self.img_dir, fname.replace('.tif',''))
|
|
|
|
|
|
|
|
|
56 |
|
57 |
+
if self.mode == 'static':
|
58 |
+
img_fname = self.static_img[fname.replace('.tif','')]
|
59 |
+
s3_paths = [os.path.join(s3_path, img_fname)]
|
60 |
+
else:
|
61 |
+
img_fnames = os.listdir(s3_path)
|
62 |
+
s3_paths = []
|
63 |
+
for img_fname in img_fnames:
|
64 |
+
s3_paths.append(os.path.join(s3_path, img_fname))
|
65 |
+
|
66 |
imgs = []
|
67 |
img_paths = []
|
68 |
+
meta_infos = []
|
69 |
for img_path in s3_paths:
|
70 |
with rasterio.open(img_path) as src:
|
71 |
img = src.read()
|
|
|
79 |
for b in range(21):
|
80 |
img[b] = img[b]*S3_OLCI_SCALE[b]
|
81 |
img = torch.from_numpy(img).float()
|
82 |
+
|
83 |
+
if self.meta:
|
84 |
+
cx,cy = src.xy(src.height // 2, src.width // 2)
|
85 |
+
#crs_transformer = Transformer.from_crs(src.crs, 'epsg:4326')
|
86 |
+
#lon, lat = crs_transformer.transform(cx,cy)
|
87 |
+
lon, lat = cx, cy
|
88 |
+
img_fname = os.path.basename(img_path)
|
89 |
+
date_str = img_fname.split('_')[1][:8]
|
90 |
+
date_obj = date(int(date_str[:4]), int(date_str[4:6]), int(date_str[6:8]))
|
91 |
+
delta = (date_obj - self.reference_date).days
|
92 |
+
meta_info = np.array([lon, lat, delta, np.nan]).astype(np.float32)
|
93 |
+
else:
|
94 |
+
meta_info = np.array([np.nan,np.nan,np.nan,np.nan]).astype(np.float32)
|
95 |
+
|
96 |
+
|
97 |
imgs.append(img)
|
98 |
img_paths.append(img_path)
|
99 |
+
|
100 |
+
if self.mode == 'series':
|
101 |
+
# pad to 4 images if less than 4
|
102 |
+
while len(imgs) < 4:
|
103 |
+
imgs.append(img)
|
104 |
+
img_paths.append(img_path)
|
105 |
+
meta_infos.append(meta_info)
|
106 |
|
107 |
with rasterio.open(biomass_path) as src:
|
108 |
biomass = src.read(1)
|
|
|
110 |
biomass = torch.from_numpy(biomass.astype('float32'))
|
111 |
biomass = (biomass - BIOMASS_MEAN) / BIOMASS_STD # 0-center normalized
|
112 |
if self.mode == 'static':
|
113 |
+
return imgs[0], meta_infos[0], biomass # 94x94x21, 282x282
|
114 |
elif self.mode == 'series':
|
115 |
+
return imgs[0], imgs[1], imgs[2], imgs[3], meta_infos[0], meta_infos[1], meta_infos[2], meta_infos[3], biomass # 94x94x21, 94x94x21, 94x94x21, 94x94x21, 282x282
|