Datasets:
Commit
·
beef1c5
0
Parent(s):
Update files from the datasets library (from 1.0.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.0.0
- .gitattributes +27 -0
- dataset_infos.json +1 -0
- dummy/cs-en/1.0.0/dummy_data.zip +3 -0
- wmt17.py +83 -0
- wmt_utils.py +1018 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"cs-en": {"description": "Translate dataset based on the data from statmt.org.\n\nVersions exists for the different years using a combination of multiple data\nsources. The base `wmt_translate` allows you to create your own config to choose\nyour own data/language pair by creating a custom `datasets.translate.wmt.WmtConfig`.\n\n```\nconfig = datasets.wmt.WmtConfig(\n version=\"0.0.1\",\n language_pair=(\"fr\", \"de\"),\n subsets={\n datasets.Split.TRAIN: [\"commoncrawl_frde\"],\n datasets.Split.VALIDATION: [\"euelections_dev2019\"],\n },\n)\nbuilder = datasets.builder(\"wmt_translate\", config=config)\n```\n\n", "citation": "\n@InProceedings{bojar-EtAl:2017:WMT1,\n author = {Bojar, Ond\u000b{r}ej and Chatterjee, Rajen and Federmann, Christian and Graham, Yvette and Haddow, Barry and Huang, Shujian and Huck, Matthias and Koehn, Philipp and Liu, Qun and Logacheva, Varvara and Monz, Christof and Negri, Matteo and Post, Matt and Rubino, Raphael and Specia, Lucia and Turchi, Marco},\n title = {Findings of the 2017 Conference on Machine Translation (WMT17)},\n booktitle = {Proceedings of the Second Conference on Machine Translation, Volume 2: Shared Task Papers},\n month = {September},\n year = {2017},\n address = {Copenhagen, Denmark},\n publisher = {Association for Computational Linguistics},\n pages = {169--214},\n url = {http://www.aclweb.org/anthology/W17-4717}\n}\n", "homepage": "http://www.statmt.org/wmt17/translation-task.html", "license": "", "features": {"translation": {"languages": ["cs", "en"], "id": null, "_type": "Translation"}}, "supervised_keys": {"input": "cs", "output": "en"}, "builder_name": "wmt17", "config_name": "cs-en", "version": {"version_str": "1.0.0", "description": null, "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 674430, "num_examples": 3005, "dataset_name": "wmt17"}, "train": {"name": "train", "num_bytes": 300709796, "num_examples": 1018291, "dataset_name": "wmt17"}, "validation": {"name": "validation", "num_bytes": 707870, "num_examples": 2999, "dataset_name": "wmt17"}}, "download_checksums": {"http://www.statmt.org/wmt13/training-parallel-europarl-v7.tgz": {"num_bytes": 657632379, "checksum": "0224c7c710c8a063dfd893b0cc0830202d61f4c75c17eb8e31836103d27d96e7"}, "http://www.statmt.org/wmt13/training-parallel-commoncrawl.tgz": {"num_bytes": 918311367, "checksum": "c7a74e2ea01ac6c920123108627e35278d4ccb5701e15428ffa34de86fa3a9e5"}, "http://data.statmt.org/wmt17/translation-task/training-parallel-nc-v12.tgz": {"num_bytes": 168591139, "checksum": "2b45f30ef1d550d302fd17dd3a5cbe19134ccc4c2cf50c2dae534aee600101a2"}, "http://data.statmt.org/wmt19/translation-task/dev.tgz": {"num_bytes": 38654961, "checksum": "7a7deccf82ebb05ba508dba5eb21356492224e8f630ec4f992132b029b4b25e7"}}, "download_size": 1783189846, "dataset_size": 302092096, "size_in_bytes": 2085281942}}
|
dummy/cs-en/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f37a69bb24dc976e3f647a05baea047a68e5caae41db2c95052db9b653264b40
|
3 |
+
size 5906
|
wmt17.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""WMT17: Translate dataset."""
|
18 |
+
|
19 |
+
import datasets
|
20 |
+
|
21 |
+
from .wmt_utils import CWMT_SUBSET_NAMES, Wmt, WmtConfig
|
22 |
+
|
23 |
+
|
24 |
+
_URL = "http://www.statmt.org/wmt17/translation-task.html"
|
25 |
+
_CITATION = """
|
26 |
+
@InProceedings{bojar-EtAl:2017:WMT1,
|
27 |
+
author = {Bojar, Ond\v{r}ej and Chatterjee, Rajen and Federmann, Christian and Graham, Yvette and Haddow, Barry and Huang, Shujian and Huck, Matthias and Koehn, Philipp and Liu, Qun and Logacheva, Varvara and Monz, Christof and Negri, Matteo and Post, Matt and Rubino, Raphael and Specia, Lucia and Turchi, Marco},
|
28 |
+
title = {Findings of the 2017 Conference on Machine Translation (WMT17)},
|
29 |
+
booktitle = {Proceedings of the Second Conference on Machine Translation, Volume 2: Shared Task Papers},
|
30 |
+
month = {September},
|
31 |
+
year = {2017},
|
32 |
+
address = {Copenhagen, Denmark},
|
33 |
+
publisher = {Association for Computational Linguistics},
|
34 |
+
pages = {169--214},
|
35 |
+
url = {http://www.aclweb.org/anthology/W17-4717}
|
36 |
+
}
|
37 |
+
"""
|
38 |
+
|
39 |
+
_LANGUAGE_PAIRS = [(lang, "en") for lang in ["cs", "de", "fi", "lv", "ru", "tr", "zh"]]
|
40 |
+
|
41 |
+
|
42 |
+
class Wmt17(Wmt):
|
43 |
+
"""WMT 17 translation datasets for all {xx, "en"} language pairs."""
|
44 |
+
|
45 |
+
BUILDER_CONFIGS = [
|
46 |
+
WmtConfig( # pylint:disable=g-complex-comprehension
|
47 |
+
description="WMT 2017 %s-%s translation task dataset." % (l1, l2),
|
48 |
+
url=_URL,
|
49 |
+
citation=_CITATION,
|
50 |
+
language_pair=(l1, l2),
|
51 |
+
version=datasets.Version("1.0.0"),
|
52 |
+
)
|
53 |
+
for l1, l2 in _LANGUAGE_PAIRS
|
54 |
+
]
|
55 |
+
|
56 |
+
@property
|
57 |
+
def manual_download_instructions(self):
|
58 |
+
if self.config.language_pair[1] in ["cs", "hi", "ru"]:
|
59 |
+
return "Please download the data manually as explained. TODO(PVP)"
|
60 |
+
|
61 |
+
@property
|
62 |
+
def _subsets(self):
|
63 |
+
return {
|
64 |
+
datasets.Split.TRAIN: [
|
65 |
+
"europarl_v7",
|
66 |
+
"europarl_v8_16",
|
67 |
+
"commoncrawl",
|
68 |
+
"newscommentary_v12",
|
69 |
+
"czeng_16",
|
70 |
+
"yandexcorpus",
|
71 |
+
"wikiheadlines_fi",
|
72 |
+
"wikiheadlines_ru",
|
73 |
+
"setimes_2",
|
74 |
+
"uncorpus_v1",
|
75 |
+
"rapid_2016",
|
76 |
+
"leta_v1",
|
77 |
+
"dcep_v1",
|
78 |
+
"onlinebooks_v1",
|
79 |
+
]
|
80 |
+
+ CWMT_SUBSET_NAMES,
|
81 |
+
datasets.Split.VALIDATION: ["newsdev2017", "newstest2016", "newstestB2016"],
|
82 |
+
datasets.Split.TEST: ["newstest2017", "newstestB2017"],
|
83 |
+
}
|
wmt_utils.py
ADDED
@@ -0,0 +1,1018 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""WMT: Translate dataset."""
|
18 |
+
|
19 |
+
from __future__ import absolute_import, division, print_function
|
20 |
+
|
21 |
+
import codecs
|
22 |
+
import functools
|
23 |
+
import glob
|
24 |
+
import gzip
|
25 |
+
import itertools
|
26 |
+
import logging
|
27 |
+
import os
|
28 |
+
import re
|
29 |
+
import xml.etree.cElementTree as ElementTree
|
30 |
+
from abc import ABC, abstractmethod
|
31 |
+
|
32 |
+
import six
|
33 |
+
|
34 |
+
import datasets
|
35 |
+
|
36 |
+
|
37 |
+
_DESCRIPTION = """\
|
38 |
+
Translate dataset based on the data from statmt.org.
|
39 |
+
|
40 |
+
Versions exists for the different years using a combination of multiple data
|
41 |
+
sources. The base `wmt_translate` allows you to create your own config to choose
|
42 |
+
your own data/language pair by creating a custom `datasets.translate.wmt.WmtConfig`.
|
43 |
+
|
44 |
+
```
|
45 |
+
config = datasets.wmt.WmtConfig(
|
46 |
+
version="0.0.1",
|
47 |
+
language_pair=("fr", "de"),
|
48 |
+
subsets={
|
49 |
+
datasets.Split.TRAIN: ["commoncrawl_frde"],
|
50 |
+
datasets.Split.VALIDATION: ["euelections_dev2019"],
|
51 |
+
},
|
52 |
+
)
|
53 |
+
builder = datasets.builder("wmt_translate", config=config)
|
54 |
+
```
|
55 |
+
|
56 |
+
"""
|
57 |
+
|
58 |
+
|
59 |
+
CWMT_SUBSET_NAMES = ["casia2015", "casict2011", "casict2015", "datum2015", "datum2017", "neu2017"]
|
60 |
+
|
61 |
+
|
62 |
+
class SubDataset(object):
|
63 |
+
"""Class to keep track of information on a sub-dataset of WMT."""
|
64 |
+
|
65 |
+
def __init__(self, name, target, sources, url, path, manual_dl_files=None):
|
66 |
+
"""Sub-dataset of WMT.
|
67 |
+
|
68 |
+
Args:
|
69 |
+
name: `string`, a unique dataset identifier.
|
70 |
+
target: `string`, the target language code.
|
71 |
+
sources: `set<string>`, the set of source language codes.
|
72 |
+
url: `string` or `(string, string)`, URL(s) or URL template(s) specifying
|
73 |
+
where to download the raw data from. If two strings are provided, the
|
74 |
+
first is used for the source language and the second for the target.
|
75 |
+
Template strings can either contain '{src}' placeholders that will be
|
76 |
+
filled in with the source language code, '{0}' and '{1}' placeholders
|
77 |
+
that will be filled in with the source and target language codes in
|
78 |
+
alphabetical order, or all 3.
|
79 |
+
path: `string` or `(string, string)`, path(s) or path template(s)
|
80 |
+
specifing the path to the raw data relative to the root of the
|
81 |
+
downloaded archive. If two strings are provided, the dataset is assumed
|
82 |
+
to be made up of parallel text files, the first being the source and the
|
83 |
+
second the target. If one string is provided, both languages are assumed
|
84 |
+
to be stored within the same file and the extension is used to determine
|
85 |
+
how to parse it. Template strings should be formatted the same as in
|
86 |
+
`url`.
|
87 |
+
manual_dl_files: `<list>(string)` (optional), the list of files that must
|
88 |
+
be manually downloaded to the data directory.
|
89 |
+
"""
|
90 |
+
self._paths = (path,) if isinstance(path, six.string_types) else path
|
91 |
+
self._urls = (url,) if isinstance(url, six.string_types) else url
|
92 |
+
self._manual_dl_files = manual_dl_files if manual_dl_files else []
|
93 |
+
self.name = name
|
94 |
+
self.target = target
|
95 |
+
self.sources = set(sources)
|
96 |
+
|
97 |
+
def _inject_language(self, src, strings):
|
98 |
+
"""Injects languages into (potentially) template strings."""
|
99 |
+
if src not in self.sources:
|
100 |
+
raise ValueError("Invalid source for '{0}': {1}".format(self.name, src))
|
101 |
+
|
102 |
+
def _format_string(s):
|
103 |
+
if "{0}" in s and "{1}" and "{src}" in s:
|
104 |
+
return s.format(*sorted([src, self.target]), src=src)
|
105 |
+
elif "{0}" in s and "{1}" in s:
|
106 |
+
return s.format(*sorted([src, self.target]))
|
107 |
+
elif "{src}" in s:
|
108 |
+
return s.format(src=src)
|
109 |
+
else:
|
110 |
+
return s
|
111 |
+
|
112 |
+
return [_format_string(s) for s in strings]
|
113 |
+
|
114 |
+
def get_url(self, src):
|
115 |
+
return self._inject_language(src, self._urls)
|
116 |
+
|
117 |
+
def get_manual_dl_files(self, src):
|
118 |
+
return self._inject_language(src, self._manual_dl_files)
|
119 |
+
|
120 |
+
def get_path(self, src):
|
121 |
+
return self._inject_language(src, self._paths)
|
122 |
+
|
123 |
+
|
124 |
+
# Subsets used in the training sets for various years of WMT.
|
125 |
+
_TRAIN_SUBSETS = [
|
126 |
+
# pylint:disable=line-too-long
|
127 |
+
SubDataset(
|
128 |
+
name="commoncrawl",
|
129 |
+
target="en", # fr-de pair in commoncrawl_frde
|
130 |
+
sources={"cs", "de", "es", "fr", "ru"},
|
131 |
+
url="http://www.statmt.org/wmt13/training-parallel-commoncrawl.tgz",
|
132 |
+
path=("commoncrawl.{src}-en.{src}", "commoncrawl.{src}-en.en"),
|
133 |
+
),
|
134 |
+
SubDataset(
|
135 |
+
name="commoncrawl_frde",
|
136 |
+
target="de",
|
137 |
+
sources={"fr"},
|
138 |
+
url=(
|
139 |
+
"http://data.statmt.org/wmt19/translation-task/fr-de/bitexts/commoncrawl.fr.gz",
|
140 |
+
"http://data.statmt.org/wmt19/translation-task/fr-de/bitexts/commoncrawl.de.gz",
|
141 |
+
),
|
142 |
+
path=("", ""),
|
143 |
+
),
|
144 |
+
SubDataset(
|
145 |
+
name="czeng_10",
|
146 |
+
target="en",
|
147 |
+
sources={"cs"},
|
148 |
+
url="http://ufal.mff.cuni.cz/czeng/czeng10",
|
149 |
+
manual_dl_files=["data-plaintext-format.%d.tar" % i for i in range(10)],
|
150 |
+
# Each tar contains multiple files, which we process specially in
|
151 |
+
# _parse_czeng.
|
152 |
+
path=("data.plaintext-format/??train.gz",) * 10,
|
153 |
+
),
|
154 |
+
SubDataset(
|
155 |
+
name="czeng_16pre",
|
156 |
+
target="en",
|
157 |
+
sources={"cs"},
|
158 |
+
url="http://ufal.mff.cuni.cz/czeng/czeng16pre",
|
159 |
+
manual_dl_files=["czeng16pre.deduped-ignoring-sections.txt.gz"],
|
160 |
+
path="",
|
161 |
+
),
|
162 |
+
SubDataset(
|
163 |
+
name="czeng_16",
|
164 |
+
target="en",
|
165 |
+
sources={"cs"},
|
166 |
+
url="http://ufal.mff.cuni.cz/czeng",
|
167 |
+
manual_dl_files=["data-plaintext-format.%d.tar" % i for i in range(10)],
|
168 |
+
# Each tar contains multiple files, which we process specially in
|
169 |
+
# _parse_czeng.
|
170 |
+
path=("data.plaintext-format/??train.gz",) * 10,
|
171 |
+
),
|
172 |
+
SubDataset(
|
173 |
+
# This dataset differs from the above in the filtering that is applied
|
174 |
+
# during parsing.
|
175 |
+
name="czeng_17",
|
176 |
+
target="en",
|
177 |
+
sources={"cs"},
|
178 |
+
url="http://ufal.mff.cuni.cz/czeng",
|
179 |
+
manual_dl_files=["data-plaintext-format.%d.tar" % i for i in range(10)],
|
180 |
+
# Each tar contains multiple files, which we process specially in
|
181 |
+
# _parse_czeng.
|
182 |
+
path=("data.plaintext-format/??train.gz",) * 10,
|
183 |
+
),
|
184 |
+
SubDataset(
|
185 |
+
name="dcep_v1",
|
186 |
+
target="en",
|
187 |
+
sources={"lv"},
|
188 |
+
url="http://data.statmt.org/wmt17/translation-task/dcep.lv-en.v1.tgz",
|
189 |
+
path=("dcep.en-lv/dcep.lv", "dcep.en-lv/dcep.en"),
|
190 |
+
),
|
191 |
+
SubDataset(
|
192 |
+
name="europarl_v7",
|
193 |
+
target="en",
|
194 |
+
sources={"cs", "de", "es", "fr"},
|
195 |
+
url="http://www.statmt.org/wmt13/training-parallel-europarl-v7.tgz",
|
196 |
+
path=("training/europarl-v7.{src}-en.{src}", "training/europarl-v7.{src}-en.en"),
|
197 |
+
),
|
198 |
+
SubDataset(
|
199 |
+
name="europarl_v7_frde",
|
200 |
+
target="de",
|
201 |
+
sources={"fr"},
|
202 |
+
url=(
|
203 |
+
"http://data.statmt.org/wmt19/translation-task/fr-de/bitexts/europarl-v7.fr.gz",
|
204 |
+
"http://data.statmt.org/wmt19/translation-task/fr-de/bitexts/europarl-v7.de.gz",
|
205 |
+
),
|
206 |
+
path=("", ""),
|
207 |
+
),
|
208 |
+
SubDataset(
|
209 |
+
name="europarl_v8_18",
|
210 |
+
target="en",
|
211 |
+
sources={"et", "fi"},
|
212 |
+
url="http://data.statmt.org/wmt18/translation-task/training-parallel-ep-v8.tgz",
|
213 |
+
path=("training/europarl-v8.{src}-en.{src}", "training/europarl-v8.{src}-en.en"),
|
214 |
+
),
|
215 |
+
SubDataset(
|
216 |
+
name="europarl_v8_16",
|
217 |
+
target="en",
|
218 |
+
sources={"fi", "ro"},
|
219 |
+
url="http://data.statmt.org/wmt16/translation-task/training-parallel-ep-v8.tgz",
|
220 |
+
path=("training-parallel-ep-v8/europarl-v8.{src}-en.{src}", "training-parallel-ep-v8/europarl-v8.{src}-en.en"),
|
221 |
+
),
|
222 |
+
SubDataset(
|
223 |
+
name="europarl_v9",
|
224 |
+
target="en",
|
225 |
+
sources={"cs", "de", "fi", "lt"},
|
226 |
+
url="http://www.statmt.org/europarl/v9/training/europarl-v9.{src}-en.tsv.gz",
|
227 |
+
path="",
|
228 |
+
),
|
229 |
+
SubDataset(
|
230 |
+
name="gigafren",
|
231 |
+
target="en",
|
232 |
+
sources={"fr"},
|
233 |
+
url="http://www.statmt.org/wmt10/training-giga-fren.tar",
|
234 |
+
path=("giga-fren.release2.fixed.fr.gz", "giga-fren.release2.fixed.en.gz"),
|
235 |
+
),
|
236 |
+
SubDataset(
|
237 |
+
name="hindencorp_01",
|
238 |
+
target="en",
|
239 |
+
sources={"hi"},
|
240 |
+
url="http://ufallab.ms.mff.cuni.cz/~bojar/hindencorp",
|
241 |
+
manual_dl_files=["hindencorp0.1.gz"],
|
242 |
+
path="",
|
243 |
+
),
|
244 |
+
SubDataset(
|
245 |
+
name="leta_v1",
|
246 |
+
target="en",
|
247 |
+
sources={"lv"},
|
248 |
+
url="http://data.statmt.org/wmt17/translation-task/leta.v1.tgz",
|
249 |
+
path=("LETA-lv-en/leta.lv", "LETA-lv-en/leta.en"),
|
250 |
+
),
|
251 |
+
SubDataset(
|
252 |
+
name="multiun",
|
253 |
+
target="en",
|
254 |
+
sources={"es", "fr"},
|
255 |
+
url="http://www.statmt.org/wmt13/training-parallel-un.tgz",
|
256 |
+
path=("un/undoc.2000.{src}-en.{src}", "un/undoc.2000.{src}-en.en"),
|
257 |
+
),
|
258 |
+
SubDataset(
|
259 |
+
name="newscommentary_v9",
|
260 |
+
target="en",
|
261 |
+
sources={"cs", "de", "fr", "ru"},
|
262 |
+
url="http://www.statmt.org/wmt14/training-parallel-nc-v9.tgz",
|
263 |
+
path=("training/news-commentary-v9.{src}-en.{src}", "training/news-commentary-v9.{src}-en.en"),
|
264 |
+
),
|
265 |
+
SubDataset(
|
266 |
+
name="newscommentary_v10",
|
267 |
+
target="en",
|
268 |
+
sources={"cs", "de", "fr", "ru"},
|
269 |
+
url="http://www.statmt.org/wmt15/training-parallel-nc-v10.tgz",
|
270 |
+
path=("news-commentary-v10.{src}-en.{src}", "news-commentary-v10.{src}-en.en"),
|
271 |
+
),
|
272 |
+
SubDataset(
|
273 |
+
name="newscommentary_v11",
|
274 |
+
target="en",
|
275 |
+
sources={"cs", "de", "ru"},
|
276 |
+
url="http://data.statmt.org/wmt16/translation-task/training-parallel-nc-v11.tgz",
|
277 |
+
path=(
|
278 |
+
"training-parallel-nc-v11/news-commentary-v11.{src}-en.{src}",
|
279 |
+
"training-parallel-nc-v11/news-commentary-v11.{src}-en.en",
|
280 |
+
),
|
281 |
+
),
|
282 |
+
SubDataset(
|
283 |
+
name="newscommentary_v12",
|
284 |
+
target="en",
|
285 |
+
sources={"cs", "de", "ru", "zh"},
|
286 |
+
url="http://data.statmt.org/wmt17/translation-task/training-parallel-nc-v12.tgz",
|
287 |
+
path=("training/news-commentary-v12.{src}-en.{src}", "training/news-commentary-v12.{src}-en.en"),
|
288 |
+
),
|
289 |
+
SubDataset(
|
290 |
+
name="newscommentary_v13",
|
291 |
+
target="en",
|
292 |
+
sources={"cs", "de", "ru", "zh"},
|
293 |
+
url="http://data.statmt.org/wmt18/translation-task/training-parallel-nc-v13.tgz",
|
294 |
+
path=(
|
295 |
+
"training-parallel-nc-v13/news-commentary-v13.{src}-en.{src}",
|
296 |
+
"training-parallel-nc-v13/news-commentary-v13.{src}-en.en",
|
297 |
+
),
|
298 |
+
),
|
299 |
+
SubDataset(
|
300 |
+
name="newscommentary_v14",
|
301 |
+
target="en", # fr-de pair in newscommentary_v14_frde
|
302 |
+
sources={"cs", "de", "kk", "ru", "zh"},
|
303 |
+
url="http://data.statmt.org/news-commentary/v14/training/news-commentary-v14.{0}-{1}.tsv.gz",
|
304 |
+
path="",
|
305 |
+
),
|
306 |
+
SubDataset(
|
307 |
+
name="newscommentary_v14_frde",
|
308 |
+
target="de",
|
309 |
+
sources={"fr"},
|
310 |
+
url="http://data.statmt.org/news-commentary/v14/training/news-commentary-v14.de-fr.tsv.gz",
|
311 |
+
path="",
|
312 |
+
),
|
313 |
+
SubDataset(
|
314 |
+
name="onlinebooks_v1",
|
315 |
+
target="en",
|
316 |
+
sources={"lv"},
|
317 |
+
url="http://data.statmt.org/wmt17/translation-task/books.lv-en.v1.tgz",
|
318 |
+
path=("farewell/farewell.lv", "farewell/farewell.en"),
|
319 |
+
),
|
320 |
+
SubDataset(
|
321 |
+
name="paracrawl_v1",
|
322 |
+
target="en",
|
323 |
+
sources={"cs", "de", "et", "fi", "ru"},
|
324 |
+
url="https://s3.amazonaws.com/web-language-models/paracrawl/release1/paracrawl-release1.en-{src}.zipporah0-dedup-clean.tgz",
|
325 |
+
path=(
|
326 |
+
"paracrawl-release1.en-{src}.zipporah0-dedup-clean.{src}",
|
327 |
+
"paracrawl-release1.en-{src}.zipporah0-dedup-clean.en",
|
328 |
+
),
|
329 |
+
),
|
330 |
+
SubDataset(
|
331 |
+
name="paracrawl_v1_ru",
|
332 |
+
target="en",
|
333 |
+
sources={"ru"},
|
334 |
+
url="https://s3.amazonaws.com/web-language-models/paracrawl/release1/paracrawl-release1.en-ru.zipporah0-dedup-clean.tgz",
|
335 |
+
path=(
|
336 |
+
"paracrawl-release1.en-ru.zipporah0-dedup-clean.ru",
|
337 |
+
"paracrawl-release1.en-ru.zipporah0-dedup-clean.en",
|
338 |
+
),
|
339 |
+
),
|
340 |
+
SubDataset(
|
341 |
+
name="paracrawl_v3",
|
342 |
+
target="en", # fr-de pair in paracrawl_v3_frde
|
343 |
+
sources={"cs", "de", "fi", "lt"},
|
344 |
+
url="https://s3.amazonaws.com/web-language-models/paracrawl/release3/en-{src}.bicleaner07.tmx.gz",
|
345 |
+
path="",
|
346 |
+
),
|
347 |
+
SubDataset(
|
348 |
+
name="paracrawl_v3_frde",
|
349 |
+
target="de",
|
350 |
+
sources={"fr"},
|
351 |
+
url=(
|
352 |
+
"http://data.statmt.org/wmt19/translation-task/fr-de/bitexts/de-fr.bicleaner07.de.gz",
|
353 |
+
"http://data.statmt.org/wmt19/translation-task/fr-de/bitexts/de-fr.bicleaner07.fr.gz",
|
354 |
+
),
|
355 |
+
path=("", ""),
|
356 |
+
),
|
357 |
+
SubDataset(
|
358 |
+
name="rapid_2016",
|
359 |
+
target="en",
|
360 |
+
sources={"de", "et", "fi"},
|
361 |
+
url="http://data.statmt.org/wmt18/translation-task/rapid2016.tgz",
|
362 |
+
path=("rapid2016.{0}-{1}.{src}", "rapid2016.{0}-{1}.en"),
|
363 |
+
),
|
364 |
+
SubDataset(
|
365 |
+
name="rapid_2016_ltfi",
|
366 |
+
target="en",
|
367 |
+
sources={"fi", "lt"},
|
368 |
+
url="https://tilde-model.s3-eu-west-1.amazonaws.com/rapid2016.en-{src}.tmx.zip",
|
369 |
+
path="rapid2016.en-{src}.tmx",
|
370 |
+
),
|
371 |
+
SubDataset(
|
372 |
+
name="rapid_2019",
|
373 |
+
target="en",
|
374 |
+
sources={"de"},
|
375 |
+
url="https://s3-eu-west-1.amazonaws.com/tilde-model/rapid2019.de-en.zip",
|
376 |
+
path=("rapid2019.de-en.de", "rapid2019.de-en.en"),
|
377 |
+
),
|
378 |
+
SubDataset(
|
379 |
+
name="setimes_2",
|
380 |
+
target="en",
|
381 |
+
sources={"ro", "tr"},
|
382 |
+
url="http://opus.nlpl.eu/download.php?f=SETIMES/v2/tmx/en-{src}.tmx.gz",
|
383 |
+
path="",
|
384 |
+
),
|
385 |
+
SubDataset(
|
386 |
+
name="uncorpus_v1",
|
387 |
+
target="en",
|
388 |
+
sources={"ru", "zh"},
|
389 |
+
url="https://storage.googleapis.com/tfdataset-data/downloadataset/uncorpus/UNv1.0.en-{src}.tar.gz",
|
390 |
+
path=("en-{src}/UNv1.0.en-{src}.{src}", "en-{src}/UNv1.0.en-{src}.en"),
|
391 |
+
),
|
392 |
+
SubDataset(
|
393 |
+
name="wikiheadlines_fi",
|
394 |
+
target="en",
|
395 |
+
sources={"fi"},
|
396 |
+
url="http://www.statmt.org/wmt15/wiki-titles.tgz",
|
397 |
+
path="wiki/fi-en/titles.fi-en",
|
398 |
+
),
|
399 |
+
SubDataset(
|
400 |
+
name="wikiheadlines_hi",
|
401 |
+
target="en",
|
402 |
+
sources={"hi"},
|
403 |
+
url="http://www.statmt.org/wmt14/wiki-titles.tgz",
|
404 |
+
path="wiki/hi-en/wiki-titles.hi-en",
|
405 |
+
),
|
406 |
+
SubDataset(
|
407 |
+
# Verified that wmt14 and wmt15 files are identical.
|
408 |
+
name="wikiheadlines_ru",
|
409 |
+
target="en",
|
410 |
+
sources={"ru"},
|
411 |
+
url="http://www.statmt.org/wmt15/wiki-titles.tgz",
|
412 |
+
path="wiki/ru-en/wiki.ru-en",
|
413 |
+
),
|
414 |
+
SubDataset(
|
415 |
+
name="wikititles_v1",
|
416 |
+
target="en",
|
417 |
+
sources={"cs", "de", "fi", "gu", "kk", "lt", "ru", "zh"},
|
418 |
+
url="http://data.statmt.org/wikititles/v1/wikititles-v1.{src}-en.tsv.gz",
|
419 |
+
path="",
|
420 |
+
),
|
421 |
+
SubDataset(
|
422 |
+
name="yandexcorpus",
|
423 |
+
target="en",
|
424 |
+
sources={"ru"},
|
425 |
+
url="https://translate.yandex.ru/corpus?lang=en",
|
426 |
+
manual_dl_files=["1mcorpus.zip"],
|
427 |
+
path=("corpus.en_ru.1m.ru", "corpus.en_ru.1m.en"),
|
428 |
+
),
|
429 |
+
# pylint:enable=line-too-long
|
430 |
+
] + [
|
431 |
+
SubDataset( # pylint:disable=g-complex-comprehension
|
432 |
+
name=ss,
|
433 |
+
target="en",
|
434 |
+
sources={"zh"},
|
435 |
+
url="ftp://cwmt-wmt:[email protected]/parallel/%s.zip" % ss,
|
436 |
+
path=("%s/*_c[hn].txt" % ss, "%s/*_en.txt" % ss),
|
437 |
+
)
|
438 |
+
for ss in CWMT_SUBSET_NAMES
|
439 |
+
]
|
440 |
+
|
441 |
+
_DEV_SUBSETS = [
|
442 |
+
SubDataset(
|
443 |
+
name="euelections_dev2019",
|
444 |
+
target="de",
|
445 |
+
sources={"fr"},
|
446 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
447 |
+
path=("dev/euelections_dev2019.fr-de.src.fr", "dev/euelections_dev2019.fr-de.tgt.de"),
|
448 |
+
),
|
449 |
+
SubDataset(
|
450 |
+
name="newsdev2014",
|
451 |
+
target="en",
|
452 |
+
sources={"hi"},
|
453 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
454 |
+
path=("dev/newsdev2014.hi", "dev/newsdev2014.en"),
|
455 |
+
),
|
456 |
+
SubDataset(
|
457 |
+
name="newsdev2015",
|
458 |
+
target="en",
|
459 |
+
sources={"fi"},
|
460 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
461 |
+
path=("dev/newsdev2015-fien-src.{src}.sgm", "dev/newsdev2015-fien-ref.en.sgm"),
|
462 |
+
),
|
463 |
+
SubDataset(
|
464 |
+
name="newsdiscussdev2015",
|
465 |
+
target="en",
|
466 |
+
sources={"ro", "tr"},
|
467 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
468 |
+
path=("dev/newsdiscussdev2015-{src}en-src.{src}.sgm", "dev/newsdiscussdev2015-{src}en-ref.en.sgm"),
|
469 |
+
),
|
470 |
+
SubDataset(
|
471 |
+
name="newsdev2016",
|
472 |
+
target="en",
|
473 |
+
sources={"ro", "tr"},
|
474 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
475 |
+
path=("dev/newsdev2016-{src}en-src.{src}.sgm", "dev/newsdev2016-{src}en-ref.en.sgm"),
|
476 |
+
),
|
477 |
+
SubDataset(
|
478 |
+
name="newsdev2017",
|
479 |
+
target="en",
|
480 |
+
sources={"lv", "zh"},
|
481 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
482 |
+
path=("dev/newsdev2017-{src}en-src.{src}.sgm", "dev/newsdev2017-{src}en-ref.en.sgm"),
|
483 |
+
),
|
484 |
+
SubDataset(
|
485 |
+
name="newsdev2018",
|
486 |
+
target="en",
|
487 |
+
sources={"et"},
|
488 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
489 |
+
path=("dev/newsdev2018-{src}en-src.{src}.sgm", "dev/newsdev2018-{src}en-ref.en.sgm"),
|
490 |
+
),
|
491 |
+
SubDataset(
|
492 |
+
name="newsdev2019",
|
493 |
+
target="en",
|
494 |
+
sources={"gu", "kk", "lt"},
|
495 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
496 |
+
path=("dev/newsdev2019-{src}en-src.{src}.sgm", "dev/newsdev2019-{src}en-ref.en.sgm"),
|
497 |
+
),
|
498 |
+
SubDataset(
|
499 |
+
name="newsdiscussdev2015",
|
500 |
+
target="en",
|
501 |
+
sources={"fr"},
|
502 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
503 |
+
path=("dev/newsdiscussdev2015-{src}en-src.{src}.sgm", "dev/newsdiscussdev2015-{src}en-ref.en.sgm"),
|
504 |
+
),
|
505 |
+
SubDataset(
|
506 |
+
name="newsdiscusstest2015",
|
507 |
+
target="en",
|
508 |
+
sources={"fr"},
|
509 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
510 |
+
path=("dev/newsdiscusstest2015-{src}en-src.{src}.sgm", "dev/newsdiscusstest2015-{src}en-ref.en.sgm"),
|
511 |
+
),
|
512 |
+
SubDataset(
|
513 |
+
name="newssyscomb2009",
|
514 |
+
target="en",
|
515 |
+
sources={"cs", "de", "es", "fr"},
|
516 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
517 |
+
path=("dev/newssyscomb2009.{src}", "dev/newssyscomb2009.en"),
|
518 |
+
),
|
519 |
+
SubDataset(
|
520 |
+
name="newstest2008",
|
521 |
+
target="en",
|
522 |
+
sources={"cs", "de", "es", "fr", "hu"},
|
523 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
524 |
+
path=("dev/news-test2008.{src}", "dev/news-test2008.en"),
|
525 |
+
),
|
526 |
+
SubDataset(
|
527 |
+
name="newstest2009",
|
528 |
+
target="en",
|
529 |
+
sources={"cs", "de", "es", "fr"},
|
530 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
531 |
+
path=("dev/newstest2009.{src}", "dev/newstest2009.en"),
|
532 |
+
),
|
533 |
+
SubDataset(
|
534 |
+
name="newstest2010",
|
535 |
+
target="en",
|
536 |
+
sources={"cs", "de", "es", "fr"},
|
537 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
538 |
+
path=("dev/newstest2010.{src}", "dev/newstest2010.en"),
|
539 |
+
),
|
540 |
+
SubDataset(
|
541 |
+
name="newstest2011",
|
542 |
+
target="en",
|
543 |
+
sources={"cs", "de", "es", "fr"},
|
544 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
545 |
+
path=("dev/newstest2011.{src}", "dev/newstest2011.en"),
|
546 |
+
),
|
547 |
+
SubDataset(
|
548 |
+
name="newstest2012",
|
549 |
+
target="en",
|
550 |
+
sources={"cs", "de", "es", "fr", "ru"},
|
551 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
552 |
+
path=("dev/newstest2012.{src}", "dev/newstest2012.en"),
|
553 |
+
),
|
554 |
+
SubDataset(
|
555 |
+
name="newstest2013",
|
556 |
+
target="en",
|
557 |
+
sources={"cs", "de", "es", "fr", "ru"},
|
558 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
559 |
+
path=("dev/newstest2013.{src}", "dev/newstest2013.en"),
|
560 |
+
),
|
561 |
+
SubDataset(
|
562 |
+
name="newstest2014",
|
563 |
+
target="en",
|
564 |
+
sources={"cs", "de", "es", "fr", "hi", "ru"},
|
565 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
566 |
+
path=("dev/newstest2014-{src}en-src.{src}.sgm", "dev/newstest2014-{src}en-ref.en.sgm"),
|
567 |
+
),
|
568 |
+
SubDataset(
|
569 |
+
name="newstest2015",
|
570 |
+
target="en",
|
571 |
+
sources={"cs", "de", "fi", "ru"},
|
572 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
573 |
+
path=("dev/newstest2015-{src}en-src.{src}.sgm", "dev/newstest2015-{src}en-ref.en.sgm"),
|
574 |
+
),
|
575 |
+
SubDataset(
|
576 |
+
name="newsdiscusstest2015",
|
577 |
+
target="en",
|
578 |
+
sources={"fr"},
|
579 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
580 |
+
path=("dev/newsdiscusstest2015-{src}en-src.{src}.sgm", "dev/newsdiscusstest2015-{src}en-ref.en.sgm"),
|
581 |
+
),
|
582 |
+
SubDataset(
|
583 |
+
name="newstest2016",
|
584 |
+
target="en",
|
585 |
+
sources={"cs", "de", "fi", "ro", "ru", "tr"},
|
586 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
587 |
+
path=("dev/newstest2016-{src}en-src.{src}.sgm", "dev/newstest2016-{src}en-ref.en.sgm"),
|
588 |
+
),
|
589 |
+
SubDataset(
|
590 |
+
name="newstestB2016",
|
591 |
+
target="en",
|
592 |
+
sources={"fi"},
|
593 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
594 |
+
path=("dev/newstestB2016-enfi-ref.{src}.sgm", "dev/newstestB2016-enfi-src.en.sgm"),
|
595 |
+
),
|
596 |
+
SubDataset(
|
597 |
+
name="newstest2017",
|
598 |
+
target="en",
|
599 |
+
sources={"cs", "de", "fi", "lv", "ru", "tr", "zh"},
|
600 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
601 |
+
path=("dev/newstest2017-{src}en-src.{src}.sgm", "dev/newstest2017-{src}en-ref.en.sgm"),
|
602 |
+
),
|
603 |
+
SubDataset(
|
604 |
+
name="newstestB2017",
|
605 |
+
target="en",
|
606 |
+
sources={"fi"},
|
607 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
608 |
+
path=("dev/newstestB2017-fien-src.fi.sgm", "dev/newstestB2017-fien-ref.en.sgm"),
|
609 |
+
),
|
610 |
+
SubDataset(
|
611 |
+
name="newstest2018",
|
612 |
+
target="en",
|
613 |
+
sources={"cs", "de", "et", "fi", "ru", "tr", "zh"},
|
614 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
615 |
+
path=("dev/newstest2018-{src}en-src.{src}.sgm", "dev/newstest2018-{src}en-ref.en.sgm"),
|
616 |
+
),
|
617 |
+
]
|
618 |
+
|
619 |
+
DATASET_MAP = {dataset.name: dataset for dataset in _TRAIN_SUBSETS + _DEV_SUBSETS}
|
620 |
+
|
621 |
+
_CZENG17_FILTER = SubDataset(
|
622 |
+
name="czeng17_filter",
|
623 |
+
target="en",
|
624 |
+
sources={"cs"},
|
625 |
+
url="http://ufal.mff.cuni.cz/czeng/download.php?f=convert_czeng16_to_17.pl.zip",
|
626 |
+
path="convert_czeng16_to_17.pl",
|
627 |
+
)
|
628 |
+
|
629 |
+
|
630 |
+
class WmtConfig(datasets.BuilderConfig):
|
631 |
+
"""BuilderConfig for WMT."""
|
632 |
+
|
633 |
+
def __init__(self, url=None, citation=None, description=None, language_pair=(None, None), subsets=None, **kwargs):
|
634 |
+
"""BuilderConfig for WMT.
|
635 |
+
|
636 |
+
Args:
|
637 |
+
url: The reference URL for the dataset.
|
638 |
+
citation: The paper citation for the dataset.
|
639 |
+
description: The description of the dataset.
|
640 |
+
language_pair: pair of languages that will be used for translation. Should
|
641 |
+
contain 2 letter coded strings. For example: ("en", "de").
|
642 |
+
configuration for the `datasets.features.text.TextEncoder` used for the
|
643 |
+
`datasets.features.text.Translation` features.
|
644 |
+
subsets: Dict[split, list[str]]. List of the subset to use for each of the
|
645 |
+
split. Note that WMT subclasses overwrite this parameter.
|
646 |
+
**kwargs: keyword arguments forwarded to super.
|
647 |
+
"""
|
648 |
+
name = "%s-%s" % (language_pair[0], language_pair[1])
|
649 |
+
if "name" in kwargs: # Add name suffix for custom configs
|
650 |
+
name += "." + kwargs.pop("name")
|
651 |
+
|
652 |
+
super(WmtConfig, self).__init__(name=name, description=description, **kwargs)
|
653 |
+
|
654 |
+
self.url = url or "http://www.statmt.org"
|
655 |
+
self.citation = citation
|
656 |
+
self.language_pair = language_pair
|
657 |
+
self.subsets = subsets
|
658 |
+
|
659 |
+
# TODO(PVP): remove when manual dir works
|
660 |
+
# +++++++++++++++++++++
|
661 |
+
if language_pair[1] in ["cs", "hi", "ru"]:
|
662 |
+
assert NotImplementedError(
|
663 |
+
"The dataset for {}-en is currently not fully supported.".format(language_pair[1])
|
664 |
+
)
|
665 |
+
# +++++++++++++++++++++
|
666 |
+
|
667 |
+
|
668 |
+
class Wmt(ABC, datasets.GeneratorBasedBuilder):
|
669 |
+
"""WMT translation dataset."""
|
670 |
+
|
671 |
+
def __init__(self, *args, **kwargs):
|
672 |
+
if type(self) == Wmt and "config" not in kwargs: # pylint: disable=unidiomatic-typecheck
|
673 |
+
raise ValueError(
|
674 |
+
"The raw `wmt_translate` can only be instantiated with the config "
|
675 |
+
"kwargs. You may want to use one of the `wmtYY_translate` "
|
676 |
+
"implementation instead to get the WMT dataset for a specific year."
|
677 |
+
)
|
678 |
+
super(Wmt, self).__init__(*args, **kwargs)
|
679 |
+
|
680 |
+
@property
|
681 |
+
@abstractmethod
|
682 |
+
def _subsets(self):
|
683 |
+
"""Subsets that make up each split of the dataset."""
|
684 |
+
raise NotImplementedError("This is a abstract method")
|
685 |
+
|
686 |
+
@property
|
687 |
+
def subsets(self):
|
688 |
+
"""Subsets that make up each split of the dataset for the language pair."""
|
689 |
+
source, target = self.config.language_pair
|
690 |
+
filtered_subsets = {}
|
691 |
+
for split, ss_names in self._subsets.items():
|
692 |
+
filtered_subsets[split] = []
|
693 |
+
for ss_name in ss_names:
|
694 |
+
dataset = DATASET_MAP[ss_name]
|
695 |
+
if dataset.target != target or source not in dataset.sources:
|
696 |
+
logging.info("Skipping sub-dataset that does not include language pair: %s", ss_name)
|
697 |
+
else:
|
698 |
+
filtered_subsets[split].append(ss_name)
|
699 |
+
logging.info("Using sub-datasets: %s", filtered_subsets)
|
700 |
+
return filtered_subsets
|
701 |
+
|
702 |
+
def _info(self):
|
703 |
+
src, target = self.config.language_pair
|
704 |
+
return datasets.DatasetInfo(
|
705 |
+
description=_DESCRIPTION,
|
706 |
+
features=datasets.Features(
|
707 |
+
{"translation": datasets.features.Translation(languages=self.config.language_pair)}
|
708 |
+
),
|
709 |
+
supervised_keys=(src, target),
|
710 |
+
homepage=self.config.url,
|
711 |
+
citation=self.config.citation,
|
712 |
+
)
|
713 |
+
|
714 |
+
def _vocab_text_gen(self, split_subsets, extraction_map, language):
|
715 |
+
for _, ex in self._generate_examples(split_subsets, extraction_map, with_translation=False):
|
716 |
+
yield ex[language]
|
717 |
+
|
718 |
+
def _split_generators(self, dl_manager):
|
719 |
+
source, _ = self.config.language_pair
|
720 |
+
manual_paths_dict = {}
|
721 |
+
urls_to_download = {}
|
722 |
+
for ss_name in itertools.chain.from_iterable(self.subsets.values()):
|
723 |
+
if ss_name == "czeng_17":
|
724 |
+
# CzEng1.7 is CzEng1.6 with some blocks filtered out. We must download
|
725 |
+
# the filtering script so we can parse out which blocks need to be
|
726 |
+
# removed.
|
727 |
+
urls_to_download[_CZENG17_FILTER.name] = _CZENG17_FILTER.get_url(source)
|
728 |
+
|
729 |
+
# get dataset
|
730 |
+
dataset = DATASET_MAP[ss_name]
|
731 |
+
if dataset.get_manual_dl_files(source):
|
732 |
+
# TODO(PVP): following two lines skip configs that are incomplete for now
|
733 |
+
# +++++++++++++++++++++
|
734 |
+
logging.info("Skipping {} for now. Incomplete dataset for {}".format(dataset.name, self.config.name))
|
735 |
+
continue
|
736 |
+
# +++++++++++++++++++++
|
737 |
+
|
738 |
+
manual_dl_files = dataset.get_manual_dl_files(source)
|
739 |
+
manual_paths = [
|
740 |
+
os.path.join(os.path.abspath(os.path.expanduser(dl_manager.manual_dir)), fname)
|
741 |
+
for fname in manual_dl_files
|
742 |
+
]
|
743 |
+
assert all(
|
744 |
+
os.path.exists(path) for path in manual_paths
|
745 |
+
), "For {0}, you must manually download the following file(s) from {1} and place them in {2}: {3}".format(
|
746 |
+
dataset.name, dataset.get_url(source), dl_manager.manual_dir, ", ".join(manual_dl_files)
|
747 |
+
)
|
748 |
+
|
749 |
+
# set manual path for correct subset
|
750 |
+
manual_paths_dict[ss_name] = manual_paths
|
751 |
+
else:
|
752 |
+
urls_to_download[ss_name] = dataset.get_url(source)
|
753 |
+
|
754 |
+
# Download and extract files from URLs.
|
755 |
+
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
756 |
+
# Extract manually downloaded files.
|
757 |
+
manual_files = dl_manager.extract(manual_paths_dict)
|
758 |
+
extraction_map = dict(downloaded_files, **manual_files)
|
759 |
+
|
760 |
+
for language in self.config.language_pair:
|
761 |
+
self._vocab_text_gen(self.subsets[datasets.Split.TRAIN], extraction_map, language)
|
762 |
+
|
763 |
+
return [
|
764 |
+
datasets.SplitGenerator( # pylint:disable=g-complex-comprehension
|
765 |
+
name=split, gen_kwargs={"split_subsets": split_subsets, "extraction_map": extraction_map}
|
766 |
+
)
|
767 |
+
for split, split_subsets in self.subsets.items()
|
768 |
+
]
|
769 |
+
|
770 |
+
def _generate_examples(self, split_subsets, extraction_map, with_translation=True):
|
771 |
+
"""Returns the examples in the raw (text) form."""
|
772 |
+
source, _ = self.config.language_pair
|
773 |
+
|
774 |
+
def _get_local_paths(dataset, extract_dirs):
|
775 |
+
rel_paths = dataset.get_path(source)
|
776 |
+
if len(extract_dirs) == 1:
|
777 |
+
extract_dirs = extract_dirs * len(rel_paths)
|
778 |
+
return [
|
779 |
+
os.path.join(ex_dir, rel_path) if rel_path else ex_dir
|
780 |
+
for ex_dir, rel_path in zip(extract_dirs, rel_paths)
|
781 |
+
]
|
782 |
+
|
783 |
+
for ss_name in split_subsets:
|
784 |
+
# TODO(PVP) remove following five lines when manual data works
|
785 |
+
# +++++++++++++++++++++
|
786 |
+
dataset = DATASET_MAP[ss_name]
|
787 |
+
source, _ = self.config.language_pair
|
788 |
+
if dataset.get_manual_dl_files(source):
|
789 |
+
logging.info("Skipping {} for now. Incomplete dataset for {}".format(dataset.name, self.config.name))
|
790 |
+
continue
|
791 |
+
# +++++++++++++++++++++
|
792 |
+
|
793 |
+
logging.info("Generating examples from: %s", ss_name)
|
794 |
+
dataset = DATASET_MAP[ss_name]
|
795 |
+
extract_dirs = extraction_map[ss_name]
|
796 |
+
files = _get_local_paths(dataset, extract_dirs)
|
797 |
+
|
798 |
+
if ss_name.startswith("czeng"):
|
799 |
+
if ss_name.endswith("16pre"):
|
800 |
+
sub_generator = functools.partial(_parse_tsv, language_pair=("en", "cs"))
|
801 |
+
elif ss_name.endswith("17"):
|
802 |
+
filter_path = _get_local_paths(_CZENG17_FILTER, extraction_map[_CZENG17_FILTER.name])[0]
|
803 |
+
sub_generator = functools.partial(_parse_czeng, filter_path=filter_path)
|
804 |
+
else:
|
805 |
+
sub_generator = _parse_czeng
|
806 |
+
elif ss_name == "hindencorp_01":
|
807 |
+
sub_generator = _parse_hindencorp
|
808 |
+
elif len(files) == 2:
|
809 |
+
if ss_name.endswith("_frde"):
|
810 |
+
sub_generator = _parse_frde_bitext
|
811 |
+
else:
|
812 |
+
sub_generator = _parse_parallel_sentences
|
813 |
+
elif len(files) == 1:
|
814 |
+
fname = files[0]
|
815 |
+
# Note: Due to formatting used by `download_manager`, the file
|
816 |
+
# extension may not be at the end of the file path.
|
817 |
+
if ".tsv" in fname:
|
818 |
+
sub_generator = _parse_tsv
|
819 |
+
elif (
|
820 |
+
ss_name.startswith("newscommentary_v14")
|
821 |
+
or ss_name.startswith("europarl_v9")
|
822 |
+
or ss_name.startswith("wikititles_v1")
|
823 |
+
):
|
824 |
+
sub_generator = functools.partial(_parse_tsv, language_pair=self.config.language_pair)
|
825 |
+
elif "tmx" in fname or ss_name.startswith("paracrawl_v3"):
|
826 |
+
sub_generator = _parse_tmx
|
827 |
+
elif ss_name.startswith("wikiheadlines"):
|
828 |
+
sub_generator = _parse_wikiheadlines
|
829 |
+
else:
|
830 |
+
raise ValueError("Unsupported file format: %s" % fname)
|
831 |
+
else:
|
832 |
+
raise ValueError("Invalid number of files: %d" % len(files))
|
833 |
+
|
834 |
+
for sub_key, ex in sub_generator(*files):
|
835 |
+
if not all(ex.values()):
|
836 |
+
continue
|
837 |
+
# TODO(adarob): Add subset feature.
|
838 |
+
# ex["subset"] = subset
|
839 |
+
key = "{}/{}".format(ss_name, sub_key)
|
840 |
+
if with_translation is True:
|
841 |
+
ex = {"translation": ex}
|
842 |
+
yield key, ex
|
843 |
+
|
844 |
+
|
845 |
+
def _parse_parallel_sentences(f1, f2):
|
846 |
+
"""Returns examples from parallel SGML or text files, which may be gzipped."""
|
847 |
+
|
848 |
+
def _parse_text(path):
|
849 |
+
"""Returns the sentences from a single text file, which may be gzipped."""
|
850 |
+
split_path = path.split(".")
|
851 |
+
|
852 |
+
if split_path[-1] == "gz":
|
853 |
+
lang = split_path[-2]
|
854 |
+
with open(path, "rb") as f, gzip.GzipFile(fileobj=f) as g:
|
855 |
+
return g.read().decode("utf-8").split("\n"), lang
|
856 |
+
|
857 |
+
if split_path[-1] == "txt":
|
858 |
+
# CWMT
|
859 |
+
lang = split_path[-2].split("_")[-1]
|
860 |
+
lang = "zh" if lang in ("ch", "cn") else lang
|
861 |
+
else:
|
862 |
+
lang = split_path[-1]
|
863 |
+
with open(path, "rb") as f:
|
864 |
+
return f.read().decode("utf-8").split("\n"), lang
|
865 |
+
|
866 |
+
def _parse_sgm(path):
|
867 |
+
"""Returns sentences from a single SGML file."""
|
868 |
+
lang = path.split(".")[-2]
|
869 |
+
sentences = []
|
870 |
+
# Note: We can't use the XML parser since some of the files are badly
|
871 |
+
# formatted.
|
872 |
+
seg_re = re.compile(r"<seg id=\"\d+\">(.*)</seg>")
|
873 |
+
with open(path, encoding="utf-8") as f:
|
874 |
+
for line in f:
|
875 |
+
seg_match = re.match(seg_re, line)
|
876 |
+
if seg_match:
|
877 |
+
assert len(seg_match.groups()) == 1
|
878 |
+
sentences.append(seg_match.groups()[0])
|
879 |
+
return sentences, lang
|
880 |
+
|
881 |
+
parse_file = _parse_sgm if f1.endswith(".sgm") else _parse_text
|
882 |
+
|
883 |
+
# Some datasets (e.g., CWMT) contain multiple parallel files specified with
|
884 |
+
# a wildcard. We sort both sets to align them and parse them one by one.
|
885 |
+
f1_files = sorted(glob.glob(f1))
|
886 |
+
f2_files = sorted(glob.glob(f2))
|
887 |
+
|
888 |
+
assert f1_files and f2_files, "No matching files found: %s, %s." % (f1, f2)
|
889 |
+
assert len(f1_files) == len(f2_files), "Number of files do not match: %d vs %d for %s vs %s." % (
|
890 |
+
len(f1_files),
|
891 |
+
len(f2_files),
|
892 |
+
f1,
|
893 |
+
f2,
|
894 |
+
)
|
895 |
+
|
896 |
+
for f_id, (f1_i, f2_i) in enumerate(zip(sorted(f1_files), sorted(f2_files))):
|
897 |
+
l1_sentences, l1 = parse_file(f1_i)
|
898 |
+
l2_sentences, l2 = parse_file(f2_i)
|
899 |
+
|
900 |
+
assert len(l1_sentences) == len(l2_sentences), "Sizes do not match: %d vs %d for %s vs %s." % (
|
901 |
+
len(l1_sentences),
|
902 |
+
len(l2_sentences),
|
903 |
+
f1_i,
|
904 |
+
f2_i,
|
905 |
+
)
|
906 |
+
|
907 |
+
for line_id, (s1, s2) in enumerate(zip(l1_sentences, l2_sentences)):
|
908 |
+
key = "{}/{}".format(f_id, line_id)
|
909 |
+
yield key, {l1: s1, l2: s2}
|
910 |
+
|
911 |
+
|
912 |
+
def _parse_frde_bitext(fr_path, de_path):
|
913 |
+
with open(fr_path, encoding="utf-8") as f:
|
914 |
+
fr_sentences = f.read().split("\n")
|
915 |
+
with open(de_path, encoding="utf-8") as f:
|
916 |
+
de_sentences = f.read().split("\n")
|
917 |
+
assert len(fr_sentences) == len(de_sentences), "Sizes do not match: %d vs %d for %s vs %s." % (
|
918 |
+
len(fr_sentences),
|
919 |
+
len(de_sentences),
|
920 |
+
fr_path,
|
921 |
+
de_path,
|
922 |
+
)
|
923 |
+
for line_id, (s1, s2) in enumerate(zip(fr_sentences, de_sentences)):
|
924 |
+
yield line_id, {"fr": s1, "de": s2}
|
925 |
+
|
926 |
+
|
927 |
+
def _parse_tmx(path):
|
928 |
+
"""Generates examples from TMX file."""
|
929 |
+
|
930 |
+
def _get_tuv_lang(tuv):
|
931 |
+
for k, v in tuv.items():
|
932 |
+
if k.endswith("}lang"):
|
933 |
+
return v
|
934 |
+
raise AssertionError("Language not found in `tuv` attributes.")
|
935 |
+
|
936 |
+
def _get_tuv_seg(tuv):
|
937 |
+
segs = tuv.findall("seg")
|
938 |
+
assert len(segs) == 1, "Invalid number of segments: %d" % len(segs)
|
939 |
+
return segs[0].text
|
940 |
+
|
941 |
+
with open(path, "rb") as f:
|
942 |
+
if six.PY3:
|
943 |
+
# Workaround due to: https://github.com/tensorflow/tensorflow/issues/33563
|
944 |
+
utf_f = codecs.getreader("utf-8")(f)
|
945 |
+
else:
|
946 |
+
utf_f = f
|
947 |
+
for line_id, (_, elem) in enumerate(ElementTree.iterparse(utf_f)):
|
948 |
+
if elem.tag == "tu":
|
949 |
+
yield line_id, {_get_tuv_lang(tuv): _get_tuv_seg(tuv) for tuv in elem.iterfind("tuv")}
|
950 |
+
elem.clear()
|
951 |
+
|
952 |
+
|
953 |
+
def _parse_tsv(path, language_pair=None):
|
954 |
+
"""Generates examples from TSV file."""
|
955 |
+
if language_pair is None:
|
956 |
+
lang_match = re.match(r".*\.([a-z][a-z])-([a-z][a-z])\.tsv", path)
|
957 |
+
assert lang_match is not None, "Invalid TSV filename: %s" % path
|
958 |
+
l1, l2 = lang_match.groups()
|
959 |
+
else:
|
960 |
+
l1, l2 = language_pair
|
961 |
+
with open(path, encoding="utf-8") as f:
|
962 |
+
for j, line in enumerate(f):
|
963 |
+
cols = line.split("\t")
|
964 |
+
if len(cols) != 2:
|
965 |
+
logging.warning("Skipping line %d in TSV (%s) with %d != 2 columns.", j, path, len(cols))
|
966 |
+
continue
|
967 |
+
s1, s2 = cols
|
968 |
+
yield j, {l1: s1.strip(), l2: s2.strip()}
|
969 |
+
|
970 |
+
|
971 |
+
def _parse_wikiheadlines(path):
|
972 |
+
"""Generates examples from Wikiheadlines dataset file."""
|
973 |
+
lang_match = re.match(r".*\.([a-z][a-z])-([a-z][a-z])$", path)
|
974 |
+
assert lang_match is not None, "Invalid Wikiheadlines filename: %s" % path
|
975 |
+
l1, l2 = lang_match.groups()
|
976 |
+
with open(path, encoding="utf-8") as f:
|
977 |
+
for line_id, line in enumerate(f):
|
978 |
+
s1, s2 = line.split("|||")
|
979 |
+
yield line_id, {l1: s1.strip(), l2: s2.strip()}
|
980 |
+
|
981 |
+
|
982 |
+
def _parse_czeng(*paths, **kwargs):
|
983 |
+
"""Generates examples from CzEng v1.6, with optional filtering for v1.7."""
|
984 |
+
filter_path = kwargs.get("filter_path", None)
|
985 |
+
if filter_path:
|
986 |
+
re_block = re.compile(r"^[^-]+-b(\d+)-\d\d[tde]")
|
987 |
+
with open(filter_path, encoding="utf-8") as f:
|
988 |
+
bad_blocks = {blk for blk in re.search(r"qw{([\s\d]*)}", f.read()).groups()[0].split()}
|
989 |
+
logging.info("Loaded %d bad blocks to filter from CzEng v1.6 to make v1.7.", len(bad_blocks))
|
990 |
+
|
991 |
+
for path in paths:
|
992 |
+
for gz_path in sorted(glob.glob(path)):
|
993 |
+
with open(gz_path, "rb") as g, gzip.GzipFile(fileobj=g) as f:
|
994 |
+
filename = os.path.basename(gz_path)
|
995 |
+
for line_id, line in enumerate(f):
|
996 |
+
line = line.decode("utf-8") # required for py3
|
997 |
+
if not line.strip():
|
998 |
+
continue
|
999 |
+
id_, unused_score, cs, en = line.split("\t")
|
1000 |
+
if filter_path:
|
1001 |
+
block_match = re.match(re_block, id_)
|
1002 |
+
if block_match and block_match.groups()[0] in bad_blocks:
|
1003 |
+
continue
|
1004 |
+
sub_key = "{}/{}".format(filename, line_id)
|
1005 |
+
yield sub_key, {
|
1006 |
+
"cs": cs.strip(),
|
1007 |
+
"en": en.strip(),
|
1008 |
+
}
|
1009 |
+
|
1010 |
+
|
1011 |
+
def _parse_hindencorp(path):
|
1012 |
+
with open(path, encoding="utf-8") as f:
|
1013 |
+
for line_id, line in enumerate(f):
|
1014 |
+
split_line = line.split("\t")
|
1015 |
+
if len(split_line) != 5:
|
1016 |
+
logging.warning("Skipping invalid HindEnCorp line: %s", line)
|
1017 |
+
continue
|
1018 |
+
yield line_id, {"translation": {"en": split_line[3].strip(), "hi": split_line[4].strip()}}
|