#%% from typing import Any import pyreadr import pandas as pd import numpy as np import sqlite3 import requests import datasets import tempfile import rdata import json from typing import Any #%% sqlite_url = "https://experimenthub.bioconductor.org/metadata/experimenthub.sqlite3" DATA_URL = "https://bioconductorhubs.blob.core.windows.net/experimenthub/curatedMetagenomicData/" RDATA_URL = "https://huggingface.co/datasets/wwydmanski/metagenomic_curated/resolve/main/sampleMetadata.rda" CITATION = """\ Pasolli E, Schiffer L, Manghi P, Renson A, Obenchain V, Truong D, Beghini F, Malik F, Ramos M, Dowd J, Huttenhower C, Morgan M, Segata N, Waldron L (2017). Accessible, curated metagenomic data through ExperimentHub. Nat. Methods, 14 (11), 1023-1024. ISSN 1548-7091, 1548-7105, doi: 10.1038/nmeth.4468. """ # %% def get_metadata(): ehids = [] descriptions = [] with tempfile.NamedTemporaryFile(delete=False) as tmpfname: r = requests.get("https://huggingface.co/datasets/wwydmanski/metagenomic_curated/raw/main/index.tsv", allow_redirects=True) open(tmpfname.name, 'wb').write(r.content) with open(tmpfname.name, "r") as f: for line in f: ehid, desc = line.split("\t") ehids.append(ehid) descriptions.append(desc) return ehids, descriptions # %% class MetagenomicCurated(datasets.GeneratorBasedBuilder): """Metagenomic Curated Data""" ehids, descriptions = get_metadata() BUILDER_CONFIGS = [ datasets.BuilderConfig(name=ehid, version=datasets.Version("1.0.0"), description=d.strip()) for ehid, d in zip(ehids, descriptions) ] def __call__(self, *args: Any, **kwds: Any) -> Any: return super().__call__(*args, **kwds) def _info(self): try: features = { i: datasets.Value("float32") for i in self.features } except: features = {} return datasets.DatasetInfo( description=self.config.description, citation=CITATION, homepage="https://waldronlab.io/curatedMetagenomicData/index.html", license="https://www.r-project.org/Licenses/Artistic-2.0", # features=features ) def _split_generators(self, dl_manager): json_url = f"https://experimenthub.bioconductor.org/ehid/{self.config.name}" r = requests.get(json_url, allow_redirects=True) metadata = json.loads(r.content) url = metadata['location_prefix']+metadata['rdatapaths'][0]['rdatapath'] data_fname: str = dl_manager.download(url) rdata_path: str = dl_manager.download(RDATA_URL) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_fname, "rdata_path": rdata_path}), ] def _generate_examples(self, filepath, rdata_path): parsed = rdata.parser.parse_file(filepath) converted = rdata.conversion.convert(parsed) expressions = list(converted.values())[0].assayData['exprs'] data_df = expressions.to_pandas().T self.features = data_df.columns study_name = list(converted.keys())[0].split(".")[0] meta = pyreadr.read_r(rdata_path)['sampleMetadata'] metadata = meta.loc[meta['study_name'] == study_name].set_index('sample_id') for idx, (i, row) in enumerate(data_df.iterrows()): try: md = {i: str(j) for i, j in metadata.loc[i].to_dict().items()} except KeyError: md = {} yield idx, { "features": row.to_dict(), "metadata": md } # %% if __name__=="__main__": ds = datasets.load_dataset("./metagenomic_curated.py", "EH1726") X = np.array([list(i.values()) for i in ds['train']['features']]) y = np.array([x['study_condition'] for x in ds['train']['metadata']]) # %%