import kornia as K import torch from torchgeo.datasets.geo import NonGeoDataset import os from collections.abc import Callable, Sequence from torch import Tensor import numpy as np import rasterio import cv2 from pyproj import Transformer from datetime import date from typing import TypeAlias, ClassVar import pathlib from shapely import wkt import pandas as pd import tacoreader import logging import pdb logging.getLogger("rasterio").setLevel(logging.ERROR) Path: TypeAlias = str | os.PathLike[str] class SenBenchCloudS2(NonGeoDataset): url = None #base_dir = 'all_imgs' all_band_names = ('B01', 'B02', 'B03', 'B04', 'B05', 'B06', 'B07', 'B08', 'B8A', 'B09', 'B10', 'B11', 'B12') split_filenames = { 'train': 'cloudsen12-l1c-train.taco', 'val': 'cloudsen12-l1c-val.taco', 'test': 'cloudsen12-l1c-test.taco', } Cls_index_multi = { 'clear': 0, 'thick cloud': 1, 'thin cloud': 2, 'cloud shadow': 3, } def __init__( self, root: Path = 'data', split: str = 'train', bands: Sequence[str] = all_band_names, transforms: Callable[[dict[str, Tensor]], dict[str, Tensor]] | None = None, download: bool = False, ) -> None: self.root = root self.transforms = transforms self.download = download #self.checksum = checksum assert split in ['train', 'val', 'test'] self.bands = bands self.band_indices = [(self.all_band_names.index(b)+1) for b in bands if b in self.all_band_names] taco_file = os.path.join(root,self.split_filenames[split]) self.dataset = tacoreader.load(taco_file) self.cache = {} # filter corrupted entries count = 0 count_corrupted = 0 #pdb.set_trace() for i in range(len(self.dataset)): try: sample = self.dataset.read(i) s2l1c = sample.read(0) # str target = sample.read(1) # str coord = sample['stac:centroid'][0] # str time_start = sample['stac:time_start'][0] # str self.cache[count] = (s2l1c, target, coord, time_start) count += 1 except Exception as e: count_corrupted += 1 self.length = count print(split,count,"valid samples.") self.reference_date = date(1970, 1, 1) self.patch_area = (16*10/1000)**2 # patchsize 16 pix, gsd 10m def __len__(self): return self.length def __getitem__(self, index): #pdb.set_trace() # if index not in self.cache: # sample = self.dataset.read(index) # s2l1c = sample.read(0) # str # target = sample.read(1) # str # coord = sample['stac:centroid'][0] # str # time_start = sample['stac:time_start'][0] # str # self.cache[index] = (s2l1c, target, coord, time_start) # else: #pdb.set_trace() s2l1c, target, coord, time_start = self.cache[index] # Open the files and load data with rasterio.open(s2l1c) as src, rasterio.open(target) as dst: s2l1c_data = src.read().astype('float32') target_data = dst.read(1) image = torch.from_numpy(s2l1c_data) label = torch.from_numpy(target_data).long() coord = wkt.loads(coord).coords[0] date_obj = pd.to_datetime(time_start, unit='s').date() delta = (date_obj - self.reference_date).days meta_info = np.array([coord[0], coord[1], delta, self.patch_area]).astype(np.float32) meta_info = torch.from_numpy(meta_info) sample = {'image': image, 'mask': label, 'meta': meta_info} if self.transforms is not None: sample = self.transforms(sample) return sample class SegDataAugmentation(torch.nn.Module): def __init__(self, split, size, band_stats): super().__init__() if band_stats is not None: mean = band_stats['mean'] std = band_stats['std'] else: mean = [0.0] std = [1.0] mean = torch.Tensor(mean) std = torch.Tensor(std) self.norm = K.augmentation.Normalize(mean=mean, std=std) if split == "train": self.transform = K.augmentation.AugmentationSequential( K.augmentation.Resize(size=size, align_corners=True), K.augmentation.RandomRotation(degrees=90, p=0.5, align_corners=True), K.augmentation.RandomHorizontalFlip(p=0.5), K.augmentation.RandomVerticalFlip(p=0.5), data_keys=["input", "mask"], ) else: self.transform = K.augmentation.AugmentationSequential( K.augmentation.Resize(size=size, align_corners=True), data_keys=["input", "mask"], ) @torch.no_grad() def forward(self, batch: dict[str,]): """Torchgeo returns a dictionary with 'image' and 'label' keys, but engine expects a tuple""" x,mask = batch["image"], batch["mask"] x = self.norm(x) x_out, mask_out = self.transform(x, mask) return x_out.squeeze(0), mask_out.squeeze(0).squeeze(0), batch["meta"] class SenBenchCloudS2Dataset: def __init__(self, config): self.dataset_config = config self.img_size = (config.image_resolution, config.image_resolution) self.root_dir = config.data_path self.bands = config.band_names self.band_stats = config.band_stats def create_dataset(self): train_transform = SegDataAugmentation(split="train", size=self.img_size, band_stats=self.band_stats) eval_transform = SegDataAugmentation(split="test", size=self.img_size, band_stats=self.band_stats) dataset_train = SenBenchCloudS2( root=self.root_dir, split="train", bands=self.bands, transforms=train_transform ) dataset_val = SenBenchCloudS2( root=self.root_dir, split="val", bands=self.bands, transforms=eval_transform ) dataset_test = SenBenchCloudS2( root=self.root_dir, split="test", bands=self.bands, transforms=eval_transform ) return dataset_train, dataset_val, dataset_test