id
stringlengths
14
16
text
stringlengths
13
2.7k
source
stringlengths
57
178
306f625d40ef-0
langchain.utils.strings.comma_list¶ langchain.utils.strings.comma_list(items: List[Any]) → str[source]¶ Convert a list to a comma-separated string.
lang/api.python.langchain.com/en/latest/utils/langchain.utils.strings.comma_list.html
a5734605922a-0
langchain.utils.openai_functions.convert_pydantic_to_openai_tool¶ langchain.utils.openai_functions.convert_pydantic_to_openai_tool(model: Type[BaseModel], *, name: Optional[str] = None, description: Optional[str] = None) → ToolDescription[source]¶ Converts a Pydantic model to a function description for the OpenAI API.
lang/api.python.langchain.com/en/latest/utils/langchain.utils.openai_functions.convert_pydantic_to_openai_tool.html
dab95cb0d62f-0
langchain.utils.utils.guard_import¶ langchain.utils.utils.guard_import(module_name: str, *, pip_name: Optional[str] = None, package: Optional[str] = None) → Any[source]¶ Dynamically imports a module and raises a helpful exception if the module is not installed.
lang/api.python.langchain.com/en/latest/utils/langchain.utils.utils.guard_import.html
f0da86dcdacf-0
langchain.utils.utils.build_extra_kwargs¶ langchain.utils.utils.build_extra_kwargs(extra_kwargs: Dict[str, Any], values: Dict[str, Any], all_required_field_names: Set[str]) → Dict[str, Any][source]¶ Build extra kwargs from values and extra_kwargs. Parameters extra_kwargs – Extra kwargs passed in by user. values – Values passed in by user. all_required_field_names – All required field names for the pydantic class.
lang/api.python.langchain.com/en/latest/utils/langchain.utils.utils.build_extra_kwargs.html
5a87f39023f1-0
langchain.utils.openai_functions.FunctionDescription¶ class langchain.utils.openai_functions.FunctionDescription[source]¶ Representation of a callable function to the OpenAI API. name: str¶ The name of the function. description: str¶ A description of the function. parameters: dict¶ The parameters of the function.
lang/api.python.langchain.com/en/latest/utils/langchain.utils.openai_functions.FunctionDescription.html
9fde07c69f2f-0
langchain.utils.input.get_bolded_text¶ langchain.utils.input.get_bolded_text(text: str) → str[source]¶ Get bolded text.
lang/api.python.langchain.com/en/latest/utils/langchain.utils.input.get_bolded_text.html
3b462b59c626-0
langchain.utils.strings.stringify_value¶ langchain.utils.strings.stringify_value(val: Any) → str[source]¶ Stringify a value. Parameters val – The value to stringify. Returns The stringified value. Return type str
lang/api.python.langchain.com/en/latest/utils/langchain.utils.strings.stringify_value.html
cba182e29ffc-0
langchain.utils.utils.get_pydantic_field_names¶ langchain.utils.utils.get_pydantic_field_names(pydantic_cls: Any) → Set[str][source]¶ Get field names, including aliases, for a pydantic class. Parameters pydantic_cls – Pydantic class.
lang/api.python.langchain.com/en/latest/utils/langchain.utils.utils.get_pydantic_field_names.html
d40e8ea5d7e6-0
langchain.utils.utils.mock_now¶ langchain.utils.utils.mock_now(dt_value)[source]¶ Context manager for mocking out datetime.now() in unit tests. Example: with mock_now(datetime.datetime(2011, 2, 3, 10, 11)): assert datetime.datetime.now() == datetime.datetime(2011, 2, 3, 10, 11)
lang/api.python.langchain.com/en/latest/utils/langchain.utils.utils.mock_now.html
ccda1b495f38-0
langchain.utils.pydantic.get_pydantic_major_version¶ langchain.utils.pydantic.get_pydantic_major_version() → int[source]¶ Get the major version of Pydantic.
lang/api.python.langchain.com/en/latest/utils/langchain.utils.pydantic.get_pydantic_major_version.html
ce7f7f94e89b-0
langchain.utils.env.get_from_dict_or_env¶ langchain.utils.env.get_from_dict_or_env(data: Dict[str, Any], key: str, env_key: str, default: Optional[str] = None) → str[source]¶ Get a value from a dictionary or an environment variable.
lang/api.python.langchain.com/en/latest/utils/langchain.utils.env.get_from_dict_or_env.html
2be8f6118a20-0
langchain.utils.iter.Tee¶ class langchain.utils.iter.Tee(iterable: Iterator[T], n: int = 2, *, lock: Optional[ContextManager[Any]] = None)[source]¶ Create n separate asynchronous iterators over iterable This splits a single iterable into multiple iterators, each providing the same items in the same order. All child iterators may advance separately but share the same items from iterable – when the most advanced iterator retrieves an item, it is buffered until the least advanced iterator has yielded it as well. A tee works lazily and can handle an infinite iterable, provided that all iterators advance. async def derivative(sensor_data): previous, current = a.tee(sensor_data, n=2) await a.anext(previous) # advance one iterator return a.map(operator.sub, previous, current) Unlike itertools.tee(), tee() returns a custom type instead of a tuple. Like a tuple, it can be indexed, iterated and unpacked to get the child iterators. In addition, its aclose() method immediately closes all children, and it can be used in an async with context for the same effect. If iterable is an iterator and read elsewhere, tee will not provide these items. Also, tee must internally buffer each item until the last iterator has yielded it; if the most and least advanced iterator differ by most data, using a list is more efficient (but not lazy). If the underlying iterable is concurrency safe (anext may be awaited concurrently) the resulting iterators are concurrency safe as well. Otherwise, the iterators are safe if there is only ever one single “most advanced” iterator. To enforce sequential use of anext, provide a lock - e.g. an asyncio.Lock instance in an asyncio application - and access is automatically synchronised. Methods
lang/api.python.langchain.com/en/latest/utils/langchain.utils.iter.Tee.html
2be8f6118a20-1
and access is automatically synchronised. Methods __init__(iterable[, n, lock]) close() __init__(iterable: Iterator[T], n: int = 2, *, lock: Optional[ContextManager[Any]] = None)[source]¶ close() → None[source]¶
lang/api.python.langchain.com/en/latest/utils/langchain.utils.iter.Tee.html
813eb5c38092-0
langchain.utils.json_schema.dereference_refs¶ langchain.utils.json_schema.dereference_refs(schema_obj: dict, *, full_schema: Optional[dict] = None, skip_keys: Optional[Sequence[str]] = None) → dict[source]¶ Try to substitute $refs in JSON Schema.
lang/api.python.langchain.com/en/latest/utils/langchain.utils.json_schema.dereference_refs.html
7ecc30160d32-0
langchain.utils.utils.convert_to_secret_str¶ langchain.utils.utils.convert_to_secret_str(value: Union[SecretStr, str]) → SecretStr[source]¶ Convert a string to a SecretStr if needed.
lang/api.python.langchain.com/en/latest/utils/langchain.utils.utils.convert_to_secret_str.html
0ab8db6e2340-0
langchain.utils.aiter.Tee¶ class langchain.utils.aiter.Tee(iterable: AsyncIterator[T], n: int = 2, *, lock: Optional[AsyncContextManager[Any]] = None)[source]¶ Create n separate asynchronous iterators over iterable This splits a single iterable into multiple iterators, each providing the same items in the same order. All child iterators may advance separately but share the same items from iterable – when the most advanced iterator retrieves an item, it is buffered until the least advanced iterator has yielded it as well. A tee works lazily and can handle an infinite iterable, provided that all iterators advance. async def derivative(sensor_data): previous, current = a.tee(sensor_data, n=2) await a.anext(previous) # advance one iterator return a.map(operator.sub, previous, current) Unlike itertools.tee(), tee() returns a custom type instead of a tuple. Like a tuple, it can be indexed, iterated and unpacked to get the child iterators. In addition, its aclose() method immediately closes all children, and it can be used in an async with context for the same effect. If iterable is an iterator and read elsewhere, tee will not provide these items. Also, tee must internally buffer each item until the last iterator has yielded it; if the most and least advanced iterator differ by most data, using a list is more efficient (but not lazy). If the underlying iterable is concurrency safe (anext may be awaited concurrently) the resulting iterators are concurrency safe as well. Otherwise, the iterators are safe if there is only ever one single “most advanced” iterator. To enforce sequential use of anext, provide a lock - e.g. an asyncio.Lock instance in an asyncio application - and access is automatically synchronised. Methods
lang/api.python.langchain.com/en/latest/utils/langchain.utils.aiter.Tee.html
0ab8db6e2340-1
and access is automatically synchronised. Methods __init__(iterable[, n, lock]) aclose() __init__(iterable: AsyncIterator[T], n: int = 2, *, lock: Optional[AsyncContextManager[Any]] = None)[source]¶ async aclose() → None[source]¶
lang/api.python.langchain.com/en/latest/utils/langchain.utils.aiter.Tee.html
1bdf2871d948-0
langchain.utils.utils.xor_args¶ langchain.utils.utils.xor_args(*arg_groups: Tuple[str, ...]) → Callable[source]¶ Validate specified keyword args are mutually exclusive.
lang/api.python.langchain.com/en/latest/utils/langchain.utils.utils.xor_args.html
ea6aee6442f2-0
langchain.utils.iter.tee_peer¶ langchain.utils.iter.tee_peer(iterator: Iterator[T], buffer: Deque[T], peers: List[Deque[T]], lock: ContextManager[Any]) → Generator[T, None, None][source]¶ An individual iterator of a tee()
lang/api.python.langchain.com/en/latest/utils/langchain.utils.iter.tee_peer.html
d34702f3c4de-0
langchain.utils.html.extract_sub_links¶ langchain.utils.html.extract_sub_links(raw_html: str, url: str, *, base_url: Optional[str] = None, pattern: Optional[Union[str, Pattern]] = None, prevent_outside: bool = True, exclude_prefixes: Sequence[str] = ()) → List[str][source]¶ Extract all links from a raw html string and convert into absolute paths. Parameters raw_html – original html. url – the url of the html. base_url – the base url to check for outside links against. pattern – Regex to use for extracting links from raw html. prevent_outside – If True, ignore external links which are not children of the base url. exclude_prefixes – Exclude any URLs that start with one of these prefixes. Returns sub links Return type List[str]
lang/api.python.langchain.com/en/latest/utils/langchain.utils.html.extract_sub_links.html
09400e3a2ad2-0
langchain.utils.aiter.NoLock¶ class langchain.utils.aiter.NoLock[source]¶ Dummy lock that provides the proper interface but no protection Methods __init__() __init__()¶
lang/api.python.langchain.com/en/latest/utils/langchain.utils.aiter.NoLock.html
138433fb33c6-0
langchain.utils.env.get_from_env¶ langchain.utils.env.get_from_env(key: str, env_key: str, default: Optional[str] = None) → str[source]¶ Get a value from a dictionary or an environment variable.
lang/api.python.langchain.com/en/latest/utils/langchain.utils.env.get_from_env.html
a677e3630830-0
langchain.utils.strings.stringify_dict¶ langchain.utils.strings.stringify_dict(data: dict) → str[source]¶ Stringify a dictionary. Parameters data – The dictionary to stringify. Returns The stringified dictionary. Return type str
lang/api.python.langchain.com/en/latest/utils/langchain.utils.strings.stringify_dict.html
75e498b90996-0
langchain.utils.html.find_all_links¶ langchain.utils.html.find_all_links(raw_html: str, *, pattern: Optional[Union[str, Pattern]] = None) → List[str][source]¶ Extract all links from a raw html string. Parameters raw_html – original html. pattern – Regex to use for extracting links from raw html. Returns all links Return type List[str]
lang/api.python.langchain.com/en/latest/utils/langchain.utils.html.find_all_links.html
443e2b91a537-0
langchain.utils.openai_functions.convert_pydantic_to_openai_function¶ langchain.utils.openai_functions.convert_pydantic_to_openai_function(model: Type[BaseModel], *, name: Optional[str] = None, description: Optional[str] = None) → FunctionDescription[source]¶ Converts a Pydantic model to a function description for the OpenAI API.
lang/api.python.langchain.com/en/latest/utils/langchain.utils.openai_functions.convert_pydantic_to_openai_function.html
1b16711d5af8-0
langchain.utils.iter.NoLock¶ class langchain.utils.iter.NoLock[source]¶ Dummy lock that provides the proper interface but no protection Methods __init__() __init__()¶
lang/api.python.langchain.com/en/latest/utils/langchain.utils.iter.NoLock.html
f2ae65cf1718-0
langchain.utils.loading.try_load_from_hub¶ langchain.utils.loading.try_load_from_hub(path: Union[str, Path], loader: Callable[[str], T], valid_prefix: str, valid_suffixes: Set[str], **kwargs: Any) → Optional[T][source]¶ Load configuration from hub. Returns None if path is not a hub path.
lang/api.python.langchain.com/en/latest/utils/langchain.utils.loading.try_load_from_hub.html
61ccf7c83c48-0
langchain.utils.openai.is_openai_v1¶ langchain.utils.openai.is_openai_v1() → bool[source]¶
lang/api.python.langchain.com/en/latest/utils/langchain.utils.openai.is_openai_v1.html
48d7096c5a72-0
langchain.utils.aiter.tee_peer¶ async langchain.utils.aiter.tee_peer(iterator: AsyncIterator[T], buffer: Deque[T], peers: List[Deque[T]], lock: AsyncContextManager[Any]) → AsyncGenerator[T, None][source]¶ An individual iterator of a tee()
lang/api.python.langchain.com/en/latest/utils/langchain.utils.aiter.tee_peer.html
abfdb7248744-0
langchain.utils.aiter.atee¶ langchain.utils.aiter.atee¶ alias of Tee
lang/api.python.langchain.com/en/latest/utils/langchain.utils.aiter.atee.html
84f57ab63f9a-0
langchain.utils.math.cosine_similarity¶ langchain.utils.math.cosine_similarity(X: Union[List[List[float]], List[ndarray], ndarray], Y: Union[List[List[float]], List[ndarray], ndarray]) → ndarray[source]¶ Row-wise cosine similarity between two equal-width matrices.
lang/api.python.langchain.com/en/latest/utils/langchain.utils.math.cosine_similarity.html
f0067e92cc31-0
langchain.utils.iter.safetee¶ langchain.utils.iter.safetee¶ alias of Tee
lang/api.python.langchain.com/en/latest/utils/langchain.utils.iter.safetee.html
c90d182290c9-0
langchain.utils.input.get_colored_text¶ langchain.utils.input.get_colored_text(text: str, color: str) → str[source]¶ Get colored text.
lang/api.python.langchain.com/en/latest/utils/langchain.utils.input.get_colored_text.html
98efc4794f9b-0
langchain.utils.input.print_text¶ langchain.utils.input.print_text(text: str, color: Optional[str] = None, end: str = '', file: Optional[TextIO] = None) → None[source]¶ Print text with highlighting and no end characters.
lang/api.python.langchain.com/en/latest/utils/langchain.utils.input.print_text.html
1366b40eeaec-0
langchain.utils.iter.batch_iterate¶ langchain.utils.iter.batch_iterate(size: int, iterable: Iterable[T]) → Iterator[List[T]][source]¶ Utility batching function.
lang/api.python.langchain.com/en/latest/utils/langchain.utils.iter.batch_iterate.html
89d6ab0dddc0-0
langchain.utils.utils.check_package_version¶ langchain.utils.utils.check_package_version(package: str, lt_version: Optional[str] = None, lte_version: Optional[str] = None, gt_version: Optional[str] = None, gte_version: Optional[str] = None) → None[source]¶ Check the version of a package.
lang/api.python.langchain.com/en/latest/utils/langchain.utils.utils.check_package_version.html
fa20f8b34455-0
langchain.utils.formatting.StrictFormatter¶ class langchain.utils.formatting.StrictFormatter[source]¶ A subclass of formatter that checks for extra keys. Methods __init__() check_unused_args(used_args, args, kwargs) Check to see if extra parameters are passed. convert_field(value, conversion) format(format_string, /, *args, **kwargs) format_field(value, format_spec) get_field(field_name, args, kwargs) get_value(key, args, kwargs) parse(format_string) validate_input_variables(format_string, ...) vformat(format_string, args, kwargs) Check that no arguments are provided. __init__()¶ check_unused_args(used_args: Sequence[Union[int, str]], args: Sequence, kwargs: Mapping[str, Any]) → None[source]¶ Check to see if extra parameters are passed. convert_field(value, conversion)¶ format(format_string, /, *args, **kwargs)¶ format_field(value, format_spec)¶ get_field(field_name, args, kwargs)¶ get_value(key, args, kwargs)¶ parse(format_string)¶ validate_input_variables(format_string: str, input_variables: List[str]) → None[source]¶ vformat(format_string: str, args: Sequence, kwargs: Mapping[str, Any]) → str[source]¶ Check that no arguments are provided.
lang/api.python.langchain.com/en/latest/utils/langchain.utils.formatting.StrictFormatter.html
087f4c446b85-0
langchain.utils.aiter.py_anext¶ langchain.utils.aiter.py_anext(iterator: ~typing.AsyncIterator[~langchain.utils.aiter.T], default: ~typing.Union[~langchain.utils.aiter.T, ~typing.Any] = <object object>) → Awaitable[Union[T, None, Any]][source]¶ Pure-Python implementation of anext() for testing purposes. Closely matches the builtin anext() C implementation. Can be used to compare the built-in implementation of the inner coroutines machinery to C-implementation of __anext__() and send() or throw() on the returned generator.
lang/api.python.langchain.com/en/latest/utils/langchain.utils.aiter.py_anext.html
8a99f3e0050f-0
langchain.utils.utils.raise_for_status_with_text¶ langchain.utils.utils.raise_for_status_with_text(response: Response) → None[source]¶ Raise an error with the response text.
lang/api.python.langchain.com/en/latest/utils/langchain.utils.utils.raise_for_status_with_text.html
0b8a206d35c0-0
langchain.utils.input.get_color_mapping¶ langchain.utils.input.get_color_mapping(items: List[str], excluded_colors: Optional[List] = None) → Dict[str, str][source]¶ Get mapping for items to a support color.
lang/api.python.langchain.com/en/latest/utils/langchain.utils.input.get_color_mapping.html
75531ebdd941-0
langchain.utils.openai_functions.ToolDescription¶ class langchain.utils.openai_functions.ToolDescription[source]¶ Representation of a callable function to the OpenAI API. type: Literal['function']¶ function: langchain.utils.openai_functions.FunctionDescription¶
lang/api.python.langchain.com/en/latest/utils/langchain.utils.openai_functions.ToolDescription.html
af6a19faef1b-0
langchain_experimental.tabular_synthetic_data.base.SyntheticDataGenerator¶ class langchain_experimental.tabular_synthetic_data.base.SyntheticDataGenerator[source]¶ Bases: BaseModel Generates synthetic data using the given LLM and few-shot template. Utilizes the provided LLM to produce synthetic data based on the few-shot prompt template. template¶ Template for few-shot prompting. Type FewShotPromptTemplate llm¶ Large Language Model to use for generation. Type Optional[BaseLanguageModel] llm_chain¶ LLM chain with the LLM and few-shot template. Type Optional[Chain] example_input_key¶ Key to use for storing example inputs. Type str Usage Example:>>> template = FewShotPromptTemplate(...) >>> llm = BaseLanguageModel(...) >>> generator = SyntheticDataGenerator(template=template, llm=llm) >>> results = generator.generate(subject="climate change", runs=5) Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param example_input_key: str = 'example'¶ param llm: Optional[langchain.schema.language_model.BaseLanguageModel] = None¶ param llm_chain: Optional[langchain.chains.base.Chain] = None¶ param results: list = []¶ param template: langchain.prompts.few_shot.FewShotPromptTemplate [Required]¶ async agenerate(subject: str, runs: int, extra: str = '', *args: Any, **kwargs: Any) → List[str][source]¶ Generate synthetic data using the given subject asynchronously. Note: Since the LLM calls run concurrently, you may have fewer duplicates by adding specific instructions to the “extra” keyword argument. Parameters
lang/api.python.langchain.com/en/latest/tabular_synthetic_data/langchain_experimental.tabular_synthetic_data.base.SyntheticDataGenerator.html
af6a19faef1b-1
the “extra” keyword argument. Parameters subject (str) – The subject the synthetic data will be about. runs (int) – Number of times to generate the data asynchronously. extra (str) – Extra instructions for steerability in data generation. Returns List of generated synthetic data for the given subject. Return type List[str] Usage Example:>>> results = await generator.agenerate(subject="climate change", runs=5, extra="Focus on env impacts.") classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
lang/api.python.langchain.com/en/latest/tabular_synthetic_data/langchain_experimental.tabular_synthetic_data.base.SyntheticDataGenerator.html
af6a19faef1b-2
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ generate(subject: str, runs: int, *args: Any, **kwargs: Any) → List[str][source]¶ Generate synthetic data using the given subject string. Parameters subject (str) – The subject the synthetic data will be about. runs (int) – Number of times to generate the data. extra (str) – Extra instructions for steerability in data generation. Returns List of generated synthetic data. Return type List[str] Usage Example:>>> results = generator.generate(subject="climate change", runs=5, extra="Focus on environmental impacts.") json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict().
lang/api.python.langchain.com/en/latest/tabular_synthetic_data/langchain_experimental.tabular_synthetic_data.base.SyntheticDataGenerator.html
af6a19faef1b-3
Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶
lang/api.python.langchain.com/en/latest/tabular_synthetic_data/langchain_experimental.tabular_synthetic_data.base.SyntheticDataGenerator.html
8f0f6ccff58c-0
langchain_experimental.tabular_synthetic_data.openai.create_openai_data_generator¶ langchain_experimental.tabular_synthetic_data.openai.create_openai_data_generator(output_schema: Union[Dict[str, Any], Type[BaseModel]], llm: ChatOpenAI, prompt: BasePromptTemplate, output_parser: Optional[BaseLLMOutputParser] = None, **kwargs: Any) → SyntheticDataGenerator[source]¶ Create an instance of SyntheticDataGenerator tailored for OpenAI models. This function creates an LLM chain designed for structured output based on the provided schema, language model, and prompt template. The resulting chain is then used to instantiate and return a SyntheticDataGenerator. Parameters output_schema (Union[Dict[str, Any], Type[BaseModel]]) – Schema for expected a (output. This can be either a dictionary representing a valid JsonSchema or) – class. (Pydantic BaseModel) – llm (ChatOpenAI) – OpenAI language model to use. prompt (BasePromptTemplate) – Template to be used for generating prompts. output_parser (Optional[BaseLLMOutputParser], optional) – Parser for provided (processing model outputs. If none is) – inferred (a default will be) – types. (from the function) – **kwargs – Additional keyword arguments to be passed to create_structured_output_chain. – Returns: SyntheticDataGenerator: An instance of the data generator set up with the constructed chain. Usage:To generate synthetic data with a structured output, first define your desired output schema. Then, use this function to create a SyntheticDataGenerator instance. After obtaining the generator, you can utilize its methods to produce the desired synthetic data.
lang/api.python.langchain.com/en/latest/tabular_synthetic_data/langchain_experimental.tabular_synthetic_data.openai.create_openai_data_generator.html
0f45bcde4ab6-0
langchain.adapters.openai.ChatCompletion¶ class langchain.adapters.openai.ChatCompletion[source]¶ Chat completion. Methods __init__() acreate() create() __init__()¶ async static acreate(messages: Sequence[Dict[str, Any]], *, provider: str = "'ChatOpenAI'", stream: Literal[False] = 'False', **kwargs: Any) → dict[source]¶ async static acreate(messages: Sequence[Dict[str, Any]], *, provider: str = "'ChatOpenAI'", stream: Literal[True], **kwargs: Any) → AsyncIterator static create(messages: Sequence[Dict[str, Any]], *, provider: str = "'ChatOpenAI'", stream: Literal[False] = 'False', **kwargs: Any) → dict[source]¶ static create(messages: Sequence[Dict[str, Any]], *, provider: str = "'ChatOpenAI'", stream: Literal[True], **kwargs: Any) → Iterable
lang/api.python.langchain.com/en/latest/adapters/langchain.adapters.openai.ChatCompletion.html
36b675d44581-0
langchain.adapters.openai.convert_openai_messages¶ langchain.adapters.openai.convert_openai_messages(messages: Sequence[Dict[str, Any]]) → List[BaseMessage][source]¶ Convert dictionaries representing OpenAI messages to LangChain format. Parameters messages – List of dictionaries representing OpenAI messages Returns List of LangChain BaseMessage objects.
lang/api.python.langchain.com/en/latest/adapters/langchain.adapters.openai.convert_openai_messages.html
09e9dc5a00d3-0
langchain.adapters.openai.aenumerate¶ async langchain.adapters.openai.aenumerate(iterable: AsyncIterator[Any], start: int = 0) → AsyncIterator[tuple[int, Any]][source]¶ Async version of enumerate function.
lang/api.python.langchain.com/en/latest/adapters/langchain.adapters.openai.aenumerate.html
27f3a88ba7f3-0
langchain.adapters.openai.convert_message_to_dict¶ langchain.adapters.openai.convert_message_to_dict(message: BaseMessage) → dict[source]¶ Convert a LangChain message to a dictionary. Parameters message – The LangChain message. Returns The dictionary. Examples using convert_message_to_dict¶ Twitter (via Apify)
lang/api.python.langchain.com/en/latest/adapters/langchain.adapters.openai.convert_message_to_dict.html
c499d7d7dfcd-0
langchain.adapters.openai.convert_dict_to_message¶ langchain.adapters.openai.convert_dict_to_message(_dict: Mapping[str, Any]) → BaseMessage[source]¶ Convert a dictionary to a LangChain message. Parameters _dict – The dictionary. Returns The LangChain message.
lang/api.python.langchain.com/en/latest/adapters/langchain.adapters.openai.convert_dict_to_message.html
4a6eb603e9e4-0
langchain.adapters.openai.convert_messages_for_finetuning¶ langchain.adapters.openai.convert_messages_for_finetuning(sessions: Iterable[ChatSession]) → List[List[dict]][source]¶ Convert messages to a list of lists of dictionaries for fine-tuning. Parameters sessions – The chat sessions. Returns The list of lists of dictionaries. Examples using convert_messages_for_finetuning¶ Facebook Messenger Chat loaders iMessage
lang/api.python.langchain.com/en/latest/adapters/langchain.adapters.openai.convert_messages_for_finetuning.html
f2b5823127a0-0
langchain.document_loaders.modern_treasury.ModernTreasuryLoader¶ class langchain.document_loaders.modern_treasury.ModernTreasuryLoader(resource: str, organization_id: Optional[str] = None, api_key: Optional[str] = None)[source]¶ Load from Modern Treasury. Parameters resource – The Modern Treasury resource to load. organization_id – The Modern Treasury organization ID. It can also be specified via the environment variable “MODERN_TREASURY_ORGANIZATION_ID”. api_key – The Modern Treasury API key. It can also be specified via the environment variable “MODERN_TREASURY_API_KEY”. Methods __init__(resource[, organization_id, api_key]) param resource The Modern Treasury resource to load. lazy_load() A lazy loader for Documents. load() Load data into Document objects. load_and_split([text_splitter]) Load Documents and split into chunks. __init__(resource: str, organization_id: Optional[str] = None, api_key: Optional[str] = None) → None[source]¶ Parameters resource – The Modern Treasury resource to load. organization_id – The Modern Treasury organization ID. It can also be specified via the environment variable “MODERN_TREASURY_ORGANIZATION_ID”. api_key – The Modern Treasury API key. It can also be specified via the environment variable “MODERN_TREASURY_API_KEY”. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load data into Document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents.
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.modern_treasury.ModernTreasuryLoader.html
f2b5823127a0-1
Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using ModernTreasuryLoader¶ Modern Treasury
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.modern_treasury.ModernTreasuryLoader.html
f3932bf51abe-0
langchain.document_loaders.docusaurus.DocusaurusLoader¶ class langchain.document_loaders.docusaurus.DocusaurusLoader(url: str, custom_html_tags: Optional[List[str]] = None, **kwargs: Any)[source]¶ Loader that leverages the SitemapLoader to loop through the generated pages of a Docusaurus Documentation website and extracts the content by looking for specific HTML tags. By default, the parser searches for the main content of the Docusaurus page, which is normally the <article>. You also have the option to define your own custom HTML tags by providing them as a list, for example: [“div”, “.main”, “a”]. Initialize DocusaurusLoader :param url: The base URL of the Docusaurus website. :param custom_html_tags: Optional custom html tags to extract content from pages. :param kwargs: Additional args to extend the underlying SitemapLoader, for example: filter_urls, blocksize, meta_function, is_local, continue_on_failure Attributes web_path Methods __init__(url[, custom_html_tags]) Initialize DocusaurusLoader :param url: The base URL of the Docusaurus website. :param custom_html_tags: Optional custom html tags to extract content from pages. :param kwargs: Additional args to extend the underlying SitemapLoader, for example: filter_urls, blocksize, meta_function, is_local, continue_on_failure. aload() Load text from the urls in web_path async into Documents. fetch_all(urls) Fetch all urls concurrently with rate limiting. lazy_load() Lazy load text from the url(s) in web_path. load() Load sitemap. load_and_split([text_splitter]) Load Documents and split into chunks. parse_sitemap(soup) Parse sitemap xml and load into a list of dicts. scrape([parser])
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.docusaurus.DocusaurusLoader.html
f3932bf51abe-1
Parse sitemap xml and load into a list of dicts. scrape([parser]) Scrape data from webpage and return it in BeautifulSoup format. scrape_all(urls[, parser]) Fetch all urls, then return soups for all results. __init__(url: str, custom_html_tags: Optional[List[str]] = None, **kwargs: Any)[source]¶ Initialize DocusaurusLoader :param url: The base URL of the Docusaurus website. :param custom_html_tags: Optional custom html tags to extract content from pages. :param kwargs: Additional args to extend the underlying SitemapLoader, for example: filter_urls, blocksize, meta_function, is_local, continue_on_failure aload() → List[Document]¶ Load text from the urls in web_path async into Documents. async fetch_all(urls: List[str]) → Any¶ Fetch all urls concurrently with rate limiting. lazy_load() → Iterator[Document]¶ Lazy load text from the url(s) in web_path. load() → List[Document]¶ Load sitemap. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. parse_sitemap(soup: Any) → List[dict]¶ Parse sitemap xml and load into a list of dicts. Parameters soup – BeautifulSoup object. Returns List of dicts. scrape(parser: Optional[str] = None) → Any¶ Scrape data from webpage and return it in BeautifulSoup format. scrape_all(urls: List[str], parser: Optional[str] = None) → List[Any]¶
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.docusaurus.DocusaurusLoader.html
f3932bf51abe-2
Fetch all urls, then return soups for all results.
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.docusaurus.DocusaurusLoader.html
5bf5ec6ead27-0
langchain.document_loaders.twitter.TwitterTweetLoader¶ class langchain.document_loaders.twitter.TwitterTweetLoader(auth_handler: Union[OAuthHandler, OAuth2BearerHandler], twitter_users: Sequence[str], number_tweets: Optional[int] = 100)[source]¶ Load Twitter tweets. Read tweets of the user’s Twitter handle. First you need to go to https://developer.twitter.com/en/docs/twitter-api /getting-started/getting-access-to-the-twitter-api to get your token. And create a v2 version of the app. Methods __init__(auth_handler, twitter_users[, ...]) from_bearer_token(oauth2_bearer_token, ...) Create a TwitterTweetLoader from OAuth2 bearer token. from_secrets(access_token, ...[, number_tweets]) Create a TwitterTweetLoader from access tokens and secrets. lazy_load() A lazy loader for Documents. load() Load tweets. load_and_split([text_splitter]) Load Documents and split into chunks. __init__(auth_handler: Union[OAuthHandler, OAuth2BearerHandler], twitter_users: Sequence[str], number_tweets: Optional[int] = 100)[source]¶ classmethod from_bearer_token(oauth2_bearer_token: str, twitter_users: Sequence[str], number_tweets: Optional[int] = 100) → TwitterTweetLoader[source]¶ Create a TwitterTweetLoader from OAuth2 bearer token. classmethod from_secrets(access_token: str, access_token_secret: str, consumer_key: str, consumer_secret: str, twitter_users: Sequence[str], number_tweets: Optional[int] = 100) → TwitterTweetLoader[source]¶ Create a TwitterTweetLoader from access tokens and secrets. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load tweets.
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.twitter.TwitterTweetLoader.html
5bf5ec6ead27-1
load() → List[Document][source]¶ Load tweets. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using TwitterTweetLoader¶ Twitter
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.twitter.TwitterTweetLoader.html
8270e2e39ded-0
langchain.document_loaders.json_loader.JSONLoader¶ class langchain.document_loaders.json_loader.JSONLoader(file_path: Union[str, Path], jq_schema: str, content_key: Optional[str] = None, metadata_func: Optional[Callable[[Dict, Dict], Dict]] = None, text_content: bool = True, json_lines: bool = False)[source]¶ Load a JSON file using a jq schema. Example [{“text”: …}, {“text”: …}, {“text”: …}] -> schema = .[].text {“key”: [{“text”: …}, {“text”: …}, {“text”: …}]} -> schema = .key[].text [“”, “”, “”] -> schema = .[] Initialize the JSONLoader. Parameters file_path (Union[str, Path]) – The path to the JSON or JSON Lines file. jq_schema (str) – The jq schema to use to extract the data or text from the JSON. content_key (str) – The key to use to extract the content from the JSON if the jq_schema results to a list of objects (dict). metadata_func (Callable[Dict, Dict]) – A function that takes in the JSON object extracted by the jq_schema and the default metadata and returns a dict of the updated metadata. text_content (bool) – Boolean flag to indicate whether the content is in string format, default to True. json_lines (bool) – Boolean flag to indicate whether the input is in JSON Lines format. Methods __init__(file_path, jq_schema[, ...]) Initialize the JSONLoader. lazy_load() A lazy loader for Documents. load() Load and return documents from the JSON file. load_and_split([text_splitter]) Load Documents and split into chunks.
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.json_loader.JSONLoader.html
8270e2e39ded-1
load_and_split([text_splitter]) Load Documents and split into chunks. __init__(file_path: Union[str, Path], jq_schema: str, content_key: Optional[str] = None, metadata_func: Optional[Callable[[Dict, Dict], Dict]] = None, text_content: bool = True, json_lines: bool = False)[source]¶ Initialize the JSONLoader. Parameters file_path (Union[str, Path]) – The path to the JSON or JSON Lines file. jq_schema (str) – The jq schema to use to extract the data or text from the JSON. content_key (str) – The key to use to extract the content from the JSON if the jq_schema results to a list of objects (dict). metadata_func (Callable[Dict, Dict]) – A function that takes in the JSON object extracted by the jq_schema and the default metadata and returns a dict of the updated metadata. text_content (bool) – Boolean flag to indicate whether the content is in string format, default to True. json_lines (bool) – Boolean flag to indicate whether the input is in JSON Lines format. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load and return documents from the JSON file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.json_loader.JSONLoader.html
5a5379be6863-0
langchain.document_loaders.evernote.EverNoteLoader¶ class langchain.document_loaders.evernote.EverNoteLoader(file_path: str, load_single_document: bool = True)[source]¶ Load from EverNote. Loads an EverNote notebook export file e.g. my_notebook.enex into Documents. Instructions on producing this file can be found at https://help.evernote.com/hc/en-us/articles/209005557-Export-notes-and-notebooks-as-ENEX-or-HTML Currently only the plain text in the note is extracted and stored as the contents of the Document, any non content metadata (e.g. ‘author’, ‘created’, ‘updated’ etc. but not ‘content-raw’ or ‘resource’) tags on the note will be extracted and stored as metadata on the Document. Parameters file_path (str) – The path to the notebook export with a .enex extension load_single_document (bool) – Whether or not to concatenate the content of all notes into a single long Document. True (If this is set to) – the ‘source’ which contains the file name of the export. Initialize with file path. Methods __init__(file_path[, load_single_document]) Initialize with file path. lazy_load() A lazy loader for Documents. load() Load documents from EverNote export file. load_and_split([text_splitter]) Load Documents and split into chunks. __init__(file_path: str, load_single_document: bool = True)[source]¶ Initialize with file path. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load documents from EverNote export file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.evernote.EverNoteLoader.html
5a5379be6863-1
Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using EverNoteLoader¶ EverNote
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.evernote.EverNoteLoader.html
4f3dd7d76eb9-0
langchain.document_loaders.word_document.UnstructuredWordDocumentLoader¶ class langchain.document_loaders.word_document.UnstructuredWordDocumentLoader(file_path: Union[str, List[str]], mode: str = 'single', **unstructured_kwargs: Any)[source]¶ Load Microsoft Word file using Unstructured. Works with both .docx and .doc files. You can run the loader in one of two modes: “single” and “elements”. If you use “single” mode, the document will be returned as a single langchain Document object. If you use “elements” mode, the unstructured library will split the document into elements such as Title and NarrativeText. You can pass in additional unstructured kwargs after mode to apply different unstructured settings. Examples from langchain.document_loaders import UnstructuredWordDocumentLoader loader = UnstructuredWordDocumentLoader(“example.docx”, mode=”elements”, strategy=”fast”, ) docs = loader.load() References https://unstructured-io.github.io/unstructured/bricks.html#partition-docx Initialize with file path. Methods __init__(file_path[, mode]) Initialize with file path. lazy_load() A lazy loader for Documents. load() Load file. load_and_split([text_splitter]) Load Documents and split into chunks. __init__(file_path: Union[str, List[str]], mode: str = 'single', **unstructured_kwargs: Any)¶ Initialize with file path. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document]¶ Load file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.word_document.UnstructuredWordDocumentLoader.html
4f3dd7d76eb9-1
Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using UnstructuredWordDocumentLoader¶ Microsoft Word
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.word_document.UnstructuredWordDocumentLoader.html
6a49c6183b64-0
langchain.document_loaders.chromium.AsyncChromiumLoader¶ class langchain.document_loaders.chromium.AsyncChromiumLoader(urls: List[str])[source]¶ Scrape HTML pages from URLs using a headless instance of the Chromium. Initialize the loader with a list of URL paths. Parameters urls (List[str]) – A list of URLs to scrape content from. Raises ImportError – If the required ‘playwright’ package is not installed. Methods __init__(urls) Initialize the loader with a list of URL paths. ascrape_playwright(url) Asynchronously scrape the content of a given URL using Playwright's async API. lazy_load() Lazily load text content from the provided URLs. load() Load and return all Documents from the provided URLs. load_and_split([text_splitter]) Load Documents and split into chunks. __init__(urls: List[str])[source]¶ Initialize the loader with a list of URL paths. Parameters urls (List[str]) – A list of URLs to scrape content from. Raises ImportError – If the required ‘playwright’ package is not installed. async ascrape_playwright(url: str) → str[source]¶ Asynchronously scrape the content of a given URL using Playwright’s async API. Parameters url (str) – The URL to scrape. Returns The scraped HTML content or an error message if an exception occurs. Return type str lazy_load() → Iterator[Document][source]¶ Lazily load text content from the provided URLs. This method yields Documents one at a time as they’re scraped, instead of waiting to scrape all URLs before returning. Yields Document – The scraped content encapsulated within a Document object. load() → List[Document][source]¶ Load and return all Documents from the provided URLs.
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.chromium.AsyncChromiumLoader.html
6a49c6183b64-1
Load and return all Documents from the provided URLs. Returns A list of Document objects containing the scraped content from each URL. Return type List[Document] load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using AsyncChromiumLoader¶ Beautiful Soup Async Chromium Set env var OPENAI_API_KEY or load from a .env file:
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.chromium.AsyncChromiumLoader.html
0de79a96b404-0
langchain.document_loaders.parsers.language.cobol.CobolSegmenter¶ class langchain.document_loaders.parsers.language.cobol.CobolSegmenter(code: str)[source]¶ Code segmenter for COBOL. Attributes DIVISION_PATTERN PARAGRAPH_PATTERN SECTION_PATTERN Methods __init__(code) extract_functions_classes() is_valid() simplify_code() __init__(code: str)[source]¶ extract_functions_classes() → List[str][source]¶ is_valid() → bool[source]¶ simplify_code() → str[source]¶
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.parsers.language.cobol.CobolSegmenter.html
814670f5fe92-0
langchain.document_loaders.notion.NotionDirectoryLoader¶ class langchain.document_loaders.notion.NotionDirectoryLoader(path: str, *, encoding: str = 'utf-8')[source]¶ Load Notion directory dump. Initialize with a file path. Methods __init__(path, *[, encoding]) Initialize with a file path. lazy_load() A lazy loader for Documents. load() Load documents. load_and_split([text_splitter]) Load Documents and split into chunks. __init__(path: str, *, encoding: str = 'utf-8') → None[source]¶ Initialize with a file path. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using NotionDirectoryLoader¶ Notion DB Notion DB 1/2 Perform context-aware text splitting
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.notion.NotionDirectoryLoader.html
b29ef58c3d16-0
langchain.document_loaders.rocksetdb.RocksetLoader¶ class langchain.document_loaders.rocksetdb.RocksetLoader(client: ~typing.Any, query: ~typing.Any, content_keys: ~typing.List[str], metadata_keys: ~typing.Optional[~typing.List[str]] = None, content_columns_joiner: ~typing.Callable[[~typing.List[~typing.Tuple[str, ~typing.Any]]], str] = <function default_joiner>)[source]¶ Load from a Rockset database. To use, you should have the rockset python package installed. Example # This code will load 3 records from the "langchain_demo" # collection as Documents, with the `text` column used as # the content from langchain.document_loaders import RocksetLoader from rockset import RocksetClient, Regions, models loader = RocksetLoader( RocksetClient(Regions.usw2a1, "<api key>"), models.QueryRequestSql( query="select * from langchain_demo limit 3" ), ["text"] ) ) Initialize with Rockset client. Parameters client – Rockset client object. query – Rockset query object. content_keys – The collection columns to be written into the page_content of the Documents. metadata_keys – The collection columns to be written into the metadata of the Documents. By default, this is all the keys in the document. content_columns_joiner – Method that joins content_keys and its values into a string. It’s method that takes in a List[Tuple[str, Any]]], representing a list of tuples of (column name, column value). By default, this is a method that joins each column value with a new line. This method is only relevant if there are multiple content_keys. Methods
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.rocksetdb.RocksetLoader.html
b29ef58c3d16-1
line. This method is only relevant if there are multiple content_keys. Methods __init__(client, query, content_keys[, ...]) Initialize with Rockset client. lazy_load() A lazy loader for Documents. load() Load data into Document objects. load_and_split([text_splitter]) Load Documents and split into chunks. __init__(client: ~typing.Any, query: ~typing.Any, content_keys: ~typing.List[str], metadata_keys: ~typing.Optional[~typing.List[str]] = None, content_columns_joiner: ~typing.Callable[[~typing.List[~typing.Tuple[str, ~typing.Any]]], str] = <function default_joiner>)[source]¶ Initialize with Rockset client. Parameters client – Rockset client object. query – Rockset query object. content_keys – The collection columns to be written into the page_content of the Documents. metadata_keys – The collection columns to be written into the metadata of the Documents. By default, this is all the keys in the document. content_columns_joiner – Method that joins content_keys and its values into a string. It’s method that takes in a List[Tuple[str, Any]]], representing a list of tuples of (column name, column value). By default, this is a method that joins each column value with a new line. This method is only relevant if there are multiple content_keys. lazy_load() → Iterator[Document][source]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load data into Document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.rocksetdb.RocksetLoader.html
b29ef58c3d16-2
Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using RocksetLoader¶ Rockset
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.rocksetdb.RocksetLoader.html
7a4cfe196fb7-0
langchain.document_loaders.acreom.AcreomLoader¶ class langchain.document_loaders.acreom.AcreomLoader(path: str, encoding: str = 'UTF-8', collect_metadata: bool = True)[source]¶ Load acreom vault from a directory. Initialize the loader. Attributes FRONT_MATTER_REGEX Regex to match front matter metadata in markdown files. file_path Path to the directory containing the markdown files. encoding Encoding to use when reading the files. collect_metadata Whether to collect metadata from the front matter. Methods __init__(path[, encoding, collect_metadata]) Initialize the loader. lazy_load() A lazy loader for Documents. load() Load data into Document objects. load_and_split([text_splitter]) Load Documents and split into chunks. __init__(path: str, encoding: str = 'UTF-8', collect_metadata: bool = True)[source]¶ Initialize the loader. lazy_load() → Iterator[Document][source]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load data into Document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using AcreomLoader¶ acreom
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.acreom.AcreomLoader.html
897c712d1597-0
langchain.document_loaders.onedrive_file.OneDriveFileLoader¶ class langchain.document_loaders.onedrive_file.OneDriveFileLoader[source]¶ Bases: BaseLoader, BaseModel Load a file from Microsoft OneDrive. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param file: File [Required]¶ The file to load. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.onedrive_file.OneDriveFileLoader.html
897c712d1597-1
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load Documents load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.onedrive_file.OneDriveFileLoader.html
897c712d1597-2
Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.onedrive_file.OneDriveFileLoader.html
f1ffabac1ec4-0
langchain.document_loaders.chatgpt.ChatGPTLoader¶ class langchain.document_loaders.chatgpt.ChatGPTLoader(log_file: str, num_logs: int = - 1)[source]¶ Load conversations from exported ChatGPT data. Initialize a class object. Parameters log_file – Path to the log file num_logs – Number of logs to load. If 0, load all logs. Methods __init__(log_file[, num_logs]) Initialize a class object. lazy_load() A lazy loader for Documents. load() Load data into Document objects. load_and_split([text_splitter]) Load Documents and split into chunks. __init__(log_file: str, num_logs: int = - 1)[source]¶ Initialize a class object. Parameters log_file – Path to the log file num_logs – Number of logs to load. If 0, load all logs. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load data into Document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using ChatGPTLoader¶ OpenAI ChatGPT Data
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.chatgpt.ChatGPTLoader.html
23c4aeee6af5-0
langchain.document_loaders.hugging_face_dataset.HuggingFaceDatasetLoader¶ class langchain.document_loaders.hugging_face_dataset.HuggingFaceDatasetLoader(path: str, page_content_column: str = 'text', name: Optional[str] = None, data_dir: Optional[str] = None, data_files: Optional[Union[str, Sequence[str], Mapping[str, Union[str, Sequence[str]]]]] = None, cache_dir: Optional[str] = None, keep_in_memory: Optional[bool] = None, save_infos: bool = False, use_auth_token: Optional[Union[bool, str]] = None, num_proc: Optional[int] = None)[source]¶ Load from Hugging Face Hub datasets. Initialize the HuggingFaceDatasetLoader. Parameters path – Path or name of the dataset. page_content_column – Page content column name. Default is “text”. Note: Currently the function assumes the content is a string. If it is not download the dataset using huggingface library and convert using the json or pandas loaders. https://github.com/langchain-ai/langchain/issues/10674 name – Name of the dataset configuration. data_dir – Data directory of the dataset configuration. data_files – Path(s) to source data file(s). cache_dir – Directory to read/write data. keep_in_memory – Whether to copy the dataset in-memory. save_infos – Save the dataset information (checksums/size/splits/…). Default is False. use_auth_token – Bearer token for remote files on the Dataset Hub. num_proc – Number of processes. Methods __init__(path[, page_content_column, name, ...]) Initialize the HuggingFaceDatasetLoader. lazy_load() Load documents lazily. load() Load documents. load_and_split([text_splitter])
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.hugging_face_dataset.HuggingFaceDatasetLoader.html
23c4aeee6af5-1
load() Load documents. load_and_split([text_splitter]) Load Documents and split into chunks. __init__(path: str, page_content_column: str = 'text', name: Optional[str] = None, data_dir: Optional[str] = None, data_files: Optional[Union[str, Sequence[str], Mapping[str, Union[str, Sequence[str]]]]] = None, cache_dir: Optional[str] = None, keep_in_memory: Optional[bool] = None, save_infos: bool = False, use_auth_token: Optional[Union[bool, str]] = None, num_proc: Optional[int] = None)[source]¶ Initialize the HuggingFaceDatasetLoader. Parameters path – Path or name of the dataset. page_content_column – Page content column name. Default is “text”. Note: Currently the function assumes the content is a string. If it is not download the dataset using huggingface library and convert using the json or pandas loaders. https://github.com/langchain-ai/langchain/issues/10674 name – Name of the dataset configuration. data_dir – Data directory of the dataset configuration. data_files – Path(s) to source data file(s). cache_dir – Directory to read/write data. keep_in_memory – Whether to copy the dataset in-memory. save_infos – Save the dataset information (checksums/size/splits/…). Default is False. use_auth_token – Bearer token for remote files on the Dataset Hub. num_proc – Number of processes. lazy_load() → Iterator[Document][source]¶ Load documents lazily. load() → List[Document][source]¶ Load documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.hugging_face_dataset.HuggingFaceDatasetLoader.html
23c4aeee6af5-2
Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using HuggingFaceDatasetLoader¶ HuggingFace dataset
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.hugging_face_dataset.HuggingFaceDatasetLoader.html
6145247f66c1-0
langchain.document_loaders.embaas.BaseEmbaasLoader¶ class langchain.document_loaders.embaas.BaseEmbaasLoader[source]¶ Bases: BaseModel Base loader for Embaas document extraction API. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param api_url: str = 'https://api.embaas.io/v1/document/extract-text/bytes/'¶ The URL of the Embaas document extraction API. param embaas_api_key: Optional[str] = None¶ The API key for the Embaas document extraction API. param params: langchain.document_loaders.embaas.EmbaasDocumentExtractionParameters = {}¶ Additional parameters to pass to the Embaas document extraction API. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.embaas.BaseEmbaasLoader.html
6145247f66c1-1
the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.embaas.BaseEmbaasLoader.html
6145247f66c1-2
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.embaas.BaseEmbaasLoader.html
ceee09be4ddd-0
langchain.document_loaders.airbyte.AirbyteShopifyLoader¶ class langchain.document_loaders.airbyte.AirbyteShopifyLoader(config: Mapping[str, Any], stream_name: str, record_handler: Optional[Callable[[Any, Optional[str]], Document]] = None, state: Optional[Any] = None)[source]¶ Load from Shopify using an Airbyte source connector. Initializes the loader. Parameters config – The config to pass to the source connector. stream_name – The name of the stream to load. record_handler – A function that takes in a record and an optional id and returns a Document. If None, the record will be used as the document. Defaults to None. state – The state to pass to the source connector. Defaults to None. Attributes last_state Methods __init__(config, stream_name[, ...]) Initializes the loader. lazy_load() A lazy loader for Documents. load() Load data into Document objects. load_and_split([text_splitter]) Load Documents and split into chunks. __init__(config: Mapping[str, Any], stream_name: str, record_handler: Optional[Callable[[Any, Optional[str]], Document]] = None, state: Optional[Any] = None) → None[source]¶ Initializes the loader. Parameters config – The config to pass to the source connector. stream_name – The name of the stream to load. record_handler – A function that takes in a record and an optional id and returns a Document. If None, the record will be used as the document. Defaults to None. state – The state to pass to the source connector. Defaults to None. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document]¶ Load data into Document objects.
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.airbyte.AirbyteShopifyLoader.html
ceee09be4ddd-1
load() → List[Document]¶ Load data into Document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using AirbyteShopifyLoader¶ Airbyte Shopify
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.airbyte.AirbyteShopifyLoader.html
e07b962197e9-0
langchain.document_loaders.geodataframe.GeoDataFrameLoader¶ class langchain.document_loaders.geodataframe.GeoDataFrameLoader(data_frame: Any, page_content_column: str = 'geometry')[source]¶ Load geopandas Dataframe. Initialize with geopandas Dataframe. Parameters data_frame – geopandas DataFrame object. page_content_column – Name of the column containing the page content. Defaults to “geometry”. Methods __init__(data_frame[, page_content_column]) Initialize with geopandas Dataframe. lazy_load() Lazy load records from dataframe. load() Load full dataframe. load_and_split([text_splitter]) Load Documents and split into chunks. __init__(data_frame: Any, page_content_column: str = 'geometry')[source]¶ Initialize with geopandas Dataframe. Parameters data_frame – geopandas DataFrame object. page_content_column – Name of the column containing the page content. Defaults to “geometry”. lazy_load() → Iterator[Document][source]¶ Lazy load records from dataframe. load() → List[Document][source]¶ Load full dataframe. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using GeoDataFrameLoader¶ Geopandas
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.geodataframe.GeoDataFrameLoader.html
7dff003674bd-0
langchain.document_loaders.onedrive.OneDriveLoader¶ class langchain.document_loaders.onedrive.OneDriveLoader[source]¶ Bases: O365BaseLoader Load from Microsoft OneDrive. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param auth_with_token: bool = False¶ Whether to authenticate with a token or not. Defaults to False. param chunk_size: Union[int, str] = 5242880¶ Number of bytes to retrieve from each api call to the server. int or ‘auto’. param drive_id: str [Required]¶ The ID of the OneDrive drive to load data from. param folder_path: Optional[str] = None¶ The path to the folder to load data from. param object_ids: Optional[List[str]] = None¶ The IDs of the objects to load data from. param settings: _O365Settings [Optional]¶ Settings for the Office365 API client. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.onedrive.OneDriveLoader.html
7dff003674bd-1
Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). lazy_load() → Iterator[Document][source]¶ Load documents lazily. Use this when working at a large scale. load() → List[Document][source]¶ Load all documents.
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.onedrive.OneDriveLoader.html
7dff003674bd-2
load() → List[Document][source]¶ Load all documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ Examples using OneDriveLoader¶ Microsoft OneDrive
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.onedrive.OneDriveLoader.html
6848344c7eec-0
langchain.document_loaders.googledrive.GoogleDriveLoader¶ class langchain.document_loaders.googledrive.GoogleDriveLoader[source]¶ Bases: BaseLoader, BaseModel Load Google Docs from Google Drive. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param credentials_path: pathlib.Path = PosixPath('/home/docs/.credentials/credentials.json')¶ Path to the credentials file. param document_ids: Optional[List[str]] = None¶ The document ids to load from. param file_ids: Optional[List[str]] = None¶ The file ids to load from. param file_loader_cls: Any = None¶ The file loader class to use. param file_loader_kwargs: Dict[str, Any] = {}¶ The file loader kwargs to use. param file_types: Optional[Sequence[str]] = None¶ The file types to load. Only applies when folder_id is given. param folder_id: Optional[str] = None¶ The folder id to load from. param load_trashed_files: bool = False¶ Whether to load trashed files. Only applies when folder_id is given. param recursive: bool = False¶ Whether to load recursively. Only applies when folder_id is given. param service_account_key: pathlib.Path = PosixPath('/home/docs/.credentials/keys.json')¶ Path to the service account key file. param token_path: pathlib.Path = PosixPath('/home/docs/.credentials/token.json')¶ Path to the token file. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.googledrive.GoogleDriveLoader.html
6848344c7eec-1
Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.googledrive.GoogleDriveLoader.html
6848344c7eec-2
classmethod from_orm(obj: Any) → Model¶ json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.googledrive.GoogleDriveLoader.html
6848344c7eec-3
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ Examples using GoogleDriveLoader¶ Google Drive
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.googledrive.GoogleDriveLoader.html
7afa020b2c42-0
langchain.document_loaders.apify_dataset.ApifyDatasetLoader¶ class langchain.document_loaders.apify_dataset.ApifyDatasetLoader[source]¶ Bases: BaseLoader, BaseModel Load datasets from Apify web scraping, crawling, and data extraction platform. For details, see https://docs.apify.com/platform/integrations/langchain Example from langchain.document_loaders import ApifyDatasetLoader from langchain.schema import Document loader = ApifyDatasetLoader( dataset_id="YOUR-DATASET-ID", dataset_mapping_function=lambda dataset_item: Document( page_content=dataset_item["text"], metadata={"source": dataset_item["url"]} ), ) documents = loader.load() Initialize the loader with an Apify dataset ID and a mapping function. Parameters dataset_id (str) – The ID of the dataset on the Apify platform. dataset_mapping_function (Callable) – A function that takes a single dictionary (an Apify dataset item) and converts it to an instance of the Document class. param apify_client: Any = None¶ An instance of the ApifyClient class from the apify-client Python package. param dataset_id: str [Required]¶ The ID of the dataset on the Apify platform. param dataset_mapping_function: Callable[[Dict], langchain.schema.document.Document] [Required]¶ A custom function that takes a single dictionary (an Apify dataset item) and converts it to an instance of the Document class. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.apify_dataset.ApifyDatasetLoader.html
7afa020b2c42-1
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.apify_dataset.ApifyDatasetLoader.html
7afa020b2c42-2
classmethod from_orm(obj: Any) → Model¶ json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.apify_dataset.ApifyDatasetLoader.html
7afa020b2c42-3
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ Examples using ApifyDatasetLoader¶ Apify Apify Dataset
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.apify_dataset.ApifyDatasetLoader.html
a42b73913211-0
langchain.document_loaders.github.GitHubIssuesLoader¶ class langchain.document_loaders.github.GitHubIssuesLoader[source]¶ Bases: BaseGitHubLoader Load issues of a GitHub repository. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param access_token: str [Required]¶ Personal access token - see https://github.com/settings/tokens?type=beta param assignee: Optional[str] = None¶ Filter on assigned user. Pass ‘none’ for no user and ‘*’ for any user. param creator: Optional[str] = None¶ Filter on the user that created the issue. param direction: Optional[Literal['asc', 'desc']] = None¶ The direction to sort the results by. Can be one of: ‘asc’, ‘desc’. param github_api_url: str = 'https://api.github.com'¶ URL of GitHub API param include_prs: bool = True¶ If True include Pull Requests in results, otherwise ignore them. param labels: Optional[List[str]] = None¶ Label names to filter one. Example: bug,ui,@high. param mentioned: Optional[str] = None¶ Filter on a user that’s mentioned in the issue. param milestone: Optional[Union[int, Literal['*', 'none']]] = None¶ If integer is passed, it should be a milestone’s number field. If the string ‘*’ is passed, issues with any milestone are accepted. If the string ‘none’ is passed, issues without milestones are returned. param repo: str [Required]¶ Name of repository param since: Optional[str] = None¶ Only show notifications updated after the given time.
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.github.GitHubIssuesLoader.html
a42b73913211-1
param since: Optional[str] = None¶ Only show notifications updated after the given time. This is a timestamp in ISO 8601 format: YYYY-MM-DDTHH:MM:SSZ. param sort: Optional[Literal['created', 'updated', 'comments']] = None¶ What to sort results by. Can be one of: ‘created’, ‘updated’, ‘comments’. Default is ‘created’. param state: Optional[Literal['open', 'closed', 'all']] = None¶ Filter on issue state. Can be one of: ‘open’, ‘closed’, ‘all’. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.github.GitHubIssuesLoader.html
a42b73913211-2
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). lazy_load() → Iterator[Document][source]¶ Get issues of a GitHub repository. Returns page_content metadata url title creator created_at last_update_time closed_time number of comments state labels assignee assignees milestone locked number is_pull_request Return type A list of Documents with attributes load() → List[Document][source]¶ Get issues of a GitHub repository. Returns page_content metadata url title creator created_at
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.github.GitHubIssuesLoader.html