File size: 2,333 Bytes
08af284
 
 
 
 
 
 
61b91c6
 
 
 
 
 
 
 
2af8f7d
 
d30ea59
 
08af284
 
d30ea59
61b91c6
d30ea59
 
08af284
 
 
 
 
7e6c06e
 
 
 
 
 
 
08af284
7e6c06e
a24b0ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01554a3
 
 
 
e28e9d6
01554a3
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
dataset_info:
  features:
  - name: entity
    dtype: string
  - name: perplexity
    dtype: float64
  - name: info
    list:
    - name: status_code
      dtype: int64
    - name: text
      dtype: string
    - name: url
      dtype: string
  - name: category
    dtype: string
  - name: wiki
    dtype: int64
  splits:
  - name: train
    num_bytes: 1944535165
    num_examples: 7917
  download_size: 1406426092
  dataset_size: 1944535165
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
license: mit
task_categories:
- text-generation
language:
- en
size_categories:
- 1K<n<10K
---

WildHallucinations is designed for evaluating the factuality of LLMs. 
Its core idea is to prompt LLMs to generate and fact-check information about a diverse set of entities.
WildHallucinations consists of 7917 entities extracted from WildChat and a knowledge source.
These entities come from English conversations that are marked as non-toxic.
As described in the main paper, we apply extensive filtering for quality control,
especially for removing entities with more than one meaning.
The knowledge source is constructed from Google search API. We scrape the top 10 web pages for each entity.
Additional cleaning process can be found in the paper.

To use the dataset:
```
from datasets import load_dataset
ds = load_dataset("wentingzhao/WildHallucinations", split="train")
```

Dataset Columns:
 * entity (string): the entity name
 * perplexity (float): the perplexity of the entity measured by the Llama-3-8B model
 * info (string): the web information about the entity scraped from Google search results
 * category (string): the category of the entity annotated by either an author or GPT-4o
 * wiki (Boolean): whether any information about the entity comes from wikipedia.org

### Citation Information

Please consider citing [our paper](https://arxiv.org/abs/2407.17468) if you find this dataset useful:
```
@article{
    zhao2024wildhallucinations,
    title={WildHallucinations: Evaluating Long-form Factuality in LLMs with Real-World Entity Queries},
    author={Wenting Zhao, Tanya Goyal, Yu Ying Chiu, Liwei Jiang, Benjamin Newman, Abhilasha Ravichander, Khyathi Chandu, Ronan Le Bras, Claire Cardie, Yuntian Deng, Yejin Choi},
    journal={arXiv preprint arXiv:2407.17468},
    year={2024}
}