File size: 3,716 Bytes
41c1eee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89a31b6
 
 
 
 
 
 
 
41c1eee
89a31b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
---
dataset_info:
  features:
  - name: name
    dtype: string
  - name: canopy
    sequence: int8
  - name: density
    sequence: float32
  - name: slope
    sequence: int8
  - name: shape
    sequence: int16
    length: 2
  splits:
  - name: train
    num_bytes: 27490487
    num_examples: 6
  download_size: 7175919
  dataset_size: 27490487
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
license: cc
task_categories:
- feature-extraction
tags:
- climate
- geology
size_categories:
- n<1K
---

# WildfireSimMaps

## Description

This is a dataset containing real-world map data for wildfire simulations. 
The data is in the form of 2D maps with the following features:

- `name`: The name of the map data.
- `shape`: The shape of the area, in pixels.
- `canopy`: The canopy cover in the area, in percentage.
- `density`: The density of the area, in percentage.
- `slope`: The slope of the area, in degrees.

## Quick Start

Install the package using pip:

```bash
pip install datasets
```

Then you can use the dataset as follows with **NumPy**:

```python
import numpy as np
from datasets import load_dataset

# Load the dataset
ds = load_dataset("xiazeyu/WildfireSimMaps", split="train")
ds = ds.with_format("numpy")

def preprocess_function(examples):
    # Reshape arrays based on the 'shape' field
    examples['density'] = [d.reshape(sh) for d, sh in zip(examples['density'], examples['shape'])]
    examples['slope'] = [s.reshape(sh) for s, sh in zip(examples['slope'], examples['shape'])]
    examples['canopy'] = [c.reshape(sh) for c, sh in zip(examples['canopy'], examples['shape'])]
    
    return examples

ds = ds.map(preprocess_function, batched=True, batch_size=None)  # Adjust batch_size as needed

print(ds[0])
```

To use the dataset with **PyTorch**, you can use the following code:

```python
import torch
from datasets import load_dataset

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Load the dataset
ds = load_dataset("xiazeyu/WildfireSimMaps", split="train")
ds = ds.with_format("torch", device=device)

def preprocess_function(examples):
    # Reshape arrays based on the 'shape' field
    examples['density'] = [d.reshape(sh.tolist()) for d, sh in zip(examples['density'], examples['shape'])]
    examples['slope'] = [s.reshape(sh.tolist()) for s, sh in zip(examples['slope'], examples['shape'])]
    examples['canopy'] = [c.reshape(sh.tolist()) for c, sh in zip(examples['canopy'], examples['shape'])]
    
    return examples

ds = ds.map(preprocess_function, batched=True, batch_size=None)  # Adjust batch_size as needed

print(ds[0])
```

## Next Steps

In order to make practical use of this dataset, you may perform the following tasks:

- scale or normalize the data to fit your model's requirements
- reshape the data to fit your model's input shape
- stack the data into a single tensor if needed
- perform data augmentation if needed
- split the data into training, validation, and test sets

In general, you can use the dataset as you would use any other dataset in your pipeline.

And the most important thing is to have fun and learn from the data!

## Visualization

Density

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6461cc67ddb3aaa43c8afef3/RLpWQ0G3Nqfxg-5gJh4YV.png)

Canopy

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6461cc67ddb3aaa43c8afef3/LeJoly6Xo8IhoX2WmdXIU.png)

Slope

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6461cc67ddb3aaa43c8afef3/lkSHHZs9hjR0Yn0Nedl6x.png)

## License

The dataset is licensed under the CC BY-NC 4.0 License.

## Contact

- Zeyu Xia - [email protected]
- Sibo Cheng - [email protected]