{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import os\n", "import zipfile\n", "import requests\n", "import jsonlines\n", "from tqdm import tqdm\n", "from pathlib import Path\n", "from pycocotools.coco import COCO\n", "from pycocotools import mask as maskUtils" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Download Annotations" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "url = 'http://images.cocodataset.org/annotations/'\n", "file = 'annotations_trainval2017.zip'\n", "if not Path(f'./{file}').exists():\n", " response = requests.get(url + file)\n", " with open(file, 'wb') as f:\n", " f.write(response.content)\n", "\n", " with zipfile.ZipFile(file, 'r') as zipf:\n", " zipf.extractall(Path())\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Read annotations" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "coco91_to_coco80 = [\n", " None, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, None,\n", " 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,\n", " 23, None, 24, 25, None, None, 26, 27, 28, 29, 30,\n", " 31, 32, 33, 34, 35, 36, 37, 38, 39, None, 40, 41,\n", " 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54,\n", " 55, 56, 57, 58, 59, None, 60, None, None, 61, None,\n", " 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, None,\n", " 73, 74, 75, 76, 77, 78, 79\n", "]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Instance Segmentation Task" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "train_data = COCO('annotations/instances_train2017.json')\n", "val_data = COCO('annotations/instances_val2017.json')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "for split, data in zip(['train', 'validation'], [train_data, val_data]):\n", " with jsonlines.open(f'data/instance_{split}.jsonl', mode='w') as writer:\n", " for image_id, image_info in tqdm(data.imgs.items()):\n", " bboxes, categories, instance_rles = [], [], []\n", " anns = data.imgToAnns[image_id]\n", " height, width = image_info['height'], image_info['width']\n", " for ann in anns:\n", " bboxes.append(ann['bbox'])\n", " categories.append(coco91_to_coco80[ann['category_id']])\n", " segm = ann['segmentation']\n", " if isinstance(segm, list):\n", " rles = maskUtils.frPyObjects(segm, height, width)\n", " rle = maskUtils.merge(rles)\n", " rle['counts'] = rle['counts'].decode()\n", " elif isinstance(segm['counts'], list):\n", " rle = maskUtils.frPyObjects(segm, height, width)\n", " rle['counts'] = rle['counts'].decode()\n", " else:\n", " rle = segm\n", " instance_rles.append(rle)\n", " writer.write({\n", " 'image': image_info['file_name'],\n", " 'bboxes': bboxes,\n", " 'categories': categories,\n", " 'inst.rles': instance_rles\n", " })" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "for split in ['train', 'validation']:\n", " file_path = f'data/instance_{split}.jsonl'\n", " with zipfile.ZipFile(f'data/instance_{split}.zip', 'w', zipfile.ZIP_DEFLATED) as zipf:\n", " zipf.write(file_path, os.path.basename(file_path))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": ".venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.2" } }, "nbformat": 4, "nbformat_minor": 2 }