import json import datasets from pathlib import Path _HOMEPAGE = 'https://cocodataset.org/' _LICENSE = 'Creative Commons Attribution 4.0 License' _DESCRIPTION = 'COCO is a large-scale object detection, segmentation, and captioning dataset.' _CITATION = '''\ @article{cocodataset, author = {Tsung{-}Yi Lin and Michael Maire and Serge J. Belongie and Lubomir D. Bourdev and Ross B. Girshick and James Hays and Pietro Perona and Deva Ramanan and Piotr Doll{'{a} }r and C. Lawrence Zitnick}, title = {Microsoft {COCO:} Common Objects in Context}, journal = {CoRR}, volume = {abs/1405.0312}, year = {2014}, url = {http://arxiv.org/abs/1405.0312}, archivePrefix = {arXiv}, eprint = {1405.0312}, timestamp = {Mon, 13 Aug 2018 16:48:13 +0200}, biburl = {https://dblp.org/rec/bib/journals/corr/LinMBHPRDZ14}, bibsource = {dblp computer science bibliography, https://dblp.org} } ''' _NAMES = [ 'banner', 'blanket', 'branch', 'bridge', 'building-other', 'bush', 'cabinet', 'cage', 'cardboard', 'carpet', 'ceiling-other', 'ceiling-tile', 'cloth', 'clothes', 'clouds', 'counter', 'cupboard', 'curtain', 'desk-stuff', 'dirt', 'door-stuff', 'fence', 'floor-marble', 'floor-other', 'floor-stone', 'floor-tile', 'floor-wood', 'flower', 'fog', 'food-other', 'fruit', 'furniture-other', 'grass', 'gravel', 'ground-other', 'hill', 'house', 'leaves', 'light', 'mat', 'metal', 'mirror-stuff', 'moss', 'mountain', 'mud', 'napkin', 'net', 'paper', 'pavement', 'pillow', 'plant-other', 'plastic', 'platform', 'playingfield', 'railing', 'railroad', 'river', 'road', 'rock', 'roof', 'rug', 'salad', 'sand', 'sea', 'shelf', 'sky-other', 'skyscraper', 'snow', 'solid-other', 'stairs', 'stone', 'straw', 'structural-other', 'table', 'tent', 'textile-other', 'towel', 'tree', 'vegetable', 'wall-brick', 'wall-concrete', 'wall-other', 'wall-panel', 'wall-stone', 'wall-tile', 'wall-wood', 'water-other', 'waterdrops', 'window-blind', 'window-other', 'wood', 'other' ] class COCOStuffConfig(datasets.BuilderConfig): '''Builder Config for coco2017''' def __init__( self, description, homepage, annotation_urls, **kwargs ): super(COCOStuffConfig, self).__init__( version=datasets.Version('1.0.0', ''), **kwargs ) self.description = description self.homepage = homepage url = 'http://images.cocodataset.org/zips/' self.train_image_url = url + 'train2017.zip' self.val_image_url = url + 'val2017.zip' self.train_annotation_urls = annotation_urls['train'] self.val_annotation_urls = annotation_urls['validation'] class COCOStuff(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ COCOStuffConfig( description=_DESCRIPTION, homepage=_HOMEPAGE, annotation_urls={ 'train': 'data/stuff_train.zip', 'validation': 'data/stuff_validation.zip' }, ) ] def _info(self): features = datasets.Features({ 'image': datasets.Image(mode='RGB', decode=True, id=None), 'categories': datasets.Sequence( feature=datasets.ClassLabel(names=_NAMES), length=-1, id=None ), 'sem.rles': datasets.Sequence( feature={ 'size': datasets.Sequence( feature=datasets.Value(dtype='int32', id=None), length=2, id=None ), 'counts': datasets.Value(dtype='string', id=None) }, length=-1, id=None ), }) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION ) def _split_generators(self, dl_manager): train_image_path = dl_manager.download_and_extract( self.config.train_image_url ) val_image_path = dl_manager.download_and_extract( self.config.val_image_url ) train_annotation_paths = dl_manager.download_and_extract( self.config.train_annotation_urls ) val_annotation_paths = dl_manager.download_and_extract( self.config.val_annotation_urls ) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ 'image_path': f'{train_image_path}/train2017', 'annotation_path': f'{train_annotation_paths}/stuff_train.jsonl' } ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ 'image_path': f'{val_image_path}/val2017', 'annotation_path': f'{val_annotation_paths}/stuff_validation.jsonl' } ) ] def _generate_examples(self, image_path, annotation_path): idx = 0 image_path = Path(image_path) with open(annotation_path, 'r', encoding='utf-8') as f: for line in f: obj = json.loads(line.strip()) example = { 'image': str(image_path / obj['image']), 'categories': obj['categories'], 'sem.rles': obj['sem.rles'] } yield idx, example idx += 1