import kornia as K import torch from torchgeo.datasets import CloudCoverDetection from typing import ClassVar from collections.abc import Callable, Sequence from torch import Tensor from datetime import date import os import pandas as pd import numpy as np import rasterio from pyproj import Transformer from typing import TypeAlias Path: TypeAlias = str | os.PathLike[str] class SenBenchCloudS2(CloudCoverDetection): url = None all_bands = ('B02', 'B03', 'B04', 'B08') splits: ClassVar[dict[str, str]] = {'train': 'public', 'val': 'private', 'test': 'private'} def __init__( self, root: Path = 'data', split: str = 'train', bands: Sequence[str] = all_bands, transforms: Callable[[dict[str, Tensor]], dict[str, Tensor]] | None = None, download: bool = False, ) -> None: #super().__init__(root=root, split=split, bands=bands, transforms=transforms, download=download) assert split in self.splits assert set(bands) <= set(self.all_bands) self.root = root self.split = split self.bands = bands self.transforms = transforms self.download = download self.csv = os.path.join(self.root, self.split, f'{self.split}_metadata.csv') self._verify() self.metadata = pd.read_csv(self.csv) self.reference_date = date(1970, 1, 1) self.patch_area = (16*10)**2 # patchsize 16 pix, gsd 10m def __getitem__(self, index: int) -> dict[str, Tensor]: """Returns a sample from dataset. Args: index: index to return Returns: data, metadata (lon,lat,days,area) and label at given index """ chip_id = self.metadata.iat[index, 0] date_str = self.metadata.iat[index, 2] date_obj = date(int(date_str[:4]), int(date_str[5:7]), int(date_str[8:10])) delta = (date_obj - self.reference_date).days image, coord = self._load_image(chip_id) label = self._load_target(chip_id) meta_info = np.array([coord[0], coord[1], delta, self.patch_area]).astype(np.float32) sample = {'image': image, 'mask': label, 'meta': torch.from_numpy(meta_info)} if self.transforms is not None: sample = self.transforms(sample) # # add metadata # sample['meta'] = torch.from_numpy(meta_info) return sample def _load_image(self, chip_id: str) -> Tensor: """Load all source images for a chip. Args: chip_id: ID of the chip. Returns: a tensor of stacked source image data, coord (lon,lat) """ path = os.path.join(self.root, self.split, f'{self.split}_features', chip_id) images = [] coords = None for band in self.bands: with rasterio.open(os.path.join(path, f'{band}.tif')) as src: images.append(src.read(1).astype(np.float32)) if coords is None: cx,cy = src.xy(src.height // 2, src.width // 2) if src.crs.to_string() != 'EPSG:4326': crs_transformer = Transformer.from_crs(src.crs, 'epsg:4326', always_xy=True) lon, lat = crs_transformer.transform(cx,cy) else: lon, lat = cx, cy return torch.from_numpy(np.stack(images, axis=0)), (lon,lat) class SegDataAugmentation(torch.nn.Module): def __init__(self, split, size): super().__init__() mean = torch.Tensor([0.0]) std = torch.Tensor([1.0]) self.norm = K.augmentation.Normalize(mean=mean, std=std) if split == "train": self.transform = K.augmentation.AugmentationSequential( K.augmentation.Resize(size=size, align_corners=True), K.augmentation.RandomRotation(degrees=90, p=0.5, align_corners=True), K.augmentation.RandomHorizontalFlip(p=0.5), K.augmentation.RandomVerticalFlip(p=0.5), data_keys=["input", "mask"], ) else: self.transform = K.augmentation.AugmentationSequential( K.augmentation.Resize(size=size, align_corners=True), data_keys=["input", "mask"], ) @torch.no_grad() def forward(self, batch: dict[str,]): """Torchgeo returns a dictionary with 'image' and 'label' keys, but engine expects a tuple""" x,mask = batch["image"], batch["mask"] x = self.norm(x) x_out, mask_out = self.transform(x, mask) return x_out.squeeze(0), mask_out.squeeze(0).squeeze(0), batch["meta"] class SenBenchCloudS2Dataset: def __init__(self, config): self.dataset_config = config self.img_size = (config.image_resolution, config.image_resolution) self.root_dir = config.data_path def create_dataset(self): train_transform = SegDataAugmentation(split="train", size=self.img_size) eval_transform = SegDataAugmentation(split="test", size=self.img_size) dataset_train = SenBenchCloudS2( root=self.root_dir, split="train", transforms=train_transform ) dataset_val = SenBenchCloudS2( root=self.root_dir, split="val", transforms=eval_transform ) dataset_test = SenBenchCloudS2( root=self.root_dir, split="test", transforms=eval_transform ) return dataset_train, dataset_val, dataset_test