|
import json |
|
from typing import List |
|
|
|
import datasets |
|
import numpy as np |
|
import fortepyan as ff |
|
from tqdm import tqdm |
|
from datasets import ( |
|
Split, |
|
Dataset, |
|
DatasetInfo, |
|
BuilderConfig, |
|
GeneratorBasedBuilder, |
|
load_dataset, |
|
concatenate_datasets, |
|
) |
|
|
|
_DESC = """ |
|
Dataset of midi pieces sliced to records of fixed number of notes. |
|
""" |
|
|
|
|
|
class TokenizedMidiDatasetConfig(BuilderConfig): |
|
def __init__( |
|
self, |
|
base_dataset_name: str = "roszcz/maestro-v1-sustain", |
|
extra_datasets: list[str] = [], |
|
sequence_length: int = 64, |
|
sequence_step: int = 42, |
|
**kwargs, |
|
): |
|
super().__init__() |
|
|
|
|
|
super().__init__(version=datasets.Version("0.0.2"), **kwargs) |
|
|
|
self.base_dataset_name: str = base_dataset_name |
|
self.extra_datasets: list[str] = extra_datasets |
|
self.sequence_length: int = sequence_length |
|
self.sequence_step: int = sequence_step |
|
|
|
|
|
class TokenizedMidiDataset(GeneratorBasedBuilder): |
|
def _info(self) -> DatasetInfo: |
|
return datasets.DatasetInfo(description=_DESC) |
|
|
|
BUILDER_CONFIG_CLASS = TokenizedMidiDatasetConfig |
|
BUILDER_CONFIGS = [ |
|
TokenizedMidiDatasetConfig( |
|
base_dataset_name="roszcz/maestro-sustain-v2", |
|
extra_datasets=["roszcz/giant-midi-sustain-v2"], |
|
sequence_length=32, |
|
sequence_step=16, |
|
name="giant-short", |
|
), |
|
TokenizedMidiDatasetConfig( |
|
base_dataset_name="roszcz/maestro-sustain-v2", |
|
extra_datasets=[], |
|
sequence_length=32, |
|
sequence_step=16, |
|
name="basic-short", |
|
), |
|
TokenizedMidiDatasetConfig( |
|
base_dataset_name="roszcz/maestro-sustain-v2", |
|
extra_datasets=["roszcz/giant-midi-sustain-v2"], |
|
sequence_length=64, |
|
sequence_step=16, |
|
name="giant-mid", |
|
), |
|
TokenizedMidiDatasetConfig( |
|
base_dataset_name="roszcz/maestro-sustain-v2", |
|
extra_datasets=[], |
|
sequence_length=64, |
|
sequence_step=16, |
|
name="basic-mid", |
|
), |
|
TokenizedMidiDatasetConfig( |
|
base_dataset_name="roszcz/maestro-sustain-v2", |
|
extra_datasets=["roszcz/giant-midi-sustain-v2"], |
|
sequence_length=128, |
|
sequence_step=16, |
|
name="giant-long", |
|
), |
|
TokenizedMidiDatasetConfig( |
|
base_dataset_name="roszcz/maestro-sustain-v2", |
|
extra_datasets=[], |
|
sequence_length=128, |
|
sequence_step=16, |
|
name="basic-long", |
|
), |
|
] |
|
DEFAULT_CONFIG_NAME = "basic-mid" |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
base = load_dataset(self.config.base_dataset_name) |
|
|
|
other_datasets = [load_dataset(path, split="train") for path in self.config.extra_datasets] |
|
other_datasets.append(base["train"]) |
|
|
|
dataset = concatenate_datasets(other_datasets) |
|
|
|
|
|
n_shards = 12 |
|
train_shards = [dataset.shard(n_shards, it) for it in range(n_shards)] |
|
|
|
return [ |
|
datasets.SplitGenerator(name=Split.TRAIN, gen_kwargs={"dataset_shards": train_shards}), |
|
datasets.SplitGenerator(name=Split.TEST, gen_kwargs={"dataset_shards": [base["test"]]}), |
|
datasets.SplitGenerator(name=Split.VALIDATION, gen_kwargs={"dataset_shards": [base["validation"]]}), |
|
] |
|
|
|
def piece_to_records(self, piece: ff.MidiPiece) -> list[dict]: |
|
|
|
rs = np.random.RandomState(np.random.MT19937(np.random.SeedSequence(4))) |
|
|
|
n_samples = 1 + (piece.size - self.config.sequence_length) // self.config.sequence_step |
|
|
|
piece_idxs = range(piece.size - self.config.sequence_length) |
|
start_points = rs.choice(piece_idxs, size=n_samples, replace=False) |
|
|
|
chopped_sequences = [] |
|
for start in start_points: |
|
start = int(start) |
|
finish = start + self.config.sequence_length |
|
part = piece[start:finish] |
|
|
|
sequence = { |
|
"notes": { |
|
"pitch": part.df.pitch.astype("int16").values.T, |
|
"start": part.df.start.values, |
|
"end": part.df.end.values, |
|
"duration": part.df.duration.values, |
|
"velocity": part.df.velocity.values, |
|
}, |
|
"source": json.dumps(part.source), |
|
} |
|
chopped_sequences.append(sequence) |
|
|
|
return chopped_sequences |
|
|
|
def filter_pauses(self, piece: ff.MidiPiece) -> list[ff.MidiPiece]: |
|
next_start = piece.df.start.shift(-1) |
|
silent_distance = next_start - piece.df.end |
|
|
|
|
|
distance_threshold = 4 |
|
|
|
ids = silent_distance > distance_threshold |
|
|
|
break_idxs = np.where(ids)[0] |
|
|
|
pieces = [] |
|
|
|
start = 0 |
|
for break_idx in break_idxs: |
|
finish = break_idx.item() + 1 |
|
piece_part = piece[start:finish] |
|
|
|
if piece_part.size <= self.config.sequence_length: |
|
continue |
|
|
|
pieces.append(piece_part) |
|
start = finish |
|
|
|
return pieces |
|
|
|
def _generate_examples(self, dataset_shards: list[Dataset]): |
|
|
|
for dataset in dataset_shards: |
|
for it, record in tqdm(enumerate(dataset), total=len(dataset)): |
|
piece = ff.MidiPiece.from_huggingface(dict(record)) |
|
|
|
pieces = self.filter_pauses(piece) |
|
chopped_sequences = sum([self.piece_to_records(piece) for piece in pieces], []) |
|
|
|
for jt, sequence in enumerate(chopped_sequences): |
|
|
|
|
|
|
|
key = f"{it}_{jt}" |
|
yield key, sequence |
|
|