File size: 12,059 Bytes
bd8c68b
 
c56a063
f9233bd
 
 
 
c56a063
f9233bd
c56a063
f9233bd
 
 
c56a063
 
f9233bd
bd8c68b
f9233bd
9d90aa8
f9233bd
 
 
 
 
 
 
 
 
 
 
 
 
 
13318e5
f9233bd
13318e5
f9233bd
af8df14
f9233bd
af8df14
f9233bd
13318e5
f9233bd
13318e5
f9233bd
 
 
 
 
 
 
 
13318e5
f9233bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13318e5
 
f9233bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ca37fd
 
 
 
 
 
f9233bd
3ca37fd
 
 
f9233bd
3ca37fd
 
 
f9233bd
3ca37fd
 
 
f9233bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ca37fd
 
 
f9233bd
 
 
 
 
3ca37fd
 
 
f9233bd
 
 
3ca37fd
 
 
f9233bd
 
 
3ca37fd
 
 
f9233bd
 
 
 
 
 
 
 
 
 
 
3ca37fd
 
 
f9233bd
 
 
 
3ca37fd
 
 
f9233bd
 
 
 
 
 
 
 
 
 
 
3ca37fd
 
 
 
f9233bd
 
 
 
 
 
 
 
 
 
 
 
13318e5
f9233bd
 
 
 
 
 
 
 
 
 
 
 
c56a063
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
---
license: cc-by-4.0
task_categories:
  - text-classification
  - zero-shot-classification
task_ids:
  - multi-label-classification
language:
  - en
tags:
  - Human Values
  - Value Detection
  - Multi-Label
pretty_name: Human Value Detection Dataset
size_categories:
  - 1K<n<10K
---
# The Touch&eacute;23-ValueEval Dataset

## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
    - [Dataset Summary](#dataset-summary)
    - [Dataset Usage](#dataset-usage)
    - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
    - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
    - [Argument Instances](#argument-instances)
    - [Metadata Instances](#metadata-instances)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)

## Dataset Description

- **Homepage:** [https://webis.de/data/touche23-valueeval.html](https://webis.de/data/touche23-valueeval.html)
- **Repository:** [Zenodo](https://doi.org/10.5281/zenodo.6814563)
- **Paper:** [The Touch&eacute;23-ValueEval Dataset for Identifying Human Values behind Arguments.](https://webis.de/downloads/publications/papers/mirzakhmedova_2023a.pdf)
- **Leaderboard:** [https://touche.webis.de/](https://touche.webis.de/semeval23/touche23-web/index.html#results)
- **Point of Contact:** [Webis Group](https://webis.de/people.html)

### Dataset Summary

The Touch&eacute;23-ValueEval Dataset comprises 9324 arguments from six different sources. An arguments source is indicated with the first letter of its `Argument ID`:
- `A`: [IBM-ArgQ-Rank-30kArgs](https://research.ibm.com/haifa/dept/vst/debating_data.shtml#Argument%20Quality)
- `C`:Chinese question-answering website [Zhihu](https://www.zhihu.com)
- `D`:[Group Discussion Ideas (GD IDEAS)](https://www.groupdiscussionideas.com)
- `E`:[The Conference for the Future of Europe](https://futureu.europa.eu)
- `F`:Contribution by the language.ml lab (Doratossadat, Omid, Mohammad, Ehsaneddin) [1]:
    arguments from the "Nahj al-Balagha" [2] and "Ghurar al-Hikam wa Durar ak-Kalim" [3]
- `G`:[The New York Times](https://www.nytimes.com)

The annotated labels are based on the value taxonomy published in
[Identifying the Human Values behind Arguments](https://webis.de/publications.html#kiesel_2022b) (Kiesel et al. 2022) at ACL'22.

[1] https://language.ml
[2] https://en.wikipedia.org/wiki/Nahj_al-Balagha
[3] https://en.wikipedia.org/wiki/Ghurar_al-Hikam_wa_Durar_al-Kalim

### Dataset Usage

The default configuration name is `main`.
```python
from datasets import load_dataset
dataset = load_dataset("webis/Touche23-ValueEval")
print(dataset['train'].info.description)
for argument in iter(dataset['train']):
    print(f"{argument['Argument ID']}: {argument['Stance']} '{argument['Conclusion']}': {argument['Premise']}")
```

### Supported Tasks and Leaderboards

Human Value Detection

### Languages

The [Argument Instances](#argument-instances) are all monolingual; it only includes English (mostly en-US) documents.
The [Metadata Instances](#metadata-instances) for some dataset parts additionally state the arguments in their original language and phrasing.

## Dataset Structure

### Argument Instances

Each argument instance has the following attributes:
- `Argument ID`: The unique identifier for the argument within the dataset
- `Conclusion`: Conclusion text of the argument
- `Stance`: Stance of the `Premise` towards the `Conclusion; one of "in favor of", "against"
- `Premise`: Premise text of the argument
- `Labels`: The `Labels` for each example is an array of 1s (argument resorts to value) and 0s (argument does not resort to value). The order is the same as in the original files.

Additionally, the labels are separated into *value-categories*, aka. level 2 labels of the value taxonomy (Kiesel et al. 2022b), and *human values*, aka. level 1 labels of the value taxonomy.
This distinction is also reflected in the configuration names:
- `<config>`: As the [Task](https://touche.webis.de/semeval23/touche23-web/) is focused mainly on the detection of value-categories,
    each base configuration ([listed below](#p-list-base-configs)) has the 20 value-categories as labels:
  ```python
  labels = ["Self-direction: thought", "Self-direction: action", "Stimulation", "Hedonism", "Achievement", "Power: dominance", "Power: resources", "Face", "Security: personal", "Security: societal", "Tradition", "Conformity: rules", "Conformity: interpersonal", "Humility", "Benevolence: caring", "Benevolence: dependability", "Universalism: concern", "Universalism: nature", "Universalism: tolerance", "Universalism: objectivity"]
  ```
- `<config>-level1`: The 54 human values from the level 1 of the value taxonomy are not used for the 2023 task
    (except for the annotation), but are still listed here for some might find them useful for understanding the value
    categories. Their order is also the same as in the original files. For more details see the [value-categories](#metadata-instances) configuration.

<p id="p-list-base-configs">The configuration names (as replacements for <code>&lt;config&gt;</code>) in this dataset are:</p>

- `main`: 8865 arguments (sources: `A`, `D`, `E`) with splits `train`, `validation`, and `test` (default configuration name)
  ```python
  dataset_main_train = load_dataset("webis/Touche23-ValueEval", split="train")
  dataset_main_validation = load_dataset("webis/Touche23-ValueEval", split="validation")
  dataset_main_test = load_dataset("webis/Touche23-ValueEval", split="test")
  ```
- `nahjalbalagha`: 279 arguments (source: `F`) with split `test`
  ```python
  dataset_nahjalbalagha_test = load_dataset("webis/Touche23-ValueEval", name="nahjalbalagha", split="test")
  ```
- `nyt`: 80 arguments (source: `G`) with split `test`
  ```python
  dataset_nyt_test = load_dataset("webis/Touche23-ValueEval", name="nyt", split="test")
  ```
- `zhihu`: 100 arguments (source: `C`) with split `validation`
  ```python
  dataset_zhihu_validation = load_dataset("webis/Touche23-ValueEval", name="zhihu", split="validation")
  ```

Please note that due to copyright reasons, there currently does not exist a direct download link to the arguments contained in the
New york Times
dataset. Accessing any of the `nyt` or `nyt-level1` configurations will therefore use the specifically created
[nyt-downloader program](https://github.com/touche-webis-de/touche-code/tree/main/semeval23/human-value-detection/nyt-downloader)
to create and access the arguments locally. See the program's
[README](https://github.com/touche-webis-de/touche-code/blob/main/semeval23/human-value-detection/nyt-downloader/README.md)
for further details.

### Metadata Instances

The following lists all configuration names for metadata. Each configuration only has a single split named `meta`.
- `ibm-meta`: Each row corresponds to one argument (IDs starting with `A`) from the [IBM-ArgQ-Rank-30kArgs](https://research.ibm.com/haifa/dept/vst/debating_data.shtml#Argument%20Quality)
    - `Argument ID`: The unique identifier for the argument
    - `WA`: the quality label according to the weighted-average scoring function
    - `MACE-P`: the quality label according to the MACE-P scoring function
    - `stance_WA`: the stance label according to the weighted-average scoring function
    - `stance_WA_conf`: the confidence in the stance label according to the weighted-average scoring function
  ```python
  dataset_ibm_metadata = load_dataset("webis/Touche23-ValueEval", name="ibm-meta", split="meta")
  ```
- `zhihu-meta`: Each row corresponds to one argument (IDs starting with `C`) from the Chinese question-answering website [Zhihu](https://www.zhihu.com)
    - `Argument ID`: The unique identifier for the argument
    - `Conclusion Chinese`: The original chinese conclusion statement
    - `Premise Chinese`: The original chinese premise statement
    - `URL`: Link to the original statement the argument was taken from
  ```python
  dataset_zhihu_metadata = load_dataset("webis/Touche23-ValueEval", name="zhihu-meta", split="meta")
  ```
- `gdi-meta`: Each row corresponds to one argument (IDs starting with `D`) from [GD IDEAS](https://www.groupdiscussionideas.com/)
    - `Argument ID`: The unique identifier for the argument
    - `URL`: Link to the topic the argument was taken from
  ```python
  dataset_gdi_metadata = load_dataset("webis/Touche23-ValueEval", name="gdi-meta", split="meta")
  ```
- `cofe-meta`: Each row corresponds to one argument (IDs starting with `E`) from [the Conference for the Future of Europe](https://futureu.europa.eu)
    - `Argument ID`: The unique identifier for the argument
    - `URL`: Link to the comment the argument was taken from
  ```python
  dataset_cofe_metadata = load_dataset("webis/Touche23-ValueEval", name="cofe-meta", split="meta")
  ```
- `nahjalbalagha-meta`: Each row corresponds to one argument (IDs starting with `F`). This file contains information on the 279 arguments in `nahjalbalagha` (or `nahjalbalagha-level1`)
    and 1047 additional arguments that were not labeled so far. This data was contributed by the language.ml lab.
    - `Argument ID`: The unique identifier for the argument
    - `Conclusion Farsi`: Conclusion text of the argument in Farsi
    - `Stance Farsi`: Stance of the `Premise` towards the `Conclusion`, in Farsi
    - `Premise Farsi`: Premise text of the argument in Farsi
    - `Conclusion English`: Conclusion text of the argument in English (translated from Farsi)
    - `Stance English`: Stance of the `Premise` towards the `Conclusion`; one of "in favor of", "against"
    - `Premise English`: Premise text of the argument in English (translated from Farsi)
    - `Source`: Source text of the argument; one of "Nahj al-Balagha", "Ghurar al-Hikam wa Durar ak-Kalim"; their Farsi translations were used
    - `Method`: How the premise was extracted from the source; one of "extracted" (directly taken), "deduced"; the conclusion are deduced
  ```python
  dataset_nahjalbalagha_metadata = load_dataset("webis/Touche23-ValueEval", name="nahjalbalagha-meta", split="meta")
  ```
- `nyt-meta`: Each row corresponds to one argument (IDs starting with `G`) from [The New York Times](https://www.nytimes.com)
    - `Argument ID`: The unique identifier for the argument
    - `URL`: Link to the article the argument was taken from
    - `Internet Archive timestamp`: Timestamp of the article's version in the Internet Archive that was used
  ```python
  dataset_nyt_metadata = load_dataset("webis/Touche23-ValueEval", name="nyt-meta", split="meta")
  ```
- `value-categories`: Contains a single JSON-entry with the structure of level 2 and level 1 values regarding the value taxonomy:
  ```
  {
    "<value category>": {
      "<level 1 value>": [
        "<exemplary effect a corresponding argument might target>",
        ...
      ], ...
    }, ...
  }
  ```
  As this configuration contains just a single entry, an example usage could be:
  ```python
  value_categories = load_dataset("webis/Touche23-ValueEval", name="value-categories", split="meta")[0]
  ```

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information
[Creative Commons Attribution 4.0 International (CC BY 4.0)](https://creativecommons.org/licenses/by/4.0/)

### Citation Information

```
@Article{mirzakhmedova:2023a,
  author    = {Nailia Mirzakhmedova and Johannes Kiesel and Milad Alshomary and Maximilian Heinrich and Nicolas Handke\
and Xiaoni Cai and Valentin Barriere and Doratossadat Dastgheib and Omid Ghahroodi and {Mohammad Ali} Sadraei\
and Ehsaneddin Asgari and Lea Kawaletz and Henning Wachsmuth and Benno Stein},
  doi       = {10.48550/arXiv.2301.13771},
  journal   = {CoRR},
  month     = jan,
  publisher = {arXiv},
  title     = {{The Touch{\'e}23-ValueEval Dataset for Identifying Human Values behind Arguments}},
  volume    = {abs/2301.13771},
  year      = 2023
}
```