File size: 5,024 Bytes
b3e19c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69cd380
 
e3e4228
69cd380
e3e4228
 
 
69cd380
 
 
 
e3e4228
69cd380
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3e4228
 
 
 
 
 
 
 
 
 
 
 
 
69cd380
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3e4228
 
 
 
 
 
69cd380
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
---
dataset_info:
  features:
  - name: id
    dtype: string
  - name: question
    dtype: string
  - name: options
    list: string
  - name: answer
    dtype: string
  - name: task_plan
    dtype: string
  - name: video
    dtype: binary
  splits:
  - name: random_video_3d_what_move
    num_bytes: 8721672
    num_examples: 300
  - name: random_video_3d_where_move
    num_bytes: 9374584
    num_examples: 300
  - name: random_video_3d_what_attribute_move
    num_bytes: 8721672
    num_examples: 300
  - name: random_video_3d_what_rotate
    num_bytes: 12685235
    num_examples: 300
  - name: random_video_3d_where_rotate
    num_bytes: 12254138
    num_examples: 300
  - name: random_video_3d_what_attribute_rotate
    num_bytes: 12462182
    num_examples: 300
  - name: random_video_sg_what_object
    num_bytes: 525095218
    num_examples: 300
  - name: random_video_sg_what_relation
    num_bytes: 534471346
    num_examples: 300
  - name: random_video_sg_what_action
    num_bytes: 571747390
    num_examples: 300
  download_size: 612311506
  dataset_size: 1695533437
configs:
- config_name: default
  data_files:
  - split: random_video_3d_what_move
    path: data/random_video_3d_what_move-*
  - split: random_video_3d_where_move
    path: data/random_video_3d_where_move-*
  - split: random_video_3d_what_attribute_move
    path: data/random_video_3d_what_attribute_move-*
  - split: random_video_3d_what_rotate
    path: data/random_video_3d_what_rotate-*
  - split: random_video_3d_where_rotate
    path: data/random_video_3d_where_rotate-*
  - split: random_video_3d_what_attribute_rotate
    path: data/random_video_3d_what_attribute_rotate-*
  - split: random_video_sg_what_object
    path: data/random_video_sg_what_object-*
  - split: random_video_sg_what_relation
    path: data/random_video_sg_what_relation-*
  - split: random_video_sg_what_action
    path: data/random_video_sg_what_action-*
---

# Dataset Card for TaskMeAnything-v1-videoqa-random
<h2 align="center"> TaskMeAnything-v1-videoqa-random dataset</h2>

<h2 align="center"> <a href="https://www.task-me-anything.org/">🌐 Website</a> | <a href="https://arxiv.org/abs/2406.11775">πŸ“‘ Paper</a> | <a href="https://huggingface.co/collections/jieyuz2/taskmeanything-664ebf028ab2524c0380526a">πŸ€— Huggingface</a> | <a href="https://huggingface.co/spaces/zixianma/TaskMeAnything-UI">πŸ’» Interface</a></h2>
    
<h5 align="center"> If you like our project, please give us a star ⭐ on GitHub for latest update.  </h2>

## TaskMeAnything-v1-Random
[TaskMeAnything-v1-videoqa-random](https://huggingface.co/datasets/weikaih/TaskMeAnything-v1-videoqa-random) is a dataset which randomly sampled questions from TaskMeAnything-v1, including 2,700 VideoQA questions. The dataset contains 9 splits, while each splits contains 300 questions from a specific task generator in TaskMeAnything-v1. For each row of dataset, it includes: video, question, options, answer and its corresponding task plan.


### Load TaskMeAnything-v1-Random VideoQA Dataset and Convert Video Binary Stream to mp4
* Since Huggingface does not support saving .mp4 files in datasets, we save videos in the format of binary streams. After loading, you can convert the video binary stream to .mp4 using the following method.
```
import datasets

dataset_name = 'weikaih/TaskMeAnything-v1-videoqa-random'
dataset = datasets.load_dataset(dataset_name, split = TASK_GENERATOR_SPLIT)

# example: convert binary stream in dataset to .mp4 files
video_binary = dataset[0]['video']
with open('/path/save/video.mp4', 'wb') as f:
    f.write(video_binary)
```
where `TASK_GENERATOR_SPLIT` is one of the task generators, eg, `random_video_3d_what_move`.

## Evaluation Results

### Overall


![image/png](https://cdn-uploads.huggingface.co/production/uploads/65cb0dcc4913057ac82a7a31/VNpFbebwDmFHckfTuTnUR.png)

### Breakdown performance on each task types

![image/png](https://cdn-uploads.huggingface.co/production/uploads/65cb0dcc4913057ac82a7a31/aFq57R6BWioXXj4yQhFoc.png)

![image/png](https://cdn-uploads.huggingface.co/production/uploads/65cb0dcc4913057ac82a7a31/tJ1dDOaTpD-6-nNh6LpO0.png)

## Out-of-Scope Use
This dataset should not be used for training models.


## Disclaimers
**TaskMeAnything** and its associated resources are provided for research and educational purposes only. 
The authors and contributors make no warranties regarding the accuracy or reliability of the data and software. 
Users are responsible for ensuring their use complies with applicable laws and regulations. 
The project is not liable for any damages or losses resulting from the use of these resources.

## Contact

- Jieyu Zhang: [email protected]

## Citation
**BibTeX:**
```bibtex
@article{zhang2024task,
  title={Task Me Anything},
  author={Zhang, Jieyu and Huang, Weikai and Ma, Zixian and Michel, Oscar and He, Dong and Gupta, Tanmay and Ma, Wei-Chiu and Farhadi, Ali and Kembhavi, Aniruddha and Krishna, Ranjay},
  journal={arXiv preprint arXiv:2406.11775},
  year={2024}
}
```