File size: 3,367 Bytes
2f23893 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import numpy as np\n",
"import zipfile\n",
"import requests\n",
"import jsonlines\n",
"from tqdm import tqdm\n",
"from pathlib import Path\n",
"from pycocotools.coco import COCO"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Download Annotations"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"url = 'http://images.cocodataset.org/annotations/'\n",
"files = [\n",
" 'annotations_trainval2017.zip'\n",
"]\n",
"for file in files:\n",
" if not Path(f'./{file}').exists():\n",
" response = requests.get(url + file)\n",
" with open(file, 'wb') as f:\n",
" f.write(response.content)\n",
"\n",
" with zipfile.ZipFile(file, 'r') as zipf:\n",
" zipf.extractall(Path())\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Keypoint Detection Task"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"train_data = COCO('annotations/person_keypoints_train2017.json')\n",
"val_data = COCO('annotations/person_keypoints_val2017.json')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"for split, data in zip(['train', 'validation'], [train_data, val_data]):\n",
" with jsonlines.open(f'data/keypoints_{split}.jsonl', mode='w') as writer:\n",
" for image_id, image_info in tqdm(data.imgs.items()):\n",
" bboxes, keypoints = [], []\n",
" anns = data.imgToAnns[image_id]\n",
" if len(anns) > 0:\n",
" \n",
" for ann in anns:\n",
" bboxes.append(ann['bbox'])\n",
" keypoints.append(ann['keypoints'])\n",
" writer.write({\n",
" 'image': image_info['file_name'],\n",
" 'bboxes': bboxes,\n",
" 'keypoints': np.array(keypoints).reshape(\n",
" len(bboxes), -1, 3\n",
" ).tolist()\n",
" })"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"for split in ['train', 'validation']:\n",
" file_path = f'data/keypoints_{split}.jsonl'\n",
" with zipfile.ZipFile(f'data/keypoints_{split}.zip', 'w', zipfile.ZIP_DEFLATED) as zipf:\n",
" zipf.write(file_path, os.path.basename(file_path))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.2"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|