File size: 5,717 Bytes
b012d38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import json
import datasets
from pathlib import Path

_HOMEPAGE = 'https://cocodataset.org/'
_LICENSE = 'Creative Commons Attribution 4.0 License'
_DESCRIPTION = 'COCO is a large-scale object detection, segmentation, and captioning dataset.'
_CITATION = '''\
@article{cocodataset,
  author    = {Tsung{-}Yi Lin and Michael Maire and Serge J. Belongie and Lubomir D. Bourdev and Ross B. Girshick and James Hays and Pietro Perona and Deva Ramanan and Piotr Doll{'{a} }r and C. Lawrence Zitnick},
  title     = {Microsoft {COCO:} Common Objects in Context},
  journal   = {CoRR},
  volume    = {abs/1405.0312},
  year      = {2014},
  url       = {http://arxiv.org/abs/1405.0312},
  archivePrefix = {arXiv},
  eprint    = {1405.0312},
  timestamp = {Mon, 13 Aug 2018 16:48:13 +0200},
  biburl    = {https://dblp.org/rec/bib/journals/corr/LinMBHPRDZ14},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
'''
_NAMES = [
    'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train',
    'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign',
    'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
    'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella',
    'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard',
    'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard',
    'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork',
    'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange',
    'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair',
    'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv',
    'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave',
    'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase',
    'scissors', 'teddy bear', 'hair drier', 'toothbrush'
]


class COCODetectionConfig(datasets.BuilderConfig):
    '''Builder Config for coco2017'''

    def __init__(
        self, description, homepage,
        annotation_urls, **kwargs
    ):
        super(COCODetectionConfig, self).__init__(
            version=datasets.Version('1.0.0', ''),
            **kwargs
        )
        self.description = description
        self.homepage = homepage
        url = 'http://images.cocodataset.org/zips/'
        self.train_image_url = url + 'train2017.zip'
        self.val_image_url = url + 'val2017.zip'
        self.train_annotation_urls = annotation_urls['train']
        self.val_annotation_urls = annotation_urls['validation']


class COCODetection(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [
        COCODetectionConfig(
            description=_DESCRIPTION,
            homepage=_HOMEPAGE,
            annotation_urls={
                'train': 'data/instance_train.zip',
                'validation': 'data/instance_validation.zip'
            },
        )
    ]

    def _info(self):
        features = datasets.Features({
            'image': datasets.Image(mode='RGB', decode=True, id=None),
            'bboxes': datasets.Sequence(
                feature=datasets.Sequence(
                    feature=datasets.Value(dtype='float32', id=None),
                    length=4, id=None
                ), length=-1, id=None
            ),
            'categories': datasets.Sequence(
                feature=datasets.ClassLabel(names=_NAMES),
                length=-1, id=None
            ),
            'inst.rles': datasets.Sequence(
                feature={
                    'size': datasets.Sequence(
                        feature=datasets.Value(dtype='int32', id=None),
                        length=2, id=None
                    ),
                    'counts': datasets.Value(dtype='string', id=None)
                },
                length=-1, id=None
            ),
        })
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION
        )

    def _split_generators(self, dl_manager):
        train_image_path = dl_manager.download_and_extract(
            self.config.train_image_url
        )
        val_image_path = dl_manager.download_and_extract(
            self.config.val_image_url
        )
        train_annotation_paths = dl_manager.download_and_extract(
            self.config.train_annotation_urls
        )
        val_annotation_paths = dl_manager.download_and_extract(
            self.config.val_annotation_urls
        )
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    'image_path': f'{train_image_path}/train2017',
                    'annotation_path': f'{train_annotation_paths}/instance_train.jsonl'
                }
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    'image_path': f'{val_image_path}/val2017',
                    'annotation_path': f'{val_annotation_paths}/instance_validation.jsonl'
                }
            )
        ]

    def _generate_examples(self, image_path, annotation_path):
        idx = 0
        image_path = Path(image_path)
        with open(annotation_path, 'r', encoding='utf-8') as f:
            for line in f:
                obj = json.loads(line.strip())
                example = {
                    'image': str(image_path / obj['image']),
                    'bboxes': obj['bboxes'],
                    'categories': obj['categories'],
                    'inst.rles': obj['inst.rles']
                }
                yield idx, example
                idx += 1