Datasets:
File size: 32,642 Bytes
f9233bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 |
# Copyright 2023 The Touché23-ValueEval Datasets Authors and the current dataset script contributor.
#
# Licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://creativecommons.org/licenses/by/4.0/legalcode
"""The Touch\u00E923-ValueEval Dataset"""
import json
import pandas as pd
import os
import sys
import subprocess
import datasets
_DESCRIPTION = """\
Dataset for Touch\u00E9 / SemEval 2023 Task 4; ValueEval: Identification of Human Values behind Arguments:
https://www.overleaf.com/6679855346wrdckzkdccxg
Based on the original Webis-ArgValues-22 (https://doi.org/10.5281/zenodo.5657249) dataset accompanying the paper
Identifying the Human Values behind Arguments (Kiesel et al. 2022b; https://webis.de/publications.html#kiesel_2022b),
published at ACL'22.
"""
_CITATION = """\
@Article{mirzakhmedova:2023a,
author = {Nailia Mirzakhmedova and Johannes Kiesel and Milad Alshomary and Maximilian Heinrich and Nicolas Handke\
and Xiaoni Cai and Valentin Barriere and Doratossadat Dastgheib and Omid Ghahroodi and {Mohammad Ali} Sadraei\
and Ehsaneddin Asgari and Lea Kawaletz and Henning Wachsmuth and Benno Stein},
doi = {10.48550/arXiv.2301.13771},
journal = {CoRR},
month = jan,
publisher = {arXiv},
title = {{The Touch{\'e}23-ValueEval Dataset for Identifying Human Values behind Arguments}},
volume = {abs/2301.13771},
year = 2023
}"""
_ARGUMENT_DATASET_DESCRIPTION = """\
Each row corresponds to an argument consisting of it's unique identifier (Argument ID) and the arguments content being
its Premise, Stance, and Conclusion.
"""
_LEVEL1_DESCRIPTION = _ARGUMENT_DATASET_DESCRIPTION + """\
The Labels for each example is an array of 1s (argument resorts to value) and 0s (argument does not resort to value).
The 54 human values from the level 1 of the value taxonomy (Kiesel et al. 2022b) are not used for the 2023 task
(except for the annotation), but are still listed here for some might find them useful for understanding the value
categories. Their order is the same as in the original files. For more details see the 'value-categories' configuration."""
_LEVEL2_DESCRIPTION = _ARGUMENT_DATASET_DESCRIPTION + """\
The Labels for each example is an array of 1s (argument resorts to value) and 0s (argument does not resort to value).
The order of the 20 value categories from the level 2 of the value taxonomy (Kiesel et al. 2022b)
is the same as in the original files. For more details see the 'value-categories' configuration."""
_IBM_DESCRIPTION = """\
The 7368 arguments from the IBM-ArgQ-Rank-30kArgs corpus (Gretz et al., 2020):
https://research.ibm.com/haifa/dept/vst/debating_data.shtml#Argument%20Quality"""
_IBM_META_DESCRIPTION = """\
Each entry corresponds to one argument (IDs starting with A) containing the data on argument quality for the respective
argument taken from the IBM-ArgQ-Rank-30kArgs corpus."""
_ZHIHU_DESCRIPTION = """\
Supplementary set of 100 arguments from the recommendation and hotlist section of the Chinese question-answering website Zhihu:
https://www.zhihu.com/explore
which teams can use for training or validating more robust approaches; these have been part of the original\
Webis-ArgValues-22 dataset."""
_ZHIHU_META_DESCRIPTION = """\
Each entry corresponds to one argument (IDs starting with C) reporting the original chinese conclusion and premise
as well as the link to the original statement the argument was taken from."""
_GROUP_DISCUSSION_IDEAS_DESCRIPTION = """\
A set of 399 arguments from the Group Discussion Ideas (GD IDEAS) web page:
https://www.groupdiscussionideas.com/"""
_GROUP_DISCUSSION_IDEAS_META_DESCRIPTION = """\
Each entry corresponds to one argument (IDs starting with D) reporting the link to the topic the argument was taken from."""
_COFE_DESCRIPTION = """\
A set of 1098 arguments from the Conference on the Future of Europe portal:
https://futureu.europa.eu/
The arguments were sampled from an existing dataset (Barriere et al., 2022)."""
_COFE_META_DESCRIPTION = """\
Each entry corresponds to one argument (IDs starting with E) reporting the link to the comment the argument was taken from."""
_NAHJALBALAGHA_DESCRIPTION = """\
Arguments from and based on the Nahj al-Balagha.
This data was contributed by the language.ml lab (Doratossadat, Omid, Mohammad, Ehsaneddin):
https://language.ml/"""
_NAHJALBALAGHA_META_DESCRIPTION = """\
Each entry corresponds to one argument (IDs starting with F) containing information on the 279 arguments in the dataset
(configuration: 'nahjalbalagha') and 1047 additional arguments that were not labeled so far."""
_NYT_DESCRIPTION = """\
Supplementary set of 80 arguments from 12 news articles of The New York Times
https://www.nytimes.com/
that were published between July 2020 and May 2021 and contain at least one of these keywords:
coronavirus (2019-ncov), vaccination and immunization, and epidemics."""
_NYT_META_DESCRIPTION = """\
Each entry corresponds to one argument (IDs starting with G) reporting the link to the article the argument was taken
from and the timestamp of the article's version in the Internet Archive that was used."""
_CATEGORIES_JSON_DESCRIPTION = """\
The single JSON entry in value-categories describes the 20 value categories (level 2 of the taxonomy) of this task
through examples. Each category maps to a dictionary of its contained level 1 values with a given list of exemplary phrases.
The level 1 values are not used for the 2023 task (except for the annotation), but are still listed here for some might
find them useful for understanding the value categories."""
_IBM_CITATION = """\
@inproceedings{gretz:2020,
author = {Shai Gretz and Roni Friedman and Edo Cohen{-}Karlik and Assaf Toledo and Dan Lahav and Ranit Aharonov and Noam Slonim},
title = {A Large-Scale Dataset for Argument Quality Ranking: Construction and Analysis},
booktitle = {34th {AAAI} Conference on Artificial Intelligence ({AAAI} 2020)},
pages = {7805-7813},
publisher = {{AAAI} Press},
year = {2020},
doi = {10.1609/aaai.v34i05.6285},
url = {https://aaai.org/ojs/index.php/AAAI/article/view/6285}
}"""
_COFE_CITATION = """\
@inproceedings{barriere-etal-2022-cofe,
title = "{C}o{FE}: A New Dataset of Intra-Multilingual Multi-target Stance Classification from an Online {E}uropean Participatory Democracy Platform",
author = "Barriere, Valentin and Jacquet, Guillaume Guillaume and Hemamou, Leo",
booktitle = "Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)",
month = nov,
year = "2022",
address = "Online only",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.aacl-short.52",
pages = "418--422"
}"""
_HOMEPAGE = "https://webis.de/data/touche23-valueeval.html"
_LICENSE = "https://creativecommons.org/licenses/by/4.0/legalcode"
######################################
# START OF: Additional variables #####
######################################
_SPLIT_META = datasets.Split('meta')
_CONFIG_NAME_MAIN, _CONFIG_NAME_NAHJALBALAGHA, _CONFIG_NAME_ZHIHU = "main", "nahjalbalagha", "zhihu"
_CONFIG_NAME_MAIN_LEVEL1, _CONFIG_NAME_NAHJALBALAGHA_LEVEL1, _CONFIG_NAME_ZHIHU_LEVEL1 = "main-level1", "nahjalbalagha-level1", "zhihu-level1"
_CONFIG_NAME_NYT, _CONFIG_NAME_NYT_LEVEL1 = "nyt", "nyt-level1"
_CONFIG_NAME_META_A, _CONFIG_NAME_META_D, _CONFIG_NAME_META_E = "ibm-meta", "gdi-meta", "cofe-meta"
_CONFIG_NAME_META_C, _CONFIG_NAME_META_F, _CONFIG_NAME_META_G = "zhihu-meta", "nahjalbalagha-meta", "nyt-meta"
_CONFIG_NAME_VALUE_CATEGORIES = "value-categories"
_SPLIT_TYPE_TRAIN, _SPLIT_TYPE_VAL, _SPLIT_TYPE_TEST = "training", "validation", "test"
_SPLIT_TYPE_META = "meta"
_FILE_TYPE_ARGUMENTS, _FILE_TYPE_LABELS = "arguments", "labels"
_FILE_TYPE_META, _FILE_TYPE_JSON = "meta", "json"
_FILE_TYPE_DOWNLOADER = "downloader"
####################################
# END OF: Additional variables #####
####################################
###########################
# START OF: Data URLs #####
###########################
_ZENODO_LINK = "https://zenodo.org/record/7879430/files/"
_URL = os.environ.get('TIRA_INPUT_DIRECTORY', _ZENODO_LINK)
_NYT_DOWNLOADER_URL = "https://raw.githubusercontent.com/touche-webis-de/touche-code/main/semeval23/human-value-detection/nyt-downloader/"
_NYT_ARGUMENTS_FILE_LOCAL = "webis_touche23-valueeval_arguments-test-nyt.tsv"
_NYT_ARGUMENTS_FILE_ON_TIRA = "arguments-test-nyt.tsv"
_URLS = {
_CONFIG_NAME_MAIN: {
_SPLIT_TYPE_TRAIN: {
_FILE_TYPE_ARGUMENTS: _URL + "arguments-training.tsv",
_FILE_TYPE_LABELS: _URL + "labels-training.tsv"
},
_SPLIT_TYPE_VAL: {
_FILE_TYPE_ARGUMENTS: _URL + "arguments-validation.tsv",
_FILE_TYPE_LABELS: _URL + "labels-validation.tsv"
},
_SPLIT_TYPE_TEST: {
_FILE_TYPE_ARGUMENTS: _URL + "arguments-test.tsv",
_FILE_TYPE_LABELS: _URL + "labels-test.tsv"
}
},
_CONFIG_NAME_MAIN_LEVEL1: {
_SPLIT_TYPE_TRAIN: {
_FILE_TYPE_ARGUMENTS: _URL + "arguments-training.tsv",
_FILE_TYPE_LABELS: _URL + "level1-labels-training.tsv"
},
_SPLIT_TYPE_VAL: {
_FILE_TYPE_ARGUMENTS: _URL + "arguments-validation.tsv",
_FILE_TYPE_LABELS: _URL + "level1-labels-validation.tsv"
},
_SPLIT_TYPE_TEST: {
_FILE_TYPE_ARGUMENTS: _URL + "arguments-test.tsv",
_FILE_TYPE_LABELS: _URL + "level1-labels-test.tsv"
}
},
_CONFIG_NAME_NAHJALBALAGHA: {
_SPLIT_TYPE_TEST: {
_FILE_TYPE_ARGUMENTS: _URL + "arguments-test-nahjalbalagha.tsv",
_FILE_TYPE_LABELS: _URL + "labels-test-nahjalbalagha.tsv"
}
},
_CONFIG_NAME_NAHJALBALAGHA_LEVEL1: {
_SPLIT_TYPE_TEST: {
_FILE_TYPE_ARGUMENTS: _URL + "arguments-test-nahjalbalagha.tsv",
_FILE_TYPE_LABELS: _URL + "level1-labels-test-nahjalbalagha.tsv"
}
},
_CONFIG_NAME_NYT: {
_SPLIT_TYPE_TEST: {
_FILE_TYPE_LABELS: _URL + "labels-test-nyt.tsv"
}
},
_CONFIG_NAME_NYT_LEVEL1: {
_SPLIT_TYPE_TEST: {
_FILE_TYPE_LABELS: _URL + "level1-labels-test-nyt.tsv"
}
},
_CONFIG_NAME_ZHIHU: {
_SPLIT_TYPE_VAL: {
_FILE_TYPE_ARGUMENTS: _URL + "arguments-validation-zhihu.tsv",
_FILE_TYPE_LABELS: _URL + "labels-validation-zhihu.tsv"
}
},
_CONFIG_NAME_ZHIHU_LEVEL1: {
_SPLIT_TYPE_VAL: {
_FILE_TYPE_ARGUMENTS: _URL + "arguments-validation-zhihu.tsv",
_FILE_TYPE_LABELS: _URL + "level1-labels-validation-zhihu.tsv"
}
},
_CONFIG_NAME_META_A: {
_SPLIT_TYPE_META: {
_FILE_TYPE_META: _URL + "meta-arguments-a.tsv"
}
},
_CONFIG_NAME_META_D: {
_SPLIT_TYPE_META: {
_FILE_TYPE_META: _URL + "meta-arguments-d.tsv"
}
},
_CONFIG_NAME_META_E: {
_SPLIT_TYPE_META: {
_FILE_TYPE_META: _URL + "meta-arguments-e.tsv"
}
},
_CONFIG_NAME_META_C: {
_SPLIT_TYPE_META: {
_FILE_TYPE_META: _URL + "meta-arguments-c.tsv"
}
},
_CONFIG_NAME_META_F: {
_SPLIT_TYPE_META: {
_FILE_TYPE_META: _URL + "meta-arguments-f.tsv"
}
},
_CONFIG_NAME_META_G: {
_SPLIT_TYPE_META: {
_FILE_TYPE_META: _URL + "meta-arguments-g.tsv"
}
},
_CONFIG_NAME_VALUE_CATEGORIES: {
_SPLIT_TYPE_META: {
_FILE_TYPE_JSON: _URL + "value-categories.json"
}
}
}
_NYT_DOWNLOADER_FILES = {
"requirements": _NYT_DOWNLOADER_URL + "requirements.txt",
"downloader": _NYT_DOWNLOADER_URL + "nyt-downloader.py",
"input-file": _NYT_DOWNLOADER_URL + "nyt01-spans.tsv",
"checksum": _NYT_DOWNLOADER_URL + "arguments-test-nyt.sha256"
}
if _URL != _ZENODO_LINK:
# running on TIRA
_URLS[_CONFIG_NAME_NYT][_SPLIT_TYPE_TEST][_FILE_TYPE_ARGUMENTS] = _URL + _NYT_ARGUMENTS_FILE_ON_TIRA
_URLS[_CONFIG_NAME_NYT_LEVEL1][_SPLIT_TYPE_TEST][_FILE_TYPE_ARGUMENTS] = _URL + _NYT_ARGUMENTS_FILE_ON_TIRA
else:
# running locally
_URLS[_CONFIG_NAME_NYT][_SPLIT_TYPE_TEST][_FILE_TYPE_DOWNLOADER] = _NYT_DOWNLOADER_FILES
_URLS[_CONFIG_NAME_NYT_LEVEL1][_SPLIT_TYPE_TEST][_FILE_TYPE_DOWNLOADER] = _NYT_DOWNLOADER_FILES
#########################
# END OF: Data URLs #####
#########################
##########################
# START OF: Features #####
##########################
_FEATURES_ARGUMENT_SETS = datasets.Features(
{
"Argument ID": datasets.Value("string"),
"Conclusion": datasets.Value("string"),
"Stance": datasets.Value("string"),
"Premise": datasets.Value("string"),
"Labels": datasets.Sequence(feature=datasets.Value("int32"))
}
)
_FEATURES_META_SETS = {
_CONFIG_NAME_META_A: datasets.Features(
{
"Argument ID": datasets.Value("string"),
"WA": datasets.Value("float64"),
"MACE-P": datasets.Value("float64"),
"stance_WA": datasets.Value("int32"),
"stance_WA_conf": datasets.Value("float64")
}
),
_CONFIG_NAME_META_D: datasets.Features(
{
"Argument ID": datasets.Value("string"),
"URL": datasets.Value("string")
}
),
_CONFIG_NAME_META_E: datasets.Features(
{
"Argument ID": datasets.Value("string"),
"URL": datasets.Value("string")
}
),
_CONFIG_NAME_META_C: datasets.Features(
{
"Argument ID": datasets.Value("string"),
"Conclusion Chinese": datasets.Value("string"),
"Premise Chinese": datasets.Value("string"),
"URL": datasets.Value("string")
}
),
_CONFIG_NAME_META_F: datasets.Features(
{
"Argument ID": datasets.Value("string"),
"Conclusion Farsi": datasets.Value("string"),
"Stance Farsi": datasets.Value("string"),
"Premise Farsi": datasets.Value("string"),
"Conclusion English": datasets.Value("string"),
"Stance English": datasets.Value("string"),
"Premise English": datasets.Value("string"),
"Source": datasets.Value("string"),
"Method": datasets.Value("string")
}
),
_CONFIG_NAME_META_G: datasets.Features(
{
"Argument ID": datasets.Value("string"),
"URL": datasets.Value("string"),
"Internet Archive timestamp": datasets.Value("string")
}
),
_CONFIG_NAME_VALUE_CATEGORIES: datasets.Features(
{
"Self-direction: thought": {
"Be creative": datasets.Sequence(feature=datasets.Value("string")),
"Be curious": datasets.Sequence(feature=datasets.Value("string")),
"Have freedom of thought": datasets.Sequence(feature=datasets.Value("string"))
},
"Self-direction: action": {
"Be choosing own goals": datasets.Sequence(feature=datasets.Value("string")),
"Be independent": datasets.Sequence(feature=datasets.Value("string")),
"Have freedom of action": datasets.Sequence(feature=datasets.Value("string")),
"Have privacy": datasets.Sequence(feature=datasets.Value("string"))
},
"Stimulation": {
"Have an exciting life": datasets.Sequence(feature=datasets.Value("string")),
"Have a varied life": datasets.Sequence(feature=datasets.Value("string")),
"Be daring": datasets.Sequence(feature=datasets.Value("string"))
},
"Hedonism": {
"Have pleasure": datasets.Sequence(feature=datasets.Value("string"))
},
"Achievement": {
"Be ambitious": datasets.Sequence(feature=datasets.Value("string")),
"Have success": datasets.Sequence(feature=datasets.Value("string")),
"Be capable": datasets.Sequence(feature=datasets.Value("string")),
"Be intellectual": datasets.Sequence(feature=datasets.Value("string")),
"Be courageous": datasets.Sequence(feature=datasets.Value("string"))
},
"Power: dominance": {
"Have influence": datasets.Sequence(feature=datasets.Value("string")),
"Have the right to command": datasets.Sequence(feature=datasets.Value("string"))
},
"Power: resources": {
"Have wealth": datasets.Sequence(feature=datasets.Value("string"))
},
"Face": {
"Have social recognition": datasets.Sequence(feature=datasets.Value("string")),
"Have a good reputation": datasets.Sequence(feature=datasets.Value("string"))
},
"Security: personal": {
"Have a sense of belonging": datasets.Sequence(feature=datasets.Value("string")),
"Have good health": datasets.Sequence(feature=datasets.Value("string")),
"Have no debts": datasets.Sequence(feature=datasets.Value("string")),
"Be neat and tidy": datasets.Sequence(feature=datasets.Value("string")),
"Have a comfortable life": datasets.Sequence(feature=datasets.Value("string"))
},
"Security: societal": {
"Have a safe country": datasets.Sequence(feature=datasets.Value("string")),
"Have a stable society": datasets.Sequence(feature=datasets.Value("string"))
},
"Tradition": {
"Be respecting traditions": datasets.Sequence(feature=datasets.Value("string")),
"Be holding religious faith": datasets.Sequence(feature=datasets.Value("string"))
},
"Conformity: rules": {
"Be compliant": datasets.Sequence(feature=datasets.Value("string")),
"Be self-disciplined": datasets.Sequence(feature=datasets.Value("string")),
"Be behaving properly": datasets.Sequence(feature=datasets.Value("string"))
},
"Conformity: interpersonal": {
"Be polite": datasets.Sequence(feature=datasets.Value("string")),
"Be honoring elders": datasets.Sequence(feature=datasets.Value("string"))
},
"Humility": {
"Be humble": datasets.Sequence(feature=datasets.Value("string")),
"Have life accepted as is": datasets.Sequence(feature=datasets.Value("string"))
},
"Benevolence: caring": {
"Be helpful": datasets.Sequence(feature=datasets.Value("string")),
"Be honest": datasets.Sequence(feature=datasets.Value("string")),
"Be forgiving": datasets.Sequence(feature=datasets.Value("string")),
"Have the own family secured": datasets.Sequence(feature=datasets.Value("string")),
"Be loving": datasets.Sequence(feature=datasets.Value("string"))
},
"Benevolence: dependability": {
"Be responsible": datasets.Sequence(feature=datasets.Value("string")),
"Have loyalty towards friends": datasets.Sequence(feature=datasets.Value("string"))
},
"Universalism: concern": {
"Have equality": datasets.Sequence(feature=datasets.Value("string")),
"Be just": datasets.Sequence(feature=datasets.Value("string")),
"Have a world at peace": datasets.Sequence(feature=datasets.Value("string"))
},
"Universalism: nature": {
"Be protecting the environment": datasets.Sequence(feature=datasets.Value("string")),
"Have harmony with nature": datasets.Sequence(feature=datasets.Value("string")),
"Have a world of beauty": datasets.Sequence(feature=datasets.Value("string"))
},
"Universalism: tolerance": {
"Be broadminded": datasets.Sequence(feature=datasets.Value("string")),
"Have the wisdom to accept others": datasets.Sequence(feature=datasets.Value("string"))
},
"Universalism: objectivity": {
"Be logical": datasets.Sequence(feature=datasets.Value("string")),
"Have an objective view": datasets.Sequence(feature=datasets.Value("string"))
}
}
)
}
########################
# END OF: Features #####
########################
class ToucheValueEvalConfig(datasets.BuilderConfig):
"""BuilderConfig for Touch\u00E923-ValueEval."""
def __init__(self, features, data_urls, citation=None, **kwargs):
"""BuilderConfig for Touch\u00E923-ValueEval.
Args:
features: `list[string]`, list of the features that will appear in the
feature dict.
data_urls: `dict[string,dict[string,string]`, urls to download the dataset files from.
citation: `string`, citation for the data set.
**kwargs: keyword arguments forwarded to super.
"""
# Version history:
# 0.0.2: Initial version.
super(ToucheValueEvalConfig, self).__init__(version=datasets.Version("0.0.2"), **kwargs)
self.features = features
self.data_urls = data_urls
self.citation = citation
class ToucheValueEval(datasets.GeneratorBasedBuilder):
"""The Touch\u00E923-ValueEval dataset."""
BUILDER_CONFIGS = [
ToucheValueEvalConfig(
name=_CONFIG_NAME_MAIN,
features=_FEATURES_ARGUMENT_SETS,
data_urls=_URLS[_CONFIG_NAME_MAIN],
description=_IBM_DESCRIPTION + '\n' + _COFE_DESCRIPTION + '\n' + _GROUP_DISCUSSION_IDEAS_DESCRIPTION + '\n' + _LEVEL2_DESCRIPTION,
citation=_IBM_CITATION + '\n' + _COFE_CITATION
),
ToucheValueEvalConfig(
name=_CONFIG_NAME_MAIN_LEVEL1,
features=_FEATURES_ARGUMENT_SETS,
data_urls=_URLS[_CONFIG_NAME_MAIN_LEVEL1],
description=_IBM_DESCRIPTION + '\n' + _COFE_DESCRIPTION + '\n' + _GROUP_DISCUSSION_IDEAS_DESCRIPTION + '\n' + _LEVEL1_DESCRIPTION,
citation=_IBM_CITATION + '\n' + _COFE_CITATION
),
ToucheValueEvalConfig(
name=_CONFIG_NAME_NAHJALBALAGHA,
features=_FEATURES_ARGUMENT_SETS,
data_urls=_URLS[_CONFIG_NAME_NAHJALBALAGHA],
description=_NAHJALBALAGHA_DESCRIPTION + '\n' + _LEVEL2_DESCRIPTION
),
ToucheValueEvalConfig(
name=_CONFIG_NAME_NAHJALBALAGHA_LEVEL1,
features=_FEATURES_ARGUMENT_SETS,
data_urls=_URLS[_CONFIG_NAME_NAHJALBALAGHA],
description=_NAHJALBALAGHA_DESCRIPTION + '\n' + _LEVEL1_DESCRIPTION
),
ToucheValueEvalConfig(
name=_CONFIG_NAME_NYT,
features=_FEATURES_ARGUMENT_SETS,
data_urls=_URLS[_CONFIG_NAME_NYT],
description=_NYT_DESCRIPTION + '\n' + _LEVEL2_DESCRIPTION
),
ToucheValueEvalConfig(
name=_CONFIG_NAME_NYT_LEVEL1,
features=_FEATURES_ARGUMENT_SETS,
data_urls=_URLS[_CONFIG_NAME_NYT_LEVEL1],
description=_NYT_DESCRIPTION + '\n' + _LEVEL1_DESCRIPTION
),
ToucheValueEvalConfig(
name=_CONFIG_NAME_ZHIHU,
features=_FEATURES_ARGUMENT_SETS,
data_urls=_URLS[_CONFIG_NAME_ZHIHU],
description=_ZHIHU_DESCRIPTION + '\n' + _LEVEL2_DESCRIPTION
),
ToucheValueEvalConfig(
name=_CONFIG_NAME_ZHIHU_LEVEL1,
features=_FEATURES_ARGUMENT_SETS,
data_urls=_URLS[_CONFIG_NAME_ZHIHU_LEVEL1],
description=_ZHIHU_DESCRIPTION + '\n' + _LEVEL1_DESCRIPTION
),
ToucheValueEvalConfig(
name=_CONFIG_NAME_META_A,
features=_FEATURES_META_SETS[_CONFIG_NAME_META_A],
data_urls=_URLS[_CONFIG_NAME_META_A],
description=_IBM_DESCRIPTION + '\n' + _IBM_META_DESCRIPTION,
citation=_IBM_CITATION
),
ToucheValueEvalConfig(
name=_CONFIG_NAME_META_D,
features=_FEATURES_META_SETS[_CONFIG_NAME_META_D],
data_urls=_URLS[_CONFIG_NAME_META_D],
description=_GROUP_DISCUSSION_IDEAS_DESCRIPTION + '\n' + _GROUP_DISCUSSION_IDEAS_META_DESCRIPTION
),
ToucheValueEvalConfig(
name=_CONFIG_NAME_META_E,
features=_FEATURES_META_SETS[_CONFIG_NAME_META_E],
data_urls=_URLS[_CONFIG_NAME_META_E],
description=_COFE_DESCRIPTION + '\n' + _COFE_META_DESCRIPTION,
citation=_COFE_CITATION
),
ToucheValueEvalConfig(
name=_CONFIG_NAME_META_C,
features=_FEATURES_META_SETS[_CONFIG_NAME_META_C],
data_urls=_URLS[_CONFIG_NAME_META_C],
description=_ZHIHU_DESCRIPTION + '\n' + _ZHIHU_META_DESCRIPTION
),
ToucheValueEvalConfig(
name=_CONFIG_NAME_META_F,
features=_FEATURES_META_SETS[_CONFIG_NAME_META_F],
data_urls=_URLS[_CONFIG_NAME_META_F],
description=_NAHJALBALAGHA_DESCRIPTION + '\n' + _NAHJALBALAGHA_META_DESCRIPTION
),
ToucheValueEvalConfig(
name=_CONFIG_NAME_META_G,
features=_FEATURES_META_SETS[_CONFIG_NAME_META_G],
data_urls=_URLS[_CONFIG_NAME_META_G],
description=_NYT_DESCRIPTION + '\n' + _NYT_META_DESCRIPTION
),
ToucheValueEvalConfig(
name=_CONFIG_NAME_VALUE_CATEGORIES,
features=_FEATURES_META_SETS[_CONFIG_NAME_VALUE_CATEGORIES],
data_urls=_URLS[_CONFIG_NAME_VALUE_CATEGORIES],
description=_CATEGORIES_JSON_DESCRIPTION
),
]
DEFAULT_CONFIG_NAME = _CONFIG_NAME_MAIN
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION + self.config.description,
features=self.config.features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=(self.config.citation + '\n' if self.config.citation is not None else '') + _CITATION,
)
def _split_generators(self, dl_manager):
urls = self.config.data_urls
file_dict = dl_manager.download_and_extract(urls)
if self.config.name == _CONFIG_NAME_MAIN or self.config.name == _CONFIG_NAME_MAIN_LEVEL1:
splits = [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepaths": file_dict[_SPLIT_TYPE_TRAIN],
"split": _SPLIT_TYPE_TRAIN
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepaths": file_dict[_SPLIT_TYPE_VAL],
"split": _SPLIT_TYPE_VAL
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepaths": file_dict[_SPLIT_TYPE_TEST],
"split": _SPLIT_TYPE_TEST
},
),
]
elif self.config.name in [_CONFIG_NAME_ZHIHU, _CONFIG_NAME_ZHIHU_LEVEL1]:
splits = [
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepaths": file_dict[_SPLIT_TYPE_VAL],
"split": _SPLIT_TYPE_VAL
},
),
]
elif self.config.name in [_CONFIG_NAME_NYT, _CONFIG_NAME_NYT_LEVEL1]:
splits = [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepaths": file_dict[_SPLIT_TYPE_TEST],
"split": _SPLIT_TYPE_TEST
},
),
]
elif self.config.name in [_CONFIG_NAME_NAHJALBALAGHA, _CONFIG_NAME_NAHJALBALAGHA_LEVEL1]:
splits = [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepaths": file_dict[_SPLIT_TYPE_TEST],
"split": _SPLIT_TYPE_TEST
},
),
]
else:
splits = [
datasets.SplitGenerator(
name=_SPLIT_META,
gen_kwargs={
"filepaths": file_dict[_SPLIT_TYPE_META],
"split": _SPLIT_TYPE_META
},
),
]
return splits
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepaths, split):
file_types = filepaths.keys()
if self.config.name in [_CONFIG_NAME_NYT, _CONFIG_NAME_NYT_LEVEL1] and _FILE_TYPE_DOWNLOADER in file_types:
# running locally => download nyt arguments
downloader_paths = filepaths[_FILE_TYPE_DOWNLOADER]
directory = os.path.dirname(downloader_paths['downloader'])
arguments_file = os.path.join(directory, _NYT_ARGUMENTS_FILE_LOCAL)
if not os.path.exists(arguments_file):
subprocess.check_call(f"pip3 install -r {downloader_paths['requirements']}", shell=True, stdout=sys.stdout,
stderr=subprocess.STDOUT)
subprocess.check_call(f"spacy download en_core_web_sm", shell=True, stdout=sys.stdout,
stderr=subprocess.STDOUT)
subprocess.check_call(
f"python3 {downloader_paths['downloader']} --input-file {downloader_paths['input-file']} --output-file {arguments_file}",
shell=True, stdout=sys.stdout, stderr=subprocess.STDOUT)
# extract checksum
with open(downloader_paths['checksum'], mode='r', encoding='utf-8') as f:
checksum = f.readline().split(' ')[0]
subprocess.check_call(f"echo \"{checksum} {arguments_file}\" | sha256sum --check", shell=True,
stdout=sys.stdout, stderr=subprocess.STDOUT)
filepaths[_FILE_TYPE_ARGUMENTS] = arguments_file
if _FILE_TYPE_ARGUMENTS in file_types:
# argument data
with open(filepaths[_FILE_TYPE_ARGUMENTS], encoding='utf-8') as f:
dataframe_arguments = pd.read_csv(f, sep='\t', header=0)
if _FILE_TYPE_LABELS not in file_types:
label_names = []
else:
with open(filepaths[_FILE_TYPE_LABELS], encoding='utf-8') as f:
dataframe_labels = pd.read_csv(f, sep='\t', header=0)
label_names = [x for x in dataframe_labels.columns if x != "Argument ID"]
dataframe_arguments = dataframe_arguments.join(
dataframe_labels.set_index('Argument ID'), on='Argument ID', how='inner'
)
for key, row in dataframe_arguments.iterrows():
yield key, {
"Argument ID": row["Argument ID"],
"Conclusion": row["Conclusion"],
"Stance": row["Stance"],
"Premise": row["Premise"],
"Labels": [int(row[x]) for x in label_names],
}
elif _FILE_TYPE_META in file_types:
# meta data
with open(filepaths[_FILE_TYPE_META], encoding='utf-8') as f:
dataframe_meta = pd.read_csv(f, sep='\t', header=0)
for key, row in dataframe_meta.iterrows():
yield key, {str(column): row[str(column)] for column in row.keys()}
else:
# json data
with open(filepaths[_FILE_TYPE_JSON], encoding='utf-8') as f:
value_categories = json.load(f)
yield 0, value_categories
|